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The following malerial on iraveling-wave lubes is laken from a book which
will be published by Van Nostrand in September, 1950. Substantially the
entire conlents of the book will be published in this and the three succeeding
issues of the Bell System Technical Journal.

This material will cover in detail the theory of traveling-wave amplifiers. In
addition, brief discussions of magnetron amplifiers and double-stream amplifiers
are included. Experimental malerial is drawn on in a general way only, as in-
dicating the range of validily of the theorelical treatments.

The material deals only with the high-frequency electronic and circuit be-
havior of tubes. Such maltlers as malching into circuils are nol considered;
neither are problems of beam formalion and electron focusing, which have been
deall with elsewhere.!

The material opens with the presentation of a simplified theory of the travel-
ing-wave tube. A discussion of circuils follows, including helix calculations, a
lreatment of filler-type circuils, some general circuit considerations which show
that gain will be highest for low group velocities and low slored energies, and a
qustification of a simple transmission line treatment of circuils by means of an
expansion in terms of the normal modes of propagation of a circuit. Then a de-
tailed analysis of overall electronic and circuit behavior is made, including a
discussion of various electronic and circuil waves, the filting of boundary con-
dilions fo oblain overall gain, noise figure calculalions, transverse motions of
electrons and field solutions appropriate lo broad electron streams. Short lreal-
menls of the magnetron amplifier and lthe double-siream amplifier follow.

! For instance, “Theory and Design of Electron Beams,” J. R. Pierce, Van Nostrand,
1949.
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CHAPTER I

INTRODUCTION

STRONOMERS are interested in stars and galaxies, physicists in

atoms and crystals, and biologists in cells and tissues because these

are natural objects which are always with us and which we must under-

stand. The traveling-wave tube is a constructed complication, and it can

be of interest only when and as long as it successfully competes with older

and newer microwave devices. In this relative sense, it is successful and
hence important.

This does not mean that the traveling-wave tube is better than other
microwave tubes in all respects. As yet it is somewhat inefficient compared
with most magnetrons and even with some klystrons, although efficiencies
of over 10 per cent have been attained. It seems reasonable that the effi-
ciency of traveling-wave tubes will improve with time, and a related device,
the magnetron amplifier, promises high efficiencies. Still, efficiency is not the
chief merit of the traveling-wave tube.

Nor is gain, although the traveling-wave tubes have been built with gains
of over 30 db, gains which are rivaled only by the newer double-stream
amplifier and perhaps by multi-resonator klystrons.

In noise figure the traveling-wave tube appears to be superior to other
microwave devices, and noise figures of around 12 db have been reported.
This is certainly a very important point in its favor.

Structurally, the traveling-wave tube is simple, and this too is impor-
tant. Simplicity of structure has made it possible to build successful ampli-
fiers for frequencies as high as 48,000 megacycles (6.25 mm). When we con-
sider that successful traveling-wave tubes have been built for 200 mc, we '
realize that the traveling-wave amplifier covers an enormous range of fre-
quencies.

The really vital feature of the traveling-wave tube, however, the new
feature which makes it different from and superior to earlier devices, is its
tremendous bandwidth. .

Tt is comparatively easy to build tubes with a 20 per cent bandwidth at
4,000 me, that is, with a bandwidth of 800 mc, and L. M. Field has reported
a bandwidth of 3 to 1 extending from 350 mc to 1,050 mc. There seems no
reason why even broader bandwidths should not be attained.

As it happens, there is a current need for more bandwidth in the general
field of communication. For one thing, the rate of transmission of intelli-
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gence by telegraph, by telephone or by facsimile is directly proportional
to bandwidth; and, with an increase in communication in all of these fields,
more bandwidth is needed.

Further, new services require much more bandwidth than old services.
A bandwidth of 4,000 cycles suffices for a telephone conversation. A band-
width of 15,000 cycles is required for a very-high-fidelity program circuit.
A single black-and-white television channel occupies a bandwidth of about
4 mc, or approximately a thousand times the bandwidth required for te-
lephony.

Beyond these requirements for greater bandwidth to transmit greater
amounts of intelligence and to provide new types of service, there is cur-
rently a third need for more bandwidth. In FM broadcasting, a radio fre-
quency bandwidth of 150 ke is used in transmitting a 15 kc audio channel.
This ten-fold increase in bandwidth does not represent a waste of frequency
space, because by using the extra bandwidth a considerable immunity to
noise and interference is achieved. Other attractive types of modulation,
such as PCM (pulse code modulation) also make use of wide bandwidths
in overcoming distortion, noise and interference.

At present, the media of communication which have been used in the past
are becoming increasingly crowded. With a bandwidth of about 3 mc,
approximately 600 telephone channels can be transmitted on a single coaxial
cable. It is very hard to make amplifiers which have the high quality neces-
sary for single sideband transmission with bandwidths more than a few times
broader than this. In television there are a number of channels suitable for
local broadcasting in the range around 100 mc, and amplifiers sufficiently
broad and of sufficiently good quality to amplify a single television channel
for a small number of times are available. It is clear, however, that at these
lower frequencies it would be very difficult to provide a number of long-haul
television channels and to increase telephone and other services substan-
tially.

Fortunately, the microwave spectrum, which has been exploited increas-
ingly since the war, provides a great deal of new frequency space. For in-
stance, the entire broadcast band, which is about 1 mc wide, is not sufficient
for one television signal. The small part of the microwave spectrum in the
wavelength range from 6 to 7} cm has a frequency range of 1,000 mc, which
is sufficient to transmit many simultaneous television channels, even when
broad-band methods such as FM or PCM are used.

In order fully to exploit the microwave spectrum, it is desirable to have
amplifiers with bandwidths commensurate with the frequency space avail-
able. This is partly because one wishes to send a great deal of information
in the microwave range: a great many telephone channels and a substan-
tial number of television channels. There is another reason why very broad
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bands are needed in the microwave range. In providing an integrated nation-
wide communication service, it is necessary for the signals to be amplified
by many repeaters. Amplification of the single-sideband type of signal used
in coaxial systems, or even amplification of amplitude modulated signals,
requires a freedom from distortion in amplifiers which it seems almost
impossible to attain at microwave frequencies, and a freedom from inter-
fering signals which it will be very difficult to attain. For these reasons, it
seems almost essential to rely on methods of modulation which use a large
bandwidth in order to overcome both amplifier distortion and also inter-
ference.

Many microwave amplifiers are inferior in bandwidth to amplifiers avail-
able at lower frequencies. Klystrons give perhaps a little less bandwidth than
good low-frequency pentodes. The type 416A triode, recently developed at
Bell Telephone Laboratories, gives bandwidths in the 4,000 mc range some-
what larger than those attainable at lower frequencies. Both the klystron
and the triode have, however, the same fundamental limitation as do other
conventional tubes. As the band is broadened at any frequency, the gain is
necessarily decreased, and for a given tube there is a bandwidth beyond
which no gain is available. This is so because the signal must be applied by
means of some sort of resonant circuit across a capacitance at the input of
the tube.

