The Design of Reactive Equalizers*
By A. P. BROGLE, Jr.

This paper describes a systematic method of approximating with a finite
number of network elements a transfer characteristic which is a prescribed func-
tion of frequency, rather than a constant, over the useful frequency band. Al-
though applied here only to input and output coupling networks as reactive
equalizers and where loss equalization to an extremely high degree of precision
over a wide frequency band is desired, the mathematical expressions which form
the basis for the design are applicable to any 4-terminal network whose transfer
characteristic is specified in a similar manner over the real frequency range.

The selection of the appropriate form of the transfer function for equalization
purposes is the fundamental consideration. A squared Tchebycheff polynomial is
found to be particularly suitable to produce a desired cut-off characteristic with-
out impairing the precision of equalization in the useful band.

A method of polynomial approximation based on the transformation w =
tan ¢/, is used to obtain the coefficients of the in-band approximating function.
Predistorting the transfer specification and minimizing the mean-square error,
the coefficients become the Fourier cosine coefficients for an infinite frequency
range; and are the solutions of a linear set for a finite range, 0 < ¢ < 7/>.

1. INTRODUCTION

N MOST broad-band communication systems, the problems of loss
equalization and distortion correction are fundamental. Of the various
types of electrical networks which are found useful as equalizers and com-
pensators, the most frequently employed are the so-called constant re-
sistance networks. In particular, they are of three usual types, as indicated
in Fig. 1.

In all cases, the relationship Z,Z, = R?, which is always possible to fulfill
if Zy and Z, are built up of resistive and reactive components in the well-
known manner, provides the means of altering the transmission properties
of the circuit without affecting its impedance.! Methods are also available
which extend the problem to more complicated configurations having these
constant resistance properties. However, in some applications, where signal-
to-noise ratio considerations are of importance, the resistive elements in-
cluded as components of Z; and Z; in these circuits place a limitation on the
final performance of the system. Hence, the satisfactory transmission and
impedance malching properties of these circuits are purchased at the expense
of a substantially increased noise level. As a consequence of this limitation
on the performance of standard constant resistance equalizers, recent work

* The work presented in this paper is part of a thesis, “Design of Reactive Equalizers
with Prescribed Parasitic Capacitance,” submitted by the author in partial fulfillment of
the requirements for the degree of Master of Science at the Massachusetts Institute of

Technology (Feb. 1949).
! Ref. 5, pp. 1-2.

716



DESIGN OF REACTIVE EQUALIZERS 17

has indicated the advantage of adapting reactive input and output coupling
networks, ordinarily employed solely as impedance matching devices, to the
additional role of partial distortion equalization,?

As a reactive equalizer, a lossless input or output coupling network
partially equalizes the loss characteristic of a transmission line or cable by
providing an insertion gain characteristic to compensate for the line loss
characteristic. However, before the rigorous formulation of the problem is
undertaken in the following section, it is necessary to discuss briefly the role
of input and output coupling networks as equalizers in communications
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Fig. 1—Constant resistance networks.
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Fig. 2—Simplified section of a broad-band transmission system.

systems, and to outline the external requirements and limitations imposed
by the system itself on these networks.

The characteristics of input and output coupling networks which are of
engineering interest are:

(1) The contribution of the coupling circuits to the transmission per-
formance of the system as a whole.

(2) The impedance matching requirements between the coupling net-
works and the transmission line.

(3) The limitation on the maximum performance of a coupling network
imposed by the parasitic capacitance usually present in the termination.

These characteristics are perhaps best illustrated by a somewhat idealized
section of a broad-band transmission system. Figure 2 represents the output

2 Ref. 1, pp. 383-392,
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stage of a repeater, a section of the associated transmission line, and the
first stage of the succeeding repeater of a simplified system.

The specification of a flat transmission characteristic over the useful
frequency band between A and B in the figure indicates that equalization
for the line loss of the section must occur in either or both coupling circuits,
in the line equipment, or in all three of these circuits. For feedback amplifiers,
the most desirable type, a flat characteristic between A and B can be specified
only if the feedback circuits, or 8 circuits, of the amplifiers are designed to
have no transmission variation with frequency. In general, it is possible to
suppose the feedback factor, g, of the amplifiers to be the appropriately
varying function of frequency to equalize a part of the line loss, thus altering
the transmission specification from A to B. However, the g circuits must
include regulation of other types in most cases. Hence, it is impractical to
include much loss equalization in these circuits.

Since satisfactory performance of the section is dependent also on the
maintenance of a large signal-to-noise ratio, it is important that the line
contain no sources of additional loss. It is clear, then, that the best trans-
mission performance is obtained (1) without the use of equalization in the
line® and (2) when the reactive input and output coupling circuits equalize
as large a percentage as possible of the total line loss.

Physically, the coupling circuits will be transformers, plus any number of
tuning and shaping elements. In addition to the primary function of metal-
lically separating the line from the repeater amplifiers, it will be seen later
that the transformers provide the means of adjusting, independent of the
value of the prescribed line impedance, the final impedance level of the net-
work to conform with the value of the parasitic capacitance present.

Besides the contribution of the various networks in the system to the
overall transmission performance, there is the problem of matching the
coupling circuits to the line. For constant-resistance equalization, this
problem is immediately solved by the relationship Z:Z: = R®. Well-estab-
lished techniques make it a relatively simple matter to design for a specified
attenuation variation with frequency at the same time that the impedance
of the equalizer is matched to the line. This same procedure, with certain
modifications, can be carried over to the design of reactive equalizers. In
Fig. 2, the transformers of the input and output coupling circuits are un-
terminated. That is, the input of the output circuit and the output of the
input circuit are terminated in substantially open circuits. In order to pre-
vent the reflection of power at the junctions of the coupling circuits and the
line, the impedances of the input and output circuits as viewed from the
line must be made equal to the impedance of the line. This impedance re-

3 In practice, the g circuits and constant resistance networks associated with the line
actually equalize a certain percentage of the total line loss characteristic.
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quirement is fulfilled by providing both coupling circuits with a balancing
network connected as shown in Fig. 3. By accepting a small constant trans-
mission loss,* the relationship Z,Z; = R? is satisfied if the impedance Z,
of the balancing network is made the inverse of the transmission circuit
impedance Z,. Because of the relative ease of designing an inverse impedance
Z2, once Zy is known in the final stages of a particular design, it is appropriate
to omit from further discussion the presence of the balancing networks.

The fundamental theoretical limitation in the maximum transmission
performance of these coupling networks is due directly to the presence of
the parasitic tube capacitances Co and C; . If the parasitic capacitances were
not present, the turns ratios of the transformers in the coupling circuits
could quite evidently be made extremely high in order to produce over any
specified frequency band as large a transmission response as desired. How-
ever, even though these capacitances are usually small, they always tend to
short circuit the coupling networks whenever the impedance ratios of the

R 1:a
COUPLING
- — —
LINE R ;NV% 7 CIRCUIT
R, = 2R
- BALANCING
ZZ,= a®R? Zo | NETWORK

Fig. 3—Balancing network arrangement.

transformers are made too high. The determination of the maximum re-
sponse of these networks over a prescribed frequency range is thus a basic
problem in the design of reactive equalizers.

