The Theory of p-» Junctions in Semiconductors and p-»
Junction Transistors

By W. SHOCKLEY

In a single crystal of semiconductor the impurity concentration may vary
from p-type to n-type producing a mechanically continuous rectifying junction.
"The theory of potential distribution and rectification for p-n junctions is developed
with emphasis on germanium. The currents across the junction are carried by
the diffusion of holes in #-type material and electrons in p-type material, re-
sulting in an admittance for a simple case varying as (1 + dwry)!/? where 5 is the
lifetime of a hole in the n-region. Contact potentials across p-» junctions, carry-
ing no current, may develop when hole or electron injection occurs. The principles
and theory of a p-n-p transistor are described.
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1. INTRODUCTION

S IS well known, silicon and germanium may be either n-type or

p-type semiconductors, depending on which of the concentrations
Nga of donors or N, of acceptors, is the larger. If, in a single sample, there
is a transition from one type to the other, a rectifying photosensitive p-n
junction is formed.! The theory of such junctions is in contrast to those

! For a review of work on silicon and germanium during the war see H. C. Torrey and

C. A. Whitmer, Crystal Rectifiers, McGraw-Hill Book Company, Inc., New York (1948).
P-n junctions were investigated before the war at Bell Telephone Laboratories by R. S.
Ohl. Work on p-n junctions in germanium has been published by the group at Purdue
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of ordinary rectifying junctions because, on both sides of the junction,
both electron flow and hole flow must be considered. In fact, a major
portion of the hole current may persist into the n-type region and vice-
versa. In later sections we show how this feature has a number of inter-
esting consequences, which we shall describe briefly in this introduction.

A p-n junction may act as an emitter in the transistor sense, since it can
inject hole current into n-type material. The a-c. impedance of a p-n junc-
tion may exhibit a frequency dependence characterized by this diffusion
of holes and of electrons. For high frequencies the admittance varies ap-
proximately as (iw)'/? and has comparable real and imaginary parts. When
a p-n junction makes contact to a piece of n-type material containing a high
concentration of injected holes, it acts like a semipermeable membrane and
tends to come to a potential which corresponds to the hole concentration.

Although some results can be derived which are valid for all p-n junctions,
the diversity of possible situations is so great and the solution of the equa-
tions so involved that it is necessary to illustrate them by using a number
of special cases as examples. In general we shall consider cases in which the
semiconductor may be classified into three parts, as shown in Fig. 1. The
meaning of the transition region will become clearer in later sections; in
general it extends far enough to either side of the point at which Ny — Na = 0
so that the value of | Ng — N, | at its boundaries is not much smaller than
in the low resistance parts of the specimen. As stated above, appreciable
hole currents may flow into the n-region beyond the transition region. For
this reason, the rectification process is not restricted to the transition region
alone. We shall use the word junclion to include all the material near the
transition region in which significant contributions to the rectification
process occur. It has been found that various techniques may be employed
to make nonrectifying metallic contacts to the germanium; when this is
properly done, the resistance measured between the metal terminals in a
suitably proportioned specimen is due almost entirely to the rectifying
junction up to current densities of 107 amp/cm?. T

directed by K. Lark-Horovitz: S. Benzer, Phys. Rev. 72, 1267 (1947); M. Becker and
H. Y. Fan, Phys. Rev. 75, 1631 (1949); and H. Y. Fan, Phys. Rev. 75. 1631 (1949). Similar
junctions occur in lead sulfide according to L. Sosnowski, J. Starkiewicz and O. Simpson,
Nature 159, 818 (1947), L. Sosnowski, Phys. Rev. 72, 641 (1947), and L. Sosnowski, B.
W. Socle and J. Starkiewicz, Nature 160, 471 (1947). The thenry described here has been
discussed in connection with photeelectric effects in p-n_junctions by F. S. Goucher,
Meeting of the American Physical Society, Cleveland, March 10-12, 1949 and by W.
Shockley, G. L. Pearson and M. Sparks, Phys. Rev. 76, 180 (1949). Fer a general review
of conductivity in p- and n-type silicon see G. L. Pearson and J. Bardeen, Plivs. Rev. 75,
865 (1949), and J. H. Scaff, H. C. Theuerer and E. E. Schumacher, JI. of Metals, 185,
383 (1949) and W. G. Pfann and J. H. Scafl, JI. of Melals, 185, 389 (1949), The latter
two papers also discuss photo-voltaic barriers. The most recent and thorough theory for
frequency effects in_metal semiconductor rectifiers is given elsewhere in this issue (J.

Bardeen, Bell Sys. Tech. JI., July 1949).



p-n JUNCTIONS IN SEMICONDUCTORS 437

Even for distributions of impurities as simple as those shown in part (b)
there are two distinctly different types of behavior of the electrostatic po-
tential in the transition region, each of which may be either rectilying or
nonrectifying. The requirement that the junction be rectifying can be stated
in terms of the current distribution, certain cases of which are shown in (c).
The total current, from left to right, is I, the hole and electron currents being
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Fig. 1—The p-n junction.
(a) Schematic view of specimen, showing non-rectifying end contacts and convention
for polarities of current and voltage. .
(b) Distribution of donors and acceptors.
(c) Three possible current distributions,

I,and [,, with I = I, + I,. Well away from the junction in the p-type
material, substantially all of the current is carried by holes and 7, = I;
similarly, deep in the n-type material , = 7 and I, = 0. In general in a
nonrectifying junction, the hole current does not penetrate the n-type ma-
terial appreciably whereas in the rectifying junction it does. Under some
conditions the major flow across the junction will consist of holes; such



438 BELL SYSTEM TECHNICAL JOURNAL

cases are advantageous as emitters in transistor applications using #-type
material for the base.

Where the hole current flows in relatively low resistance n-type material,
it is governed by the diffusion equation and the concentration falls off as
exp(—«/L,) where L, is the diffusion length:

L =/Dr,.

Here D is the diffusion constant for *holes and 7, their mean lifetime. The
lifetime may be controlled either by surface recombination’ or volume re-
combination. Surface recombination is important if the specimen “has a
narrow cross-section.

Under a-c. conditions, the diffusion current acquires a reactive component
corresponding to a capacity. In addition, a capacitative current is required
to produce the changing potential distribution in the transition region
itself.

In the following sections we shall consider the behavior of the junction
analytically, treating first the potential distribution in the transition region
and the charges required change the voltage across it in a pseudo-equilibrium
case. We shall then consider d-c. rectification and a-c. admittance.

2. POTENTIAL DISTRIBUTION AND CAPACITY OF TRANSITION REGION

2.1 Introduction and Definitions

We shall suppose in this treatment that all donors and acceptors are
ionized (a good approximation for Ge at room temperature) so that we have
to deal with four densities as follows:

n = density of electrons in conduction band
$ = density of holes in valence-bond band

N, = density of donors

Il

N, = density of acceptors

The total charge density is
p=q(p—n+ Na— Noj, (2.1)

where ¢ is the electronic charge. We shall measure electrostatic potential
¢ in the crystal, as shown in Fig. 2, from such a point, approximately® mid-
way in the energy gap, that if the Fermi level ¢ is equal to ¢, the concentra-
tions of holes and electrons are equal to the concentration n; = p; char-

2 . Suhl and W. Shockley Phys. Rev. 75 1617 (1949).
3 A difference in effective masses for holes and electrons will cause a shift of ¢ from the

midpoint hetween the bands,
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Fig. 2—Electrostatic potential ¢, Fermi level ¢ and quasi Fermi levels ¢, and ¢,.
(In order to show electrostatic potential and energies on the same ordinates, the ener-
gies of holes, which are minus the energies of electrons, are plotted upwards in the figures
in this paper.)

acteristic of a pure sample. For an impurity semi-conductor we shall have,
as shown in (h), .

b= ."_‘_8‘1'(3’—\9].’1:1" (a)
a(y—e) kT (2.2)
n = n;e , (b)
where ¢ is the electronic charge. Accordingly,
p = qiNs — N. + 2n;sinh [gle — ¥)/kT]}. (2.3)

When the hole and electron concentrations do not have their equilibrium
values, because of hole or electron injection or production of hole-electron
pairs by light, etc., it is advantageous to define two non-equilibrium quasi
Fermi levels ¢, and ¢, by the equations

p = ni VT (a)

: (2.4)
n = n'_eﬂ(w—spn)n'kr (b)

as indicated in Fig. 2 (c). In terms of ¢, and ¢, , the hole and electron cur-
rents take the simple forms:

I, = —qlDVp + ppWy) = —qupVe, (2.5)
I, = bg[DVn — unV¢) = — qbunVe, (2.6)
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where the mobility x and diffusion constant D for holes are related by Ein-
stein’s equation

u = qD/kT 2.7)

and b is the ratio of electron mobility to hole mobility.*

Under equilibrium conditions ¢, = ¢, = ¢ where ¢ is independent of
position. Under those conditions, I, and 7, are both zero according to equa-
tions (2.5) and (2.6). The electrostatic potential ¥, however, will not in
general be constant and there will be unbalanced charge densities throughout
the semiconductor. We shall consider the nature of the conditions which
determine y for a general case and will later treat in detail the behavior of
¢ for p-n junctions.

For equilibrium conditions, there is no loss in generality in setting ¢
arbitrarily equal to zero. The charge density expression (2.3) may then be
rewritten as

p = pa — pssinh u (2.8)
where
w=qU/kT, p:i=2ng, pa= qNa— No) (2.9)

In equation (2.8) ps and # and, consequently, p may be functions of position.
The potential ¢ must satisfy Poisson’s equation which leads tothe equation

VY = —dmp/x , (2.10)

where k is the dielectric constant, (2.10) can be rewritten as

. .
Viu = 4”—‘72 sinh % — %’ (2.11)

What this equation requires in physical terms is that the electrostatic po-
tential produces through (2.8) just such a total charge density p that this
charge density, when used in Poisson’s Equation (2.10), in turn produces
. It seems intuitively evident that the equation for # will always have a
physically meaningful solution; no matter how the charge density ps due
to the impurities varies with position, the holes and electrons should be
able to distribute themselves so that equilibrium is produced. For a
one-dimensional case, it is not difficult to prove that a unique solution exists
for u(x) for any pa(x) (Appendix VII).

4 We prefer b in comparison to ¢ for this ratio since ¢ for the speed of light also occurs in
formulae involving b.
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The coefficient in (2.11) has the dimensions of (length)_2 leading us to
define a quantity

Lp = V/«kkT/4rgp; = V' «kkT/8wqu;
2.1 X 107° cm for Si with x = 12,57 n; = 2 X 10° em™  (2.12)
6.8 X 107" cm for Ge with x = 19, #n; = 3 X 10® cm™

where the subscript D for Debye emphasizes the similarity of Lp to the char-
acteristic length in the Debye-Hiickel theory of strong electrolytes. The
meaning of the Debye length is apparent from the behavior of the solution
in a region where pg is constant, and # differs only slightly from the value
2y which gives neutrality, with p; sinh %y = pa. Under these conditions,
2

‘fi—’; = (L3 cosh u) (e — ug) (2.13)
so that u — g varies as exp (= ¥v/cosh u#/L5). In general, we shall be in-
terested in cases in which the deviation of % from #, decays to a small value
in one direction. It is evident that the distance required to reduce the devia-
tion to 1/e is Lp//cosh . If only small variations in p; occur within a dis-
tance Lp/+/cosh u, then the semiconductor will be substantially neutral.
However, if a large variation of pg occurs in this distance, a region of local
space charge will occur. These two cases are illustrated in connection with
the potential distribution in a p-» junction.