In the traveling-wave tube, this limitation is overcome completely. There
is no input capacitance nor any resonant circuit. The tube is a smooth trans-
mission line with a negative attenuation in the forward direction and a
positive attenuation in the backward direction. The bandwidth can be
limited by transducers connecting the circuit of the tube to the source and
the load, but the bandwidth of such transducers can be made very great.
The tube itself has a gradual change of gain with frequency, and we have seen
that this allows a bandwidth of three times and perhaps more. This means
that bandwidths of more than 1,000 mc are available in the microwave
range. Such bandwidths are indeed so great that at present we have no means
for fully exploiting them.

In all, the traveling-wave tube compares favorably with other microwave
devices in gain, in noise figure, in simplicity of construction and in fre-
quency range. While it is not as good as the magnetron in efficiency, reason-
able efficiencies can be attained and greater efficiencies are to be expected.
Finally, it does provide amplification over a bandwidth commensurate with
the frequency space available at microwaves.

The purpose of this book is to collect and present theoretical material
which will be useful to those who want to know about, to design or to do
research on traveling-wave tubes. Some of this material has appeared in
print. Other parts of the material are new. The old material and the new
material have been given a common notation.
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The material covers the radio-frequency aspects of the electronic behavior
of the tube and its internal circuit behavior. Matters such as matching into
and out of the slow-wave structures which are described are not considered.
Neither are problems of producing and focusing electron beams, which
have been discussed elsewhere,! nor are those of mechanical structure nor of
heat dissipation.

In the field covered, an effort has been made to select material of practical
value, and to present it as understandably as possible. References to vari-
ous publications cover some of the finer points. The book refers to experi-
mental data only incidentally in making general evaluations of theoretical
results.

To try to present the theory of the traveling-wave tube is difficult with-
out some reference to the overall picture which the theory is supposed to
give. One feels in the position of lifting himself by his bootstraps. For this
reason the following chapter gives a brief general description of the travel-
ing-wave tube and a brief and specialized analysis of its operation. This
chapter is intended to give the reader some insight into the nature of the
problems which are to be met. In Chapters III through VI, slow-wave cir-
cuits are discussed to give a qualitative and quantitative idea of their na-
ture and limitations. Then, simplified equations for the overall behavior of
the tube are introduced and solved, and matters such as overall gain, inser-
tion of loss, a-c space-charge effects, noise figure, field analysis of operation
and transverse field operation are considered. A brief discussion of power
output is given.

Two final chapters discuss briefly two closely related types of tube; the
traveling-wave magnetron amplifier and the double-stream amplifier.

loc. cit.
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CHAPTER 1II

SIMPLE THEORY OF
TRAVELING-WAVE TUBE GAIN

Synopsis oF CHAPTER

T IS difficult to describe general circuit or electronic features of traveling-
wave tubes without some picture of a traveling-wave tube and traveling-
wave gain. In this chapter a typical tube is described, and a simple theoret-
ical treatment is carried far enough to describe traveling-wave gain in terms
of an increasing electromagnetic and space-charge wave and to express the
rate of increase in terms of electronic and circuit parameters.

In particular, Fig. 2.1 shows a typical traveling-wave tube. The parts of
this (or of any other traveling-wave tube) which are discussed are the elec-
tron beam and the slow-wave circuit, represented in Fig. 2.2 by an electron
beam and a helix.

Tn order to derive equations covering this portion of the tube, the proper-
ties of the helix are simulated by the simple delay line or network of Fig. 2.3,
and ordinary network equations are applied. The electrons are assumed to
flow very close to the line, so that all displacement current due to the pres-
ence of electrons flows directly into the line as an impressed current

For small signals a wave-type solution of the equations is known to exist,
in which all a-c electronic and circuit quantities vary with time and dis-
tance as exp(jwf — I'z). Thus, it is possible to assume this from the start.

On this basis the excitation of the circuit by a beam current of this form is
evaluated (equation (2.10)). Conversely, the beam current due to a circuit
voltage of this form is calculated (equation (2.22)). If these are to be con-
sistent, the propagation constant I' must satisfy a combined equation (2.23).

The equation for the propagation constant is of the fourth degree in T',
so that any disturbance of the circuit and electron stream may be expressed
as a sum of four waves.

Because some quantities are in practical cases small compared with others,
it is possible to obtain good values of the roots by making an approximation.
This reduces the equation to the third degree. The solutions are expressed
in the form

-I'= _j.Bs + B:CB
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Here 8, is a phase constant corresponding to the electron velocity (2.16)
and C is a gain parameter depending on circuit and beam impedance (2.43).
A solution of the equation for the case of an electron speed equal to the
speed of the undisturbed wave yields 3 values of § which are shown in Fig.
2.4. These represent an increasing, a decreasing and an unattenuated
wave. The increasing wave is of course responsible for the gain of the tube.
A different approximation yields the missing backward unattenuated wave
(2.32).

The characteristic impedance of the forward waves is expressed in terms
of 8., C, and 6 (2.36) and is found to differ little from the impedance in the
absence of electrons.

The gain of the increasing wave is expressed in terms of C and the length
of the tube in wavelengths, V

G = 47.3CN db (2.37)

It will be shown later that the gain of the tube can be expressed approxi-
mately as the sum of the gain of the increasing wave plus a constant to take
into account the setting up of the increasing wave, or the boundary condi-
tions (2.39).

Finally, the important gain parameter C is discussed. The circuit part of
this parameter is measured by the cube root of an impedance, (£E*/8*P)*,
which relates the peak field £ acting on the electrons, the phase constant
B = w/v, and the power flow. (F2/8°P)*% is a measure of circuit goodness
as far as gain is concerned.

We should note also that a desirable circuit property is constancy of
phase velocity with frequency, for the electron velocity must be near to the
circuit phase velocity to produce gain.

Evaluation of the effects of attenuation, of varying the electron velocity
and many other matters are treated in later chapters.

2.1 DEscrIpTION OF A TRAVELING-WAVE TUBE

Figure 2.1 shows a typical traveling-wave tube such as may be used at
frequencies around 4,000 megacycles. Such a tube may operate with a
cathode current of around 10 ma and a beam voltage of around 1500 volts.
There are two essential parts of a traveling-wave amplifier; one is the helix,
which merely serves as a means for producing a slow electromagnetic wave
with a longitudinal electric field; and the other is the electron flow. At the
input the wave is transferred from a wave guide to the helix by means of a
short antenna and similarly at the output the wave is transferred from the
helix to a short antenna from which it is radiated into the output wave
guide. The wave travels along the wire of the helix with approximately the
speed of light. For operation at 1500 volts, corresponding to about {5 the
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speed of light, the wire in the helix will be about thirteen times as long as the
axial length of the helix, giving a wave velocity of about 5 the speed of
light along the axis of the helix. A longitudinal magnetic focusing field of a
few hundred gauss may be used to confine the electron beam and enable it
to pass completely through the helix, which for 4000 megacycle operation
may be around a foot long.

TOU TPUT

7/
HEATER ==
‘\/ -

y'\ _——

Fig. 2.1—Schematic of the traveling-wave amplifier.

HELIX

ELECTRON -::
BEAM

H ELECTROMAGNETIC WAVE TRAVELS
1 FROM LEFT TO RIGHT ALONG HELIX 1

Fig. 2.2—Portion of the traveling-wave amplifier pertaining to electronic interaction
with radio-frequency fields and radio-frequency gain.

