On the Theory of the A-C. Impedance of a Contact Rectifier
By J. BARDEEN

HE a-c. impedance of the rectifying contact between a metal and a

semiconductor is measured by superimposing a small a-c. current on
a d-c. bias current. It is generally recognized! that an equivalent circuit
consists of a parallel resistance and capacitance in series with a resistance
as shown in Fig. 1. The parallel components represent the impedance of
the barrier layer itself and depend on the d-c. bias current flowing. The
series resistance is that of the body of the semiconductor. It has been shown
theoretically by Spenke® that under quite general conditions the parallel
capacitance and resistance are independent of frequency. Unfortunately
Spenke’s proof is highly mathematical and is also not readily available.
The derivation of the impedance relations which is presented here is in
some ways more general and gives more physical insight into the problem.

The method of analysis which is used is similar to that employed by Miss
C. C. Dilworth® for the d-c. case. Except for some obvious differences in
sign, the theory is the same for n- and p-type semiconductors.! We give
the theory for the latter because the signs are a little simpler for positively
charged holes than for negatively charged conduction electrons. Before
the discusssion of the theory of the a-c. impedance, a brief outline of Schott-
ky’s theory of the barrier layer will be given.

A rough schematic energy level diagram, based on Schottky’s theory of
the barrier layer at a contact between a metal and a p-type semiconductor,
is illustrated in Fig. 2. The diagram is plotted upside down from the usual
one in order to show the energy of holes increasing upward. The energy of
electrons increases downward. In a defect or p-type semiconductor, such
as Cu.0, electrons are thermally excited to acceptor levels, charging the
acceptors negatively, and leaving missing electrons or holes in the filled
band. The holes are mobile and provide the conductivity. Electron states
with energies lying above the Fermi level in the diagram, corresponding to
lower energies for electrons, have a probability of more than one-half of

1 For an outline of the theory of contact rectifiers together with references to the earlier
literature, see H. C. Torrey and C. A, Whitmer, “Crystal Rectifiers,” McGraw-Hill Book
Company, Inc., New York, New York (1948). ‘

2 Eberhard Spenke, Wiss. Veroff. Siemen’s Konzern, 20, 40 (1941).

8 C. C. Dilworth, Proc. Phys. Soc. London, 60, 315 (1947). A similar method was used

earlier by H. A, Kramers, Physica 1, 284 (1940), in a discussion of the diffusion of particles

over potential barriers. )
+We suppose that only one type of carrier takes part in conduction.
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. C
Tig. 1—Equivalent circuit for contact rectifier. The parallel components R and C repre-
s]cnt the barrier layer itsell and R, represents the resistance of the body of the semicon-
ductor.
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Fig. 2—Schematic energy level diagram of p-type semiconductor in contact with a
metal. The diagram is plotted upside down from the usual way in order to show the energy
of holes increasing upward. The energy of electrons increases downward. The lower diagram
gives the density of charge in the barrier layer. In the body of the semiconductor the space
charge of the holes is compensated by the space charge of the negatively charged acceptor
ions. Holes are drained out of the barrier layer by the electric field, leaving the negative
space charge of the acceptors. The rise in electrostatic potential in the barrier region re-
sults from this negative space charge together with the compensating pesitive charge
on the metal. The capacitance of the barrier layer is approximately that of a parallel
plate condenser with plate separation (.
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being occupied by electrons; those below the Fermi level are most likely
unoccupied. Holes are depleted from the barrier layer, leaving the negative
space charge of the acceptors. This negative space charge, together with
the compensating positive charge on the metal, gives the potential energy
barrier which impedes the flow of holes from semiconductor to metal. The
thickness of the barrier layer may vary from 10~% to 10~* cm, depending on
the materials forming the contact.

In drawing the diagram of Fig. 2 it has been assumed for simplicity that
the concentration of acceptors is uniform over the region of interest. In the
main body of the semiconductor only a few of the acceptors are charged.
Throughout a large part of the barrier layer practically all acceptors are
negatively charged and there are very few holes in the filled band. This
part of the barrier layer has bezn called by Schottky the exhaustion region
and is in our case a region of uniform space charge, as shown in the lower
diagram of Fig. 2. The transition zone in which the concentration of holes
is decreasing and the concentration of charged acceptors is increasing is
called the reserve region.

