The Electrostatic Field in Vacuum Tubes With Arbitrarily
Spaced Elements

By W. R. BENNETT and L. C. PETERSON

ACUUM tubes with close spacing between electrodes have become of

increasing importance in recent years. The higher transconductances
and lower electron transit times thus obtained combine with other features to
raise both the frequency and band width at which the tube may operate
satisfactorily as an amplifier. Specific designs have been discussed in papers
by E. D. McArthur and E. F. Peterson!, and by Fremlin, Hall and Shatford?2.
The important contributions to structural technique made by E. V. Neher
have been described in the Radiation Laboratory Series’. Further im-
portant advances in the art have been recently announced by J. A. Morton
and R. M. Ryder of the Bell Laboratories at the recent I.R.E. Electronics
Conference held at Cornell University in June, 1948, The material of the
present paper represents work done by the authors over a decade ago, and
naturally there has been considerable publication on related topics in the
intervening years. It has been suggestel by our colleagues, however, that
some of the results are not available in the technical literature and are of
sufficient utility to warrant a belated publication. These results have to do
with the variation of the electric intensity, amplification factor, and current
density which takes place along the cathode surface because of the nearby
grid wires.

We shall deal mainly with the approximate solution which neglects the
effect of space charge. The correction required to take account of space
charge is in general relatively small as shown by both qualitative argument
and experimental data in an early paper by R. W. King's. More recent
theoretical work? extending into the high frequency realm has confirmed
the minor nature of the modification needed. The problem is thereby re-
duced to one of finding solutions of Laplace’s equation which reduce to con-
stant values on the cathode, grid, and anode surfaces. The original work
on this problem was done by Maxwell* who calculated the electrostatic
screening effect of a wire grating between conducting planes long before the
vacuum tube was invented. All subsequent work has followed the methods
outlined by Maxwell. In particular he suggested the replacement of the
conducting planes by an infinite series of images of the grid wires and
described an appropriate solution in series for the case of finite size wires.
The useful approximation obtained when the diameter of the grid wires is
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assumed small compared to their spacing was discussed in detail only for the
case of large distances between the grating and each of the conducting planes.

Figure 1 shows the assumed geometry of the grid, anode, and cathode.
End effects are neglected. The origin is taken at the center of one of the
grid wires which have radius ¢, and the X-axis is along the grid plane. The
spacing of the wires between centers is g, the distance from grid to anode is
ds, and that from grid to cathode is d;. No restrictions are placed on the
sizes of a, do, and dy. Above the anode and below the cathode is shown a
doubly infinite set of images which may be inserted to replace the conducting
planes of the anode and cathode. By symmetry the potential from the
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Fig. 1—Array of images for production of equipotential surfaces in planar triode.

array of charges there shown must be constant for all x when y = d» and
also for all x when y = —d;. The double periodicity of the array suggests
immediately an application of elliptic functions. The solution of the sym-
metrical case was actually stated in terms of the elliptic function sn z by
F. Noether®. The extension to the non-symmetrical case shown in Fig. 2
is fairly obvious. One of the authors worked out such a solution in terms
of Jacobi’s Theta functions in 1935, but abandoned any plans for publishing
his analysis in view of the excellent treatment appearing shortly after that
time in the Proceedings of the Royal Society by Rosenhead and Daymond?®,
who applied Theta functions to both tetrodes and triodes, and both cylindri-
cal and planar tube structures for the case of fine grid wires. Some of their
formulas were later included in a book by Strutt’. Methods of calculating
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the case of thick grid wires in terms of expansions in series of elliptic functions
were discussed by Knight, Howland and McMullen®*. The problem of a
finite number of grid wires was treated by Barkas'. More recently tubes
with close spacing between grid and cathode, but with anode and grid as-
sumed far apart, have been analyzed in terms of elementary functions by
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Fig. 2—Variation of amplification factor along the cathode surface of a triode.

Fremlin2, A solution based on the Schwartz-Christoffel transformation
has been given by Herne® for the case of grid wires of finite size and approxi-
mately circular in shape.

Since the derivations have been adequately covered in the references cited,
we merely state the final formula here and indicate how it may be verified
as correct. Let V(x, y) represent the potential function corresponding to
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Fig. 1, the planar triode with fine grid wires. The potential of the cathode
is set equal to zero. Then in the space between anode and cathode,

AV(z, y) = 2r doly — d2)/a + (dy + &)f(x, YV,
+ [Bly + d1) — 27 d» 3’/@ - dlf(x) y)]Vp:

where
B O [r(x + iy — 2ids)/d)
) = 0|75 e + B/ @
A = (d + d))B — 2z d3/a 3)
_ ath(2wi dz/a)

Here we have used Jacobi’s notation for the #-function, as explained by
Whittaker and Watson™, rather than the Tannery-Molk notation used by
Rosenhead and Daymond. We write #y(73) for their #4(z). In our notation

o(z) = 2 f)o (=)™ gin (20 + 1)z (5)

where the parameter = in the above formulas is given by:
7 = 2i(d, + dv)/a (6)