In analyzing the operation of the traveling-wave tube, it is necessary to
focus our attention merely on the two essential parts shown in Fig. 2.2, the
circuit (helix) and the electron stream.

2.2 Tue TypE o¥ ANaLysis USED

A mathematical treatment of the traveling-wave tube is very important,
not so much to give an exact numerical prediction of operation as to give a
picture of the operation and to enable one to predict at least qualitatively
the effect of various physical variations or features. It is unlikely that all of
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the phenomena in a traveling-wave tube can be satisfactorily described in
a theory which is simple enough to yield useful results. Most analyses, for
instance, deal only with the small-signal or linear theory of the traveling-
wave tube. The distribution of current in the electron beam can have an
important influence on operation, and yet in an experimental tube it is often
difficult to tell just what this distribution is. Even the more elaborate analy-
ses of linear behavior assume a constant current density across the beam.
Similarly, in most practical traveling-wave tubes, a certain fraction of the
current is lost on the helix and yet this is not taken into account in the
usual theories.

It has been suggested that an absolutely complete theory of the traveling-
wave tube is almost out of the question. The attack which seems likely to
yield the best numerical results is that of writing the appropriate partial
differential equations for the disturbance in the electron stream inside the
helix and outside of the helix. This attack has been used by Chu and Jackson?
and by Rydbeck.? While it enables one to evaluate certain quantities which
can only be estimated in a simpler theory, the general results do not differ
qualitatively and are in fair quantitative agreement with those which are
derived here by a simpler theory.

In the analysis chosen here, a number of approximations are made at the
very beginning. This not only simplifies the mathematics but it cuts down
the number of parameters involved and gives to these parameters a simple
physical meaning. In terms of the parameters of this simple theory, a great
many interesting problems concerning noise, attenuation and various bound-
ary conditions can be worked out. With a more complicated theory, the work-
ing out of each of these problems would constitute essentially a new problem
rather than a mere application of various formulae.

There are certain consequences of a more general treatmentof a traveling-
wave tube which are not apparent in the simple theory presented here.
Some of these matters will be discussed in Chapters XII, XIIT and XIV.

The theory presented here is a small signal theory. This means that the
equations governing electron flow have been linearized by neglecting certain
quantities which become negligible when the signals are small. This results
in a wave-type solution. Besides the small signal limitation of the analyses
presented here, the chief simplifying assumption which has been made is
that all the electrons in the electron flow are acted on by the same a-c field,
or at least by known fields. The electrons will be acted on by essentially the
same field when the diameter of the electron beam is small enough or when

*L.]J. Chuand J.D. Jackson, “Field Theory of Traveling-Wave Tubes,” Proc. I. R. E.,
Vol. 36, pp. 853-863, July 1948.

#0lof E. H. Rydbeck, “The Theory of the Traveling-Wave Tube,” Ericsson Technics,
No. 46, 1948.
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the electrons form a hollow cylindrical beam in an axially symmetrical cir-
cuit, a case of some practical importance.

Besides these assumptions, it is assumed in this section that the electrons
are displaced by the a-c field in the axial direction only. This may be ap-
proximately true in many cases and is essentially so when a strong magnetic
focusing field is used. The effects of transverse motion will be discussed in
Chapter XIIIL.

In this chapter an approximate relation suitable for electron speeds small
compared to the velocity of light is used in computing interaction between
electrons and the circuit.

A more general relation between impressed current and circuit field, valid
for faster waves, will be given in Chapter VI. Non-relativistic equations of
motion will, however, be used throughout the book. With whatever speed
the waves travel, it will be assumed that the electron speed is always small
compared with the speed of light.

We consider here the interaction between an electric circuit capable of
propagating a slow electromagnetic wave and a stream of electrons. We can
consider that the signal current in the circuit is the result of the disturbed
electron stream acting on the circuit and we can consider that the disturbance
on the electron stream is the result of the fields of the circuit acting on the
electrons. Thus the problem naturally divides itself into two parts.

2.3 THE F1ELD CAUSED BY AN IMPRESSED CURRENT

We will first consider the problem of the disturbance produced in the
circuit by a bunched electron stream. In considering this problem in this sec-
tion in a manner valid for slow waves and small electron velocities, we will
use the picture in Fig. 2.3. Here we have a circuit or network with uniformly

AT s
el S LA B R R B
VI TTTTTT

z

Fig. 2.3—Equivalent circuit of a traveling-wave tube. The distributed inductance
and capacitance are chosen to match the phase velocity and field strength of the field act-
ing on the electrons. The impressed current due to the electrons is — d7/0z, where { is the
electron convection current.

distributed series inductance and shunt capacitance and with current I and
voltage V. The circuit extends infinitely in the z direction. An electron con-
vection current i flows along very close to the circuit. The sum of the dis-
placement and convection current into any little volume of the electron
beam must be zero. Because the convection current varies with distance in
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the direction of flow, there will be a displacement current J amperes per
meter impressed on the transmission circuit. We will assume that the elec-
tron beam is very narrow and very close to the circuit, so that the displace-
ment current along the stream is negligible compared with that from the
stream to the circuit. In this case the displacement current to the circuit will
be given by the rate of change of the convection current with distance.

If the convection current ¢ and the impressed current J are sinusoidal
with time, the equations for the network shown in Fig. 2.3 are

g_‘: — BV 4+ J (2.1)
STV — —jXI (2.2)

Here I and V" are the current and the voltage in the line, B and X are the
shunt susceptance and series reactance per unit length and J is the im-
pressed current per unit length.

It may be objected that these “‘network” equations are not valid for a
transmission circuit operating at high frequencies. Certainly, the electric
field in such a circuit cannot be described by a scalar electric potential.
We can, however, choose BX so that the phase velocity of the circuit of
Fig. 2.3 is the same as that for a particular traveling-wave tube. We can
further choose X /B so that, for unit power flow, the longitudinal field acting
on the electrons according to Fig. 2.3, that is, —aV /a3, is equal to the true
field for a particular circuit. This lends a plausibility to the use of (2.1) and
(2.2). The fact that results based on these equations are actually a good ap-
proximation for phase velocities small compared with the velocity of light
is established in Chapter VI.

We will be interested in cases in which all quantities vary with distance
as exp(—TI%). Under these circumstances, we can replace differentiation
with respect to z by multiplication by —T. The impressed current per unit
length is given by

ai

J= - 5 = Ti (2.3)

Equations (2.1) and (2.2) become
—T7 = —jBV + Ti (2.4)
—TV = —jXI (2.5)

If we eliminate 7, we obtain

V(I + BX) = —jI'Xi (2.6)
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Now, if there were no impressed current, the righthand side of (2.6) would
be zero and (2.6) would be the usual transmission-line equation. In this case,
I' assumes a value Ty, the natural propagation constant of the line, which
is given by

I, = J\/ﬁ (2.7)

The forward wave on the line varies with distance as exp(—T}z) and the
backward wave as exp(+TI'z).