The fundamental limitation on the response of these networks is expressed
in terms of the total area available under the transfer characteristic.’ When
this characteristic is a desired function over a finite frequency band, the
maximum utilization of the area available is obviously attained when all
the area is included in the useful band. This condition is described as a
resistance efficiency of 100 per cent. A smaller resistance efficiency, 75 per
cent for example, means that three-fourths of the total area under the
characteristic is available in the useful frequency region, while the remainder
of the area may be utilized to decrease the rate at which the characteristic
is cul-off. Hence, the realization of a prescribed resistance efficiency in the

1 The effective impedance of the line as viewed from the coupling circuit is equal to
twice the actual line impedance. Thus, a penalty of 10 log -]—{5' = 3db is imposed by the
presence of the balancing network. . '

5 See eq. (4) and discussion in the following section.
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design of a reactive equalizer places a definite requirement on the behavior
of the transfer characteristic outside the useful frequency band.

Although the precision of equalization as a design requirement actually
is inclusive in the term framsmission performance as used previously, it is
included here as a separate requirement to emphasize its importance in this
problem. The specification of a flat transmission from A to B in Fig. 2
provides the means of assigning to the tolerance of equalization a quantita-
tive meaning. Hence, the tolerance per repeater section of the system may
be expressed as the maximum allowable db deviation from the flat trans-
mission characteristic, A to B, over the useful frequency band. For extremely
broad-band systems, such as a coaxial system for simultaneous long-distance
telephone and television transmission, many repeater sections appear in
tandem between terminals. Thus, the deviations in each of these sections
contribute to the system as a whole. In addition to the distances usually
involved, repeater spacing becomes closer as the effective transmission band
of these systems is increased. In order to design new systems with increas-
ingly better overall tolerances, at the same time that the broad-banding
requirements call for a greatly increased number of repeater sections per
system, the tolerances imposed on the individual sections become exceed-
ingly small. As a consequence, the maximum tolerance for an individual
section must be specified as perhaps less than +0.05 db deviation.

2. TuE PrOBLEM OF REACTIVE EQUALIZATION

In this section the problem of reactive equalization will be formulated in
terms of the special problems of input and output coupling circuit design.
Broadly speaking, the general characteristics of input and output coupling
networks, as outlined in the introduction to establish the practical basis for
reactive equalization, will be further developed in order to give them a
quantitative meaning. Because of the complexity of some derivations and
their extensive treatment elsewhere, detailed proofs in general will be merely
outlined. The method of analysis follows Bode’s treatment of the problem
while the principal results taken from network theory are Guillemin’s.

As previously stated, the unterminated case for input and output coupling
circuits arises whenever the terminating resistance is infinite in comparison
with the other impedances of the network.® Figures 4 and 5 represent, re-
spectively, an output and an input coupling network of the type illustrated
in Fig. 2 with infinite terminations. In each figure, R, represents the line, N
is the lossless coupling network, and C, is the parasitic shunt capacitance

& The so-called ferminated case exists when the parasitic capacitance Co or C; in Fig. 2
is shunted by a finite resistance. Since no essential differences exist between the two cases

with respect to the approximation problem, an analysis for the unterminated case alone is
sufficient to clarify the more important design considerations.
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which limits the response over any specified frequency band. For purposes
of analysis and design, it is convenient to represent the coupling transformers
in the manner indicated. By adopting this equivalent representation of a
physical transformer, the so-called high-side equivalent circuit of the trans-
former, which includes the leakage reactance, the magnetizing inductance,
and the input and output winding capacitances, is incorporated as part of
the coupling network itself.

By excluding the ideal transformer portion of the equivalent represen-
tation of the physical transformer from the network itself, a simplification
is possible. As shown in Figs. 6 and 7, the combination of the resistance R,
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Fig. 5—Input coupling circuit.

and the ideal transformer may, in each case, be replaced by a resistance
Ry = @®R., where “a” is the step-up turns ratio of the ideal transformer.
Ry, is the specified resistance, and Ry and “a” are determined in the design
procedure from the maximum response obtainable with the prescribed
capacitance C, in the termination,

The starting point for the study of these circuits is a consideration of the
limitation on the amplitude response of these networks with frequency due

to the presence of C, in the terminations. Since the current ratio TL in Fig. 6

E
and the voltage ratio i in Fig. 7 might be as large as desired if it were not
L

for the presence of C,, the immediate problem is that of relating the magni-
tude of these ratios, as functions of the real frequency, to the capacitance C..
This relationship is dependent on a necessary condition for the physical
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realizability of a driving-point impedance function. If this function is chosen
asthe Z = R + jX in the figures, the necessary condition of interest is that Z,
as an analytic function, have no poles in the right half of the complex fre-
1
quency plane and that Z approach s approaches infinity. By inte-
Wl n
grating this function over the appropriate path in the right half of the A
(complex frequency) plane and setting the result equal to zero, the desired

expression becomes
do = =7 1
[ Rio= 7 ()

it is

and
E,

- . . .| T
T'o show that the resistance R is related to the ratios —I—[-‘
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Fig. 6—Modified output coupling circuit of Fig. 4.
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Fig. 7—Modified input coupling circuit of Fig. 5.

necessary to examine the transfer of power through the output circuit of
Fig. 6. The power driven into this circuit is | I [*R. Since the network A 1s
lossless, this is the same power, | 7. |*Ro , which reaches the line. In addition,
. S . E I
if the transfer impedance of the circuit is defined as Zp(juw) = TL = Ru-Ii‘,

the relationship sought is
[

* R
7 = . (2)

Rq

Ro

_ ‘ Z1(jw)

is related to the transfer
E,

For the input coupling circuit, the ratio

impedance and R in a similar manner.

7Ref. 1, pp. 278-281,
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E ¥ _ Zu(je) [ _R s 3)
E, R, Ry
Finally, the transmission gain « (in nepers) is related to the current ratio
‘ % , or the voltage ratio £, by ¢*. Hence, the quantitative statement for
the limitation on the response of these coupling circuits becomes
@ @ . 2
[éda=[ ng“’) 0= e (4)

Equation (4) is the general formula which relates the response character-
istic over the complete frequency range to the prescribed capacitance C,
and the resistance Ro. This formula is especially helpful in attaching an
analytical meaning to the term partial reactive equalization. If &' = f(«)
is used to describe the attenuation characteristic of a line or cable over a
specified finite frequency band, @ = kf(w) will be the transmission response,
in nepers, which is required to equalize a stated fraction of this loss at every
frequency in the specified range. %k is then the constant (¢ < 1) which
numerically expresses the degree of equalization.’

Thus, the @ = kf(w) in eq. (4) is the desired insertion gain characteristic
to compensate partially for the line loss characteristic, and is directly related
to this loss over a specified frequency range by a constant k. The limitation
on the response expressed by eq. (4) will be clear if the transmission « is now
defined as @« = ay + Ef(w), where a, represents the general response level.
Before this expression is substituted in eq. (4), however, it is necessary to
change the limits of integration. Thus, the specification of a maximum re-
sponse over a finite frequency band requires that the limits become w; and
ws , the extreme frequencies of the useful band. Since R must be positive,
this condition requires that e** be zero everywhere outside the useful range.
Carrying out the integration, the result becomes

w% < 4n = : (5)
2GR [

Since kf(w) is always prescribed, aq is readily computed.

So far, the equations have considered only the ideal case when the transfer
characteristic ¢ is zero outside the useful band. As previously stated, this
condition specifies a resistance efficiency of 100 per cent, In practical appli-
cations, where a finite number of network elements are employed to approxi-

8 By (1) substituting the equivalent current source for E, (2) applying the principle
of reciprocity to the input circuit, and (3) writing the relations for the transfer of power

through the circuit, eq. (3) is readily derived.
9 In practice, this constant is called the ‘““slope’” of equalization.
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mate a transfer characteristic to a specified degree of precision over the
useful band, it is not possible for the transfer function chosen to represent
the transfer characteristic to approximate zero outside the useful band in a
manner to produce a resistance efficiency of 100 per cent. This limitation is
then the prerequisite for modifying the performance which the coupling
networks are required to achieve. The usual range of resistance efficiencies
specified for input and output coupling network applications is approxi-
mately 45 to 80 per cent.

