Theory of Transient Phenomena in the Transport of Holes
in an Excess Semiconductor

By CONYERS HERRING

An analysis is given of the transient behavior of the density of holes ny in an
excess semiconductor as a function of time f and of position x with respect to the
electrode from which they are being injected. When the geometry is one-dimen-
sional, an exact solution for the function #a(x, ) can be constructed, provided
certain simplifying assumptions are fulfilled, of which the most important are that
there be no appreciable trapping of holes or electrons and that diffusion be negligi-
ble. An attempt is made to estimate the range of conditions over which the
neglect of diffusion will be justified. A few applications of the theory to possible
experiments are discussed.

A variety of experiments have been performed, and others are planned,
which involve measurement of transient or steady-state phenomena due to
the drift of positive holes along a specimen of n-type semiconductor after
they have been introduced at an injection electrode or emitier.' These phe-
nomena are presumably a result of the interplay of drift, space-charge, re-
combination, and diffusion effects. This paper seeks to relate these effects to
the phenomena, and its principal contribution is an explicit calculation of the
transient phenomena outside the range of small-signal theory, for cases
where the geometry is one-dimensional and where certain simplifying as-
sumptions, notably the neglect of diffusion, are justified. Removal of some
of these simplifying assumptions and a more careful development of the
theory will be necessary in certain applications.

Section 1 discusses the physical assumptions and boundary conditions
involved in setting the problem up. Section 2 contains calculations of the
distribution of holes along the length of the semiconductor at various times,
for the mathematically simplest case where recombination and diffusion are
ignored and all currents are held constant after the start of the injection.
This simple case illustrates the method of attack to be used in the more
general calculations of Section 4, and it is hoped that this sketching of basic
ideas will enable the hasty reader to pass on to Section 6 without going

! Experiments of this sort have been undertaken with the objective of testing and
extending the theoretical interpretation of transistor action proposed by J. Bardeen and
W. H. Brattain, Phys. Rev., 75, 1208 (1949), especially as regards the role of volume
transport of holes, a role first suggested by J. N. Shive, Phys. Rev., 75, 689 (1949). Ex-
amples of the type of experiment discussed in the present paper have been described by:
J. R. Haynes and W. Shockley, Phys. Rev., 75, 691 (1949) (transient effects); W. Shockley,
G. L. Pearson, M. Sparks and W. H. Brattain, in a paper presented at the Cambridge
Meeting of the American Physical Society, June 16-18, 1949 (steady-state transport);

W. Shockley, G. L. Pearson, and J. R. Haynes, Bell Svs. Tech. Jour., this issue (steady-
state and transient effects).
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through the mathematical details of Sections 3, 4, and 5. Section 3 contains
the complete differential equations of the problem, including diffusion and
recombination, and Section 4 gives the solution when only the diffusion
terms are neglected. Section 5 contains some order-of-magnitude estimates
regarding diffusion effects. Section 6 summarizes the capabilities of the
theory so far developed, presents some obvious generalizations, and dis-
cusses an interesting shock wave phenomenon which occurs whenever the
injected hole current is quickly decreased.

1. Basic ASSUMPTIONS AND BOUNDARY CONDITIONS

Consider the n-type semiconducting specimen shown in Fig. 1, having
electrodes at its two ends, ¥ = —a and x = b, respectively, and an injection
electrode system at x = 0 somewhere in between. Let a current of density 7a
per unit area enter at the left-hand end, and let a current of density j. be
injected at & = 0. To make the problem strictly one-dimensional, it will be

Jaﬂl: Je»‘\l: ijT:

-a o] b
K —
Fig. 1—Idealized experiment on hole transport in one dimension.

supposed that this injection takes place uniformly over the plane cross-
section of the specimen at + = 0, instead of taking place at isolated points
of the surface, as is usually the case in experiments. This idealization will
presumably be justified if the thickness of the specimen is small compared
with lengths in the x-direction which are significant in the experiment and
if the injected positive holes are able to spread themselves uniformly over
the cross-section before appreciable recombination has taken place.

Unless otherwise stated, it will be supposed that j. consists entirely of
positive holes, i.e., that the number of electrons withdrawn from the speci-
men by the electrode at ¥ = 0 is negligible compared with the number of
holes injected. The currents 7, and j. need not be constant in time, although
most of the analysis to be given below will assume them constant after the
time of initiation of 7. .

One can set up differential equations for the variation with x and time
of the electron density, 7, , and the hole density, nx . These equations will in
the general case involve migration due to electrostatic fields, diffusion, re-
combination, trapping, and thermal release of electrons and holes from
traps. It will be assumed, however, that trapping and thermal release from
traps can be neglected, or, more precisely stated, that creation of mobile
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holes and electrons occurs only at the electrodes, and that the disappearance
of mobile holes and electrons is caused only by mechanisms which cause
holes and electrons to disappear in equal numbers at essentially the same
time and place. If this assumption is valid, the charge density due to im-
purity centers will never differ from its equilibrium value by an amount
comparable with the density due to free electrons. This assumption can be
expected to be reasonably good for an n-type impurity semiconductor in
which the number of donor levels is very much greater than the number of
acceptor levels and for which, at the operating temperature, practically all
the donor levels have been thermally ionized, while thermal excitation of
electrons from the normally full band has not yet become appreciable.