In thermal equilibrium, with no applied volatge, the potential drop across
the barrier layer, Vi, may be a fraction of a volt. If a voltage is applied in
such a direction as to make the semiconductor positive relative to the metal,
the effective height of the barrier is reduced and holes flow more easily
from the semiconductor to the metal. This is the direction of easy flow. If
a voltage is applied in the opposite direction the height of the barrier is
increased for holes going from semiconductor to metal and remains un-
changed, to a first approximation, for holes going from metal to semiconduc-
tor (actually electrons going from the filled band of the semiconductor to
the metal). This is the reverse or high resistance direction.

If a voltage is applied in the reverse direction, and equilibrium is estab-
lished, the thickness of the exhaustion layer increases. The reserve region
keeps the same form but moves outward from the metal. A forward voltage
decreases the thickness of the space charge layer.

The change in charge density corresponding to a small reverse voltage is
shown schematically by the curve marked 8Q in the lower diagram of
Fig. 2. The maximum of 3Q occurs where the total charge density is changing
most rapidly with distance. If / is the distance from the metal to this maxi-
mum, the effective capacitance C, is approximately that of a parallel plate
condenser with plate separation [ and with the dielectric constant of the
medium equal to that of the semiconductor. The capacitance decreases as /
increases with a d-c. bias applied in the reverse direction and the capaci-
tance increases with forward bias. Schottky® has shown that information

§ Walter Schottky, Zeils f. Phys. 118, 539 (1942).
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about the concentrations of donors and acceptors can be obtained from the
variation of capacitance with bias.

In the equivalent circuit of Fig. 1 the capacitance C is in parallel with the
differential resistance, R, of the contact, and the parallel components are
in series with the resistance R, of the body of the semiconductor. Spenke
showed that R and C are independent of frequency if the frequency is low
enough so that the charge density is in equilibrium during the course of a
cycle.

1f the applied voltage is suddenly changed, it will take time for the charges
to adjust to new equilibrium values. The time constant for the readjustment
of charge of the carriers (holes in this case) is kp/4w, where p is the resistiv-
ity (in e.s.u.) of the body of the semiconductor and « is the dielectric constant,
and is ~ 107 sec. for a resistivity of 100 ohm cm. Even if a larger value
of p is used, corresponding to a point in the reserve layer, the relaxation
time for the carriers is very short.® A much longer time may be required
for readjustment of charge on the donor or acceptor ions, giving a varia-
tion of R and C at lower frequencies. If the barrier is nonuniform over the
contact area, so that much of the current flows through low-resistance
patches, the equivalent circuit may consist of a number of circuits like
those of Fig. 1 in parallel. In this case, if an attempt is made to represent
the contact by a single circuit of this form, it will be found that R and
vary with frequency.

The derivation of the current voltage characteristic for the general case
of a time dependent applied voltage follows. The total current per unit
area is the sum of contributions from conduction, diffusion, and displace-
ment currents:

I(}) = ¢E — eD(on/ox) + (k/4m)(0E/o1), (1)

where
n(x,) = concentration of holes;
o = n(x,f)ey is the conductivity;
e = magnitude of electronic charge;
p = mobility of holes;
D = ukT/e = diffusion coefficient ;
V(x,/) = electrical potential;
E(x,t) = — aV(x,)/dx = electric field strength.
The coordinate x extends into the semiconductor from the junction. Equa-
tion (1) may be written in the form
I(1) = neu(—aV/dx) — pkT(Injdx) — (x/4w)(9°V/dxal) (1)

% Another limit is the transit time of carriers through the barrier layer. This time is
generally shorter than the relaxation time of the semiconductor.
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The potential V is determined from the charge density, ¢, by Poisson’s
equation

2V /axt = —4wg/k. (2)

Since the charge density may be expressed in terms of n(x,) and the
density of fixed charge, these two equations may be used to determine #
and V when I(f) is specified. Spenke eliminates the potential V between
(1) and (2) and gets a rather complicated equation for n. We prefer to deal
with Eq. (1) directly, to treat the potential V(x,!) as a known function, and
to solve for the concentration, #(x,!).