This modification of the final performance of the coupling networks may
be examined quantitatively by referring to egs. (1), (4), and (5). In the first
two of these equations the integral may be taken only over the useful fre-
quency range, w to s, provided that the right-hand side of each of these
equations is multiplied by the specified resistance efficiency expressed as a
fraction.” In eq. (5) the equal sign holds only in the limiting case when the
resistance efficiency is 100 per cent. If these equations are modified in the
manner indicated, the variation of the transfer characteristic outside the
useful frequency range may be chosen in any way which satisfies the total
area requirements in egs. (1) and (4) as they stand.

Following the choice of a satisfactory transfer characteristic, the next
general problem is the realization of a physical network which will approxi-
mate this specified characteristic to the required degree of precision over the
complete frequency spectrum. The solution of this problem is the main
purpose of this paper.

As is well-known in network theory, the general form of the squared
magnitude of the transfer impedance of any physical two-terminal-pair reac-
tive network terminated in resistance may be expressed as the quotient of
two polynomials in w®.

Zl2(jc0)2=A0+A1w2+A2w4+°-°+Anw2n 6)
Ry By + Biw? + Byw®+ «ov 4+ B’
Before the necessary and sufficient conditions that the —ZPR—OO derived from
0

eq. (6) be the transfer impedance of a lossless network terminated in re-
sistance are stated, it is appropriate to develop the modifications which must
Zm(_’fw)
Ry
¢, in this problem. This requires that a closer examination be made of the
physical limitation that the coupling networks correspond, in part, in struc-
ture to the equivalent circuit of the coupling transformer to be used. Figure 8
shows the high-side equivalent circuit of either coupling transformer of
Figs. 4 and 5.

10 ¢y is usually chosen as zero.

2
is to approximate the transfer characteristic,

be made in eq. (6) if
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In the figure, L, represents the magnetizing inductance, L, represents the
leakage reactance, and C; and C; represent, respectively, the low-side and
high-side parasitic winding capacitances. The magnetizing inductance L.,
since it is usually large so that its impedance is substantially infinite com-
pared with the other impedances of the circuit at high frequencies, affects
the response of the transformer at low frequencies only. Since the useful
band ordinarily specified does not include the range of frequencies where
the effects of L. are noticeable, its presence may be omitted from further
consideration. In addition, it is never practical to retain Cj as the final
element of the reactive coupling network N. In this case, the parallel combi-
nation of C3 and C, would, of course, seriously limit the final response of the
network. Thus, the least number of shaping elements is a series inductance
Ly which splits the high-side winding capacitance C; from the prescribed
terminating capacitance C, . Hence, in general, the reactive coupling net-
work N is an (# — 1) element unbalanced ladder structure of alternating
series inductances and shunt capacitances beginning with a shunt capacitance

1.a
Lz | Lz l
Ry Lm _7=C C;T = Ro Lm =C CBT

IUEAL
Fig. 8—High-side equivalent circuit of either coupling transformer of Figs. 4 and 5.

and ending with a series inductance. Figure 9, then, indicates the general
form of the coupling network to be realized by the function chosen to
approximate ¢’ in this problem.

Without loss of generality, it is convenient at this point to modify Figs. 6
and 7 in the manner indicated in Figs. 10 and 11. By including C, as part
of N’ the problem has not been altered. However, it is necessary to recognize
that the final adjustment of the impedance level, i.e., the choice of Ry, must
be made in such a manner that the total area requirement, as specified in
eq. (4), is still met. In each figure 21, , 23, , and 212 are the open-circuit driving-
point and transfer impedances of the network N’.

With the element configuration specified and the reactive coupling net-
work N’ cleﬁned,zit is now appropriate to carry out the modification in the
Zm_l(?iw) ‘ indicated previously. Thus, the fact that }% =latw =0,
and that an 7 element unbalanced ladder structure of alternating series
inductances and shunt capacitances terminated in a resistance has only an
ZIE{R)

Ry

form of

nth order zero of the transfer impedance, , at infinity, allows the
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squared magnitude of the transfer impedance in this problem to be written as

Zu(je) [ _ ! )
Ry 1+ Biaw? + Byw' + - + By o™’
where the # constants By - - - B, are related to the » elements of the network
by the relation
Zu(jw) — Ziz/Ru (8)

Ry 1+ zgz/Ru.

Since the desired transfer characteristic ¢ determines the variation of the
polynomial B(w?) = 1+ Bw? + -+ + B.w™, a major factor in the design

o — |

| L2 | Ly Lin-1y | |
-
C"T Z=R+jx

Fig. 9—General form of the coupling networks of Figs. 6 and 7.
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Fig. 1"—Qutput circuit of Fig. 6 with C, included as part of N "

322 32 3

N’ ql—- TE
Z=R+jx

Fig. 11—Input circuit of Fig. 7 with Cy included as part of N'.

is the choice of the real coefficients, By --- B, by a suitable method of
polynomial approximation.
The necessary and sufficient conditions for physical realizability place a
Zle(jw) :
Rq
represent the squared magnitude of the transfer impedance of a physical

restriction on the B’s of eq. (7). The sufficient condition that
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2

Zu( jw)
Ry

network of the type described is that 2 0 for w > 0. This condi-

tion will be insured if the polynomial, 1 4 B + - + B,.wz", has no
negative real A? roots of odd multiplicity.!! In addition to the sufficiency
. Z(N) g(\) Z(\) [
f eq. = 2t oA
of eq. (7), if the R 76y

derived from “in the usual manner

Ry
is to be the transfer impedance of a lossless network terminated in resistance,
it is necessary that g(A) be either even or odd and that %(\) be a Hurwitz
polynomial.’? In this problem g(A) = 1 is surely even since all zeros of
Zu(\) [ . . .
];{'( ) occur at infinity; and the method of forming gn_(lj always insures
0

Ry
that #(A) = m + n, where m is the even part and » is the odd part of A()),
is a Hurwitz polynomial. Thus, the fulfillment of the sufficient condition that
there be no negative real A2 roots of odd multiplicity of B(w?) is the assurance
that the B’s of eq. (7) will always produce a physical network of the con-
figuration of Fig. 9.
Once the conditions for physical realizability have been fulfilled, and a
Za(\)
R

0

has been found in the final stages of a particular design, the network

. . . . ’ m
elements are easily calculated from a partial fraction expansion of 232 = —
n

according to the following relation:

ég@ _ _2';2()\)/Rn _ g) _ g\)/n (9)
Ry 1+ z2(\)/Ry, m+mn 1+ m/n’
where z12(\) = gi:r) and zaa(\) = :i:

The previous discussion of the special problems of input and output
coupling circuit design has been based, broadly, on (1) a consideration of
the terminating or load impedance, (2) a consideration of the shape of the
transfer characteristic, and (3) a consideration of the conditions for physical
realizability. A major problem in the design is the choice of an approximat-
ing function which satisfactorily matches the stated transfer characteristic
over the useful frequency band and, at the same time, sharply changes slope
near the cut-off frequency so that it approximates zero outside the useful
band in a prescribed manner. When the transfer characteristic is a constant
over the useful frequency band, e.g., the impedance matching and low-pass
filter cases, techniques which employ Tchebycheff polynomials as the ap-

11 Ref. 4.

12 A Hurwitz polynomial is defined as a polynomial in A which has the property that the

quotient of its even and odd parts, ¢(A) = %E’ yields a reactance function.
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proximating functions are available which make it a relatively simple
matter to design physically realizable networks exhibiting this property of
a sharp cut-off to zero outside the useful band.!* However, a similar method
of applying Tchebycheff polynomials to transfer characteristics which vary
with frequency in a prescribed manner over a finite band has not been
evolved. In order to illustrate the preceding statements, Figs. 12 and 13
have been included as representative of typical transfer characteristics.