As has just been mentioned, the differential equations for the behavior
of the electron and hole densities involve migration under the influence of
the local electric field E(x, ¢). This field is in turn influenced by the space
charge due to any inequality between the hole density n; and the electron
excess (n, — 1), where n is the normal electron density. If the difference
(nn — ne + no) were comparable with u, or n, , the problem would be very
complicated. Fortunately, however, this difference cannot have an appreci-
able value over an appreciable range of x, on the scale of typical experiments.
For example, if (n4 — n. + no) were 10~ of n, for a range Ax of 1y, and if
#g is 101 cm~?, then the difference in field strength on the two sides of Ax
would be about 2000v/cm, a field which would outweigh all other fields in
the problem and rapidly neutralize the space charge. Moreover, the time
required for the evening out of any such abnormally high space charge would
be very short, of the order of magnitude of the resistivity of the specimen
expressed in absolute electrostatic units (1 sec. = 9 X 10! @ cm). Thus it
will be quite legitimate to assume (n, — 7, + 79) = 0 in all equations of
the problem except Poisson’s equation which determines the field E, and
so 1, can be eliminated from the conduction-diffusion equations for holes
and electrons. These two equations can then be used, as is shown below, to
determine the two unknown functions »; and E, Poisson’s equation being
discarded as unnecessary.

The boundary conditions for these differential equations consist of two
parts, the conditions at # = 0 and those at and to the left of x = 0. In most
of the applications to be considered, the injection current j, will be assumed
to commence at ¢ = 0. Thus, initially, the specimen will be free of holes and,
at ¢ = 0%, will have a field Es = j,/oo in the region —a < x < 0, and a
field Eq = ju/o0 in the region 0 < x < b, where o, is the normal conductivity
of the specimen and j» = ju + j. is the total current density to the right
of x = 0. The boundary condition at x = 0 is determined by the magnitudes
of the electronic and hole contributions to the injection current Je - If no
electrons are withdrawn by the electrode at ¥ = 0, then the electron cur-
rents just to the left and just to the right of x = 0 must be equal, and the
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hole current densities on the two sides must differ by j. ; if a part of j, is
due to withdrawal of electrons, then the clectronic current will have a cor-
responding discontinuity. If j, is positive, i.e., flows from left to right in the
specimen, the current can be assumed to be practically entirely electronic
over most of the range from —a to 0; i.e., as x becomes negative the hole
current must rapidly approach zero and the electron current must rapidly
approach j, . In fact, if diffusion is ignored the electron and hole currents
must have these limiting values for any negative x.

The preceding discussion and the mathematics to follow have been
couched in purely one-dimensional language, i.e., have been formulated as if
the electron and hole densities were functions of x alone, independent of y
and z, and as if the semiconductor extended to infinity in the y- and z-direc-
tions. However, it is easy to see at each stage that practically the same
equations can be written for transport of holes along a narrow filament whose
thickness is small compared with the linear scale of the phenomena along its
length, even when the density of holes is not uniform over the cross-section
of the filament. If the density of holes is uniform over the cross-section, all
the equations will of course hold as written. However, recent work? has
suggested that holes recombine with electrons so rapidly at the surface that
the density of holes may be much smaller near the surface than in the center
of the cross-section. In such case all the equations of this memorandum must
be interpreted as applying to the mean value, 7ix(x), of the density of holes,
nu(x, v, ), averaged over the cross-section of the filament; also, the rate of
recombination of holes and electrons must be set equal to some function of
fix , as yet not reliably known, instead of to a constant times the product of
electron and hole densities. This will of course alter most of the quantitative
predictions of Section 4, but will not require any change in the method of
calculation.

2. FORMULATION AND SOLUTION OF THE PROBLEM WITHH NEGLECT OF
DIFFUSION AND RECOMBINATION

For this case the electron and hole currents can each be equated to the
product of field strength E by particle density by mobility g, and the
continuity equations are

any _ 4& .

- o (Epn ni) (1)
adit, a ;..

— = 2
ot ax (Epc ). )

2. Suhl and W. Shockley, paper Q11 presented at the Washington Meeting of the
American Physical Society, April 29, 1949; see also Shockley, Pearson, Sparks and Brat-
tain, reference 1.
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Since the neutrality condition requires (%ik = %’—;‘, subtracting (1) and (2) and

integrating gives the equation of conservation of total current:
E(pene + pann) = j(1)/e = const. indep. of x

where of course j = j, = (jo + jo) when 0 < » < b and when conditions
are such that all currents flow from left to right. Putting the neutrality con-
dition n, = ns + ne, into the equation gives the following relation between
Eand ny :

El(ge + pa)nn + panel = j/e (3)

This can be used to eliminate either E or ), from (1), If E is eliminated
we have

My, M ln Mo ] any, any,
— — — — — V [—
at e[(ue + pa)itn + pomo]® Ox (o dx )

where V(ns) is an abbreviation for the coefficient shown. 1f, instead, n, is
eliminated from (1) a similar equation results:

E _Edj
S - (s)
where
V(E) = eE*uppcie/j = Eun(E/Ep) (6)
where
Ey = j/ao (M)

i.e., the field necessary to maintain the total current by electronic conduction
in the normal state of the specimen. The velocity V(E) is of course numeri-
cally the same as the V(m:) occurring in (4) when E and n, are related
by (3).

The solution can be based on either (4) or (5). We shall use (4), as n)
is the most interesting quantity for direct measurement, and as the differen-
tial equation to be given below for the case where diffusion terms are in-
cluded is simpler when »; is chosen as the dependent variable.

Equation (4) (or (3)) describes a wave propagated with the variable
velocity V. If j. << j., so that E is never greatly different from E, ,
(4) (or (3)) and (6) indicate that »; (or £) is propagated with the constant
velocity Eo i , as is of course to be expected. More interesting is the case
where 7. and j, are comparable, so that V' departs significantly from con-
stancy. It is tempting to suppose that, for this case also, the curve of n,
against x at any time / can be constructed by taking the graph of , against
xat { = 0 and moving each point of the curve horizontally to the right a
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distance V(ny)t. One can, in fact, easily verify that this construction gives a
solution of (4), by writing (4) in the form

(%)
a2 at z
i E— = Vin
(6! )m. dny ()
dx /i
whence it is obvious that the function #,(x, {) defined implicitly by
a(, 1) = x(my, 0) + V(m)t

satisfies (4) for any form of the arbitrary function x(i , 0), and that, con-
versely, any solution of (4) must be of this form.