The plane x = 0 is taken at the interface between metal and semiconduc-
tor and the plane ¥ = x; just beyond the barrier layer in the semiconductor.
It is assumed that ¥V = 0 at = x1. Under thermal equilibrium conditions,
with no current flowing, the hole concentration in the barrier layer varies
as exp (—eV/kT), taking the values:

n=mnax=mn (33.)
n = tm = noexp (—eVa/kT) al x = 0, (3b)

where n, is the equilibrium concentration in the body of the semiconductor
and Vi, is the height of the potential barrier. We suppose that the boundary
conditions (3a) and (3b) also hold when a current is flowing and when there
is an additional voltage, Vi, across the barrier layer. Our procedure is to
solve Eq. (1) for n(x,!), with ¥ (x,/) assumed known, and then to determine
I(/) in such a way that the boundary conditions are satisfied. The solution
of Eq. (1) which satisfies (3b) is:

o _ 1 = k &V
(s, ) = o expl—eV = VO/T) =z | (’* @m)

exple(V! — V)/kT) dx’ (4)

The prime indicates that the variable is &’ rather than x. Atx =0, Vis
the sum of V., and the applied potential, Va:
V="Vt Vaalx=0 (5)

The current I(/) is determined in such a way that (3a) is satisfied. Setting
% = x, using (3a), and solving the resulting equation for I(1), we get:

. T 2 7
ukT neexp(eVa/kT) — noexp(eV /kT)] —-f &9 ,V exp(eV'/kT) dx’
f exp(eV'/kT) dx’
0

©)
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Provided that the barrier height, V,, + Vi, is as much as several times £7/e,’
the integrand in both integrals is lirgest near x = 0 and drops rapidly with
increase in &, Where the integrand is large we may write to a sufficient ap-
proximation:

V = Vot Vm— Fx, o

where F is the field in the semiconductor at the interface. The approxima-
tion (7) may be used if £7'/eF is small compared with the thickness of the
barrier layer. The value of 8*V/dxd! is nearly constant over the important
part of the integration and may be replaced by its value at x = O and taken
out of the integral. The upper limit a3 may be replaced by « without ap-
preciable error, so that we get finally:

I(t) = In(Q)(1 — exp [—eVo/RT)) + 9Q/a1, (8)
where
I.(Q) = (4me p Q ne/x) exp [—eVn/kT) )
and
Q = «F/4r (10)

is the surface charge density at the metal interface.

The current [,,(Q) has a simple interpretation; it is just the conduction
current in the semiconductor at the interface resulting from the field F.
In equilibrium, this conduction current is balanced by a diffusion current
of equal magnitude and opposite sign. A voltage V, applied in the reverse
direction reduces the diffusion current at the interface as compared with
the conduction current by the factor exp [—eVa/ET]. The current dQ/dt
is the displacement current at the interface.

Actually, the diffusion theory as given above is not complete. The Schottky
effect, the lowering of the barrier by the image force, has been neglected.
There may be appreciable tunneling through the barrier. There may be a
patch field resulting from nonuniformity of the barrier. If the variations
in the patch fields are not too large, the modification of current resulting
from these factors depends only on the field at the metal and not on the
form of the barrier at some distance from the metal. Thus we may expect
the form (8) to be generally valid if 1., (Q) is considered to be a general
function of . Equation (10) is also of the form to be expected from the diode
theory.! In the latter case, /,((Q) is the thermionic emission current from
metal to semiconductor.

If the current is varying in time it is the instantaneous value of Q at

7 The value of kT/e at room temperature is .025 volts.
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time ¢ which is to be used in Eq. (10). At high frequencies, the charge at
the interface need not be in phase with the applied voltage. If the frequency
is low enough so that the charges maintain their equilibrium values during
the course of a cycle,  will be in phase with V and the parallel capacitance
for unit area is simply:

C = dQ/aV. (12)

The barrier layer may be represented by this capacitance in parallel with
the d-c. differential resistance, R.

Both R and C may depend on the d-c. bias current flowing. Variations of
R and C with frequency at moderate frequencies may result from large scale
nonuniformities of the barrier such that the patch fields extend over a large
fraction of the thickness of the barrier layer or from charge relaxation times
associated with acceptors, donors or trapped carriers. At low frequencies,
drift of ions may be involved.

Attempts which have been made to determine the variation of resistivity
in the barrier layer from impedance data are invalid. It is not correct to
tike the impedance of an element of thickness dx to be

dx/le(x) + (jwk/4w)]

and integrate over dx to obtain the impedance of the layer. This procedure
omits terms arising from diffusion and changes of concentration in time.
It is possible to obtain an integral of Eq. (1') if both sides are divided by
neu. Integrating over x from x = 0 to & = a1, and using the boundary condi-
tions (3a), (3b) and (5), we get

V. = fa‘l I(0) + (x/4m) (3" V/axat) i, 13)

new

which means that the integral of the conduction current over the conduc-
tivity gives the applied voltage. This is consistent with the representation
of the barrier by a resistance and capacitance in parallel.
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