)
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Fig. 12—Transfer characteristic for impedance matching or low-pass filter case.
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Fig. 13—Transfer characteristic for reactive equalizer case.

3. DERIVATION OF SPECIAL TRANSFER FFUNCTION

In accordance with the brief discussion at the conclusion of the previous
chapter, it is now appropriate to state that it is the purpose of this paper (1)
to derive a transfer function which is especially suited to the problem of
reactive equalization, and (2) to develop a systematic method which utilizes
this special transfer function to approximate satisfactorily, with a finite
number of network elements, a specified transfer characteristic over the
entire frequency spectrum. This section will consider in detail the first of
these two main tasks in the formulation of a design method for reactive
equalizers.

With reference to Fig. 13, it is convenient to divide the complete transfer

13 Ref. 4. Also Ref. 2, pp. 53-79.
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characteristic into two separate regions. The specification over the useful
band, 0 < @ < wo, may be called the in-band region while the specification
outside the useful band, wy < w < o, may be called the out-band region.
Thus, it is seen that the transfer characteristic over the in-hand region
depends exclusively on the & = kf(w) which is required to equalize a stated
fraction of the power loss between repeaters while the transfer characteristic
in the out-band region depends only on the specified resistance efficiency.

The first step in the derivation of the special transfer function for equali-
zation purposes is a normalization of the transfer characteristic of Fig. 13
in terms of eq. (7). As indicated in Fig. 14, a constant, K, is chosen so that

Ké*(K < 1) is equal to unity at f = x = 1. This choice of the transfer
0

characteristic is convenient since the transfer characteristic is now expressed
in a form similar to the familiar form of the transfer characteristic of a low-

OUT-BAND____
REGION

IN-BAND
REGION

Fig. 14—Normalized transfer characteristic of Fig. 13.

pass filter and, hence, suitable for the addition of a Tchebycheff polynomial.14

With the transfer characteristic appropriately specified, the next step is
to show the manner in which the denominator B(x?) of eq. (7), where this
equation is multiplied by the factor K, can be broken up into two functions
of x* so that one of these functions approximates the reciprocal of the in-
band region of the transfer characteristic while the other produces the de-
sired cut-off characteristic.

The derivation of the desired denominator, B(x?), begins by writing the
transfer characteristic of Tig. 14 for the in-band region as

1
B(x?)

4 1n order to make the following derivation clear, it is suggested that the discussion
of Tchebycheff polynomials, pp. 733-734, be examined at this time.

15 The transmission & = ao + kf(x) will be written as kf(x) for the remainder of this
analysis. The general transmission level ag may be found in the final stages of a particular
design when the impedance level is adjusted to conform with the prescribed C,.

= K@ P (10)
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In terms of B(x?) directly and a desired transmission ap at the angular cut-
off frequency wo , equation (10) becomes

2ap —2k/(z)
B =¢™e 7, (11)
where K = ¢ 2. Equation (11) now represents the characteristic that is

to be approximated over the useful frequency band while Fig. 15 shows a
plot of this function.
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Fig. 15—Specification for B(x?) over useful frequency band.
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Fig. 16—Combined approximating function for B(x?) over entire frequency band.

Now, if B(x?) is broken up into two parts and represented as

B(x?) = f(x?) + &Va(x)," (12)

16 Tt is important to note that eq. (12) now represents the approximating function over
the entire frequency range as compared to eq. (11) which represents the function to be
approximated only over the useful range.
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where f(2?) is the rational function which approximates €706 gver the
useful band, V.(x) is a Tchebycheff polynomial of order # (odd), and e is
the coefficient of the Tchebycheff polynomial, B(x?) in Fig. 15 will be
modified as shown in Fig. 16. In this figure it is to be noted that f(x?), the
in-band approximating function, is represented as having a variety of vari-
ations outside the useful band. The function has been indicated in this
manner to emphasize that a fairly wide latitude in the choice of the behavior
of f(x?) outside the useful is permitted since €V (x), the out-band ap-
proximating function, is the predominant function in this region. In addi-
tion, the variations of €2V (x) in the in-band region have been exaggerated
in order to demonstrate their effect on the combined approximating func-
tion, f(x2) + €V%(x), over the useful frequency band.

A e2kf(x)
e

1
f(x2) + €2 V2 (x)

0 |

w_
W= X"

Fig. 17—Resultant transfer function for equalization purposes.

Finally, when the relation expressed by eq. (12) is reciprocated and re-

plotted in terms of K Z’i{’;"‘:) " the result shown in eq. (13) and Fig. 17
is obtained.
ZoG) [P _ 1
El=%—| = 6 + € Vi) - (13)

Comparing the resultant special transfer function shown in Fig. 17 with
the transfer characteristic shown in Fig. 14, and assuming that f(x?) and
the coefficient of the Tchebycheff polynomial have been suitably chosen,
it is established contingently that the combination of functions chosen to
represent B(x?) produces the desired result.

This brief derivation serves as a guide to the main problem of choosing a
particular f(x?) and a particular 2V (x) which, when added together and
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reciprocated, approximate the transfer characteristic to the specified degree
of precision.

The choice of these approximating functions begins by finding a poly-
nomial

f(a?) = Ao+ Aw? + Ap' + -+ + A" (14)

which approximates &% ¢ /@ t4 the required degree of precision through-

out the useful band and has an out-band variation subject to the initial
requirements that f(¥?) be positive and that the slope of f(x?) not vary
rapidly in the immediate out-band region (approximately 1 < ax < 1.5).
For values of x greater than about 1.5, the Tchebycheff polynomial is the
determining function, and variations in f(x?) are no longer of importance.
A precise statement of these conditions and the exact frequency range in
which they are valid depend on the degree of equalization and the desired
resistance efficiency in a particular design. However, a more critical ex-
amination of Figs. 16 and 17 indicates that the generalized conditions stated
above are a reasonable guide in the choice of f(x?) for most applications.

The main criteria for judging the acceptability of a particular out-band
variation which accompanies the choice of in-band variation of f(x?) to
produce optimum precision are physical realizability and the attainment of a
desired resistance efficiency. Considering first the condition for physical
realizability,m > 0 for 0 < & < o, and referring to Fig. 16,
a negative value of f(x?) in the immediate out-band region might be of
sufficient magnitude to cancel the positive effect of €Va(x) and, hence,
produce a negative value of f(x*) + €2V (x). However, at higher frequencies,
the squared Tchebycheff polynomial takes on very large positive values.
Thus, negative values and variations in f(x?) are effectively reduced in the
magnitude of their effect on

Za (J x)
Ro

2 1
BGETRAC

in direct relation to the increase in the magnitude of eV i(x).

In order that an accurate prediction of the resistance efficiency may be
made, it is necessary that the slope of f(x?) + €2V 3(x) increase in a uniform
manner in the immediate out-band region. Since variations in the slope of
f(a?) have their largest effect in the region just outside the useful band, it is,
of course, best to prevent rapid variations in this region.