Another important property of the line itself is the characteristic im-
pedance K, which is given by

K = +/X/B (2.8)
We can express the series reactance X in terms of Iy and K
= —jKI (2.9)

Here the sign has been chosen to assure that X is positive with the sign
given in (2.7). In terms of T'y and K, (2.6) may be written

—I1 K4
(r* — i)

= (2.10)
In (2.10), the convection current i is assumed to vary sinusoidally with
time and as exp(—TI'z) with distance. This current will produce the voltage
V in the line. The voltage of the line given by (2.10) also varies sinusoidally
with time and as exp(—T') with distance.

2.4 ConvECTION CURRENT PRODUCED BY THE FIELD

The other part of the problem is to find the disturbance produced on the
electron stream by the fields of the line. In this analysis we will use the
quantities listed below, all expressed in M.K.S. units.!

n—charge-to-mass ratio of electrons
n = 1.759 X 10" coulomb/kg
uy—average velocity of electrons
V—voltage by which electrons are accelerated to give them the velocity
wo. e = V24V,
I,—average electron convection current
po—average charge per unit length
Po = —1I n/ Uo
1—a-c component of velocity
p—a-c component of linear charge density
i—a-c component of electron convection current

4 Various physical constants are listed in Appendix I.
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The quantities 7, p, and 7 are assumed to vary with time and distance as
exp(jwl — Tz).

One equation we have concerning the motion of the electrons is that the
time rate of change of velocity is equal to the charge-to-mass ratio times
the electric gradient.

dlug + v) vV
—at " (211)

In (2.11) the derivative represents the change of velocity observed in fol-
lowing an individual electron. There is, of course, no change in the average
velocity u, . The change in the a-c component of velocity may be expressed

. . R dv A Cl e
in terms of partial derivatives, 3;- , which is the rate of change with time of

. . . . dv s 2 _r
the velocity of electrons passing a given point, and 3 which is variation of
electron velocity with distance at a fixed time.

dv _ ov dvds 9V

i "ot aa T 212
Equation (2.12) may be rewritten

dv | dv av

—! + a5 <“u + v) = n "—az (2.13)

Now it will be assumed that the a-¢ velocity v is very small compared with
the average velocity u,, and v will be neglected in the parentheses. The reason
for doing this is to obtain differential equations which are linear, that is,
in which products of a-c terms do not appear. Such linear equations neces-
sarily give a wave type of variation with time and distance, such as we
have assumed. The justification for neglecting products of a-c terms is that
we are interested in the behavior of traveling-wave tubes at small signal
levels, and that it is very difficult to handle the non-linear equations. When
we have linearized (2.13) we may replace the differentiation with a respect
to time by multiplication by jw and differentiation with respect to distance
by multiplication by —I" and obtain

(ju — ul)e = —qI'V (2.14)
We can solve (2.14) for the a-c velocity and obtain

—qI'V

= W~ 1) 215)

Where
Bo = w/uto (2.16)
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We may think of 3, as the phase constant of a disturbance traveling with
the electron velocity.

We have another equation to work with, a relation which is sometimes
called the equation of continuity and sometimes the equation of conserva-
tion of charge. If the convection current changes with distance, charge
must accumulate or decrease in any small elementary distance, and we see
that in one dimension the relation obeyed must be

¥ _ _dp

= " (2.17)

Again we may proceed as before and solve for the a-c charge density p

—Ti = —jwp
—gIi .
= I (2.18)
)

The total convection current is the total velocity times the total charge
density

—Io+ i = (uo + v)(po + p) (2.19)

Again we will linearize this equation by neglecting products of a-c quanti-
ties in comparison with products of a-c quantities and a d-c quantity. This
gives us

i = pPo? + Upp (220)

We can now substitute the value p obtained from (2.18) into (2.20) and solve
for the convection current in terms of the velocity, obtaining

jﬁnpnﬂ
= = 221
! (]ﬁc - P) ( )

Using (2.15) which gives the velocity in terms of the voltage, we obtain
the convection current in terms of the voltage

. j.IoﬁGP]-
=S -rn 2.22
= VB — T (2.22)

2.5 OviraLL Circult aND ELEcTRONIC EQUATION

In (2.22) we have the convection current in terms of the voltage. In (2.10)
we have the voltage in terms of the convection current. Any value of T for
which both of these equations are satisfied represents a natural mode of
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propagation along the circuit and the electron stream. When we combine
(2.22) and (2.10) we obtain as the equation which T' must satisfy:

3 JKI,B8.T°Ty
2V,(Ty = T9)(j8. — T’

(2.23)

Equation (2.23) applies for any electron velocity, specified by 8., and any
wave velocity and attenuation, specified by the imaginary and real parts of
the circuit propagation constant I', . Equation (2.23) is of the fourth degree.
This means that it will yield four values of T which represent four natural
modes of propagation along the electron stream and the circuit. The circuit
alone would have two modes of propagation, and this is consistent with the
fact that the voltages at the two ends can be specified independently, and
hence two boundary conditions must be satisfied. Four boundary conditions
must be satisfied with the combination of circuit and electron stream. These
may be taken as the voltages at the two ends of the helix and the a-c velocity
and a-c convection current of the electron stream at the point where the
electrons are injected. The four modes of propagation or the waves given by
(2.23) enable us to satisfy these boundary conditions.

We are particularly interested in a wave in the direction of electron flow
which has about the electron speed and which will account for the observed
gain of the traveling-wave tube. Let us assume that the electron speed is
made equal to the speed of the wave in the absence of electrons, so that

T = —j8, (2.24)

As we are looking for a wave with about the electron speed, we will assume
that the propagation constant differs from 8. by a small amount £, so that

—jB. + &
—I+ £
Using (2.24) and (2.25) we will rewrite (2.23) as

| = —KLBU—8 = 2j8.t + £) (226)
2Vo(2j8.£ — £)(&)
Now we will find that, for typical traveling-wave tubes, £ is much smaller
than 8, ; hence we will neglect the terms involving 8.£ and £ in the numera-
tor in comparison with 8,7 and we will neglect the term £* in the denominator
in comparison with the term involving 8.£. This gives us

KI
3 _ i’ ]
£ 7B v, (2.27)

T

(2.25)

While (2.27) may seem simple enough, it will later be found very convenient
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to rewrite it in terms of other parameters, and we will introduce them
now. Let

KIo/4V, = C? (2.28)

C is usually quite small and is typically often around .02. Instead of £ we
will use a quantity or a parameter &

£ = B.Lo (2.29)
In terms of & and C, (2.27) becomes
5= (_]-)IH — (ej(Zrtulfﬂ)t)l.':I (2-30)

This has three roots which will be called &, , 8, and &; , and these represent
three forward waves. They are

o= = 4/3/2 — j/2
b = ¢ = —~/3/2 — j/2 (2.31)
53 = ej"z =j

Figure 2.4 shows the three values of 8. Equation (2.23) was of the fourth
degree, and we see that a wave is missing. The missing root was eliminated

-0.866-] 0.5

Fig. 2.4—There are three forward waves, with fields which vary with distance as
exp(—jB. + B.C8)z. The three values of & for the case discussed, in which the circuit is
lossless and the electrons move with the phase velocity of the unperturbed circuit wave,
are shown in the figure.

by the approximations made above, which are valid for forward waves only.
The other wave is a backward wave and its propagation constant is found

to be
—I = jB. (1 - %—3) (2.32)

As C is a small quantity, C? is even smaller, and indeed the backward wave
given by (2.32) is practically the same as the backward wave in the absence
of electrons. This is to be expected. In the forward direction, there is a cumu-
lative interaction between wave and the electrons because both are moving
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at about the same speed. In the backward direction there is no cumulative
action, because the wave and the electrons are moving in the opposite
directions.