Assuming, as in the preceding, that all currents flow from left to right,
the boundary conditions at ¢{ = 0T are:

np=0forx <Oandx >0 (8)

or, equivalently,
E = E, = jo/o for x<0] o)
E = Ey = (ja+ jo)/ o0 for x>0
The boundary conditions at x = 0 are, for ¢ > 0,
nn = 0 or, equivalently, E = E, forx = 0~ (10)
and

na = nu or, equivalently, E = E;, for x = 07 (11)
where FE; and #n, are given by the requirement of continuity of electronic
current, i.e.,

Eanope = Ex(no + mia)ie
whence, using the relation (3) between E;, and s and expressing E, as
Ja/ MoCie

py = M (12)
Jabr 4
Je Me
or, alternatively,
(.ua + M’l) jﬂ ]
Er=E |1~ | 13)
! 0 [ Ma (Ja + Je) (

According to (12), mu is small when 7, is small; and, by (13), E; is only
slightly below E, for this case. As j, increases, #y increases and E; decreases,



EXCESS SEMICONDUCTOR HOLE TRANSPORT 407

and (12) and (13) would make s infinite and Ey zero when jo/ja = up/pte .
This merely means that the assumptions made in this sect.lon, in partlcula.r
the neglect. of diffusion and recombination or the assumption. that no elec-
trons are taken out by the injection electrode, must fail to be va.hd before
Je gets as large as pajo/pe . It will, in fact, be shown in Secuon 5 how the
presence of enormous concentration gradients makes it essential to con&der
the effects of diffusion near x = 0 when j, becomes large.

Putting the boundary conditions (8), (9), (10), and (11) into the wave-

!
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Fig. 2—Schematic variation of hole density ) and electric field E with distance x from
injection electrode and time ¢ after the start of the injected current, in the approximation
neglecting diffusion and recombination.

propagation construction described above gives the solution shown schemati-
cally in Fig. 2. An infinitesimal instant after { = 0, ) is zero everywhere
except in an infinitesimal interval at x = 0, where it rises to a maximum
value 7, given by (12). This is shown schematically in the upper left dia-
gram of Fig. 2. The corresponding plot of E, shown in the upper right, dips
down to £, , which is less than either E, or Ey , in this infinitesimal interval.
After a finite time has elapsed, the curves of n,; and E against x are simply
those obtained by moving each point of the right-hand portions of these
{ = 0% curves a distance V/ horizontally to the right, as shown in the bottom
two sketches. Here V' depends on the ordinate in each diagram, taking on
its maximum value Fyu), when #y = 0 or E = E,. Since V is proportional
to E*, the curve in the lower right diagram is a parabola in the range be-
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tween the front and the rear of the transient disturbance; this parabola, if
continued, would have its vertex at the origin. After a sufficiently long time
a steady state will be reached in which the field for positive & has the uni-
form value E, and the density of holes the uniform value s, .

It is possible to measure , as a function of  for fixed x by using a closely
spaced pair of probes to measure the potential gradient E, and convc. ting E
to m, by (3); alternatively, the current to a single negatively biased probe
can be used as a measure of n, , if calibrated by the two-probe method. The

rlh————— e

t—>

Fig. 3—Schematic variation of hole density 74 with time £ after the start of the injected
current, at some given distance downstream from the injection electrode, in the approxi-
mation neglecting diffusion and recombination.

portion of this curve of n, against / for which 0 < nw < nn is given, in the
present approximation, by

:}f[(#c + pn)mn + pe ol €
e tn Mo Ja + Je) (14)

[F[l + . (1 + “A/ﬂe)”’»‘a/”ﬂ]g

I = fIZ/V(Hh) =

where
i#’ = -‘./Eoﬂ-h (15)

is the time of arrival of the front of the disturbance. This curve is a parabola,
as shown in Fig. 3; if continued, the parabola would have its vertex on the
negative n axis, as shown. The rear of the disturbance, at which n; becomes
constant and equal to s , arrives at a time /¢ given by inserting 7 from
(12) into (14): '

lrg = [F/[I - (l + #r_/”h)jcf/(_ju +j0)]3 (]6)
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Note that the velocity of advance of the rear of the disturbance is less than
that with which the holes drift in the steady-state field E, . In other words,
wave velocity and particle velocity must be distinguished in phenomena of
this sort, although they happen to coincide at the front of the disturbance.

The discussion just given has been based on the assumption that j, and
Jeare independent of time, and that they both flow from left to right in Fig. 1.
Time changes in the currents are easily taken into account in the #u, con-
struction of Fig. 2: according to (4), it is merely necessary to move the
various points of the curve of #, against x to the right with the variable
velocity V(us, () instead of the constant velocity V(m); in addition, 4,
will in general not be a constant, so that the part of the curve for small x
will no longer be a horizontal line. As for the restriction that the currents
all flow from left to right, only a change of notation is needed to make all
formulas apply to the case where all currents flow from right to left; and
the case where part of j,. flows to the right and part to the left can, obviously,
occur only under conditions where the assumptions of this section are not
fulfilled, i.e., can occur only if electrons are removed at ¥ = 0 or if both
diffusion and recombination are important. For, if diffusion is negligible,
the existence of a potential maximum at x = 0 implies a convergence of
electrons from both sides onto the plane x = 0, and recombination alone
cannot annihilate electrons at a finite rate in an infinitesimal volume.