By 91(2) is meant the derivative with respect to z:
91(z) = 22 (—=)"(2n + 1) cos (20 + 1) 5 (7
n=0

Verification of the solution is straightforward. The resulting V(x, y) is
seen to be the real part of a function which is analytic in the complex variable
x + iy except for logarithmic singularities at the points where the Theta
functions vanish. Hence V(x, y) satisfies Laplace’s equation in two dimen-
sions in the region excluding the singular points. Since the zeros of d(z)
occur at z = mr + nwr, where m and n take on all positive and negative
values as well as zero, the singular points of the solution are at

x + iy = ma + 2in(d; + di) — 2ida ®
and x + iy = ma + 2in(dy 4 dv)

which coincide with the centers of the image circles of Fig. 1. The logarith-
mic singularities represent line charges with the first set arising from a d,-
function in the numerator, yielding a positive charge, and the second set
from the ¢-function in the denominator giving a negative sign. The
equipotential curves are approximately circular in the neighborhood of the
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charges and hence V(x, y) gives a constant potential on the surface of each
grid wire if the radius of the grid wire is small compared with the spacing.

We may show by direct substitution that V(x, y) becomes equal to ¥, at
all points of the anode and equal to zero at all points of the cathode. On
the anode we have y = d» which, when substituted in the expression for
f(x, v), gives the logarithm of the absolute value of the ratio of conjugate
complex quantities, and hence

f(x: d2) = 0

Substituting in (1), we then readily verify that V(x, d;) = V,. On the
cathode we make use of the quasi-periodicity of the #-function, as ex-
pressed by

A(z) = = 9,(z + 1), (9)
to prove
S, —d) = %, (10)

from which it follows that V(x, — d)) = 0. To show that all grid wires
are at the same potential, we make use of the other periodicity of the
d-function,

iz + 7) = —(z), (11)
which shows that
f(xﬂ:ma-}')=f(x,}').”¢=0,1s2»"' (12)

It remains to prove that V" actually approaches the value V, in the neigh-
borhood of the typical wire, which may be taken at the origin since the
solution repeats periodically with the wire spacing. We let

x + iy = ce” (13)

and assume ¢/a << 1. Expanding in power series in ¢/a, we find that the
first order terms are included in: '

01( —2mi dg/ﬂ)
31(0)mce®/a
The sign of the argument of the #;-function in the numerator is of no conse-

quence since it does not affect the absolute value. Substituting back in (1),
we then find

f(ccos 8, csin 8) = {n

=B (14)

Lim V(ccos8, csinf) =V, (15)

¢/a—0

The solution is thus completely established.
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The quantities in which we are specifically interested are electric field,
amplification factor, and current density. The electric field is equal to the
negative gradient of the potential function. The amplification factor is
found by taking the ratio of partial derivatives of the electric field at the
cathode with respect to grid and anode voltages. The current density may
then be studied for any assumed operating values of grid and plate voltages.

To calculate the gradient we note that since V(x, y) is the real part of an
analytic function W(z) = V + iU, it follows from the Cauchy-Riemann
equations,

i
Wis) = 3~ i% — _E. +iE, (16)
where E, and E, are the x- and y- components of the electric intensity.
From (1),

AW(z) = [(d + do) F(z) — 2mdoliz + d2)/alV,

(17)
+ [B(dy — iz) + 2mi duz/a — dy F(z)]V .
where )
. 3 [r(z — 2i da)/al
F(z) = — e 8
() = {n th(rz/a) (18)
Calculating the derivative and making use of the relation,
91z — 77) 91(5) )
= 9
h(z — m7)  (z) + 5 (19)
we find at the cathode surface
Fla—id) = 22 [1 + C(@) (20)
where
. 91 [x(x + i di)/d]
) — CLLAAS TP 21
Cle) = I o F i d)/d] (21)
It follows that when y = —d;, we must have E; = 0and
agAE,/2r = [dy + (d + d)C(x)]V, (22)
+ [d2 — dy —.aB/2x — &1 C(x)]V,
The amplification factor is then given by
_OE,/oV, _  d + (d + &)C() (23)

k= 8E,/oV,  d — d — aB/2r — diC(x)

Numerical calculation from these formulas can be made by means of (5)
and (6). When d, and d; are both large compared with unity, Eq. (23)
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reduces to the familiar approximate formula derived, for example, in an
early paper by R. W. King“’,

bE—, (23a)
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Fig. 3—Variation of cathode field strength in a triode.

Some calculated curves for p and E, are shown in Figs. 2and 3. Figure 2
shows the amplification factor as a function of the distance along the cathode
with the ratio of grid-cathode separation to grid wire spacing as a parameter.
The ratio of grid-anode separation to grid wire spacing is held constant at
five. Only half the grid spacing interval is included since the curves are
symmetrical. The increase in u-variation as the grid-cathode separation
becomes small is clearly demonstrated. For negligible p-variation we must
select di/a of the order of 2 or greater.
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Figure 3 shows the variation in field strength along the cathode for the
typical operating point, ¥, = —2 and ¥, = 100 volts. It is to be noted
that for di/a less than 0.6, the electric field actually changes sign as we move
from a point immediately below a grid wire to the midpoint between two
grid wires. In other words a part of the cathode will not emit at all in these
cases while the remainder emits in a non-uniform manner. In the rather
extreme case of di/a = 0.4 only about a quarter of the cathode is emitting.
Tt is worth noting how relatively rapid the ‘‘shadow” or “island” formation
increases between di/a = 0.64 and 0.5 as compared to the increase in the
interval from 0.5 to 0.4.