The variation in the z direction for three forward waves is as

exp —I'zs = exp —jB.z exp 6CB.s (2.33)

We see that the first wave is an increasing wave which travels a little more
slowly than the electrons. The second wave is a decreasing wave which
travels a little more slowly than the electrons. The third wave is an un-
attenuated wave which travels faster than the electrons. It can be shown
generally that when a stream of electrons interacts with a wave, the electrons
must go faster than the wave in order to give energy to it.

It is interesting to know the ratio of line voltage to line current, or the
characteristic impedance, for the three forward waves. This may be obtained
from (2.5). We see that the characteristic impedance K, for the nth wave is
given in terms for the propagation constant for the nth wave, I'y, by

K,=V/I =3iX/T, (2.34)
In terms of 8, this becomes

K. = K({ — BL5./Ty) (2.35)

K, = K(1 — jC8,) (2.36)

We see that the characteristic impedance for the forward waves differs from
the characteristic impedance in the absence of electrons by a small amount
proportional to C, and that the characteristic impedance has a small reactive
component.

We are particularly interested in the rate at which the increasing wave

increases. In a number of wave lengths V', the total increase in db is given by
20 logo exp [(4/3/2)(C)(2xN)] db
— 47.3CN db (2.37)

We will see later that the overall gain of the traveling-wave tube with a
uniform helix can be expressed in the form

G =4+ BCN db (2.38)

Here A is a loss relating voltage associated with the increasing wave to
the total applied voltage. This loss may be evaluated and will be evaluated
later by a proper examination of the boundary conditions at the input of
the tube. It turns out that for the case we have considered

G = —9.54 + 47.3CN db (2.39)
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In considering circuits for traveling-wave tubes, and in reformulating
the theory in more general terms later on, it is valuable to express C in terms
of parameters other than the characteristic impedance. Two physically sig-
nificant parameters are the power flow in the circuit and the electric field
associated with it which acts on the electron stream. The ratio of the square
of the electric field to the power can be evaluated by physical measurement
even when it cannot be calculated. For instance, Cutler’ did this by allowing
the power from a wave guide to flow into a terminated helix, so that the
power in the helix was the same as the power in the wave guide. He then
compared the field in the helix with the field in the wave guide by probe
measurements. The field strength in the wave guide could be calculated in
terms of the power flow, and hence Cutler’s measurements enabled him to
evaluate the field in the helix for a given power flow.

The magnitude of the field is given in terms of the magnitude of the
voltage by

E=|TV| (2.40)

Here E is taken as the magnitude of the field. The power flow in the circuit
is given in terms of the circuit voltage by

P=|V|¥2IK (2.41)
A quantity which we will use as a circuit parameter is
E/p*P = 2K (2.42)

Here it has been assumed that we are concerned with low-loss circuits, so
that I'i can be replaced by the phase constant 8% Usually, 8 can be taken
as equal to 8, the electron phase constant, with small error, and in the
preceding work this has been assumed to be exactly true in (2.23).

In terms of this new quantity, C is given by

C3 = (2K)(1o/8Vo) = (E*/B*P)(I0/8V0) (2.43)

If we call Vo/I, the beam impedance, C? is 1 the circuit impedance divided
by the beam impedance. It would have been more sensible to use E*/28°P
instead of E?/B2P. Unfortunately the writer feels stuck with his benighted
first choice because of the number of curves and published equations which
make use of it.

Besides the circuit impedance, another important circuit parameter is
the phase velocity. As the electron velocity is made to deviate from the
phase velocity of the circuit, the gain falls off. An analysis to be given later

5 C. C. Cutler, “Experimental Determination of Helical-Wave Properties,” Proc. IRE,
Vol. 36, pp. 230-233, February 1948.
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discloses that the allowable range of velocity Av is of the order of
Av =~ £ Cuy (2.44)

Thus, the allowable difference between the phase velocity of the circuit and
the velocity of the electrons increases as circuit impedance and beam current
are increased and decreases as voltage is increased.

We have illustrated the general method of attack to be used and have
introduced some of the important parameters concerned with the circuit
and with the overall behavior of the tube. In later chapters, the properties
of various circuits suitable for traveling-wave tubes will be discussed in
terms of impedance and phase velocity and various cases of interest will be
worked out by the methods presented.
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CHAPTER III

THE HELIX

Svynopsis oF CHAPTER

NY circuit capable of propagating a slow electromagnetic wave can be

used in a traveling-wave tube. The circuit most often used is the helix,

The helix is easy to construct. In addition, it is a very good circuit. It has a

high impedance and a phase velocity that is almost constant over a wide
frequency range.

In this chapter various properties of helices are discussed. An approximate
expression for helix properties can be obtained by calculating the properties,
not of a helix, but of a helically conducting cylindrical sheet of the same
radius and pitch as the helix. An analysis of such a sheet is carried out in
Appendix IT and the results are discussed in the text.

Parameters which enter into the expressions are the free-space phase con-
stant 8y = w/c, the axial phase constant 8 = w/v, where ¢ is the phase
velocity of the wave, and the radial phase constant y. The arguments of
various Bessel functions are, for instance, yr and ya, where r is the radial
coordinate and ¢ is radius of the helix. The parameters 8o, 8 and v are
related by

B =6+ 7

For tightly wound helices in which the phase velocity v is small compared
with the velocity of light, v is very nearly equal to 8. For instance, at a
velocity corresponding to that of 1,000 volt electrons, v and 8 differ by
only 0.4%,.

Figure 3.1 illustrates two parameters of the helically conducting sheet,
the radius ¢ and pitch angle . For an actual helix, ¢ will be taken to mean
the mean radius, the radius to the center of the wire.

Figure 3.2 shows a single curve which enables one to obtain v, and hence
B, for any value of the parameter

wa cot ¥

Boa coty = ;

This parameter is proportional to frequency. The curve is an approximate
representation of velocity vs. frequency. At high frequencies v approaches
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Bo cot ¢ and 8 thus approaches 8;/sin ¢; this means that the wave travels
with the velocity of light around the sheet in the direction of conduction.
In the case of an actual helix, the wave travels along the wire with the
velocity of light.

The gain parameter C is given by

C — (ID/SVO)IIEI(EZ/BEP)”.'S

Values of (E2/32P)"? on the axis may be obtained through the use of Fig. 3.4,
where an impedance parameter F(vya) is plotted vs. va, and by use of (3.9).
For a given helix, (E*/g*P)""* is approximately proportional to F(ya). F(ya)
falls as frequency increases. This is partly because at high frequencies and
short wavelengths, for which the sign of the field alternates rapidly with
distance, the field is strong near the helix but falls off rapidly away from the
helix and so the field is weak near the axis. At very high frequencies the field
falls off away from the helix approximately as exp(—+yAr), where Ar is dis-
tance from the helix, and we remember that v is very nearly proportional to
frequency. (E?/8°P)"* measured at the helix also falls with increasing
frequency.