2.2 Polential Distribution in the Transiltion Region’

We shall discuss the case shown in Fig. 1 for which the charge density
due to donors and acceptors is given by

Ny — N = ax (2.14)
This relationship defines a characteristic length L, given by
Ls = ni/a (2.15)

If L, > Ly, the condition of electrical neutrality is fulfilled (Appendix VII)
and « satisfies the equation

sinh u = py/p;: = ax/2n; = x/2L,

5 J. F. Mullaney, Pfliys. Rev. 60, 326 (1944).

¢H. B. Briggs and W. H. Brattain, Phys. Rev., 75, 1705 (1949).

7 Potential distributions in rectifying junctions between semiconductors and metals
have been discussed by many authors, in particular N. F. Mott, Proc. Roy. Soc. 1714,
27 (1939) and W. Schottky Zeits. f. Physik 113, 367 (1939) 118, 539 (1942) and elsewhere.
A summary in English of Schottky’s papers is given by J. Jofle, Electrical Communications
22, 217 (1945). All such theories are in principle similar in involving the solution of equa-
tions like (2.11). See, for example, H. Y. Fan, Phys. Rev. 62, 388 (1942).
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On the other hand, if L, > L., a large change in impurity concentration
occurs near ¥ = 0 without compensating electron and hole densities oc-
curring. Mathematically, we find that (2.11) can be expressed in the form
d*u
o = K’* (—y + sinh %) (2.16)

and

y = x/2La, = Lp/2L, (2.17)
In Appendix VII, it is verified that the appropriate solution for K << 1 is that
giving local neutrality, » = sinh™ y; while for K >> 1, there is space charge
as described below.

For Lp 3> L., or K >> 1, there is a space charge layer in which Vg — N,
is uncompensated. To a first approximation, we can neglect the electron and
hole space charge in the layer and obtain, by integrating twice,

2rgax’

ﬁb = - 3k + an (218)

where we have chosen the zero of potential as the value at ¥ = 0, a condi-
tion required by the symmetry between +x and —x of (2.14). Although
the potential rise is steep in the layer, dy/dx should be small at the point
xm where the neutral n-type material begins. As an approximation we set
dy/dx = Oatx = a,:

dy _ 21rqaxfn

dx K
this leads to a value for a: which may be inserted in (2.18) to evaluate ¢
at xy, @

+ a = 0; (219)

_.—__ .7””

¥m = 3k 3xa 3ka?
where #n,, = axn is the density of electrons required to neutralize N¢ — N, =
ax, at the edge of the space-charge layer. This value of n, must corre-
spond to that associated with ¥ by (2. 2)
o = ni e : (2.21)

tf H

_ dmqaxy _ 4mg ( ) = dng (2.20)

We thus have two equations relating ¥, and #,, and the parameter
To solve them we plot Iny, versus In #,, as shown in Fig. 3. On this figure the
relationship
drg T
Y = o

K

= 3.18 X 10_3 i volts for Ge

= 483 X 10727 Tim ™ volts for Si (2.22)
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becomes a family of straight lines with “a” as a parameter. (Only a = 10"
em ™! is shown for Si, all the other lines being for Ge.) The half thickness
*m (= nm/a) of the space-charge region is also shown. Solutions are obtained
when these lines cross the curves #, = n; exp (qm/kT), which are shown
for room temperature. The condition that the intersection lie well to the
right on the curve is equivalent to K >> 1. For two Si samples cut from a
melt, ¢ was determined from measurements of conductivity® and was
about 10" to 10" cm™*. For these, the space change region has a half-width
*m of more than 10™* cm. For other temperatures, the curves can be ap-
propriately translated.?
In Fig. 4(a) we show the limiting potential shapes:

ax = 2n;sinh % for K <1 (2.23)
V= Wn/2)(—(x/xm)® + 3(x/2m)) for K> 1 (2.24)

In Fig. 4(b) the charge densities are shown. For the space-charge case,
| Ng — Ng| is greater than n or p. For a higher potential rise, i.. larger
¥m , the discrepancy would be greater and Ny — N, would be unneutralized
except mear X .

2.3 The Transition-Region Capacity

When the voltage across the junction is changing, a flow of holes and
electrons is required to alter the space charge in the transition region. We
shall calculate the charge distribution in the transition region with the aid
of a pseudo-equilibrium model in which the following processes are imagined
to be prevented: (1) hole and electron recombination, (2) electron flow across
the p-region contact at x, (Fig. 1), (3) hole flow across the n-region boundary
at x, . Under these conditions holes which flow in across x, must remain in
the specimen. If a potential d¢ is applied at the p end, then holes will flow
into the specimen until ¢, has increased by 8¢ so that the holes insile are
in equilibrium with the contact which applies the potential. Since the speci-
men as a whole remains neutral, an equal electron flow will occur at x .
When the specimen arrives at its pseudo-equilibrium steady-state, the
potential distribution will be modified in the transition region and the num-
ber of holes in this region will be different from the number present under
conditions of true thermal equilibrium. The added number of holes is pro-
portional to 8¢ for small values of 8 and thus acts like the charge on a con-
denser. Our problem in this section is to calculate how this charge depends

8 Unpublished data of W. H. Brattain and G. L. Pearson.

9 The effect of unionized donors and acceptors can also be included by letting #; include
the properly weighted donor states and p;, the acceptor states.
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upon d¢ for various types of transition regions and to express the result as
a capacity.

The justification for this pseudo-equilibrium treatment is as follows:
Under actual a-c. conditions the potential drop in the p- and n-regions them-
selves are small because of their high conductivity so that most of the po-
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Fig. 4—Electrostatic potential and densities for p-n junctions.

tential drop occurs across the transition region. On the p-side of the transi-
tion region a large supply of holes is available to modify the potential and
the fact that a current is flowing across the junction disturbs their concen-
tration negligibly; the electrons on the n-side are similarly situated. Hence
the distribution of holes and electrons in the transition region will be much
the same as for the pseudo-equilibrium case. The question of how the hole
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current required to change the potential distribution in the transition region
is related to other hole currents is discussed in Section 4.1.

Under our assumptions, after the voltage d¢ is applied, a steady state is
reached involving no current hence Vg, = Vi, = 0. Consequently, both
¢p and ¢, are constant and

Cp — Pn = 6(,9 (2.25)

since the holes are being supplied from a source at a potential 8¢ higher than

for the electrons.
We shall then have

p=mn

n=mn

— ) 1k —
igq(?p WIET m 8q(m WIET (2.26)

‘.eq(qb—wn).'ki” =m eq(sff—?l)!k'ﬂ ! (2.27)

where
o1 = (op T 0n)/2, ¢p =01+ 00/2, on=o¢1—8/2 (228)

and
m = nq e, (2.29)

Thus the effect of applying the potential 8¢ in the pseudo-equilibrium case
is equivalent to changing n, to m just as if the energy gap had been reduced
by gbe.

In the p-region, n <K p and so that p = —ax is a good approximation.
Similarly, in the n#-region, we set » = ax. Hence we have in the p-region

¥ = o1+ (8¢/2) — (kT/q) In (—ax/ns) (2.30)
and in the n-region
¥ = o1 — (60/2) + (kT/q) In (ax/n). (2.31)

Hence the effect of 8¢ is to shift ¢ in the p-region upwards by é¢ compared
to ¢ in the n-region. This is an example of the general result that ¢ — ¢,
tends to remain constant at a given point in the p-region no matter what dis-
turbances occur and ¥ — ¢, tends to remain constant in the n-region.

The Capacity for the Neulral Case K < 1

For the neutral case, we calculate the total number of holes, P, between
x. and ¥, as a function of 8¢. The charge of these holes is ¢# and the effective
capacity is ¢ dP/d d¢. As explained above, we are really interested in the
change in number of holes in the transition region. However, the value of P
is relatively insensitive to the location of the limits x, and x, so long as they
lie in regions where the conductivity approaches the maximum values in the
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- and n-regions. In the following calculations, we shall consider a unit area
of the junction so that values of P and of capacity are on a unit area bases.

The value of P is obtained by integrating p dx making use of the neu-
trality condition to establish the functional relationship between ¢ and .
The neutrality condition can be written as

ax = 2, sinh iid k;‘ e1) = 2n, sinh % (2.32)

where # = gy — ¢)/kT and
p=me I = gy (2.33)
n=me" (2.34)

so that the value of P can be obtained by changing variables from x to #:

P = fxbp dx = f%p(Zn;/a) cosh u du
oL (2.35)
= (ni/a) f (L + e ™ du = (ni/a)luy — s + (620 — e ") /2]

For the cases of practical interest, the value of p at x = %a , denoted by
Pa, and the value of n at x = x, , denoted by n, , will both be large compared
to n;. Consequently, we conclude that

ty = —In(pa/m) and up = In my/my
are both larger than unity in absolute value but probably less than twenty
for a reasonable variation of impurity between x, and a, . (For example for
a change in potential of 0.2 volts such as would occur between p- and n-type

germanium, #, and 2, would each be about 4 in magnitude.) Hence we ob-
tain for P,

P = (ni/2a)(2(uy — ua) + (pa/m1)* — (11/m)*)
o pﬁ_/2a + (ny/a)(uy — ) (2.36)

where we have neglected (u1/m)* which is <1 and the negligible compared
to 1, — #, . The term p,/2a is simply the integrated acceptor-minus-donor
density in the p-region, as may be seen as follows:

0 0
f (No — Na) dx = f (—ax) dv = axi/2 = p/2a. (2.37)

The secoﬁ(l term in (2.36) is essentially the sum of the holes of the right
of ¥ = 0 plus the electrons to the left of x = 0, whose charge is also com-
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pensated by holes. The total number of holes can be expressed in terms of
8¢ through the dependence of n; on 8p. The second term is thus

(ny/a)[In(ns/m1) + In (pa/m)] -
= (n}/a)e”™" - (In(mps/ni) — ¢dp/kT]  (2.38)

Hence for a small change dée in 8¢, the change in charge dQ = ¢ dP and the
capacity C are given by
=40 _ f— ﬁ ln (o pa/ni) — (goo/kT) — 1. (2.39)
dée kT a o

This capacity can be reexpressed in terms of the difference in ¢ between
vy and a : When 8¢ = 0, corresponding to the thermal equilibrium case,

we have
patis = 1} " HTVINT (2.40)

Using this together with the definitions of Lp and L, we obtain

gl — Ya — 8¢)/RT — 1] FOkT
4r(2L5/La)

C = (241)

In this expression ¥, and ¥4 are the potentials when dp = 0; so that
¥ — (Ya + 8¢)

is thus the increase in potential in going from x, to a, when & is applied.
For thermal equilibrium, 80 = 0 and, as discussed above, the term in
Vs — Ve will be about 10. Hence, using the definition K = Lp/2L, , we have

=2 «/4r(4K Lp/10) (2.42)
For K <« 1, the case for which this formula is valid, C will be the capacity
of a condenser whose dielectric layer is much less than L, thick.
Caj)aciiy for Space Charge Case, K 2> 1

As discussed in connection with (2.30) and (2.31), the applizd potentil
8¢ reduces the increase (= 2¢,) in ¢ between the p-region and the n-region
by 8¢/2 on each side of x = 0. This is accomplished by a narrowing of the
space charge layer by 8x, on each side where (according to (2.20))

Sfm = —0p/2 = dwgarmbrn/k (2.43)

The decrease in width dx, brinzs with it an increase in number of holes
—ax dx,, per unit area of the junction on the p-side and an equal number of

electrons on the n-side. Thus a charge of holes par unit area of 69 = —gaxmdxm
must flow in from the left. The capacity per unit area is, therefore,
G = 89/d¢ = qaxadxa/dp = x/4m2xn (2.44)
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corresponding to a condenser of thickness 2x. . It is evident that formula
(2.44) will hold for a small change déy superimposed on a large biis 8¢ pro-
vided that 2x, is the thickness of the space charge region undet the condi-
tions when 3¢ is applied. If ¥, is the value of ¥ for 8¢ = 0, then ¢, =
¥Ymo — 8p/2; and C will vary as

C = «[4rqa/3k(Yno — 60/2)]M3/8 (2.45)
so that 1/C? should plot as a straight line versus &y with slope
3 1927
— (87/n)'(3x/8mwga) = — ——. (2.46)
K*qa

In addition to the holes which flow to account for the change in ¢, the
concentration of holes in the #n-region will be increased by a factor
exp(¢de/kT). However, this increase does not lie in the transition region;
we shall consider it later, in Section 4, in connection with a-c. admittance.