Mention has already been made of the fact that equations such as (12)
and (13) give an infinite density of holes when j./ja = ps/s., and are non-
sensical for larger values of j./j,. It is easy to see why any theory which
neglects diffusion must break down for values of j./j, of this size and larger
if no electrons are removed by the injection electrode. If j./j, is too large,
any positive field just to the right of the injection plane & = 0 will cause
more electrons to flow in the negative x-direction than can be carried off
by the current j, which flows in the region of negative x. This difficulty
cannot be eliminated by making the field smaller in the region of small
positive x, since making the field smaller requires a higher density of holes
to carry the hole current j. ; and this in turn requires u higher density of
electrons to preserve electrical neutrality. Thus, though it may be possible
to realize experimental conditions under which the approximations of this
section are valid for moderate values of j./j., increase of j./j. above the
critical value will always result in the building up of an enormously high
density of holes and electrons near x = (), and one must then consider
diffusive transport and possibly other phenomena such as breakdown of the
assumption that no electrons are removed by the injection electrode.

It will be shown below that the effect of recombination on the curves of
ny, against v at various times / can be taken into account by using a geometri-
cal construction similar to that of Fig. 2 except that, instead of moving the
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various points of the curve horizontally to the right with increasing time,
one must move them along a family of decreasing curves (cf. Figs. 4, 5,
and 6). The effect of diffusion can be described roughly as a migration of
each point from one of these curves to another.

3. CoMPLETE DIFFERENTIAL EQUATIONS OF THE PROBLEM

As was mentioned in Section 1, the transport of electrons and holes along
a narrow filament can be described by one-dimensional equations even if
recombination at the surface of the filament causes the distribution of
electrons and holes to be non-uniform over its cross-section. In the equations
to follow, 7 and n, will be understood to refer to averages, over the cross-
section, of the hole and electron densities, respectively; the electrostatic
field E can always be assumed uniform over the cross-section of the filament,
if the latter is thin. The as yet uncertain influence of the surface on the rate
of recombination of electrons and holes can be allowed for by writing the
recombination rate as noR(n4/no)/ 7 particles per unit volume per unit time,
where R is a function which is asymptotically #,/n0 as its argument —0,
and where 7 is the recombination time for small hole densities. For pure
volume recombination, R = n,.u,/rz-: = (nn/ne)(1 + nx/no), while a con-
ceivable extreme of surface recombination would be R = na/no .

Using this function, the continuity equations for electrons and holes can
then be written, with inclusion of recombination and diffusion terms

ann _ _ M any

Tl (E.U»:a 1tn) R (nn) + — e ( ) (17)
an, _ 9 M 1 e

ot ox (Epg o) T (no) T 5 (D° Bx) (18)

where the D’s are the diffusion constants, related to the mobilities u by the
Einstein relation

D/u = kT/e (19)
Using the neutrality condition #, = 7o + 7, subtracting (17) from (18)

and integrating gives the equation of constancy of current, the generali-
zation of (3):

ElG + pdm + e + 5 Gue — ) G2 = j0/e. (20)

S.c')lving for E gives
d
§ = KT Gue = )

E= el(pe + pa)in + o ﬂo] (21)
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which can be substituted into (17) to give a differential equation for #, alone:

%z_iﬂ[ bt ]_&R(@)
atl e dx | (e + w)m + ue o T ity

oy, (22)
N T a (10 + 2ms) -
e Mo | (e 1 )iy, e 1t

The first term on the right represents drift, the second recombination, and
the third diffusion. This holds whether j is constant in time or not. How-
ever, as the remainder of this memorandum will be devoted to the case
where the currents involved are held constant after their initiation, it will
be convenient to simplify the notation by introducing a current-dependent
scale for x and writing the equation in terms of the dimensionless variables

v=m/ne,s = i/7, € = x/Eqpnt = venop/junt (23)

In terms of these (22) becomes simply

o _ 9 v _
FRFT: [1 +( -|—.u:./M.)V] RE)

Aa| @+ 2:»)32—
+ (1) Ot 14+ (1 + wn/pe)w

where R(v) = »(1 + ») for pure volume recombination, or = » for a surface
recombination uninfluenced by the electron density, and where

J = (kTe pong/unt)"™

(24)

(25)

= go(kT/e wn)®
Numerically the characteristic field is, at 300°K, with g = 1700 cm?/v sec,’
(kT /epsr)'* = 3.90 (r/1us)™" volts/cm (26)

Note that the importance of the diffusion term in (24) goes down in-
versely as the square of the current density used and inversely as the square
of the recombination time; this is because an increase in the distance the
holes travel decreases the distance they diffuse by decreasing the concen-
tration gradient, and also makes a given diffusion distance less serious by
comparison with the total distance traveled. Note also that, if g, = s,

the last term of (24) reduces simply to (J}J)

2 9%

az?
diffusion term is not a simple second derivative.

, but that, if s 5 gy, the

#G. L. Pearson, paper Q9 presented at the Washington Meeting of the American
Physical Society, April 29, 1949,
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4. SOLUTION INCLUDING RECOMBINATION BUT NEGLECTING DIFFUSION

It is plausible to expect by analogy with Fig. 2 that (24) can be solved,
neglecting the last term, by a similar construction in which the curve of »
against x at time ¢ is derived from that at time 0 by moving each point to
the right along a descending curve, instead of along a horizontal line as be-
fore. To show that this is indeed the case, and at the same time to show
that the diffusion term cannot so easily be taken into account, let (24) be
written, omitting its last term, as

av v
— = —®(») — — R
» — —a0) 3 - RO)
where @ is just the translation into dimensionless variables of the velocity V
encountered in (4). This can be converted into a differential equation for §

by writing

)
0,

and multiplying through by (gj)
v

a

ot _ 13
GOVHRM(51+¢h) 21
or withw = %,
9t o9F
s w2
a (z + rbdw) a(g + :pdw)
as ow

whence the general solution is

£t = ——f ¢ dw + f(s + w) (28)

where f is an arbitrary function. If the same transformation is tried on (24)
with the diffusion term retained, the equation corresponding to (27) has an
additional term on the right containing a quotient of second and first deriva-
tives of £ with respect to », and the simple explicit solution fails.