Tn many cases, a hollow beam of radius r (the dashed lines of Fig. 3.5
refer to such a beam) or a solid beam of radius r (the solid lines of Fig. 3.5
refer to such a beam) is used. For a hollow beam we should evaluate E? in
(E2/B*P)"" at the beam radius, and for a solid beam we should use the mean
square value of E averaged over the beam.

The ordinate in Fig. 3.5 is a factor by which (£2/82P)1/3 as obtained from
Fig. 3.4 and (3.9) should be multiplied to give (E?/8*P)'/* for a hollow or
solid beam.

The gain of the increasing wave is proportional to F(ya) times a factor
from Fig. 3.5, and times the length of the tube in wavelengths, V. ¥V is very
nearly proportional to frequency. Also v, and hence vya, are nearly propor-
tional to frequency. Thus, F(ya) from Fig. 3.4 times the appropriate factor
from Fig. 3.5 times ya gives approximately the gain vs. frequency, (if we
assume that the electron speed matches the phase velocity over the fre-
quency range). This product is plotted in Fig. 3.6. We see that for a given
helix size the maximum gain occurs at a higher frequency and the band-
width is broader as r/a, the ratio of the beam radius to the helix radius,
is made larger.

It is usually desirable, especially at very short wavelengths, to make the
helix as large as possible. If we wish to design the tube so that gain is a maxi-
mum at the operating frequency, we will choose a so that the appropriate
curve of Fig. 3.6 has its maximum at the value of ya corresponding to the
operating frequency. We see that this value of a will be larger the larger is
r/a. In an actual helix, the maximum possible value of r/a is less than unity,
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since the inside diameter of the helix is less than a by the radius of the wire.
Further, focusing difficulties preclude attaining a beam radius equal even to
the inside radius of the helix.

Experience indicates that at very short wavelengths (around 6 milli-
meters, say) it is extremely important to have a well-focused electron beam
with as large a value of 7/a as is attainable.

A characteristic impedance K, may be defined in terms of a “‘transverse”
voltage V', obtained by integrating the peak radial field from a to «, and
from the power flow. In Fig. 3.7, (2/¢) K. is plotted vs. ya. A “longitudinal”
characteristic impedance K¢ is related to K, (3.13). For slow waves K¢
is nearly equal to K,. The impedance parameter £?/8?P evaluated at the
surface of the cylinder is twice K¢. We see that K¢ falls with increasing
frequency.

A simplified approach in analysis of the helically conducting sheet is that
of “developing’’ the sheet; that is, slitting it normal to the direction of con-
duction and flattening it out as in Fig. 3.8. The field equations for such a
flattened sheet are then solved. For large values of ya the field is concentrated
near the helically conducting sheet, and the fields near the developed sheet
are similar to the fields near the cylindrical sheet. Thus the dashed line
in Fig. 3.7 is for the developed sheet and the solid line is for a cylindrical
sheet.

For the developed sheet, the wave always propagates with the speed of
light in the direction of conduction. In a plane normal to the direction of
conduction, the field may be specified by a potential satisfying Laplace’s
equation, as in the case, for instance, of a two-wire or coaxial line. Thus,
the fields can be obtained by the solution of an electrostatic problem.

One can develop not only a helically conducting sheet, but an actual
helix, giving a series of straight wires, shown in cross-section in Iig. 3.9.
In Case I, corresponding to approximately two turns per wavelength, suc-
cessive wires are —, +, —, + etc.; in case II, corresponding to approxi-
mately four turns per wavelength, successive wires are +, 0, —, 0, +, 0 etc.

Figures 3.10 and 3.11 illustrate voltages along a developed sheet and a
developed helix.

Figure 3.13 shows the ratio, R'3, of (£2/8*P)'? on the axis to that for a
developed helically conducting sheet, plotted vs. d/p. We see that, for a
large wire diameter d, (£?/8°P)'/* may be larger on the axis than for a heli-
cally conducting sheet with the same mean radius and hence the same pitch
angle and phase velocity. This is merely because the thick wires extend nearer
to the axis than does the sheet. The actual helix is really inferior to the
sheet.

We see this by noting that the highest value of (E?/3*P)'/® for a helically
conducting sheet is that at the sheet (r = @). With a finite wire size, the
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largest value  can have is the mean helix radius @ minus the wire radius.
In Fig. 3.14, the ratio of (E*/8*P)'* for this largest allowable radius to
(E2/B*P)\ at the surface of the developed sheet is plotted vs. d/p. We see
that, in terms of maximum available field, (E*/8°P)"/?is no more than 0.83 as
high as for the sheet for four turns per wavelength and 0.67 as high as for the
sheet for two turns per wavelength. We further see that there is an optimum
ratio of wire diameter to pitch; about 0.175 for four turns per wavelength
and about 0.125 for two turns per wavelength. Because the maxima are so
broad, it is probably better in practice to use larger wire, and in most tubes
which have been built, d/p has been around 0.5.

In designing tubes it is perhaps best to do so in terms of field on the axis
(Fig. 3.13), the allowable value of /a and the curves of Fig. 3.6.

Figure 3.15 compares the impedance of the developed helix with that of
the developed sheet as given by the straight line of Fig. 3.7.

There are factors other than wire size which can cause the value of E*/g*P
for an actual helix to be less than the value for the helically conducting
sheet. An important cause of impedance reduction is the influence of di-
electric supporting members. Even small ceramic or glass supporting rods
can cause some reduction in helix impedance. In some tubes the helix is
supported inside a glass tube, and this can cause a considerable reduction
in helix impedance.

When a field analysis seems too involved, it may be possible to obtain
some information by considering the behavior of transmission lines having
parameters adjusted to make the phase constant and the character.stic im-
pedance equal to those of the helix. For instance, suppose that the presence
of dielectric material results in an actual phase constant 84 as opposed to a
computed phase constant 8. Equation (3.64) gives an estimate of the con-
sequent reduction of (E2/@*P)'* on the axis.

This method is of use in studying the behavior of coupled helices. For
instance, concentric helices may be useful in producing radial fields in tubes
in which transverse fields predominate in the region of electron flow (see
Chapter XIII). A concentric helix structure might be investigated by means
of a field analysis, but some interesting properties can be deduced more
simply by considering two transmission lines with uniformly distributed self
and mutual capacitances and inductances, or susceptance and reactances.
The modes of propagation on such lines are affected by coupling in a manner
similar to that in which the modes of two resonant circuits are affected by
coupling.

If two lines are coupled, their two independent modes of propagation are
mixed up to form two modes of propagation in which both lines participate.
If the original phase velocities differ greatly, or if the coupling between the
lines is weak, the fields and velocity of one of these modes will be almost
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like the original fields and velocity of one line, and the fields and velocity of
the other mode will be almost like the original fields and velocity of the other
line. However, if the coupling is strong enough compared with the original
separation of phase velocities, both lines will participate almost equally in
each mode. One mode will be a “longitudinal mode” for which the excitations
on the two lines are substantially equal, and the other mode will be a “trans-
verse’’ mode for which the excitations are substantially equal and opposite.