Comparison of the Two Capacilies

It is instructive to compare the two capacities just derived. We suppose
that for one value of 7; we have K >> 1 so that the space charge solution is
good. For this case we choose ¥, = —am and a4, = ., so0 as to bound the
space charge layer. We then imagine #; to be increased, either by raising
the temperature or by applying a potential difference dp. The capacity then
changes from

Cop. chg. = K/8Txm t0 Creut. = 5k/87K Ly (2.47)
(i.e., from (2.44) to (2.42)) so that the ratio is
Cnaut. iﬁ
Csp-chz- - KLy (2-48)

For K < 1, this ratio is large, both because of K in the denominator and
because xn > L, so that aw/Lp > Lo/Lp = 1/2 K.

In Section 4.4 we shall compare these capacities with that due to d13u51on
of holes and electrons beyond the transition region.

24 The Abrupl Transilion

For completeness we shall consider the case in which the impurity con-
centration changes abruptly from p, to un, at x = 0. For this case the po-
tential in the space-charge layer will be of the parabolic type discussed by
Schottky, the potentials varying as

¢ = 2n/k)q po(x — x,)* + constant, x<0 (249
¢ = —(2r/x)q nalx — %,)° + constant, x> 0 (2.50)
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where x, < 0 and x, > 0 are the ends of the space-charge layer in the p-
and n-regions. The gradient of potential at & = 0 must be equal for the two
layers leading to

—Pp¥p = Ha¥n (2.51)

so that if the total width of the space charge layers is W = x, — a,, it
follows that

xp = —nW/(nn + pp) and x, = p,W/ (1 + p2). (2.52)
The potential difference across the layer, which is ¥4 — ¥u is
U — Yo = Qrg/0)(pprs + narh) = [2rg pona/x(py + w)IW* | (2.53)
If pp > n, this reduces to ‘
¥ — Yo = 2mg nW°/k (2.54)

the formula given by Schottky, which should be appreciable in this case,
for which all the voltage drop occurs in the n-region.
The capacity for the abrupt transition will be

C = x/4xW (2.55)

where W is obtained by solving (2.53). For this case (1/C)* should plot as a
straight line versus s — Va:

51; = [8n(py + 1) /xq pp 1) — V). (2.56)

3. GENERAL CONCLUSIONS CONCERNING THE JUNCTION CHARACTERISTIC

In this section we shall consider direct current flow through the junction
and shall derive the results quoted in Fig. 1 relating the current distribution
to the characteristics of the junction. We shall suppose that holes and elec-
trons are thermally generated in pairs at a rate g and recombine at a rate
rnp so that the net rate of generation per unit volume is

(net rate of generation) = g — rnp,

which vanishes at equilibrum. Obviously, g = ;. If relatively small con-
centrations 8p and én of holes and electrons are present in excess of the
equilibrium values, the net rate'of generation is

8p = dir = g — r(n+ dn)(p + 8p) = —rndp — rpdn (3.1)

This is equivalent to saying that excess holes in an n-type semiconductor,
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and excess electrons in a p-type semiconductor, respectively, have lifetimes
7, and 7, given by

op = —8p/r, = —mbdporr, = 1/rn = p/g (3.2)
and
on = —on/r, = —rpénorr, = 1/rp = n/g. (3.3)

We shall have occasion to use this interpretation later. (We later consider
the modifications required when surface recombination occurs, Section 4.2,
Appendix V, and the effect of a localized region of high recombination rate,
Section 4.6, Appendix IIIL.)

In principle, the steady-state solution can be obtained in terms of the
three potentials ¥, ¢, and ¢, . These must satisfy three simultaneous or-
dinary differential equations, which we shall derive. As discussed in Section
2, we consider all donors and acceptors to be ionized so that Poisson’s equa-
tion becomes

Ty _ _ng (ax + ni !PT gy gt VTERIRT) (3.4)
d:\'2 X - 1 1 0

an equation in which the unknowns are the three functions @p,y n and .
The total current density, from left to right, is

de, de,
- L= — r 4 py 2P |, '
I=I1,+1 qu I:p e + bn o (3.5)
The elimination of p and # by equation (2.4) results in an equation in-
volving the three unknown functions and 7. The divergence of hole current,
equal to the net rate of generation of holes, is

I, _ g d«ap)’ _ g dyde, | & ,,a,,]
- " gr\ax) T Erard T ode (3.6)
= q(g — rnp) = qg(1 — "7,

with p in the second term given by (2.4) so that (3.6) is also an equation
for the three unknown functions. The equation for d7,/dx can be derived
from the last two and adds nothing new. These three equations can be used
to solve for dy/dx’, d°e,/dx" and de,/dx in terms of lower derivatives and /.
They thus constitute a set of equations sufficient to solve the problem pro-
vided that physically meaningful boundary conditions are imposed. We
shall not, however, deal directly with these equations; the main reason for
deriving them was to show that the problem in question is, in principle,
completely formulated. Instead of attempting to solve the equations, we
shall discuss certain general features of the solutions for ¢, and ¢, , using
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approximate methods, and in this way bring out the essential features of

the theory of rectification.
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Fig. 5—Potential and current distributions for forward current in p-» junctions.

(a) p-n junction under equilibrium conditions.
(b) Division of current between holes and electrons.
(c) Distribution of potentials for forward current flow showing how the potential 8p
applied at x, changes ¢, ¢, and ¢.

In Fig. 5 we represent a general situation which may be used to illustrate
the nature of the resistance of the junction. Part (a) corresponds to thermal
equilibrium and shows the potential distribution and Fermi level in ac-
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cordance with the scheme used in Fig. 2. Part (b) shows the current dis-
tribution for a forward current I from left to right and (c) shows
the corresponding potential distribution and values of ¢, and ¢, , the total
applied potential being dp. Recombination prevents the hole current from
penetrating far into the n-region, the depth of penetration being described
by the diffusion length L, = /Dr, = ~/Dp,/g, where p, is the hole con-
centration in the n-region. The electron current similarly is limited by
L. = \/bDr, = \/bDn,/g. (Diffusion lengths are evaluated for particular
models of the junction in Section 4.) Far from the junction, therefore, the
hole and electron concentrations have their normal values and consequently
¢p = ¢, and ¢, — ¢ has its normal value. This accounts for the equal dis-
placement &y for all three curves at ¥ = x,. The curves for ¢, and ¢, have
a continuous downward trend which produces the currents

d‘Pp

= — gbun %
- and I, = —qbun . 3.7

IF = _qﬂp dx

The area between the ¢, and ¢, curves has a special significance: This differ-
ence is related to the excess rate of recombination and the integral of this
rate over the entire specimen must be sufficient to absorb the hole current
I, = I entering at x, so that the entire current at a3 is carried by electrons.
In terms of ¢, — ¢, and equation (3.6) we obtain

I

L) — L) = [ = d,

(3.8)

I

EN
gqf (2P en KT _ 1) dy.

From (3.8) we conclude that if g is increased indefinitely for a specified
current /, then ¢, — ¢, must approach zero. For this case, in which the
rate of recombination and generation is very high, ¢, = ¢, and

=1+ In= —qu(p + bn) doy/dx (3.9)

and
Th £
o = —f doy = If dx/qu(p + bn) = IRy, (3.10)

where Ry is simply the integral of the local resistivity corresponding to
densities p and n. For smaller values of g, I does not divide in the ratio p:bn
and ¢, # ¢n and dp > IRy P

We shall next give an approximate treatment for the case in which &p,
(7 for junction), the value of ¢, — @a at & = 0, is an appreciable fraction of

10 A general proof that ¢ > IRp is given in Appendix I.
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the total voltage drop. For this purpose we treat ¢, — ¢, as constant over 4
range of integration from x = —L, to x = +L, obtaining

I = gq(Lﬂ + Lp)[e(qaw.’k'r) - 1]

Ia[e(qﬁwﬂk’l') - 11

(3.11)

where

= gg(L. + L;) (3.12)

is the current density corresponding to the total rate of generation of hole-
electron pairs in a volume L, + L, thick. We next consider dpx, + d¢rn
shown in Fig. 5c, where, as the subscript R implies, these are thought of as
resistive terms and are given by the integrals

0 zp 0 zh
S¢rp + Sorn = —f dey, — fu don = f I, dx/qup +‘/; I, dx/qubn.

The denominators are both approximately qu(p + dn) which occurs in the
integral for Ry. Furthermore, for most of the first range 7, = I and for
most of the second I, = I. Near x = 0, I, or I, must be at least I/2. Hence
it is evident that 8gg, + 8¢r. cannot be much less than 7R, . We shall repre-
sent it by IR; where Ry < 2R, < 2R,.

In terms of Ry and I,, the relationship between current and voltage
becomes

: I
dp = bprp + Sprn + 6y = Rl + E;: In (1 + 17) (3.13)

This corresponds to an ideal rectifier in series with a resistance Ry. The
junction will, therefore, be a good rectifier if the second term represents a
much higher resistance.

We shall compare the two resistances for the case corresponding to K < 1. |
For this case, we have p = —ax and # = +ax except in the narrow range
x| < L, = n;/a. The integral Ry can be approximated by integrating
dx/o for x outside of the range =L, using the approximation =ax for
p and n and approximating the integral from —Z, to +L. by 2L./o (in-
trinsic). This procedure gives

R, = j:m dx/q”&t + m f d'lr/‘]ﬂ'bd.l, (3 14)

q o (1 + )]n (xs/La)

where it is supposed that —x, = x; and that ln (x/L,) is large compared to
2/(b+ 2 + 1/b). The evaluation of L, and L, for use in /, is more involved
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since 7, and 7, are both functions of x. We shall obtain an approximate self-
consistent diffusion length by assuming that the holes diffuse, on the average,
to just such a depth, L,, that in uniform material of the type found at
L, , their diffusion length would also be L, . At a depth L, , the value of
nis al, so that by (3.2), 7,is 1/raL, = n?/'gaL,, . Thus we write

L, = Dr, = Dni/gal,. (3.15)

We can solve the equation (3.15) for L, and a similar one for L, and insert
the results in equation (3.13). For small 7 this gives

, 1
do/I = Ry + (kT/ql.) = qﬁ;i (1 + 5) In (/L)

+ kT/(¢ & (DLan)"* (1 + 8').

It is seen that for g large, the second term, corresponding to the rectifying
resistance, becomes small. For this case, as discussed above, ¢, = ¢, and
the exact integral for R, should be used and the junction will give poor
rectification.

It is also instructive to consider L, as a variable. Increasing L, corre-
sponds to making the transition from p to n» more gradual. It is evident
that varying L, changes the two terms of (3.16) in opposite directions so
that there will be an intermediate value of L, for which the resistance of
the junction is a minimum. As L, approaches zero, however, the second
term should be modified: If we imagine that in the transition region the
concentration (Nq — N,) varies only over a finite range, bounded by fixed
values #n, and p, in the n- and p-regions, then it is clear that the limiting
values of L,and L, should be given not by (3.15) but by /Dr, and \/4Dr,
where 7, and 7, are evaluated in the n-region and p-region. This leads to a
limiting value for 7,, which is given in equation (4.11) of the following
section. In the range for which (3.16) applies, however, the interesting
result holds that widening the transition region initially decreases the re-
sistance by furnishing a larger volume in which holes and electrons may com-
bine or be generated.