The remaining condition on the form of f(x?) is that 4, should be adjusted
so that Ag < €. By providing the transfer specification with a less steep
slope requirement at low frequencies it is possible to obtain over the valuable
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portion of the useful band an increased precision of equalization.” This
adjustment represents an increased transmission at low frequencies. Thus,
it is sometimes necessary to employ an equalizer of the constant resistance
type when additional equalization is desired at low frequencies. Figures 16
and 17 have been drawn to reflect this condition on A4, .

After an f(2*) which conforms with the requirements outlined above has
been found, it is necessary to find a

eVi(x) = A’ + A" + -0 A2 (15)

which, when added to f(x?), produces the desired B(x?). This procedure is
greatly facilitated by the known properties of Tchebycheff polynomials:
A Tchebycheff polynomial of order # is defined by

Va(x) = cos (n cos™'x). (16)

This function oscillates between plus one and minus one for [x | < 1 and
approaches 4= for | x| > 1. Tabulated below are the expanded analytical
expressions for the polynomials for » = 1 through » = 8.

Vi(x) = x Vs(x) = 162" — 202 + 5x
Valx) = 222 — 1 Ve(x) = 322" — 48x" + 1822 — 1
Va(x) = 4° — 3z Va(x) = 640" — 1122° 4 562° — Tx

Va(x) = 8" — 8x2 4+ 1 Vi(x) = 128" — 2562° + 160s* — 3227 4 1
With the help of the recursion formula,

"Vn(1) = %[Vﬂ+l(x) + Vn—l(x)]; {17)
the corresponding expressions for # > 8 may be systematically calculated.
Figure 18 shows a plot of the Tchebycheff polynomial for #» = 3.

In the case of low-pass filters’® and impedance matching networks,
Tchebycheff polynomials are often used for the solution of the approxima-
tion problem. The function | Zi2(jx) |* in these cases has an oscillatory be-
havior which approximates unity in the useful band, and has all its zeros
at infinity so that the network consists of # elements of an unbalanced
ladder structure of alternating series inductances and shunt capacitances.
The appropriate function for | Zis(jx) |* is

1
| 22(i) = T avi 19

17 There is a practical limit to the reduction of A 5 below e22. Referring to Figs, 13 and

;11 ~. Thus, 4, is a direct measure of the impedance level over
o

the useful band, and must not be made too small if the highest practical level of response

is to be attained.

18 Ref. 2, pp. 53-79.
19 Ref. 3, pp. 26-34.

14, it is apparent that K =
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where € is an arbitrary constant. Figure 19 shows the plot of the squared
Tchebycheff polynomial, V5 (x), for the values of » = 5, and e = 0.5
and € = 0.1, while Fig. 20 shows a plot of the transfer function expressed
in eq. (18).

It is to be noted that the oscillatory behavior with equal maxima and
minima of squared Tchebycheff polynomials for values of ¥ < 1 and the
rapid approach to 4+« for values of x > 1 make their use particularly
suitable as the solution of the approximation problem for low-pass filters
and impedance matching networks. It is now apparent that these same

[ I ———

=1

Fig. 18—Tchebycheff polynomial, Va(x), for n = 5.

properties validate their use as the out-band approximating function for
reactive equalizers.”

Another useful property of squared Tchebycheff polynomials as ap-
proximating functions for low-pass filters and impedance matching net-
works is the inclusion of the specification of the tolerance as a factor in the
transfer function. The allowable db deviation over the useful band is related

to e by
e =% — 1,
where aj is the maximum pass-band loss in nepers. Thus, the appropriate
choice of e always realizes the specified tolerance over the useful band.
20 When better tolerances are required and when the network configuration is not

rigidly specified, Jacobian elliptic functions, rather than Tchebycheff polynomials, might
be employed.
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However, it is important to observe that a given value of e automatically
determines hoth the pass-band tolerance and the rate of cut-off in the out-
band region. Hence, if a specified tolerance is to be realized in the useful
band, no control exists over the determination of the resistance efficiency.
Also, it is apparent from Figs. 19 and 20 that small in-band deviations are
always obtained at the expense of lower resistance efficiencies, and vice
versa.

|Zi2 (ix)]

= K —

o
@
Fig. 20—Transfer function expressed in eq. (18) for the values of # and e shown in Fig. 19.

Returning to the problem of reactive equalization, for »n odd, €*V3(x)
may be expressed as

eVi(x) = &(Cua? + G’ + -+ 4+ Cad™). (19)

Thus, any A, of eq. (15) is given by 4, = €C, . By using the expressions
for Vi(x) through Vs(x) tabulated previously, or eq. (17), it is a very simple
task to find the C, for any desired n. Thus, Va(x) = Ca® + Ca* + -+ +
C.™" is readily ascertained, and the only real problem is the choice of €.
If f(x*) has already been chosen, this is accomplished by an addition of
f(x*) and eV (x) for several values of €. When a €? is found such that
the combination, when reciprocated, very closely approximates the specified
resistance efficiency, B(x?) is completely defined.
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The final expression for B(x?) may now be written as
B(x?) = f(x?) + €Vi(x) = (Ao + Aw? + -+ + Aa™) +
(A2 4 - + 42", (20)

In terms of eq. (20), the corresponding expression for the special transfer
function for equalization purposes becomes

Zyp(jx)
K _Ro

2

1 (21)

= Ao+ A1+ ADE + (Ao + ADa" 4+ -+ (Ao + 4™

When all the A, and A, are known in a particular design, the coefficients
By -+ B, of eq. (7) may be readily determined. Hence, the elements of the
network may be found by using the appropriate equations of Section 2.

4. APPROXIMATION METHOD

This section will consider the second of the two main tasks in the formu-
lation of the design method. Broadly speaking, the special transfer function
derived in the previous section, eq. (13), provides the approximating func-
tions to be used in this problem while this section develops the systematic
method of determining the coefficients of these functions for a finite number
of network elements. The function of most interest in the approximation
problem is the in-band approximating function f(x?). Thus, the develop-
ment of the approximation method for reactive equalizers is concerned
specifically with the determination, consistent with the previous limitations
and requirements, of the coefficients, A¢ - -+ 4, of the polynomial f(a%).

The Fourier method of polynomial approximation, first introduced by
Wiener,2! is characterized by a transformation of the independent variable
to make the approximating function in the new frequency domain a periodic
function. Thus, the well-known method of Fourier analysis is available as a
general polynomial approximation method. This method has not been ap-
plied extensively in practical applications. However, the uniform nature of
B(x?) over the useful frequency range makes its application to the design
of reactive equalizers of the type described here seem feasible.

By the transformation & = tan ¢/2 the frequency domain, 0 < & < =,
is transformed to a corresponding ¢ domain, 0 < ¢ < . Since the range of
interest is 0 to m in the ¢ domain, all functions may be assumed to be either
even or odd with a period 2. Thus, any amplitude approximating function

2 Ref. 4.
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may be written in the ¢ domain as a Fourier cosine series,

file) = as+ aycosp+arcos 2+ - 4 ancosnp = > ax cos ke, (22)
k=0

In particular, the correspondence of the x domain and ¢ domain may be
conveniently illustrated as in Fig. 21. It is to be noted that the compara-
tively limited region of the useful band, 0 < x < 1, in the x domain goes
into half of the available range, 0 < ¢ < ;—I:,
then, that some advantage has already been gained by this transformation.