The ratios of the voltages on the lines for the two modes are given by
(3.75). Here it is assumed that the series reactances X and shuntsusceptances
B of the lines are almost equal, differing only enough to make a difference
AT in the propagation constants. Bi; and X;. are the mutual susceptance
and reactance. We see that to make the voltages on the two lines nearly
equal or equal and opposite, By, and X, should have the same sign, so that
capacitive and inductive couplings add.

Fig. 3.1—A helically conducting sheet of radius a. The sheet is conducting along helical
paths making an angle ¥ with a plane normal to the axis.

Increasing the coupling increases the velocity separation between the two
modes, and this is desirable. When there is a substantial difference in ve-
locity, operation in the desired mode can be secured by making the electron
velocity equal to the phase velocity of the desired mode.

To make the capacitive and inductive couplings add in the case of con-
centric helices (Fig. 3.17), the helices should be wound in opposite directions.

3.1 TeE HELICALLY CONDUCTING SHEET

In computing the properties of a helix, the actual helix is usually replaced
by a helically conducting cylindrical sheet of the same mean radius. Such a
sheet is illustrated in Fig. 3.1. This sheet is perfectly conducting in a helical
direction making an angle ¢, the pitch angle, with a plane normal to the
axis (the direction of propagation), and is non-conducting in a helical direction
normal to this ¢ direction, the direction of conduction. Appropriate solutions
of Maxwell’s equations are chosen inside and outside of the cylindrical sheet.
At the sheet, the components of the electric field in the y direction are made
zero, and those normal to the y direction are made equal inside and outside.
Since there can be no current in the sheet normal to the ¢ direction, the



TRAVELING-WAVE TUBES 25

components of magnetic field in the  direction must be the same inside and
outside of the sheet. When these boundary conditions are imposed, one can
solve for the propagation constant and E?/8*P can then be obtained by
integrating the Poynting vector.

The helically conducting sheet is treated mathematically in Appendix IT.
The results of this analysis will be presented here.

2.2

] 2 3 4 5 6
o a coTyP

Fig. 3.2—The radial propagation constant is v* = (82 — B2 Here (Bo/y) cot ¢ is

plotted vs Boa cot i, a quantity proportional to frequency. For slow waves the ordinate is
roughly the ratio of the wave velocity to the velocity the wave would have if it traveled
along the helically conducting sheet with the speed of light in the direction of conduction.

3.1a The Phase Velocily

The results for the helically conducting sheet are expressed in terms of
three phase or propagation constants. These are

Bo = w/c, 8= w/v (3.1)
v=VE -8 (3:2)

BvV1 — (v/c)? (3.3)

Here ¢ is the velocity of light and © is the phase velocity of the wave. 8 is
the phase constant of a wave traveling with the speed of light, which would
vary with distance in the s direction as exp(—jByz). The actual axial phase
constant is 3, and the fields vary with distance as exp(—jBs).

~ is the radial propagation constant. Various field components vary as
modified Bessel functions of argument yr, where 7 is the radius. Particularly,
the longitudinal electric field, which interacts with the electrons, varies
as Lo(yr).

For the phase velocities usually used, v is very nearly equal to 8, as may
be seen from the following table of accelerating voltages Vo (to give an elec-
tron the velocity v), v/c and v/8.

Y
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v ofe v/B
100 .0198 1.000
1,000 L0625 .908
10,000 .1980 .980

Figure 3.2 gives information concerning the phase velocity of the wave
in the form of a plot of (80/7v) cot ¢ as a function of 8, a cot .
The ratio of the phase velocity v to the velocity of light ¢ may be expressed

v/e = Bo/B = (v/B)(Bs/¥) cot ¢ tan ¢ (3.4)
v/c = (y/8) tan ¢ [(Bo/7) cot ¢ ]
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Fig. 3.3—From these curves one can obtain »/c, the ratio of the phase velocity of the
wave to the velocity of light, for various values of tan ¢ and Boa cot .

From Fig. 3.2 we see that, for large values of Bya cot ¥, (8o/¥) cot ¢ ap-
proaches unity. For slow waves /3 approaches unity. Under these circum-
stances, very nearly

7fc = tan ¢ (3.5)

If the wave traveled in the direction of conduction with the speed of light
we would have

v/c = sin ¢
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This is essentially the same as (3.5) for small pitch angles y. Thus, for large
values of the abscissa in Fig. 3.2, the phase velocity is just about that corre-
sponding to propagation along the sheet in the direction of conduction with
the speed of light and hence in the axial direction at a much reduced speed.
For helices of smaller radius compared with the wavelength, the speed is
greater.

The bandwidth of a traveling-wave tube is in part determined by the
range over which the electrons keep in step with the wave. The abscissa of
Fig. 3.2 is proportional to frequency, but the ordinate is not strictly propor-
tional to phase velocity. Hence, it seems desirable to have a plot which does
show velocity directly. To obtain this we can assign various values to cot y.

6
al- ~. _l‘__ﬁ F(7a) = 7.154e-0.66647a
3 — —
2 —ﬁxi Lt‘ | —’_T ]
|
1.0 = ‘
ol — -
o
> 04 N
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9 ] 2 3 a 5 6 7 ) 9
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Fig. 3.4—A curve giving the impedance function F(ya) vs, ya. On the axis, (E?/g2P)1% =
(B/B)3(v/B) 3T (va).

The ordinate (84/v) cot ¥ then gives us v/8s and from (3.2) we see that
v/c = Bo/B = (1 + (v/Bo))'" (3.6)

We have seen that, for large values of Boa cot y, (By/v) cot ¢ approaches
unity, and v/c approaches a value

o/c = (1 + cot? )" = siny (3.7

To emphasize the change in velocity with frequency it seems best to plot the
difference between the actual velocity ratio and this asymptotic velocity
ratio on a semi-log scale. Accordingly, Fig. 3.3 shows (v/c) —sin y vs. Boa
cot v for tan ¢ = .05, .075, .1, .15, .2.

For large values of the abscissa the velocities are those corresponding to
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about 640 volts (tan y = .05), 1,400 volts (.075), 2,500 volts (.1), 5,600 volts
(.15), 9,800 volts (.2).

3.1b The Impedance Parameter (E*/3*P)

Figure 3.4 shows a plot of a quantity F*(ya) vs. ya. This quantity is com-
puted from a very complicated expression (Appendix II), but it is accurately
given over the range shown by the empirical relation

. - — . 6664ya
F(ya) = 7154 ¢ v (3.8)
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Fig. 3.5—Factors by which (/8/2P)' on the axis should he multiplied to give the cor-
rect value for hollow and solid heams of radius r.

For the field on the axis of the helix,
(E2/B*P)V3 = (B/Bo)(v/B)**F (va) (3.9)

We should remember that 8/8 = ¢/v and that v/8 is nearly unity for veloci-
ties small compared with the velocity of light.