The condition that é¢,; dominate the resistance is that the second term
of (3.16) be much larger than the first, This leads to the inequality

(3.16)

kT qun; _ nes _ 4/3
1K msﬂ—s : “L—a = (D?h‘/gLu) = (Lim'/Lu) (3-17)

where we have neglected various factors involving 4, which are nearly unity,

and In(xy/L,) (which must be about 4 for Ge since the conductivity at a;
is about exp(4) times the intrinsic conductivity). The quantity

Ly = (Dni/g)" (3.18)
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is the diffusion length for holes in the intrinsic region. The inequality states
that the diffusion length must be much larger than Z, . This is equivalent
to the previous statement that the hole current must penetrate the n-region
for the rectifier to have a good characteristic. (If a local region of high re-
combination is present in the transition region, this result just quoted need
not apply. See Section 4.6.)

If the hole current penetrates deeply into the n-region and Ry is negligible,
then we can conclude that the current-voltage characteristic will fit the
ideal formula. For these assumptions &z, on Fig. 5 will be small and the
principal change in ¢, will occur relatively deep in the n-region, at least
beyond the transition region. So long as the hole concentration introduced
in the n-region is much smaller than u,, the hole current into the n-region
will be a linear function of the value of p at the right edge of the transition
region, being zero when p equals p., the equilibrium value of p. This
leads at once to a hole current proportional to p — p. and since the shift
of , in respect to ¥ at the edge of transition region is 8o, p — pn is
equal to pn(exp(ade/kT)—1). (These ideas are discussed in detail in Sec-
tion 4.) A similar relationship will hold for electrons entering the p-region;
hence the total current will vary as exp(gdp/k7)—1. This is a theoretical
rectification formula" giving the maximum rectification for carriers

of charge g¢.

4. TREATMENT OF PARTICULAR MODELS

4.1 Introduction and Assumplions

In this section we shall deal chiefly with good rectifiers so that the 7R
drop, discussed in connection with R, in Section 3, is negligible. We shall
deal chiefly with the case for which the transition region is narrow com-
pared to the diffusion length; consequently, there is little change in I, in
traversing the transition region. In Fig. 6(a) we consider a hypothetical
junction in which the properties are uniform outside the transition region.
The division of the specimen into three parts as shown is seen to be reason-
able for germanium: In n-type germanium, the diffusion constant for holes
is about 40 cm®/sec and the lifetime is greater than 10~° sec so that the
diffusion distance is L, = v/Dr, > 6 X 107" cm. This is much greater than
most transition regions.

The major drop in ¢, must occur to the right of the transition region. This
follows from our assumptions: First, we may neglect the /R drop in the
p-region; hence ¢, is substantially constant from x = ¥, to ¥ = ¥7, . Second,
the decrease in ¢, is much less in the transition region than in the n-region;
this follows from two considerations: the resistance for hole flow is lower in

1 C, Wagner, Phys. Zeils. 32, 641-645 (1931).
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the transition region than in the n-region; the effective length of flow in the
n-region, being L, , is greater than the width of the transition region. Con-
sequently, the variation of ¢, shown in Fig. 6(c) is seen to be reasonable.
Similar considerations apply to ¢, . As is shown in Fig. 6(c), the application
of 8¢ does not alter ¢, — ¢ in the p-region nor ¢, — ¢ in the n-region. The
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Fig. 6—Simplified model of a p-n junction.
(a) Distribution of donors and acceptors.
(1) Potentials for thermal equilibrium.
(c) Effect of 8¢ applied potential in forward direction.

reason, as discussed in connection with (2.31), is that in these regions elec-
trical neutrality requires an essentially constant value for the more abundant
carrier. Hence the relationships between the ¢’s and ¢ follow from (2.4).
The nature of the potential distribution in the transition region has no
effect in the considerations just discussed. However, as shown in Section 2,
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the capacity of the transition region, which we shall denote by Cr in this
section, does depend on the nature of the transition region and, consequently,
on the value of K.

If the sizes of the p-region and n-region are large compared to the diffusion
lengths, we may assume the current at x, to be substantially 7, only and
that at a,, I, only. The total current entering at x, can be accounted for
as doing three things: (1) neutralizing the electron current flowing into the
p-region across xrp, (2) contributing to the charge in the transition region
(this corresponds to the capacity discussed in Section 2) and (3) contributing
a current flow to the right across xr, .

We have selected the hole current for analysis because the hole has a
positive charge and the connection between the algebra and the physical
picture is simplified. For the same reason, the text emphasizes forward
current, although the equations are equally applicable to reverse currents.
Nothing essential is left out by this process; since the sample as a whole
remains uncharged, the current 7 is the same for all values of » and if 7, is
known, then [, = [ — I, is also determined.

4.2 Solution for Hole Flow into the n-region

We shall calculate first the hole current 7,(x7,) flowing across xr, . It is
readily evaluated as follows: The value of p(xr,) is given by

P(xrn) — ﬂ_eqmﬂwmm
- T

=?ng

where p, is the hole concentration in the #n-region for thermal equilibrium.
If we apply a small a-c. signal superimposed on a d-c. bias so that

54,0 =1+ 1'16iwt (42)

(4.1)

gbplkT

where 7; is an a-c. signal, assumed so small that linear theory may be em-
ployed (i.e. 1 <& kT/gq), then

plar) = (™™ ) (1 + (qu/kT)e™).
We resolve this density into a d-c. component pp and an a-c. component p;

fwt

€

P(x'f'?i) = Pu + Pn + Pl et'u:t (4‘.3)

where
po = pale™ 1) (4.4)
o1 = (gpnvi/RT)e™"". (4.5)

So long as p(vs.) < n,, the normal concentration of electrons in the
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n-region, the lifetime 7, and diffusion constant D for a hole will be sub-
stantially unaltered by 8. Application of the hole-current equation to the
hole density p(x, /) gives

- _.p 16) -
I, = —qD i (4.6)

Combining this with the recombination equation

p _po—p 1ol _p.—p a'p
a1, g ox Tp +D dxt 1)

leads to the solution
b= pu +Poe<m,,—:)f\/ﬁ + Pleim¢+(rr,.~z)(1+iur,,)l!ﬂf(pr,,)l.'ﬂ_ (4.8)

The quantity /Dr, is the diffusion length and is denoted by L,. (We shall
use subscript p for holes in the n-region and = for electrons in the p-region
for both L and 7.) .

When p is large compared to p,, but small compared to n,, the ex-
pression for p leads to the following formula for ¢, :

ep = on + 00— (BT/q)(x — ara)/ Ly + vie™ " ETomn (Uhien E01Ly 4 gy

This shows that the d-c. part of ¢, varies linearly in the n-region, for large

forward currents, and decreases by (kT/g) in each diffusion length L, .

The transition from this linear dependence to an exponential decay for ¢,

comes when ¢, — ¢, = (kT/g). This behavior of the d-c. part of ¢, is useful

in connection with diagrams of ¢, versus distance. (See Sections 5 and 6.)
The solution just obtained for p gives rise to a current at x7, of

4
Ip(x'rn) = (]D ar

(4.10)
= gpoD/L, + gpr1 De"" (1 + iwr,,)l"z/L,,.
The d-c. part is calculated by substituting (4.4) for p :
Tpo(xra) = (Q’PﬂD/L;D)(EWDIH - 4.11)
= L™ 1) “
and the a-c. part is similarly obtained from (4.5) for p, :
Ipl(xTn) — (qpn #/Lp)[e(qno.'kﬂ](l + f-w_rp)l,’ﬂ n 87”! (412)

= (Gp + 'iSp)V[ cl'wt — Ap‘vlﬂ'-wt

where 1, is called the admittance (per unit area) for holes diffusing into the
n-region; its real and imaginary parts are the conductance and suscept-
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ance. For wr, small, the real term G, is simply conductance per cm?
of a layer L, cm thick with hole conduction corresponding to the density
pn + fo; it is also the differential conductance obtained by differentiating
(4.11) in respect to 1. For the case of zero bias this establishes the result
quoted in Section 1 that the voltage drop is due to hole flow in the n-region
where the hole conductivity is low.

In this section we have treated 7, as arising from body recombination.
In a sample whose y and z dimensions are comparable to L, or L, , surface
recombination may play a dominant role. However, as we show in Appendix
V, the theory given here may still apply provided appropriate values for
T, and 7, are used.

4.3 D-C. Formulae °

The total direct hole current flowing in at a, is /o plus the current re-
quired to recombine with electrons in the p-region. This latter current is, of
course, equal to the electron current flowing into the p-region. This electron
current, denoted by I,o or I,o{xr,), is obtained by the same procedure
as that leading to (4.11) for 7, except that 4D replaces D and the subscripts
of L and 7 are now n. Combining the two currents leads to the total direct
current:

Iy = Io + I = (gL) ("—" + tﬁ’") (@ —1) (413)
L, L,
for the direct current per unit area for applied potential 1o ! The algebraic
signs are such that J > 0 corresponds to current from the p-region to the
n-region in the specimen; 7o > 0 corresponds to a plus potential applied
to the p-end. The ratio of hole current to electron current across the transi-
tion region is

Ipﬂ P" Ln _ Pp V bDTn
Io L, bn, bna +/Dr,

_bo SO _ S
b, 'V P» On
where we have used the relationships #npn = np, = ni from (2.2) and

Tottn = Tapp = 1/r from (3.2) and (3.3). These results can be summarized
by saying that the current flows principally into the material of higher re-

(419)

12 Tor convenience we repeat the definitions here: ¢ = magnitude of electronic charge;
D = diffusion constant for holes; p, and n, = thermal equilivrium value of p and », as-
sumed constant throughout n-region (x > xru); . and p = similar values for x < xgp;
L,= dilfusion length =+/wr, for holes in n-region; 7, = lifetime of hole in n-region be-
fore recombination; b = electron mobility/hole mobility; L, and 7, similar in quantities
for electrons in p-region; o, = gubn, and ap = gup, are the conductivities of the two regions.
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sistivity. We can also say that the hole current depends only on the »-type
material and vice versa. For a p-n junction emitter in a transistor with an
n-type base, it is thus advantageous to use high conductivity p-type ma-
terial so as to suppress an unwanted electron current.

For comparison with experiment, it is advantageous to express the values
of pn and n, in terms of the conductivities o, and ¢, . If the conductivity of
the intrinsic material is written as

o = qunil + ), (4.15)

then, if p, < n, and n, < p,, we find
qupn = boi/(1 + b)’cn _ (4.16)
qubn, = boi/(1 + b)’s, . | 4.17)

Using these equations, we may rewrite (4.11) and a corresponding equation
for electron current into the p-region so as to express their dependence ond-c.
bias 1o and the properties of the regions:

Ly bat FT e
Ipc(‘vu) = m : ? (3 1)
= G0 HT (ot _ (4.18)
= U
= I,,(""* — 1)
. 2
L) = o0t AL (gt _y

(1+ b)zﬁan q

= Gnn E (eq‘u“fT _ l) (4.19)
q .

= I,..(e”"mr —1).

The values of G0 and G, (which are readily seen to be the values of the low-
frequency, low-voltage (1p < k7/¢) conductances) and the saturation
reverse currents are given by

= n 4
G = (1 4+ 0)0anl, kT T (4.20)
_ E‘o'? g
Go=twr e, - (4.21)
The expression for direct current then becomes
kY ok
Ii(@) = [Fp + Gl (1) [e™o*T — q]
! (4.22)

= (Ips + L™ — 11.
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4.4 Tolal Admillance

In order to calculate the alternating current, we must include the capacity
of the transition region, discussed in Section 2. Denoting this by Cr, we
then find for the total alternating current.