Tf the equation for u is solved for C(x) and the result substituted back in
the expression for E, at the cathode we find:

Vﬂ + Vp/ K
d + (d + d)/u

where here of course g varies with x. This is identical with the expression
derived by Benham' from Maxwell’s approximate solution except that in
the latter case 4 was a constant. Our colleague, Mr. L. R. Walker, has
pointed out that the equation follows directly from the assumption of small
grid wires without explicit solution for the potential function. Since the
charge density o, on the cathode is proportional to the field strength (the
factor of proportionality in MKS units is the dielectric constant e of vacuum
or 9.854 X 102 farads/meter), Maxwell’s capacity coefficients C, and
Cpe may be calculated from

0o = ny = _(Cm:Vy + Cpcvp) (25)

(24)

_Eu=

The minus sign is used here because we are taking the ratio of charge to
voltage at the negative plate of the condenser consisting of cathode, grid and
anode surfaces. Hence

€

Co = T+ @+ d)/n

(26)

e/ M »
Co = 0 F (l + du ")
Since g is variable, an integration is required to determine the total capaci-
tance. From the periodicity of x with grid spacing it is possible to express
the result in terms of the average values of C,. and C,. over an interval of
length @ along a direction parallel to the grid plane and multiply these
values by the total area of cathode surface.
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Equation (24) may be interpreted in a number of different ways of which
we shall mention the following two:

1. The “equivalent voltage” V, + V,/u does not act at the grid but at a
distance D from the cathode, where

D = dy+ (dy + dy)/n (.23)_

Both the equivalent voltage and distance vary along the cathode surface.
2. The “equivalent voltage”

Ve = (Vo + Vo/w)/[1 + (1 + dofdr)/] (29)

acts in the grid plane and varies with distance along the cathode surface.

As far as the cold tube is concerned the two formulas are equivalent at
the cathode, but not at the grid. When the tube is heated and complete
space charge is present, the two formulas also differ at the cathode. The
current density in the presence of space charge is, accordmg to (28) and
Child’s law: )

I = K(Vy+ Vy/u)r/D? (30)
while, from (29),
I = KV/di (31)

Inboth, K? = 32 €%/81 m, where e¢/m is the ratio of electronic charge to mass.
The value of current given by (31) is [1 4 (1 + da/dy)/u]'? times as large
as that given by (30). If # >> 1 4 d»/d; the two values are nearly the
same. In tubes with close grid-to-cathode spacing the inequality may not
be fulfilled. As to which viewpoint is more accurate, we note that Ferris
and North in their papers ' ¥ on input loading adopted the latter, and that
at high frequencies where electron transit time must be considered the second
viewpoint is preferable because of the more accurate representation of
effects at the grid. For a more complete discussion see Reference 19.
Figure 4 shows curves of relative current density as a function of distance
along the cathode as computed from Eq. (31). The transconductance for
unit area of cathode surface as computed from the same equation is given by:

o _ ol _2 [k )(d1)3
digno = &1 55 3‘1/m(°+ D

= 3.512(V, + V,/w)'"(dr/D)3"2 micromhos. (32)

The resulting variation with distance along the cathode is shown in Fig. 5.
Defining the figure of merit M at a point « along the cathode as the ratio
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between the transconductance 87/9V, and the sum of Cy, and Cj, at this
point, we find from (30)

M = (47/3)'3[dy + (dy + do)/u]™Pu/(n + 1) (33)

where J = el/me, ¢/m = 1.77 X 10" coulombs/kg. From (31), we find
on the other hand

M = (47/3 d\)"Pu/(u + 1) (34)
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Fig. 4—Variation of current density in a triode.

Both formulas indicate that for a cathode capable of supplying a given cur-
rent density the only means of improvement lies in decreasing the cathode-
grid spacing. The improvement is extremely slow; doubling the figure of
merit requires an eight-fold decrease in spacing.

We again emphasize that the calculated current densities and figures of
merit are functions of x, the distance along the cathode. The total current
between the two grid wires is found from (30) to be

al2
I = 2K [ (Vg + Vo/u)™ ds/ (35)
T
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Fig. 5—Variation of transconductance along the cathode surface of a triode.

while, from (31),

al2
Ir = % WVy + Vo)/(u + 1+ do/a)™dx (36)

where x, is given by
Vo + Va/u(x) = 0 37)

On the basis of several reasonable assumptions it may be shown that both
(35) and (36) lead to an approximate 5/2 power law instead of 3/2 power
law. Such a law has actually been observed in cases where shadow forma-
tion was suspected.

We wish to express our appreciation to Messrs. R. K. Potter, J. A. Morton,
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