Before attention can be confined to the evaluation of the coefficients, ax ,
it is necessary to establish the form of the approximating function in the ¢
domain which corresponds to f(x?) in the frequency domain, and to relate

in the ¢ domain, It is apparent,

o}
——————
k4
-0-1 01 @ :.__2_ L
! — X 1 |
i ! H
i = 0 1w
e : |oweT X
-T_.Tonw b e
2 2 -2
T e
Fig. 21—Graphical representation of the transformation # = tan g.

the Ay in eq. (14) to the ax in eq. (22). This is accomplished by means of the

following relationships:
_ ¢ _ 1 — cose
¢ = tan 2 1/1 + cos ¢

_1-4

I

cos ne = Va (cos @).

cos ¢

Thus, the corresponding expression for eq. (22) in the frequency domain
becomes

Jile) = ao+ aiV1 (cosg) + azVs (cos )
+ asVs (cos@) + -+ - + anVa (cose)
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fr(cos ) = by + b1 cos + by cos®p + by cos’ @ + -+ + bacos’e

1— 4 \-.” 1 -2V
1 — 2\ 1 2\
eoipn) v (iT)
,.2 ..4 6 .ss j2"
) = At AT R Ar A ASTE RAE — A,
1
where f2(2") = aF

Therefore, it is necessary to predistort the approximated function B(a?) by
redefining the f(¢) corresponding to f(x*) as

f1(¢) - \ L o ’
1) =503 EA 16, (22)
where
z A}, ’L
file) = Z ai cos ko — (1 + T = fi(s),
and

‘ _ 2n ¢ 1 — 2
Jole) = cos™ 5 — 0+ fala).

Hence, fi(p), which corresponds to the approximating function f(x*) multi-
plied by § + A+ in the frequency domain, is the approximating function in

the ¢ domain. In practice, the indicated predistortion of B(x?) may be carried
out either before or after the specification has been transformed to the ¢
domain. Table I shows the relation of the A, to the a; for n = 3and n = 5.

Tasre I
RELATION OF THE A OF f(x%) TO THE ax OF fi(¢) FOR 2 = 3 AND 22 = §

n=23 =35

Av=as+a+ata Ao=ao+a+a+a+a+as

5410 + 3(11 - 302 - 13!]':; - 27{74 — 4505
10ao + 2a, — 14a. — 14a; + 42a; + 210a;
10a; — 2a, — 14a» + 14a; 4+ 42ay — 210a;
5a0 — 3a; — 3a2 + 13ay — 27ay + 45a;

Gy — @&+ s — a3+ ay — a5

A1=3Gq+ﬂ1*50fg— 150_1 Ag

&
o

Az= 3a9— a1 — 50’4""'15(13 A;
Ay=ag—a+a—a As
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It is to be recognized in the following derivation and procedure that f;(e)
represents the actual response of the network while Bp) cos™ 120 , the pre-
distorted specification for B(x?) in the ¢ domain, represents the desired
response. For convenience, B(p) cos™ gmay be called the amplitude function
ale). In addition, it is important to note that alp) is specified only over the

range 0 < ¢ < T and the restrictions on the behavior of the approximating

function fi(p) outside this range are related to the restrictions on f(?) in
the out-band region of the x domain. The general problem is thus one of
approximating the amplitude function a(p) by a Fourier cosine series,

7

Z ar. cos ke.
k=0

The first step towards a systematic method of obtaining the Fourier
cosine coeflicients, ay - - - a., is the specification of the manner in which the

tolerance of match is to be minimized. In this case, the approximation is
always specified in the mean-square sense, i.e., the optimum coefficients are
obtained by solving the set of linear equations which are determined when
the integral of the error squared,

I= f [a(@) — ;ZD @ COS kga:r de, (23)

is minimized.

The set of linear equations which relates the ar of the approximating
function fi(e) to the approximated function a(ep) is derived for a range 0 to s
in the ¢ domain with s < # by minimizing eq. (23).?> The minimum con-
dition is specified when the derivative with respect to each coefficient a; is
zero. Thus, )

7 ' 4 . .
aa— = f 2 I:a(s,o) — E a; cos kgo:l [—cosjel de = 0 (24)
a; 0 k=0

is the analytical expression for this condition. Collecting terms,

6[ 8 i 8 n
3 = -2 f la(e) cos jol de + 2 f I:Z a; cos k<p:| [cos je] dip
a,' 0 0 k=0

= =2 f [a(e) cosjel do + 2a; f o8 jo cos ke dp = 0,
0 b

and letting Pj = L cos jo cos ke de and Cy, = L la(e) cos jelde, the set of

2 This derivation is similar to one given by R. M. Redheffer in Ref. 6, pp. 8-10.
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linear equations becomes

> Ppai=Ci. (§j=0,1,2,---,n) (25)

=0

Therefore, the procedure for determining the optimum coefficients for the
range 0 to s in the ¢ domain is as follows: First, compute the Cr which
depend on the approximated function a(e).

Cr = j‘: [a(e) cos ko] de. (26)

Next, compute the elements of P given by

_ sin (j — &)s n sin (j + k)s = );

Pu==G—% T 2G+h

(27)

—_— o .
=53
These elements depend only on the range s and terminate with the desired »
in any design. For convenience, these numbers may be arranged in the form
of a symmetrical matrix [P;]. Hence, the optimum coefficients are found by
solving the matrix equation,

[Pﬁc] X [CL,'] = [Ck] (,k=0,1,2, -, ) (28)

In this problem of approximating B(x%) to a high degree of precision over
the useful frequency range, the range in the ¢ domain of most interest is 0

Pj; Py = s.

to g However, before the approximation over only part of the frequency

range is considered, it is helpful to set down the relations which apply when
alp) is approximated over the whole frequency range, s = . In this case,
the matrix [P;:] takes on a form in which all non-diagonal entries are zero.
Thus, '

[ 0 0 0 - - -]
_ _ T
Py Pu + - Pun 0 2 00
Py Pu - - Pu .
. .. . 00 - 0
(P :
il = . . . . . = T
0 —
. ... . 0 0 5
. ... . r
|_Pn0 N o P'rm_ E
L ]
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The solution in this case is particularly simple, and gives the well-known
Fourier coefficients,

| " o) do G = 0),

ay =

2 [ . .
a; = - L a(p) cos jo de (7 #0).

Hence, each coefficient a; is dependent only on the area under the correspond-
ing function a(p) cos je.

This result, even though it simplifies the procedure of calculating the a;
in eq. (28), has only limited usefulness in this problem. As mentioned above,

the range of direct interest extends only to s = '121. . Thus, an approximation

over the whole range requires that an f(x?) be arbitrarily specified in the
out-band region. Such a procedure, in this case, is an unnecessary restriction
on the form of f(x*) outside the useful frequency range. Thus, an approxima-

tion over a finite range 0 to g is the procedure to be considered in detail.

Starting as before, the system of equations in matrix notation which cor-
responds to eq. (28) is

g 1 0 —% 0 é a Co
1 %‘r % 0 —% 0 @ C
0 % 73: g 0 —2% as C,
_% 0 % g ; 0 x| @] = Cs ,
0 —% 0 ; g g as Cs

where the elements of [P;] up to and including Pg have been evaluated.
Hence, the problem is the solution of the first (n 4 1) of these equations
for the coefficients ag =+ @, . In practice, this solution may be simplified
for a desired # by computing once and for all the elements of the inverse
matrix [Pz]~!. This matrix is formed by replacing each element of the
determinant || Py || by its minor, dividing each minor by this determinant,

w
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and interchanging rows and columns. Thus, the solution of the a; is ex-
pressed directly in terms of the Cy and becomes

la] = [Palt X [Ci or a; = g, PiCr. (29)

The sufficiency of this procedure is established when it is proved that the
determinant | P || is different from zero for the particular value of s con-
sidered. Since s is a rational multiple of = in this case and all non-diagonal
entries are algebraic numbers, 7 cannot satisfy an equation with algebraic
coefficients to make || Py || = 0. Thus, the system of eq. (29) is a unique
solution, and this solution gives the absolute minimum in the sense that
no other set of a; will produce a smaller mean-square error over the range

T
Otoi.