Toe = (Gp + 1Sy + Gu + iS0 + iwCr) n = An (4.23)

where G, and .S, are similar to G, and .S, but apply to electron current into
the p-region. The value of the hole and electron admittances can be ex-
pressed as

Ay = Gp+ iSp = (1 4 dwry) " Gpo ™" (4.24)
.411. = AGu + 'iSn = (1 + 'iCb‘Tﬂ)”z G'nO eq'!’ul'kT (4'25)

For low frequencies, such that « is much less then 1/7,, we can expand
G, + 1S, as follows:

Gy + iSp = Gpoe™ ™ + iw(r,/2)Gpo ™" (4.26)

Hence (r,/2)Gyo ¢ behaves like a capacity.
It is instructive to interpret this capacity for the case of zero bias, v = 0,
for which we find:

Cp = 15Gp0/2 = 70qpuit/2Lp = G paLp/2kT. (4.27)

The last formula, obtained by noting that r,u = ¢r,D/kT = ¢L3/kT, has
a simple interpretation: gp.L, is the total charge of holes ina layer L, thick.
For a small change in voltage v, this density should change by a fraction
qu/kT so that the change in charge divided by the change in v is
(g/kT)(gpnL,) which differs from C,, only by a factor of 2, which arises from
the nature of the diffusion equation.

This capacity can be compared with C7r neut., discussed in Section 2, (see
equation (2.39) and text for (2.42)) for germanium at room temperature
as follows:

Co _qtnly kla _ pulya (4.28)

Croet. 26T 10¢" n} 20n;

For a structure like Fig. 6(c), the excess of donors over acceptors reaches its
maximum value, equal to »,, at xr, leading to #, = axz, . Consequently
@ = #n/xr. . Substituting this value for e in (4.28) and noting that
Puttn = n; gives

G _ Ly

C'T neut. 203"1‘?;

(4.29)

As discussed at the beginning of this section, L, = 6 X 107" cm for holes
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in germanium. Hence if the transition region is 6 X 107" cm thick, the
diffusion capacity C,, will dominate the capacitative term in the admittance.

Although A4, simulates a conductance and capacitance in parallel at low
frequencies, its high-frequency behav’or is quite different. In Fig. 7 the

a4
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Fig. 7—Real, G, and imaginary, S, components of admittance for hole flow into n-region.

(a) 10°4,/Gpo = 10%(1 + dwr,)! 2 corresponding to uniform n-region.

(b) 102 X Formula of Appendix III, corresponding to layer of high recombination
rate in front of n-region. This causes G to exceed .S at higher frequencies than fer (a).

(c) 10 X Equation (4.33), corresponding to a retarding field in the n-region, with
L, = L,/4/10.

(d) Equation (4.33) with L, = L,/10.

behavior of (1 + iwr,)'"* = A,/G 0, is shown. For high frequencies G, and
S, are equal:

I — - _ boi Vo
GD SJJ \/Tp/z GpD ‘\/"-’ (1 ¥ b)z o ’\/E (430)
Thus for high frequencies the admittance is independent of r, and is deter-
mined by the diffusion of holes in and out of the n-region. The three straight
asymptotes have a common intersection at the point G, wr = 2onFig. 7,
a fact which is useful in estimating the value of 7 from such data.
For large w, S, varies as @' as shown in (4.30) whereas SriswC . Hence
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at very high frequencies C'z will dominate the admittance. At very high fre-
quencies Cr itself will have a frequency dependence; however, for the as-
sumptions on which the treatment of this section is based, the relaxation
time for the transition region 7 is much less than r, . This is a consequence
of the fact that, although diffusion of holes into the transition region is
required for the charging of Cr, the distance is relatively short, being in
fact only that fraction of the width xg, — xy, of the transition region in
which  rises by kT/g; in germanium this will be about one-tenth of
Xrn — Xrp . Since diffusion times vary as (distance)?, the ratio of the times is

2
o o (@ = %) fﬂ“) : (4.31)
Tp IOOL:,

Hence if L, > %rn — %pn, 7r will be much less than 7, B

4.5 Admittance Due to Hole Flow in a Retarding Field

In Appendix II we treat the case in which a potential gradient, due
to changing concentration for example, is present in the »#- and p-regions.
This tends to prevent holes from diffusing deep in the n-region and for
this reason the n-region acts partly like a storage tank for holes under a-c.
conditions, thus enhancing S, compared to G, in 4, . If the electric field is
—dy/dx = kT/qL.,where L, is the distance required for an increase of k7/q
of potential (i.e. a factor of e increase in n,), then the value of 4, is

(2L,/Ly) (1 + dwry)
14 [1 4+ (1 + dwrp)(2L,/Ly)%?

For wr, > 1, this admittance is largely reactive provided 2L,/L, is suffi-
ciently small.

The dependence of 4, upon w is shown in Fig. 7 for two values of L,/L, .
The plot shows the real and imaginary parts of

2y _ (1 + iwry)
Ap/[ZQ'PPnLr/LP] “1r (1 + (1 + dwrp)(2L,/L,)4 "

Ay = lgupa/Lsl (4.32)

(4.33)

for L,/L, = 10" and L,/L, = 10, the two curves being relatively displaced
vertically by one decade. The second value implies that the field keeps the
holes back so that they penetrate only g their possible diffusion length in
no field. It is seen that for this case the storage effect is very pronounced and
the susceptance S is much larger than G for high frequencies.

The function (1 + z’mrp)l"g, discussed earlier, corresponds to the limiting
case of (4.32) for L, = =.

13 Tn Appendix IV an analytic treatment of Cy is given.
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4.6 The Effect of a Region of High Rale of Generalion

There is evidence that imperfections, such as surfaces and cracks, add
materially to the rate of generation and recombination of holes and elec-
trons. If there is a localized region of high recombination rate in the transi-
tion region, there will be a pronounced modification of the admittance char-
acteristics. In I'ig. 8(a) such a layer is represented at & = 0. In Fig. 8(b)
the customary plot of ¢, and ¢, versus x is shown. If we neglect the effect
of the series resistance terms denoted by R; in Section 3, the change & will

TRANSITION
REGION
—

N-REGION

A X (a)

LAYER OF HIGH RIECOMBINATION

QUASI FERMI
LEVELS =—>

—

HOLE CURRENT,
Ip—>

o

x
o

o]
DISTANCE THROUGH SAMPLE, X=—03

Fig. 8—The effect of a localized layer of high recombination rate on the junction
C{Jaracteristic.
(a) Location of layer of high recombination rate.
(b) Quasi Fermi levels.
(c) Distribution of hole current showing rapid change at layer of high recombination
rale.

occur in the p-region for ¢, and in the n-region for ¢, . The hole current flow-
ing into the n-region will thus be the same as before and will be given by
equation (4.11) or (4.18) and denoted by [,(3p). Similarly, the electron
current will be 7,0(d¢). In the layer we shall suppose that there is a rate of
generation of hole electron pairs equal to g, per unit area of the layer and a
rate of recombination proportional to ranp per unitarea. We suppose, further-
more, that the layer is so thin that # and p are uniform throughout the layer.
The net rate of generation is thus

o — ranp = ga[l — "N (4.34)
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since for equilibrium conditions the rates balance so that rani = ga. The
net hole current recombining in the layer per unit area is thus

Ir(‘Pp - ‘Pn) = @G8a [equ_w“”kr - 1] (435)

There must, therefore, be a discontinuous decrease of hole current across
the layer. The total hole current flowing in at & = ¥, , which is also the total
current 7, thus does three things: for ¥ < ¥y, , it combines with I0(80);
for xr, < ¥ < aT,, it combines with electrons at rate I.(8p); for & > xqn,
it flows into the nz-region in amount 7 ,(dp). This leads to

I = Io(¢) + I1a(e) + I:(3¢). (4.36)

In other words the layer of high recombination acts like a rectifier
in parallel with 7,0(8¢) + I,0(d¢). The frequency characteristic of 7.(8¢),
however, will be independent of frequency and will contribute a pure con-
ductance to the admittance of the junction.

If the layer is considered to have finite width, however, it will exhibit
frequency effects just as does 7, in the n-region. In Appendix ITI, we treat
a case in which the layer is a part of the »#-region itself but has a recombina-
tion time different from the main layer. If the time is shorter, a large amount
of the hole current may recombine in this layer. For high frequencies, the
current may not penetrate the layer, in which case the admittance for hole
current is determined by the thin layer rather than by the whole n-type
region. A case of this sort is shown in Fig. 7. In this case the thickness of the
layer is 3 of its diffusion length and in it the lifetime of a hole 7 is § the
value 7, in the main body of the n-region. The hole current will thus be
restricted to this layer when the diffusion distance v/D/w is less than the
layer thickness (%) /Dz¢; this corresponds to wre > 9 or wr, > 81. The
presence of the high rate of combination in the layer is evidenced by the
tendency of G to be greater than S at high frequencies. If the layer were
infinitely thin, as discussed above, it would simply add a constant conduct-
ance to the admittance.

4.7 Paich Effect in p-n Junclions

If there are localized regions of high recombination rate, a “patch effect”
may be produced in an #-p junction. As an extreme example, suppose the
value of g, for the layer just considered is allowed to become very large; then
the recombination resistance may become small compared to Ry in Section 3
and the junction will become substantially ohmic. If the region of high
rate of recombination is relatively small compared to the area of the rest
of the junction, then the behavior of the junction as a whole may be re-
garded as being that due to two junctions in parallel. Over most of the area,
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the currents will flow as if the patch were not present so that one compo-
nent of the current will be that due to the uniform junction. In addition
there will be current due to recombination and generation in the patch.
The series resistance to the patch will be relatively high due to the constric-
tion of the current paths. On the other hand, the value of I,(3¢) associated
with the patch may be very high. Hence the current due to the patch will
be that of a low impedance ideal rectifier in series with a high resistance;
and if the ratio of impedances is high enough, such a series combination
amounts essentially to an ohmic leakage path. Thus patches in the p-n
junction will tend to introduce leakage paths and destroy saturation in the
reverse direction.

An extreme example of a region of high rate of recombination would be a
particle of metal making a non-rectifying contact to both p- and n-type
germanium. Since holes and electrons are essentially instantly combined in a
metal, the boundary condition at the metal surface would be equality of
¢p and ¢, . This would mean that near the metal particle, ¢, and o, could
not differ by 8¢, the condition required, over some parts of the junction at
least, in order for ideal rectification to occur.

A common source of imperfection in p-n junctions arises from dirt or
fragments on the surface which overlap the junction. Even if these do not
actually constitute a short circuit across the junction, they may furnish
patches of the sort discussed here and modify the junction characteristic.

4.8 Final Comments

Another possible cause for frequency effects may be found in the trapping
of holes or electrons.”* When an added hole concentration is introduced into
an n1-region, a certain fraction of the holes will be captured by acceptors and
later re-emitted or else recombined with electrons while trapped. Investiga-
tion of this process is given in Appendix VI. One interesting result is that the
trapping of holes in a uniform n-region cannot produce an effective suscep-
tance (i.e. iwC) in excess of the conductance, as can a retarding field.

Finally it should be remarked that important and significant variations
of the conductivity in the p- and n-regions may be produced by hole or
electron injection. Under these conditions, when the hole concentration
approaches #, , ¥ — ¢, will vary. Under these conditions R, may be appreci-
ably altered. These factors favor the p-n junction as a rectifier since they lead
to a reduction of series resistance under conditions of forward bias and thus
tend to improve the rectification ratio.