To apply (28) to explicit calculation, or even to visualize it physically, it
is necessary to determine the proper form of the arbitrary function f to fit
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the boundary conditions of the problem. This is most conveniently done by
introducing a family of curves as suggested by the analogy with Fig. 2. The
analogy suggests that we should try to find curves in the », £ plane (the full
curves of Fig. 4) such that a point can move along any one of them with
velocity components

b _ o dv

d_s - y ;1;' - _R-
The equation of any such curve is
%E_ /R
dy
or
v
R (20)

where vy, the intercept of the curve on the v-axis, is taken as a parameter
distinguishing the curve in question from others of the family. A point which
starts at height », on the v-axis at time s = 0 will reach height » at time

) = [ K . (30)

Thus, after time s, the locus of all points which start at all the various
heights vy will be the curve obtained by eliminating », between (29) and
(30) (shown dotted in Fig. 4). That this curve is, in fact, of the form (28)
and therefore a solution of the differential equation is easily seen by writing
(29) and (30) in terms of mtegr’tls taken from some arbitrary but fixed
lower limit:

) = — [ 2d g [T

d "o d
S(V, Vu) _f Y V .

As g is varied both the integrals with upper limit »q will vary, and either
can be expressed as a function of the other:

["%=1(/"%)
T )

which is identical with (28).

whence
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The equations (29) and (30) of course apply only to the portion of. the
curve of » against & which is derived from starting points vo on the » axis
which are less tha.n the maximum value » correspondmg to the value N
given by (12): The points for »o < vy are merely initiated at time s.= 0. a.nd
propagated by the differential equation from then on; the point » = ¥,
£ = 0, on the other hand, remains a source at all times from the initiation
of the injection onward. Thus the complete curve of v against £ for any
positive s follows the dotted construction of Fig. 4 from the £ axis up to
where it intersects the full curve corresponding to v = »1, after which it

4]

Vo np—

0

Eacx —>

Fig. 4—Schematic illustration of the method of constructing the curve of hole density
ny, against distance « from the injection electrode at some given time, taking account of
recombination but neglecting diffusion.

follows the latter curve, as indicated by the crosses in the figure. The steady-
state distribution is thus simply the full curve for vy = » .

For explicit calculation for the case of pure volume recombination one
must insert ® = 1/[1 + (1 + wi/p)¥]?%, R = »(1 + ») into (29) and (30).
The integrations are easily carried out and give

E“|: 1+ pe/un 4+ n )
1+ (14 pa/wedvo 14+ (1 + Juh/#,)v[;
+ In j (1 + .uk/#s)v!]]

e 1+ w
— [same with » instead of vl (31a)
s =1In A . (32a)

14 » 14
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For the case of a surface recombination uninfluenced by electron concen-
tration one obtains similarly, with R = »:

1 Yo
= {1 + (0 + w/wdw In 7 + (1 + m/#e)m]
— [same with » instead of »] (31b)

s=mh2 (32b)

v

When pe = 3u,/2, as for germanium, (31a) and (31b) become respectively

T s 9 1+ 5uw/3
3_[1+5v0/3+1“1+5/3+ 1+Vo]

— [same with » instead of | (33a)

and

1 Yo
£= [1 T TR spo/s]
— [same with v instead of v (33b)
These can also be written, using (32a) and (32b),
_ 5/2 5/2 [(1 + Sw/3)(1 + »)
= 53 1+ 53 4 i (1 +5/3)(1+1‘n):| (342)

and

E:S+m(g+3/5

1 1
v + 3/5) Tl 53 T 1 s 4D

Figures 5a and 5b show as a full curve the plot of eq. (33a) for the case
vg = o, and the full curve in Fig. 6 shows in the same way the plot of
(33b) for vp = . Changing »¢ of course merely shifts either curve hori-
zontally. Note the very sharp increase of » for small £ which shows up in
pronounced manner on the expanded scale of Fig. 5b. The corresponding
values of 5, computed from (32a) or (34a), are marked on the curve of Fig. 5;
the corresponding marks on the curve of Fig. 6 also represent values of s at
intervals of 0.2, but are not labeled with absolute values because (32b) is
infinite for vg = 0.

For large £, » becomes very small and it becomes legitimate to expand the
logarithms. The first few terms of the resulting asymptotic expression for £
are, for vp = o and the recombination function leading to (31a),

= (5;2* - 1) In (1 + pa/ue) — (1 + pe/m) — In v
+ (3 + 2un/ue)v (35a)
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Fig. 5-—Steady-state curve of hole density #a against distance x, for the case of ideal
volume recombination (recombination rate = nxn./Tn0), and asymptotic approximations
to this curve.
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while, for the recombination function leading to (31b),
E~—In(l + w/ue) — 1 — Inw 4+ 201 + p./pi)v (35b)

In Figs. 5a and 6 the lower dotted curve represents the sum of the terms of
(35a) or (35b) respectively as far as the term in In »: in this approximation
the dependence of » on £ is exponential. An exponential behavior of this
sort is assumed in the small-signal theory of the modulation of the resistance
of a filament of semiconductor by hole injection.’ The upper dotted curve
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Fig. 6—Steady-state curve of hole density n, against distance x, for the case of ideal
surface recombination (recombination rate = mua/7), and asymptotic approximations to
this curve.

in Figs. 5a and 6 is a plot of (33a) or (33b), respectively, with the linear
term included. It will be seen that in both figures the simple exponential
approximation is already quite far off when » = n,/n, = 0.1, though it
improves rapidly for smaller ».