However, for some values of » the determinant of coefficients becomes
extremely small. This condition produces very large numerical values of the
elements of [P;]~!. Since the a; and Ci are usually small compared with
these elements, the accuracy of the solution is impaired. Hence, the system
of eq. (29) in some cases represents a set of nearly dependent equations
with a fairly wide range of solution. This practical limitation on the unique-
ness of these equations may be overcome quite readily by arbitrarily chang-
ing one of these equations to produce, for calculation purposes, a dependent
set of equations. It turns out that the most expedient choice of this change
is to replace the Py = g of [Pj] by Py = :Ir This, in effect, modifies the
weighting of a, in these equations and does not, in general, limit the useful-
ness of the result. Hence, the system of eq. (28) with %r replaced by g de-
termines a set of coefficients, ag - - - @, , which are reasonably close to the

. ™
optimum for s = 7

It is appropriate at this point to indicate a practical modification in the
approximation method which serves, incidentally, to clarify the reasons for
accepting as suitable a set of coefficients that are not the optimum a; over
the useful band in the ¢ domain.

This modification arises since the foregoing method has considered only

™ .
the average error over the range 0 to 3 However, an analysis of the per-

centage error in f(x?), and of the corresponding deviation in « over this
range, shows that the approximation to alp) is most critical at high fre-
quencies and becomes decreasingly critical as lower frequencies are reached.
Thus, in any design, it is necessary to make a slight adjustment of the

@
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coefficients ao - - - @, after they have been obtained from eq. (29) in order

to compensate for this decreased tolerance of > a;cos Jje at high frequencies
i=0

in the useful band. The exact method of accomplishing this modification
depends on the particular design and the ingenuity of the designer. Never-
theless, no more than a few trials are necessary, in general, to produce the
desired precision at all frequencies in the useful band.

In practice, then, it is not appropriate that the Fourier cosine coefficients
finally chosen represent the optimum coefficients in the mean-square sense.
However, the important result established is that a systematic method
which realizes a satisfactory set of coefficients A, --- A4, of f(x*) has been
developed.

1:a

Fig. 22—Input coupling network configuration,

5. ILLusTRATIVE DESIGN

The numerical example which will be considered is the design of an input
coupling network to equalize partially the loss characteristic of a coaxial
line. On the basis of the previous discussion of the design method it is ad-
vantageous to break down the procedure into four general operations:

(1) Network Specifications

(2) Transfer Specifications

(3) Solution of Approximation Problem

(4) Realization of Non-dissipative Network
The first two of these operations are the choice of the appropriate form of
the design requirements while the last two represent the major divisions in
the procedure for designing the network to meet these requirements.

In this design, a set of network requirements which are consistent with
the requirements indicated in Section 2 may be chosen as indicated in Fig. 22.
Thus, in order that the network N’ correspond to the high-side equivalent
circuit of the coupling transformer and, at the same time, have a final
capacitance C,, the least number of elements which may be chosen in a
practical design is # = 5. The specified elements of Fig. 22 are the parasitic
terminating capacitance C5 and the effective impedance of the line, R, .%

2 See footnote 4.,
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Practical values for these elements may be chosen as Cs = 20 puf and R, =
150 ohms.
Next, the transfer specifications for this illustration may be summarized as
(a) Degree of equalization—k = 0.25
(b) Useful band—2.5 to 8.0 mc
(c) Useful band distortion—< =+0.10 db
(d) Resistance efficiency—65%

The computation of the desired transfer characteristic Ke M) hegins with
the consideration of the degree of equalization. In order to equalize one-
quarter of the power loss between coaxial repeaters the transfer character-
istic over the useful band must vary as Ke" *'I* \where o represents the com-
plete line loss between repeaters If it is assumed that o’ is 4 nepers (34.7 db)*
at 8.0 mc (¢ = 1) and variesasa’ = f(x) = 44/x, the transfer character-
istic over the range, 0 < & < 1, according to eq. (10), becomes

K@ = g ai0-va _ 6—2(1—-\/:)’
where @ = kf(x) = V/z and g = Ef(1) =

The specification of a useful band from 2.5 to 8.0 mc (or x = 0.3 to

= 1.0) in this example is chosen to illustrate the practical limitation on
the precision of equalization at low frequencies. The dashed curve of Fig. 23
indicates a low-frequency response which seems realistic for this illustration.

The computation of the desired transfer characteristic is completed when
the out-band portion of the characteristic is chosen to satisfy the specified
resistance efficiency. The assumption of a linear cut-off characteristic is
suitable as an initial requirement. Hence, the transfer characteristic may be
summarized as shown in Fig. 23. The solid curve of this figure represents the
transfer characteristic which would be required for equalization over the
range, 0 < x < 1, while the dashed curve indicates the modification in this
curve resulting from the choice of a conservative low-frequency response
and the specification of a useful band of 0.3 < x < 1.

The solution of the approximation problem consists of three main oper-
ations. First, is the determination of the amplitude function a(g) from the
transfer characteristic specified in Fig. 23. Second, is the determination of
the Fourier cosine coefficients, @y --- @», of the approximating function
file) and the calculation of the coefficients, 4o « -+ Aa, of f(x?). Third, is
the choice of the coefficient €? of the squared Tchebycheff polynomial.

The amplitude function ap) is calculated from the Speleled transfer
characteristic by using the relations expressed by eq. (22)". According to
eq. (11) of Section 3, the specification for B(x*) over the useful band,

21 This discrimination is correct for 4 or 5 miles of coaxial cable. The attenuation on a
coaxial line varies as the square root of frequency;
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wWo™
Fig. 23—Transfer characteristic for the network of Fig. 22. The dashed curve indicates the
modification which results from the choice of a conservative low-frequency response.

TapiLe I1
RESULTS OF CALCULATIONS IN THE & DOMAIN AND IN THE ¢ DOMAIN
x B(x) Jtat) ¢ Ble) |Ble)cosd| il )
0 3.00 2.98 0° 3.00 3.00 2.98 2.98
0.1 2.87 2.91 10° 2.88 2.80 2.77 2.87
0.2 2.69 2.74 20° 2.74 2.49 2.48 2.73
0.3 2.49 2.48 30° 2.56 2.09 2.09 2.57
0.4 2.09 2.17 40° 2.21 1.54 1.58 2.28
0.5 1.80 1.85 50° 1.87 1.05 1.07 1.95
0.6 1.57 1.57 60° 1.60 0.68 0.70 1.65
0.7 1.37 1.39 70° 1.37 0.42 0.43 1.39
0.8 1.22 1.23 80° 1.17 0.24 0.24 1.17
0.9 1.11 1.13 90° 1.00 0.13 0.13 1.00
1.0 1.00 1.00
1.1 — 0.56
1.2 — —0.32
1.3 — —2.12
1.5 — —11.4
2.0 —_ —115.0