1 Frequency dependent effects in Cu:0 rectifiers have been explained in this way by
J. Bardeen and W. H. Brattain, personal communication.
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5. INTERNAL CoNTACT POTENTIALS

The theory of p-n junctions presented above has interesting consequences
when applied to the distribution of potential between two semiconductors
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Fig. 9—Internal contact potentials showing how presence of injected holes produces a
contact potential across J».

under conditions of hole or electron injection. In Fig. 9 we illustrate an
X-shaped structure. A forward current flows across the junction P and
out of branch Ny . If the distance across the intersection is comparable with
or small compared to the diffusion length for holes, a potential difference
should be measured between Ps and N». The reason for this is that holes
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flow easily into P, since the potential distribution there favors their en-
trance. Since, however, P, is open-circuited this hole flow biases J» in the
forward direction; since J» i3 high resistance, an appreciable bias is developed
before the counter current equals the inward hole flow and a steady state is
reached. No similar effect occurs in the branch Vs ; consequently P, will be
found to be floating (open-circuited) at a more positive potential than N, .

Parts (b) to (e) describe this reasoning in more complete terms. We
suppose that the p-regions are more highly conducting than the »-regions
so that the current across Jy, shown in (b), is mainly holes. The potentials
¢, and ¢, along the x-axis will be similar to those of Figs. 5 and 6; (c) shows
this situation and indicates that the diffusion length for electrons in the
p-region is less than for holes in the n-region. Along the ¥ axis ¢, and ¢,
vary as shown in (e), the reasoning being as follows: At the origin of coordi-
nates ¢, and ¢, have the same values as for (c). The transverse hole current
(d) has a small positive component at y = 0 since, as mentioned above, P,
tends to absorb holes and thus increase diffusion along the plus y-axis.Since
the net transverse current is zero, [, = —I, in (d). The ¢ curves of (e)
have been drawn to conform to the currents in (d); ¢. is nearly constant
in the n-region and ¢, is nearly constant in the p-region. As concluded in
connection with Figs. 5 and 6, ¢, and ¢, are also nearly constant across the
transition region. These conclusions lead to the shape of ¢, and ¢, for y > 0
in (e). For y < 0, the reasoning is the same as that used in Sections 3 and 4
and we conclude that ¢, is essentially constant. Hence, a difference in the
Fermi levels at P, and N, will result.

In Fig. 10 we show a structure for which we can make quantitative calcu-
lations of the variations of ¢, and ¢, . We assume for this case that the
forward current from P; to NV does not produce an appreciable voltage drop,
i.e. change iny and ¢, , in region N. This will be a good approximation if the
dimensions are suitably proportioned. We shall next solve for the steady-
state distribution of p subject to the indicated boundary conditions assuming
that p is a function of » only. As we have discussed in Section 4.1, when p is
small compared to » in the n-region, we can write

p = pu eq(\ap-wn)lkT (5.1)

In keeping with the treatment in the next section of this structure as a
transistor, the terminals are designated emitter, collector and base, the po-
tentials with respect to the base being ¢, and ¢, . The contact to V or the
base is such that ¢, = ¢, in this region. Hence, the boundary conditions at
Jiand J, are

P = pa c“"r"el"'-"f r = —w (5'2)
Pﬂ - P" eqy’c”ﬂ" r = +‘10 (5-3)
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The function p(x) which satisfies these boundary conditions and the equation

is
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Fig. 10—Model used for calculation of internal contact potential and to illustrate p-n-p

transistor.

(a) Semiconductor with two p-n junctions and ohmic metal contacts.
(b) Quasi Fermi levels showing internal contact potential between & and c.

which gives rise to a hole current across J» into P, of amount

Iy
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+
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(5.6)

+ tanh zu;)]



p-n JUNCTIONS IN SEMICONDUCTORS 471

where, by 7,0 (¢), we mean the hole current which would flow in the forward
direction across either J, or J» if uninfluenced by the other (i.e. the function
of (4.11) or (4.18) and (4.20).) The equation shows that a fraction csch
(2w/L,) of the current 7, (¢.), which would be injected by ¢ on P; in the
absence of J,, flows into P». The conductance of P, across J» is increased
by the factor coth(2w/L,). .

The current inlo P, carried by electrons will be unaffected by J; and can
be denoted by —7,0(g.) the minus sign resulting from the fact that currents
into Py are in the reverse direction. The total current flowing info P» contains
the —TI.o(p.) and —1 () terms and must cancel the +7,0(p,) term for
equilibrium. Hence:

I0(¢c) + coth (zw/Lp) Ipo(ﬁpc) = csch (2w/Lp) Ipo(‘PE) (57)

If pn 2> n,, the I,p term can be neglected compared to coth (2w/L,) Iy .
Hence the value of ¢. must satisfy

Iolee) = sech (2w/Ly) I yo(ee). (5.8)

For ¢. > kT/q, the exponential approximation may be used for I, in both
terms:

v. = ¢ — (kT/q) In cosh (2w/L,), (5.9)

so that, if (2w/L,) is the order of unity, ¢, should be only about (£7/q)
less than ¢ . For (2w/L,) large, we get

Pe = Pe — (kT/g) (.zw/]‘p} (510)

corresponding to the linear drop of ¢, , discussed in connection with equation
(4.9), across the distance 2w.

When ¢. is negative, so that we have to deal with reverse current, ¢,
will not decrease indefinitely but will reach a minimum value given by

[exp gee/kT) — 1 = —sech (2w/Ly) (5.11)
and corresponding to saturation reverse current across Jy, so that
¢. = —(kT/¢) In [1 + (1/2) csch*(w/L,)]. (5.12)

The floating potentials of p-type contacts to n-type material into which
holes have been injected (or n-type contacts to p-type material with in-
jected electrons) are reminiscent of probes in gas discharges which tend to
become charged negative in respect to the space around them because they
catch electrons more easily than positive ions. The situation may also be
compared with that producing thermal e.m.f.’s; in fact a “concentration
temperature” of the semiconductor with injected holes can be defined by
finding the temperature for which np = n3(T). We conclude that, in the
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absence of thermal equilibrium, different potentials depending on the nature
of the contact are, in general, the rule rather than the exception.

The bias developed on P; or ¢ will change its conductance. If we suppose
that ¢. and ¢, are held constant, then the current flowing into ¢ is obtained
by the same reasoning that led to (5.7) and is

2w

I Ino(ed). (5.13)

2%
I(¢:, we) = I(gs) + coth “Li) Ipﬁ(ﬁﬂc) — csch
»
For an infinitesimal change in ¢, from the value which makes I(ec, @)
vanish, the admittance to ¢ is readily found from (4.18) and (4.19) to be

I ’ 2
(a.a) = IﬁD(‘PC) -t coth L’iy I;D(Wc)
Def ¢ P (5 14)

l

|:Gn0 + coth 2w G,Ju—l e
L,

which shows that pronounced variations in admittance should be associated
with variations in hole density in N in Fig. 10.”

6. p-n-p TRANSISTORS

The structure shown in Fig. 10 is a transistor with power gain provided
the distance w is not too great. As a first approximation, we shall neglect
the drop due to currents in the NV region. If we use Py as the collector and call
the collector current, I, , positive when it flows into P, from outside, we shall
have from (5.13)

2 2w
I, = —csch L_w IpD(‘Pe) + coth f I:nﬂ(ch) + Inﬂ(‘,”e)- (61)
P P
The emitter current is similarly
2u 2
I, = coth I_:a_u Io(e) — csch Liu Io(ed) + Tu(ed)- (6.2)
P »

If o >> n,, then the 7, terms can be neglected. However, the base current
will not vanish but will be

I,=—1I,—I.=|csch 2w coth 210:] pled + Inoled)]
, L,

2 sinh® w/L (©3)
sl w/ Ly
= e [led) + 1 .
Slnh 2W/Lp [ pﬂ(ﬂa ) pG(ﬁcC)]

16 The variations in admittance discussed in connection with metal point contacts in
an accompanying paper in this issue (W. Shockley, G. L. Pearson and J. R. Haynes, Bell
Sys. Tech. JlI., July, 1949), arise from this cause; however, the nature of the contact is
not as simple as here.
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For w/L, large, the junctions do not interact and the hyperbolic coefficient

becomes unity and [, = —[[,0(ee) + Lles)]-
EMITTER BASE COLLECTOR
] i n
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Fig. 11—p-n-p transistor,
(a) Thermal equilibrium.
(b) Operating condition.

THROUGH SAMPLE , X=—>

(a)

Bt %

(b)

If ¢ is several volts negative, so that I,(p.) has its saturation value

I,: (see (4.11) and (4.20)), then the ratio —éf./é1.

2w

o1, csch f;
a=—— = ——F = gech

oL coth-ziv

L,

a has the value

(6.4)

For (2w/L,) = 0.5, 1, 2 respectively, « = 0.89, 0.65, 0.27. Since the output
impedance Rae will be very high when ¢, is in the reverse direction, and the
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input impedance will be low, the power gain formula'® o Ran/Ry will yield
power gain even when « is less than unity.

In certain ways the structure of Fig. 10 resembles a vacuum tube. In Fig.
11, we show the energy band diagram, with energies of holes plotted upwards
so as to be in accord with the convention for voltages. (a) shows the thermal
equilibrium distribution and (b) the distribution under operating condi-
tions. It is seen that the potential hill, which holes must climb in reaching
the collector, has been reduced by ¢. . The #-region represents in a sense the
grid region in a vacuum tube, in which the potential and hence plate current,
is varied by the charge on the grid wires. Here the potential in the n-region
is varied by the voltage applied between base and emitter. In both cases one
current is controlled by another. In the vacuum tube the current which
charges the grid wires controls the space current. Becausé the grid is negative
to the cathode, the electrons involved in the space current are kept away from
the grid while at the same time the electrons in the grid are kept out of the
space by the work function of the grid (provided that the grid does not
become overheated.) In Fig. 11, the electrons flowing into the base control
the hole current from emitter to collector. In this case the controlled and
controlling currents flow in the same space but in different directions because
of the opposite signs of their charges.

As this discussion suggests, it may be advantageous to operate the p-n-p
transistor like a grounded cathode vacuum tube, with the emitter grounded
and the input applied to the base.

The p-n-p transistor has the interesting feature of being calculable to a
high degree. One can consider such questions as the relative ratios of width
to length of the n-region and the effect of altering impurity contents and
scaling the structure to operate in different frequency ranges. However,
we shall not pursue these questions of possible applications further here.
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APPENDIX I

A THEOREM ON JUNCTION RESISTANCE

We shall here prove that the junction resistance is never less than the value
obtained by integrating the local resistivity 1/gu(p + bn). This is accom-
plished by analyzing the following equation which we shall discuss before
giving the derivation:

Th ‘
Isp = _f ( >+ )dx + g¢ f (pp — @n) (" —1) d,

the meaning of the symbols being that shown in Fig. 5. This expression is
valid even if large disturbances in p and # from their equilibriumvalues
occur. The second integral is positive since the integrand is never negative.
It may be very large if ¢, — ¢. >> kT/q in some regions. If, in the first in-
tegral, we consider that 7, and 7, may be varied subject to the restraint
I, + I, = I, we may readily prove that the first integrand takes on a mini-
mum value when
pI _ bad

Ip:p—t—b”, and In_P_—f—_bﬂ..