Figure 7 shows a sample plot of » against £ for the case of ideal volume
recombination (egs. (31a) etc.), for the numerical conditions s = 1, », = 0.3
(cf Fig. 4). According to (12), whose validity at £ = 0 is unimpaired by the
occurrence of recombination, this value of » implies j./f. = 6.5. The left-

1W. Shockley, G. L. Pearson, and J. R. Haynes, Bell Svs. Tech. Jour., this issue.
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hand portion of this curve is simply traced from Fig. 5, with a horizontal
shift sufficient to give an intercept at » = 0.3; the right-hand portion was
constructed by placing the paper for Fig. 7 over that for Fig. 5, shifting
horizontally until the point corresponding to one of the values of s marked
on Fig. 5 lay on the axis of ordinates of Fig. 7, marking the position of the
point labeled with one plus this value of s, and repeating.
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Fig. 7—Variation of hole density n with distance x at time? = 7 assuming #m = 0.3 1o
recombination rale = #nan./tnq, and neglecting diffusion.

Figure 8 shows sample plots of » against s for the same case of ideal
volume recombination, with » = 0.3, for £ = 0.5 and £ = 1.0. Curves for
a different »; would start out exactly the same, but rise higher. The rising
portion of the curve for £ = 0.5, for example, was constructed from the
curve of Fig. 5a by locating various points (£, ») on the latter curve and
associating with the v value of each such point a value of s equal to the
difference of the s values marked on the curve of Fig. 5a for the two points
abscissae £ and (¢ — 0.5). As Fig. 5a was prepared entirely by slide rule,
the accuracy is not all that can be desired; the individual computed points
are shown to give an idea of the magnitude of the computational errors.
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For convenience in future calculations the equations will be- appended
which correspond to (31) to (34) when, instead of 1, , the field E is used as
dependent variable in the differential equations. In terms of the dimension-
less variable

1
14 »(1 4 pa/pe)

and the parameter e corresponding to » = »y, the equations are, for ideal
volume recombination (eqs. (31a) etc.),

¢ = E/Ey = (36)

2
£ = [(1 + wefuen — sz In (1 + ‘;—u) +In(1— eﬂ)]

(37a)
— [same with e instead of €]
1— 1 -
s=1In ( @) — In ( ¢ (38a)
(1+’ﬂ‘q.) (1+‘i"e)
Me Me
while, for the recombination function leading to egs. (31b) etc.,
E=eu—-e+1n1"€0 (37b)
1—c¢
1
=h 2 . (38b)

The electrostatic potential U is
U= —fde= —E:m.'rfedf-

In the steady state the relation between e and £ is given by (37) with €

set equal to ¢ which, by (13),is 1 — (i :; ) G {;_ 7 For this case
U= —Eg,uh'r l:e.‘f - fEde]
= — e | Gk = 1) = 0+ /)2 (39)

2
—In(l —¢ — 'U—';ln(l -I-&ke)] ~+ const.
En Ha
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for ideal volume recombination; while, for the assumptions leading to egs.
(31b), etc. the relation is

U= —FEx, rle — /2 — In (1 — )] + const. (39b)

Thus, in the steady state, the difference in potential between any two points
to the right of ¥ = 0 can be obtained by finding the values of e for these
two points by (37), and then using these to evaluate the difference in the
values of (39) at the two points. To the left of x = 0, of course, E is constant
and equal to j,/0.

5. D1rrusioNn EFFECTS

Diffusion will obviously be very important at small values of ¢ = x/Equur
when m, is large, because of the tremendous concentration gradients which

042
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Fig. 8—Transient behavior of m, with time at position &/Eo pyr = 0.5 and 1.0, as-
suming nm = 0.3 n and recombination rate = nane/io.

Figs. 5 and 6 predict for such cases. Also, of course, diffusion will round off
the discontinuities in slope which appear at the front and rear of the transient
disturbance as in Fig. 7 and Fig. 8. At other points the importance of diffu-
sion effects can be roughly estimated either by comparing the diffusion cur-
rent with the drift current or by comparing the divergences of these two
contributions to the current, i.e., the last and first terms on the right of (24).
Referring to these terms in (24) we have

[diﬁ'usion current] _ ({)2 1+ 2@ [Q] (40)
drift current b v at
I:div. diffusion current] _ (J_2 )
div. drift current 7

- [[1 + (0 /el + 29 A /

(41)
dv

av
% + (1 — /) 5.5"]
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For the steady-state curve approximate values of the expressions (40) and
(41) can be computed by evaluating the derivatives of ¢ with respect to »
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Fig. 9—Asymptotic magnitude of diffusion terms in the steady-state flux of holes,
when j/J is large.

from (29) or (31). For the case of ideal volume recombination with w,/u, =
3/2 this gives, if the diffusion effects are not too large,

diffusion current
drift current

= () @m0+ 20+ 5 (+2)

[dl\f: dlﬁy_.smn Currem::' ~ J) (1 + 50)%(1 + 2389 + 217 + 4%,
div. drift current i
(43)

These functions are plotted in Fig. 9. From this figure one can estimate
roughly when diffusion will begin to have serious effects other than a slight
rounding of the leading and trailing ends of the transient. For example, if
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it is desired that the ratio (43) be less than about 0.1 in the steady state
for values of » as high as 0.3, the upper curve of Fig. 9 shows that the current
0.1

3G le,j =2 11.7 J,

density used must be large enough to make (;) <

where J is given by (25) and (26).