0.3 < 2 < 1, becomes
B(xz) — e’«‘al’, ﬂ-‘ﬁkﬂf) — 82(1—\/1]
In addition, the specification for B(x*) may be extended to zero frequency

by reciprocating the dashed portion of the curve of Fig. 23 in the range
0<2<03.
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In this illustration a simplified f(x?) = Ao + 4’ + A’ + A’ of
order (z — 2) may be chosen such that the transfer characteristic is matched
within the specified tolerance over the useful band.” The specification a/p)
is determined from B(x?) by (1) calculating the B(p) which corresponds to

B(x?) in the ¢ domain, and (2) multiplying B(p) by cos™ g to obtain alp) =

B(p) cos™ g . The results of these calculations in the ¢ domain are indicated

by the fifth and sixth columns of Table II.
The Fourier cosine coefficients, a - - - a@. , are found by solving the set of

linear equations expressed by eq. (25) for» = 3 and s = g . The Ci which
depend on the approximated function aly) are computed from eq. (26).
After the indicated graphical integration is carried out, these constants have

the following values in this illustration:

Co = 2.323
Ci = 1.964
C, = 1.148
C; = 0.452
The matrix [Pj] for # = 3 according to eq. (27) is
" o 17
2 3
T 1
" ' ygs ©
T, rro3
3 4 5
1,3 1
|3 5 4

The existence of a solution of eq. (28) depends on || P || # 0. In this case
this determinant becomes

| P || =2 0.00009.

Thus, for all practical purposes, the linear equations for # = 3 represent a
dependent set. However, when Py = T is substituted for ¢ above,” the

% For the value of the tolerance specified in this illustration, an f(2?) of order 3 turns
out to be satisfactory. In the general case, where a higher degree of precision is desired,
it is, of course, expedient to choose an f(x?) of order n.

% See discussion on p. 742.
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solution for the @; according to eq. (29) is

—1.273: 2117 —1166i 0350

PD 2117 —1.273 1 —0.350  1.166 2,323 0.016
ol _ o | roes| | 252
as —1.166i —0.350F 4.3201 —3.798 1.148 —0.150
a . 0452 0.698

03501 —1.166 | —3.798 ;| 4.320

As previously stated, these coefficients represent the practical minimum
m
2
domain. However, they do not represent the best match over the useful band
for this illustration. The adjustment of these coefficients to produce a more
satisfactory match at high frequencies in the useful band begins by changing

the value of ao to make f; ( ) = a9 — az = 0.125. This condition is satisfied

of the average error in the mean-square sense over the range 0 to ; in the ¢

T
2
when the general level of response is lowered so that ap = —0.025. The only
further adjustment that is ?ECESS&]’Y in order to compensate for the de-

creased tolerance of fi(p) = Z:a,- cos je at high frequencies in the useful band
is a change in the value of aj; 0 When a; is adjusted to a3 = 0.623 a suitable
approximating function for a(y) in this illustration is
file) = i a;j cos jo = —0.025 + 2.527 cos ¢
750 — 0.150 cos 2¢ + 0.623 cos 3¢.
Hence, the approximating function for B(p) is

o) = file)  —0.025 + 2.527 cos ¢ — 0.150 cos 2¢ + 0.623 cos 3¢
B fz(@) B '

¢
cos® =
2

These functions are tabulated in the last two columns of Table IT.
The coefficients Ay --- Ay of f(x?) are easily calculated from the fi(p)
and f(p) above by the relation of the Ay to the a; expressed in Table I. Thus,
f(#?) = 2.975 — 6.143x% + 7.493x" — 3.3254".

The final operation in the solution of the approximation problem is the
choice of the squared Tchebycheff polynomial, &V 2(x), which satisfies a
resistance efficiency of 65 per cent. The Tchebycheff polynomial for n = 5 is

Va(x) = 5x — 205 + 162",



748 BELL SYSTEM TECHNICAL JOURNAL

Thus, Vi(x) becomes
Vi(x) = 254° — 2005* + 560x° — 6404° + 256",
A € = 0.01 is easily found such that the resistance efficiency calculated

from a graphical integration of equals 65 per cent. Hence,

1
J&) 4 Vi)
Zn(jx) :
the analytical expression for K Tz ‘ becomes
0

1 1
1(@®) + EVEr) T (2975 — 61435 + 7.493x" — 3.325:")
+ (0.252% — 2.00x* + 5.60x° — 6.40x* 4 2.56™)

o] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

w _
we™ *

Fig. 24—Comparison of the resultant special transfer function with the transfer
characteristic of Fig. 23.

This expression is the resultant special transfer function which satis-
factorily approximates the transfer characteristic of Fig. 23. Fig. 24 shows a
plot of these functions for comparison purposes.

The squared magnitude of the transfer impedance of the network N'is
found from the analytical expression for the special transfer function by
adjusting the value of K so that K4, = 1. Therefore,

212(]’0) 1
Ry T 1 — 1.9814 - 1.8465" + 0. 765x° — 2.157x° + 0.861x"

The elements of the network N’ are found from the squared magnitude
of the transfer impedance by methods standard in circuit theory.” The
network elements of Fig. 22 in terms of unit impedance and unit radian

7 Ref. 2, pp. 25-53.
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frequency turn out to be
C; = 0.470 farads L, = 1.250 henrys
C; = 1.201 farads Ly = 2.220 henrys.
Cs = 0.594 farads

f IN MEGACYCLES

0 1 2 3 4 5 & 1 B 9 10
T T T T T T I T T I
| I =10w06 R/Ry
S 1 =w0we Ra/RL '
| m =868 yX (/4 CABLE LOSS) g
L ™ = 10L06 R/R —8.68 VX !
8 (OVERALL RESPONSE) :
1
— 1
E :
! 1 S
! 1
— [ ! |
a i
[
g6 {
@ 1
° i
z, i
3 ‘«———USEFUL BAND T
~ F i
9 |
w 4
o '
gk |
o |
3 |
B s
2 |
i |
I |
1
1
1 |
| .
0 [ T T B TR R R N |
o 02 0.4 0. 0.8 1.0 1.2

.6

w
Wo
Fig. 25—Computed gain characteristic of the input coupling circuit of Fig. 22.

=%

Ry is calculated from the equation which relates to normalized value of Cs
above to wg and the actual value of Cy = 20 X 10~!% farads. Thus
0.594
Ry wo

= 20 X 107! farads,

and Ry = 591 ohms.
The actual values of the network elements of I'ig. 22 are found as

Ci = 15.8 uuf Iy = 14.7mh
C; = 40.5 ppf Ly = 26.2 mh,
Cs = 20.0 ppf
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and the step-up turns ratio, @, of the ideal transformer is

a = R~ 1.98.

These values then represent the input coupling network which theoreti-
cally equalizes to the specified degree of precision one-quarter of the power
loss between coaxial repeaters over a frequency band from 2.5 to 8.0 mc.
The computed gain characteristic of this network is plotted in Fig. 25,
Curve 1. The presence of the ideal transformer represents an added constant

gain, Curve II, givenby db = 10 log %’ = 5.96. The total gain inserted by
L

the network, the sum of Curves I and IT,isdb = 10log R_ lolog%—l— 5.96.
L

Since Curve III represents one-quarter of the power loss between repeaters,
Curve IV is the overall transmission gain of the line and equalizer.®® The
deviation of Curve IV from a constant transmission over the useful band
is less than +£0.08 db. It may be concluded, then, thata satisfactory non-
dissipative design has been obtained.
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28 Criticism may well be directed at the gain peak above the useful band. However,
this condition is somewhat exceptional and probably would not occur with an in-band
approximating function of order # rather than (2 — 2).