For this minimum condition, the first integral becomes

I fzb dx/qu(p + bn) = IRy

where Ry is simply the integrated local resistivity. If I does divide in this
way, the second integral is zero, a result which we can see as follows:

I, = —qup dp,/dx
I, —qubn dp,/dx

dep/dx - I,/p
deo/dx  I./bn

Hence, if the current divides in the ratio of p to bu, then dep, = dg, and,
since ¢, = @, at ¥, ¢, = ¢, everywhere and the second integral vanishes.
In general, of course, the conditions governing recombination prevent
current division in the ratio p:én and then dp/7 > Ry .
The equation discussed above is derived as follows: We suppose that

¢p(¥a) = on(¥a) = ¢u

‘Pp(-”l) = ﬁ,’.“,‘(.l'b) =@ "
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Then

-
Ide = —(Tpep + L¢n)

Ta

zh d
= _Lu H’_l (Ip‘!’p'!l' Inﬁ"n) dx

oty [ )

Since
dl, _ _dlx _ e kT
Jr . dx qe(1 4 )
and
dtpp dﬁon
¥ — Ybn o I,/ qub
T o/t o L./ qubn

these two integrals are readily transformed into the ones previously dis-
cussed.

APPENDIX II

ADMITTANCE IN A RETARDING FIELD

We shall here derive the admittance equation for holes diffusing into a
retarding potential ¢ = kTx/gL, in which the potential increases by kT in
each distance L,. The differential equation for the a-c. component of p is

iwp = —L 9| _p9 A4
top = Tp axl: ax =4 89:]

This equation may be solved by letting p = p1 exp(iwt — ) as may be
seen by rewriting the equation and substituting this expression for p:

ap 1 ap Y
D [6? L, 6r:| T2 o (Ut dem)p

- —fyD[—v+%~]p ~ 2+ iwr)p =0
r Tp

leading to

14U+ QL/L)YA + dwrp)]”
L 7L, :




p-n JUNCTIONS IN SEMICONDUCTORS 477

The corresponding current evaluated at x = 0 where p = p exp(iwf) =
(pagui/kT)exp(iwt) is given by

_ .l p? id
r= Q[Da;v+#?> 6.17]

1
= '_Q'DI:“"Y‘i‘E]P

_ q(1 + dwry)p

YTp
_ png (14 dwl) 2L, Lt
T H, U+ [T+ QL/L)M1 + dwr)?  ™°
 qupa2L, (L + iwry) e
T I 1+ 0+ QL/L)MA + der)] T T
= A,,‘Ul Eiwt.

This is equivalent to (4.32) in Section 4.
APPENDIX III

ADMITTANCE FOR Two LAYERS

We shall here treat a case in which there is a thin layer on the n-side of
the transition region in which recombination occurs much more readily
than deeper in the n-layer. The case of an infinitely thin plane, discussed in
‘Section 4, is a limiting case of this model. We shall suppose that the layer
extends from & = —¢ to x = 0 while x > 0 corresponds to the n-region. We
shall suppose that the potential in the layer is uniform with value 1 whereas
in the n-region it has value ¥, . The lifetimes of holes will be taken ; and 7,
in the two layers. The solutions for p; and p; are evidently

b= put (A6 + Be™ d <o

pr = pm+ C e x>0
where

a=(14+iwr)"?//Dr =1+ in:)m/L

B = (14 iwr)?//Dry = (1 + iwry)"/Ls.

The boundary condition for continuity of ¢, , required to avoid singularity
in dg,/dx, is
P ngz.'kr = p ethkr
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and, for continuity of hole current, is dpi/dx = dps/0x. Expressing these
in terms of 4, B, C, a and  for the a-c. components yields:
A+ B=CeW ¥ = CF
ald — B) = 8C

so that

A = (F+ Bla)C/2.

B = (F — B/a)C/2.
Hence the ratio —[dp/dx]/patx = —cis

_dlnp _ a(det™ — Be ™) _ a(Fa sinh ac + 8 cosh ac)
dx (A etee 4 Bee) Fa cosh ac + 8 sinh ac

Since at ¥ = —e¢, the a-c. component of py is (gu/kT) ploe‘”‘, the admittance is
po

—qDop/ox

4 = 7y £ = (qz Dﬁm/kT)(-a In p/0%)

Fa sinh a¢ + B cosh ac
Fa cosh ac + 8 sinh ac’

(qupr/ L) (1 + jory) 2

For ¢ — 0, this transforms into
(qupro/L1) (1 + iwn) "8/ Fa = (qu(pw/F)/L)(1 + iwrs)

which agrees with Section 4, since piw/F then corresponds to p, .

If ¢/L; and F are not large, an appreciable amount of recombination
takes place for x > 0 for low frequencies. Dispersive effects will then occur
corresponding to 72. The a-c. will not penetrate to x = 0, however,
if ¢(w/D)"* >> 1 and the dispersive effects will then be determined by . .

The frequency-dependent part of the admittance,

1/2

Fea sinh ac + 8 cosh ac

(1 + dwr) Fa cosh ac + B sinh ac’

has been computed and is shown in Fig. 7for 7, = 7, F = 1,11 = 72/9 and
¢/L; = % For these values about half the hole current reaches x = 0 for
low frequencies. As the time constant for diffusion through the layer is 7,/81,
as discussed in Section 4.6, the layer will act as a largely frequency-inde-
pendent admittance well above the point for wr, = 1. This is reflected in
the behavior of the curves of Fig. 7 and, for frequencies in the v/ wl range,
it is seen that G is larger than .S by about 50% of the low-frequency value of
G; this split of G + iS5 into (§)Gs plus approximately (3)Go (1 + iwr )" corre-
sponds to the fact that about half the holes are absorbed in layer 1 for the
assumed conditions.
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APPENDIX IV

TimME CONSTANT FOR THE CAPACITY OF THE TRANSITION REGION

For this case we shall consider the case of holes in an a-c. field with po-

tential
RT 2 xe™
¢"E(E+Iﬂ

where the d-c. retarding field is £7'/gL, and the a-c. field is k7/qL, where
1/L, is considered small for the linear theory presented here. The expression
for the current of holes is

_por_ o pfop 1 ﬁ]
Dax “P.ax_ D[ax+’”(L,+L1)

We shall obtain a solution for p by letting
b= o 8—:IL,- + P [e~:rIL, _ eﬁ‘,rz]efwl,

while neglecting recombination in this region so that p must satisfy the con-
dition 5 = —a (hole current)/dx leading to the differential equation

Fp  apf1 e‘“‘)] )
p [axz LT (L, R p
There are three separate exponential dependencies of the variables leading
to three equations (neglecting terms of order (1/L)%)

. 1 1

g, D[P"L_fﬁﬁ"ﬁ]:o

. i 1 1 1 .

e I L+ f: D[PlL—i_ Plﬁ_mpu]— zwplzo
PR DIy — v/Llp — iwpr = 0

The first equation is satisfied by the equilibrium distribution and the
second by

p]_ = —Pg D/?,m L1],r
and the last by

1 4+ /1 + 4iwl?/D
e 2L,

It is evident that dispersive effects set in when

w = D/AL
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This corresponds to the result used in (4.31) in which (xr, — x7,)/10 was
used for L, . For smaller values of @ the current may be calculated and put
in simple form by expandmg v up to terms including w’. The resulting ex-
pression for the current is

I = —iwg po LAL/L)e™
This is interpreted as follows: The a-c. voltage across a layer L, thick is

8 = (kT/q) (L./Li)e™

and, if we consider plus voltage as producing a field from left to right, then
the a-c. voltage across L, is V = —&y. Substituting this for (L./L)exp(iwt)
gives

T = iwgpe Lg/RT)V

Here gpolr is the total charge in the layer L., (¢V/kT) is an average frac-
tional change in this charge for V so that (gpoL,) (¢V/kT) + V is a capacity.

APPENDIX V

TaE EFFECT OF SURFACE RECOMBINATION

In this appendix we shall consider the effect of surface recombination upon
the characteristics of the $-n junction. As for Section 4 we shall illustrate
the theory for the case of holes diffusing into n-type material. For sim-
plicity we shall treat a square cross-section bounded by y = +w, z = Fw,
the current flow being along +x.

We shall denote the a-c. component of # as

m=n (x: ¥ % t)
At x = 0, the edge of the n-region, we shall suppose that ¢, and y are inde-
pendent of y and z so that we shall have
PI(O: ¥ 5 t) = puw em‘ = (Pn qvl/kT)eim
by reasoning similar to that used for equation (4.5). The boundary condi-
tion at the surface will be

—D%=sp1 fory = +w
This states that the recombination per unit area is sp; and is equal to the
diffusion to the surface —Dap:/dy. Similar boundary conditions hold for the
other surfaces. By standard procedures involving separation of variables
we may verify that the solution satisfying the boundary conditions is

e
h= _Zu ai e 7 cos By cos Bz
1,f=
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where the eigenvalues 3; are determined by the boundary condition
Bav tan Bav = sb/D = x.

We use 8; = Bav for brevity later. Because of the symmetry of the boundary
conditions it is not necessary to include sine functions in the sum. The value
of a;; is given by

ai = (1+ iwrg)/(Dry)!
where 7;; is the lifetime of a hole in the eigenfunction cos ;v cos B;z; i.e.
745 1s the lifetime which makes

p = exp (—1/ri;) cos By cos B;s,
a function which satisfies the surface boundary conditions, a solution of the
equation
ap/ol = DV'p — p/r = —DB} + Bp — p/r

where to simplify the subsequent expressions we have omitted the subscript

p from 7. This equation leads to
1 —_—
Tij

DB + 8 + -

The coefficients a;; are readily found since the cos 8.y functions form an
orthogonal set (as may be verified by integrating by parts and using the
boundary conditions). The values are

aij/po = 4Alsin 8, sin 8;]/6.6,[1 4 (1/26,) sin 26,]-[1 + (1/26;) sin 20;]

The current corresponding to this solution is

I = —¢D ff (ap/ax) dy dz

integrated over the cross section at ¥ = 0. This gives

I = qusz S aij(ai/ puo)(4w’/6.6;) sin 8; sin 0,
Substituting for a;; and inserting pio = pagui/kT, we obtain an expression
for the admittance A, = I,/V exp(iwt):

4 sin® 6; sin® 6,

AP = 41@2 q.uPn E;J'Cfi;' -:'2_ 1 1
6; 0; I:l + (2_0,) sin 26,-] [1 + (—ZE) sin 28,-]

where the sum plays the role formerly taken by (1 + iwt)'2/4/Dr in equation
(4.12); the factor 4w’ is the area of the junction.
We shall analyze the formula for the case in which recombination on the
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surface is smaller than diffusion to the surface so that x is not large. The values
of 8;, over which the sum is to be taken, may be estimated as follows: in
each interval of 8; of the form nr to (n + (3))m, 6; tan 8, varies from 0 to o,
giving one solution to #; tan 6; = x. For x small, the solutions are approxi-
mately

B = sin f = tan 6y = ‘\/)-(_
th

m + x/m; — sin 6 = tan 6 = x/=

8, = nr + x/nw; (—1)" sin 0, = tan 0, = x/nw
From this we see that the terms in the sum are as follows:
agg-4x2/x24 = ay

ano- 2(x/nm)’/ (nm)* = ano2x’ /T
- x0T
From this it is evident that unless x is large, the series converges very
rapidly. (This conclusion is not altered when the increase in anm with 8,8 is
considered.) Thus the dominant term in the admittance is

4w’qupo (1 + wrm)'"*/ v/ Do

where

DY 2
1/1‘09= 2(7"&—2) (&0)+ 1/7‘
D\ sw

=2 (i) + 1/r
w

This expression is valid only for sw/D small so that 02 = sw/D. The term
s/(w/2) represents the rate of decay due to holes recombining on the surface,
s having the dimensions of velocity. For w >> 1/7q0 , the admittance becomes
dulqugo(iw/D)1?2, the same value as given in equation (4.12) for large » and
an area 4w

The conclligion’ from this appendix is that for x small, the effect of surface
recombination is simply to modify the effective value of r and otherwise leave
the theory of Section 4 unaltered. :

For very large values of x, it is necessary to consider higher terms in the
sum and several values of 7 will be important. Under these conditions the
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approximation is that, at x = 0, 1 is independent of x and y may become a
poor one, especially for forward currents, because the transverse currents to
the edges will be important. Under these conditions the role of surface re-
combination will give rise to patch effects of the sort discussed in Section 4.