An approximate evaluation of (40) and (41) in the transient region can
be performed by graphical or numerical differentiation of a curve such as
that of Fig. 7. For example, a rough calculation based on Fig. 7 gives, in
the middle of the transient portion (¢ = 0.75),

[div. difTusion current] ~3 C)E
div. drift current | \j/~

More important and also more difficult to estimate is the effect of diffusion
in rounding off the front and rear edges of the transient. Various ways can
be devised to estimate a rough upper limit to the amount of rounding off
to be expected. One such is to compute what the diffusive flux just behind
the front of the advancing disturbance would be if the distribution of holes
were the same as in the absence of diffusion. Under conditions where diffusion
is not too serious the time integral of this diffusive flux between any two
times can be equated to the increase in rounding of the front, as measured
by the area between an ideal curve such as that of Fig. 7 and the actual
curve of » against £ for the same time s. The integration cannot be extended
back to time zero, however, since the integral of the flux diverges logarith-
mically. The fact that the diffusive flux is actually finite instead of infinite
of course arises from the fact that at small times the concentration gradient
a short distance behind the front can no longer be approximated by the
gradient which would obtain in the absence of diffusion, but instead is very
much less. Thissuggests that an upper limit to the total diffusive flux passing
into the region of the front from time 0 to time s can be obtained by taking
the flux computed as described above between the times so and s, and adding
to it the total number of holes which have left the injection electrode be-
tween time 0 and time s, . Since this gives an upper limit for any so, one
may use the minimum of the resulting sum as s is varied.

The results of some sample calculations of this sort are shown in Fig. 10,
which refers to the same time, currents, and recombination function as Fig. 7,
viz., s = {/r = 1.0, j/ja = 2/13, ideal volume recombination. The full
curve is the transient portion of Fig. 7 replotted on a larger scale. The lower
dotted curve is a curve drawn in by hand in such a way as to make the
area between it and the full curve equal the upper limit computed in the
manner just described, for the case j = 100J. The upper curve was drawn
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similarly for j = 31.6J. Since the true curve of v against £ must lie between
the dotted curve and the full curve in each case, it can be concluded that
for times and current ratios of this order the diffusionless theory of Section 4
gives a useful approximation to the transient when j > 100J. At the other
end, it seems likely that for j < 10J the theory of Section 4 has no quantita-
tive utility at all in the transient region.

When diffusion effects are sufficiently great, account must also be taken
of the fact that the boundary conditions at the injection electrode (x = 0)
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Tig. 10—Approximate magnitudes of the rounding of the front by diffusion for various
values of j/J, for the case t = 7, j./ja = 2/13, ideal volume recombination. Ordinate is
proportional to hole density, abscissa to distance from injection electrode.

take a different form from those in the absence of diffusion. In the absence
of diffusion and with the assumption that only holes are injected at x = 0,
the current just to the right of x = 0 must consist of a contribution 7, from
holes and a contribution j, irom electrons, while the current just to the left
of ¥ = 0 is purely electronic and of magnitude j, . This implies, as we have
seen in Section 2, that the hole density be discontinuous, with the value n,,;
given by (12) just to the right of £ = 0, and the value zero just to the left.
But if diffusion is allowed, the hole density must be continuous. For the
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idealized case where holes are injected on the plane x = 0 and no electrons
are removed there, the equations to be satisfied are

die _ an. ;
D, (64.‘\:).;. + ”enucE+ = D. (6.1')_ + "c#cE— (44)

ony

) + m.,ur.E.. (45)
ax J_

—Di (%L + mpn By = I _ Dy, (
ox /4 (4

D, (@f) — Dy (am) + (Hepe + mp)E- = jo/e (46)
ox /- ox /_

where subscripts + and — refer to conditions just to the right of x = 0
and just to the left, respectively. Using the neutrality condition n, = 1o + 2
these are three equations for the five unknowns (‘%)i , B+ ,ny . Tocomplete
the determination of these quantities the differential equation (22) must be
solved and the boundary conditions imposed that n, — 0 as x — =+ «.

Actually the problem of estimating conditions at x = 0 may not be quite
as formidable as the preceding paragraph suggests, at least if the diffusion
parameter J/j is reasonably small and if j./7, is also not too large. For such
cases the “upstream diffusion” of holes into the region of negative x will
probably reach a steady state in a very short time. Solutions of the steady
state differential equation in this region have been obtained numerically by
W. van Roosbroeck (unpublished). Such solutions will give one relation be-

an. . . .
tween n; and (6}') ; another relation, in the form of a fairly narrow range
v

of limits, is provided by the fact that (%%) will under these conditions be
X /)4

1G4 ({;r,) , being in fact probably somewhere between zero and the value
X/

for the diffusionless case with the same value of .

Of course, if the mathematical solution for this one-dimensional idealiza-
tion is to be applied to a case where holes are injected into a filament by a
pointed electrode on its boundary, little meaning can be attached to vari-
ations in the m; of the mathematical solution within a range of x values
smaller than the diameter of the filament.

6. SuMMARY AND DiscussioN

There are three principal factors which limit the range of conditions
within which the present theory provides a useful approximation to the
transient behavior of #, as a function of / and x. These are diffusion, trap-
ping, and departure from one-dimensional geometry. If the geometry is
sufficiently nearly one-dimensional and trapping is negligible, the discussion
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of Section 5 shows that the theory of Section 4, with its neglect of diffusion,
will give a useful approximation to the truth whenever the field in which
the holes migrate is sufficiently strong—e.g., strong enough to make the
current density j > 100 J, where J is given by (25) and (26). The obtaining
of “sufficiently strong” fields without excessive heating or other undesirable
effects is facilitated by the use of specimens with as long a recombination
time 7 as possible, and by the use of specimens of low conductivity. How-
ever, it is hard to say how low the conductivity can be made without danger
that the “no trapping” assumption will break down, since for this assumption
to be valid the density of hole traps must be << the density of donors.