APPENDIX VI

TrE EFrEcT oF TrAPPING UrON THE DIFFUSION PROCESS

In this appendix we shall investigate the effect of the trapping of holes
upon the impedance. We denote the density of mobile holes in the valence-
bond band by p and the density of holes trapped in acceptors by p.. For
thermal equilibrium at room temperature there will be an equilibrium ratio,
called «, for $,/p. For germanium a = 10~* and for silicon & = 0.1 to 0.2.

We shall consider four processes which occur at rates (per particle per
unit time) as follows:

v, direct recombination of a hole with an electron (free or bound to a donor)
v, trapping of a hole by an acceptor

¥.o Tecombination of a hole trapped on an acceptor

v. excitation of a trapped hole into the valence-bond band.

Under equilibrium conditions as many holes are being trapped (rate pv.)
as are being excited (p.): hence v, = av,.

We shall study solutions of the customary form for the a-c. components:

P = pue
P1a = P e

These must satisfy the equations
po= DV — (it v)pr + vepua
b = vipr — (e + vra) pra

These lead readily to the equation for 7:

Dy = iw + v + v — vow/(iw + v + via) = i

fwi—yz

fwl—yT

Vely Ve

[ramsmolrrrnli- e vl

From this equation we can directly reach the important conclusion that
the trapping process can never lead to a capacitative term larger than the
resistive term. This result is obtained by analyzing the complex phase of v,
the admittance being proportional to y. In particular, we find that the real
term in Dy’ is always positive, as may be seen from inspection, so that the
complex phase angle of +y is less than 45°.

The form reduces to a simple expression if », and v, are very large com-
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pared to »,, ¥,; and w , a situation which insures local equilibrium between
p and po . Under these conditions we obtain

l:)")v'2 = fm[l = .a] + Vr + AV rag
Dividing by (1 + «) gives
er + Pavra
+
P+ ta

The interpretation is that the holes diffuse as if t «ir diffusion constant were
reduced by the fraction of the time p/(p + pa).- 1ey are free to move and
recombine with a properly weighted average of ». .nd v, .

D/ + )W = [Dp/(p + Pl =

APPENDIX VII

SOLUTIONS OF THE SPACE CHARGE EQUATION

We shall first show that the space charge equation (2.11) has a unique
solution for the one dimensional case. For simplicity we write (2.11) in
the form

2
j_‘“ = sinh u — f(x) (A7.1)
to which it can be readily reduced. We shall deal with the case for which
[ = faforx < x (A7.2)
f=fafora > a > a, (A7.3)

so that the interval (x4, %) is bounded by semi-infinite blocks of uniform
semiconductor. We shall require that % be finite at x = == . This boundary
condition requires that for large values of | x|

=ty + Ao x— —® (A7.4)
w =y + Aye """ x— + o (A7.5)
where
sinh #, = fa, sinh #, = fj
= | (cosh u)'®|, v = | (cosh )" |

(If the opposite signs of the y’s were present, the boundary conditions would
not be satisfied.) The exponential solutions are valid for |# — u.| or
| — | < 1. For larger values, however, solutions exist which are ob-
tained by integrating (A7.1) to larger or smaller values of x.

For these extended solutions the values of u(x, 4,) and #'(x, 4a) (= du/dx)
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are monotonically increasing functions of 4,. This may be seen by con-
sidering ¥ = x,. For A, sufficiently small, the value of %(xs, 4,) and «'(x,, 4a)
are given simply by (A7.4). For larger values of 4,, an exact integral will be
required. It is evident, however, that | solutions of the form (A7.4) are
related simply by translation for < x,. Hence increasing 4, is simply
equivalent to integrating (A7.1) to larger values of « and it is evident that
this increases # and %' mo otonically. It may be verified that for a sufficiently
large A, the solution becc es infinite at x, so that u(x 4, 44) %' (24 , 4a) both
vary monotonically and ¢ tinuously from — =< to + = as 4, varies from
negative to positive valu ~ We shall refer to this property of #(xa, 4a),
' (xa, Ag) as Pr.

We next wish to show that w(xy, Aa), #' (21, Aq) has the property Py for
values of x; > x,. To prove this we note that if for any x; , (%, 4.) and
#'(x,, A,) are finite, the solution may be integrated somewhat further to
obtain #(x. , Ag), #'(x2, Ag) for xs > x, . From equation (A7.1) it is evident
that an increase in either #(x;, a) or #'(x;, a) will result in an increase in
d*u/dx* in the interval x; < x < a3 so that # and %' at x, are monotonically
increasing functions of % and #’ at x; . Hence if % and #’ at x; have the
property P1, so do x and ' at a2 . By extending this argument we conclude
that » and «’ at any value of x have the property P;. (A rigorous proof
can easily be completed along these lines provided that | f(x) | is finite.)

Similarly it may be shown, starting from (A7.5), that #(x, 4,) is a mono-
tonically increasing function of A4, and #’(x, 45) is a monotonically decreasing
function of Aj.

In order to have a solution satisfying (A7.4) and (A7.5) we must have,
for any selected point x,

u(x, 4,) = ulx, Ay) (A7.6)
w'(x, Ag) = ' (x, Ay) (A7.7)

Now as the equation u(x, 4.) = u(x, A,) varies from — o to + o, #'(x, 4,)
varies from — « to + % and #'(x, 4;,) varies from 4+« to — =%, monotoni-
cally and continuously. Hence there is one and only one solution of (A7.1)
satisfying (A7.4) and (A7.5).

In order to verify that the solutions discussed in Section 2 are correct for
large and for small K, we show schematically in Fig. Al the solution for a
representative K as a dashed line together with the curve . = uo(y) = sinh™
y. In terms of #o, equation (2.16) becomes

2
du

oF K2 (sinh % — sinh uy). (A7.8)
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From the symmetry of the equation, it is evident that # must be an odd
function of y and hence that the solution must pass through the origin.
The boundary condition in this case will be that u — u, for y — 4= so that
there will be no space charge far from the junction. We can conveniently use
the origin as the point at which the solution from y = 4= joins that from
y = — =0; from symmetry, this requires merely that # = 0 when y = 0.

Uo=sinh'y
\

W AND u.oT /4’
rd ~ =L
’f
’l
4
4
4
7’
—
Wy Y
’I
4
I’
P 2
/ d?u _ 1 [smh w-sinh uo]
e UZ K2

Fig. Al—Behavior of the solution of Equation (2.16) or (A7.8).

For large negative y, # = sinh™ y and du/dy = 1/cosh o so that du/dy
is small. It is at once evident that, for large values of K, % must lie above 1,
so that the integral

du

(1/K%) f; (sinh # — sinh %) dy = ay (A7.9)

will be large enough to make the solution u(y) pass through the origin. If
u — up > 2 over the region of largest difference, the space charge will be
largely uncompensated and the solution will correspond to that used in
equation (2.18). On the other hand, as K — 0, the requirement that u(y)
pass through the origin leads to the conclusion that % — #p must be small for
all values of y. The possibility that u oscillates about uo need not be con-
sidered since it may readily be seen that, if for any negative value of v,
say 1, both #(y) and '(y;) are less than wuo(y1) and ' (1), then «(y) and
' (y) are progressively less than wo(y) and uo(y) as y increases from y; to 0.-
Hence, if for negative y the # curve goes below the ug curve, it cannot pass
through the origin.



p-n JUNCTIONS IN SEMICONDUCTORS 487

APPENDIX VIII
List or SymBOLS
(Numbers in parentheses refer to equations)
a= (Ng — N,)/x (2.14)

A = admittance per unit area of junction (4.23)

A, = component of 4 due to hole flow into n-region (4.12) (4.24)

A, = component of 4 due to electron flow into p-region (4.25)

A7 = component of A4 due to varying charge distribution in transition
region

4 also used as a constant coefficient in various appendices

b = ratio of electron mobility to hole mobility

b = symbol for base in Sections 5 and 6

B constant coefficient in various expansions in appendices

¢ = symbol for collector in Section 6; a length in Appendix III

C = capacity per unit area

C,,C, (425) (4.27) as for 4,, 4,

Cr (2.42) (2.45) (2.56) as for Ar

D = diffusion constant for holes (4D is the diffusion constant for electrons)

e= 2718...

[ see Appendix 7

g = rate of generation of hole-electron pairs per unit volume (3.1)

G = conductance per unit area of junction

G., G, as for A’s

i=v-1

I = current density

[., T, = current densities due to electrons and holes (2.5) (2.6) (4.10)

Tooy Ipo Iy (411) (4.12) (4.18) (4.19)

1., I.,, I, saturation reverse current densities (4.11) (4.18) (4.21)

I, see text with (4.35)

J = subscript in Section 3 for junction Fig. 5 equation (3.11)

k = Boltzmann’s constant

K = space charge parameter (2.17)

L. = length

L, = n;/a (2.15)

Ly = Debye length (2.12)

Ly, L, = diffusion lengths for electron in p-region and holes in n-region (4.8)

L., = length required for potential increase of kT/q in region of constant
field (4.32) Appendices IT and IV

Ly corresponds to a-c. field, Appendix IV

n = density of electrons

5
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Ma, np = equilibrium densities of electrons in - and p-regions

p = density of holes

pn, p» = equilibrium densities of holes in u- and p-regions

po = d-c. component of non-equilibrium hole density (4.3)

1 exp(iwl) = a-c. component of non-equilibrium hole density (4.3)

P = total number per unit area of holes in specimen (2.35)

g = electronic charge (g = |q|)

Q = ¢P = total charge per unit area (2.39)

r = recombination coefficient for holes and electrons (3.1)

R = resistance of unit area

R, = resistance of unit area obtained by integrating conductivity (3.10),

Appendix I

R, = effective series resistance, discussed in connection with (3.13)

s = rate of recombination per unit area of surface per unit hole density,
Appendix V

S = susceptance per unit area (imaginary part of admittance)

Sp,Sn,Srasfor A’s.

t = time

T = temperature in °K

T = subscript for transition region

u = qu/kT (2.9), & — ¢1)/kT (2.32), Appendix VII

1 and 1e™" = d-c. and a-c. components of voltage applied in forward direc-

tion (4.2)

W = width of space charge region in abrupt junction, Section 2.4

w = half thickness of n-region or transistor base of Sections 5 and 6.

w = half width of square rod in Appendix V.

x = coordinate perpendicular to plane of junction

y, 5 = transverse coordinates, Appendix V

y = reduced length (2.17), Appendix VII

« = current gain factor in transistor (6.4)

« = parameter in Appendix ITT and VI

a;; = parameter in Appendix V

3; = parameter in Appendix V

v = parameter in Appendices IT, IV and VII

¢ = symbol for emitter Section 6

0; = Bav Appendix V

¢ = dielectric constant

mobility of a hole (bu = mobility of electron)

— rates of recombination etc., Appendix VI

= charge density (2.1)

= conductivity

Il I

=

9 ® % E
I
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o; = conductivity of intrinsic material (4.15)
o, = conductivity of n-region = gbunn
o, = conductivity of p-region = gqup,

T = time
7a 7 Tp = life times of electrons in p-region and holes in n-region (3.2) (3.3)
(4.7)

rr = relaxation time of transition region, Appendix IV
®, ¢p , ¢r = Fermi level and quasi Fermi levels (2.2) (2.4)

8¢ = applied voltage across specimen in forward direction, Section 2.3,
(4.2)

x = sw/D in Appendix V

Y = electrostatic potential (2.2)

w circular frequency of a-c. (4.2)

I