The numerical predictions of the theory depend upon the way in which
the rate of recombination is assumed to depend upon the concentrations of
electrons and holes, i.e., upon the form of the function R(v) introduced in
(17) and (18). The full curves of Figs. 5 and 6 give the steady-state depend-
ence of n; on x for two simple assumptions regarding R(»), the dependence
corresponding to any given boundary value n;; at x = 0 being simply ob-
tained by a suitable horizontal shift of the curve plotted. When the currents
are held constant after their initiation, the auxiliary time scale in these
figures can be used to construct the transient disturbance at any time, by
the methods described in connection with the examples of Figs. 7 and 8.

These results should hold for a plane-parallel arrangement of electrodes or,
to a good approximation, for electrodes placed along the length of a narrow
filament, provided the n;, appearing in the equations is interpreted as a cross-
sectional average of the hole density and provided the other assumptions
given in Section 1 are fulfilled. It is easy to see, however, that practically
the same equations apply to cases of cylindrical or spherical geometry, in
the approximation where diffusion is neglected. For, in these cases, the

d 14
original equations (17) and (18) merely have py (- ) replaced by oy (r--+)

10 L. ‘
or S, (r* -+ ); if the diffusion terms are neglected the solution is the same

as before with x replaced by r*/2 (cylindrical case) or #3/3 (spherical case)
and with j replaced by 7/2rd (cylindrical case, d = thickness of sample,
I = total current) or by [ /4 (spherical case). However, it may be difficult
to realize experimentally conditions approximating cylindrical or spherical
geometry which satisfy the requirement that diffusion effects be small.
Another generalization which is easily made is the removal of the assump-
tion that no electrons are withdrawn by the electrode at & = 0. As far as
conditions to the right of ¥+ = 0 are concerned (Fig. 1), the only change
required in the diffusionless theory is to interpret j, as the current density
leaving the emitter electrode in the form of holes, rather than as the total
current from the emitter electrode, and to interpret j, as the sum of the
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current leaving the emitter electrode in the form of electrons and any current
to the left of x = 0.

1t should also be clear that the entire analysis of this paper, though it has
for definiteness been formulated for the case where holes are injected into an
excess semiconductor, applies just as well to any case where electrons can
be injected into a defect semiconductor. For the latter case it is merely
necessary to interchange the subscripts ¢ and / in the formulas. Though the
types of experiments discussed in this paper have to date only been reported
for n-type germanium, the occurrence of similar phenomena in p-type speci-
mens is indicated by the successful use of such specimens in transistors.®

An interesting and possibly quite useful phenomenon should occur when,
after establishment of a steady state, the current j, is suddenly turned off.
There will result a transient disturbance propagated in the direction of in-
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Fig. 11—Schematic variation of hole density ns with distance =, illustrating formation
of a shock wave by quickly decreasing j. to zero, for the case where j = j. + ja is kept
coastant,

(a) Immediately alter reduction of j. to zero.

(b) Later time,

creasing x, which is very much like a shock wave in a gas. This, the most
interesting feature of the phenomenon, will occur regardless of whether j,
remains constant when j, is cut off; however, the simplest example for il-
lustrative purposes is the case where j, is increased by the amount j, at the
instant when the latter is cut off, so that 7 remains constant. For this case,
illustrated in Fig. 11, the values of n, ahead of the advancing front will
remain the same at each point as in the previous steady state. Just behind
the front, n, must drop abruptly to zero. If j/J is large, where J is given
by (25), the drop will be extremely sharp. For the change in the form of the
front with time is compounded out of diffusion and propagation with variable
velocity along descending curves, as shown schematically in Fig. 4. Since
the latter propagation involves a more rapid motion to the right, the smaller
s , it tends to steepen the front, and this steepening must continue until

5 W. G. Pfann and J. H. Scafl, paper presented at the Cambridge Meeting of the Ameri-
can Physical Society, June 16-18, 1949.
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the diffusive spreading becomes sufficient to counterbalance it. It is not
necessary, for the production of a steep front of this kind, that the decrease
of j, to zero be brought about with corresponding rapidity; even a gradual
decrease of j, will lead to a front which becomes steeper as it advances,
and if the decrease of j, is not too gradual a “shock front” will have devel-
oped after a short distance. The order of magnitude of the “shock front
thickness” can be estimated by finding the value of the time A/ for which
the diffusion distance Axp = (2D A t)m equals the difference Axy between
the drift distances of the holes at the top and bottom of the front, i.e.,
Axy = [V(0) — V(n.)]Al, where V is given by (4) and #, is the height of
the front. For this value of A/,

Axp = 2D/[V(0) — V(n,)] (48)

and this is presumably of the order of magnitude of the thickness of the
front. If D is interpreted as D, = kTpu,/e, which is good enough for the
present purpose, this gives

Axp = — - 2. (49)
ek, _ 1
[1 1+ (1 + m./ue):l

Of course, this extremely sharp front can be realized only when the condi-
tions of one-dimensional geometry are accurately fulfilled. When the geome-
try is made sufficiently ideal, observation of the thickness of the “shock
front” can provide a valuable check on the validity of the basic assumptions
of the theory such as the neglect of trapping.®

_The author would like to express his indebtedness to many of his col-
leagues, and especially to J. Bardeen, J. R. Haynes, and W. van Roosbroeck,
for many illuminating discussions of the topics covered in this paper.

¢ The accompanying paper by W. Shockley, G. L. Pearson and J. R. Haynes describes

some observations of this shock wave effect, though under conditions where v < 1, so
that the thickness of the [ront as given by (49) is still fairly large.