In the expression for the gain parameter C, the square of the field E is
multiplied by the current 7, (2.28). If we were to assume that two electron
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streams of different currents, I; and I, were coupled to the circuit through
transformers, so as to be acted on by fields E; and E,, but that the streams
did not interact directly with one another, we would find the effective value
of C* to be given by

C* = (Ei/B'P)(1,/8V,) + (E3/8°P)(I./8Vy)

Thus, if we neglect the direct interaction of electron streams through fields
due to local space charge, we can obtain an effective value of C* by integrat-
ing EdI, over the beam. If we assume a constant current density, we can
merely use the mean square value of E over the area occupied by electron
flow.

The axial component of electric field at a distance r from the axis is To(yr)
times the field on the axis. Hence, if we used a tubular beam of radius », we
should multiply (E2/8°P)""" as obtained from Fig. 3.4 by[ Io(y7)]*/%. The quan-
tity [Zo(yr)]2/ is plotted vs. ya for several values of r/a as the dashed lines
in Fig. 3.5.

Suppose the current density is uniform out to a radius » and zero beyond
this radius. The average value of E? is greater than the value on the axis by
a factor [I2(yr) — I (yr)] and (E2/82P)' from Fig. 3.4 should in this case
be multiplied by this factor to the } power. The appropriate factor is plotted
vs. ya as the solid lines of Fig. 3.5.

We note from (2.39) that the gain contains a term proportional to CN,
where N is the number of wavelengths. For slow waves and usual values of
~va, very nearly, N will be proportional to the frequency and hence to v,
while C is proportional to (E2/2P)'/*. We can obtain (E?/8*P)'"* from Figs.
3.4 and 3.5. The gain of the increasing wave as a function of frequency will
thus be very nearly proportional to this value of (E*/8*°P)'/ times v, or,
times ye if we prefer.

In Fig. 3.6, yaF(vya) is plotted vs. ya for hollow beams of radius r for
various values of r/a (dashed lines) and for uniform density beams of
radius 7 for various values of r/a (solid lines). If we assume that the electron
speed is adjusted to equal the phase velocity of the wave, we can take the
ordinate as proportional to gain and the abscissa as proportional to
frequency.

We see that the larger is r/a, the larger is the value of ya for maximum
gain. For one typical 7.5 cm wavelength traveling-wave tube, ya was about
2.8. For this tube, the ratio of the inside radius of the helix to the mean radius
of the helix was 0.87. We see from Fig. 3.6 that, if a solid beam just filled
this helix, the maximum gain should occur at about the operating wave-
length. As a matter of fact, the beam was somewhat smaller than the inside
diameter of the helix, and there was an observed increase of gain with an
increase in wavelength (a higher gain at a lower frequency). In a particular
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tube for 0.625 cm wavelength, it was felt desirable to use a relatively large
helix diameter. Accordingly, a value of va of 6.7 was chosen. We see that,
unless r/a is 0.9 or larger, this must result in an appreciable increase in gain
at some frequency lower than operating frequency. It was only by use of
great care in focusing the beam that gain was attained at 0.625 cm wave-
length, and there was a tendency toward oscillation, presumably at longer
wavelengths. This discussion of course neglects the effect of transmission
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Fig. 3.6—The ordinate is yaf'(va) times the parameters from Fig. 3.5. For a fixed cur-
rent and voltage it is nearly proportional to gain per unit length, and hence the curves
give roughly the variation of gain with frequency.

loss or gain. Usually the loss decreases when the frequency is decreased,
and this favors oscillation at low frequencies.

3.1c I'mpedance of the Helix

No impedance which can be assigned to the helically conducting sheet
can give full information for matching a helix to a waveguide or transmission
line. As in the case of transducers between a coaxial line and a waveguide or
between waveguides of different cross-section, the impedance is important,
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but discontinuity effects are also important. However, a suitably defined
helix impedance is of some interest.

Figure 3.7 presents the impedance as defined on a voltage-power basis.
The peak “transverse” voltage V, is obtained by integrating the radial elec-
tric field from the radius a of the helically conducting sheet to . The
“transverse’ characteristic impedance K, is defined by the relation

= H(VY/K)
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Fig. 3.7—Curves giving the variation of transverse impedance, K, , with ya.

The impedance is found to be given by
0 G)r -0+ k)
K, = "= 1[1 It — I 1
(T 13 ! ("YU)"' + IlKo ( L 0 )
I[} IIKD - - 2 !
() ) o]

The I’s and K's are modified Bessel functions of argument ya.
The dashed line on Fig. 3.7 is a plot of 30/ya vs. ya. It may be seen that,
for large values of ya, very nearly

K. = (8/Bo)(v/B)*(30/va) (3.11)

(3.10)
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and in the whole range shown the impedance differs from this value by a
factor less than 1.5.

We might have defined a “longitudinal” voltage V¢ as half of the integral
of the longitudinal component of electric field at the surface of the helically
conducting sheet for a half wavelength (between successive points of zero
field). We find that

Ve= 1= v/} V.= (v/B)V. (3.12)
and, accordingly, the “longitudinal impedance” K¢ will be
Ke=[1— (0/0))K, = (v/B)K, (3.13)

Our impedance parameter, FE?/8*P, is just twice this “longitudinal
impedance.”
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Fig. 3.8—A ‘““developed” helically conducting sheet. The sheet has been slit along a
line normal to the direction of conduction and flattened out.

The transverse voltage V, is greater than the longitudinal voltage V¢
because of the circumferential magnetic flux outside of the helix. For slow
waves V¢ is nearly equal to V, and the fields are nearly curl-free solutions of
Laplace’s equation. In this case the circumferential magnetic flux is small
compared with the longitudinal flux inside of the helix.

For the circuit of Fig. 2.3 the transverse and longitudinal voltages are
equal, and it is interesting to note that this is approximately true for slow
waves on a helix. For very fast waves, the longitudinal voltage becomes small
compared with the transverse voltage.

For a typical 4,000-megacycle tube, for which ya = 2.8, Fig. 5 indicates a
value of K, of about 150 ochms.

3.2 TuE DEVELOPED HELIX

For large helices, i.e., for large values of vya, the fields fall off very rapidly
away from the wire. Under these circumstances we can obtain quite accurate
results by slitting the helically conducting sheet along a spiral line normal
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to the direction of conduction and flattening it out. This gives us the plane
conducting sheet shown in Fig. 3.8. The indicated coordinates are z to the
right and vy upward: v is positive into the paper. The fields about the de-
veloped sheet approximate those about the helically conducting sheet for
distances always small compared with the original radius of curvature.

The straight dashed line shown on the helix impedance curve of Fig. 3.7
can be obtained as a solution for the “developed helix.” We see that it is
within 109, of the true curve for values of ya greater than 2.8. We might note
that a 109 error in impedance means only a 339, error in the gain
parameter C.

In solving for the fields around the sheet, the developed surface can be
extended indefinitely in the plus and minus y directions. In order that the
fields may match when the sheet is rolled up, they must be the same at
y =0,z = 2rasiny and y = 2ma cos ¢, 3 = 0. The appropriate solutions
are plane electromagnetic waves traveling in the y direction with the speed
of light.

For positive values of x, the appropriate electric and magnetic fields are

EI _ Eﬂg--yg e—j‘yz e—jﬁ'ou
E, = jEe " ¢ 77 ¢ (3.14)
E, =0

We should note that the x and = components of the field can be obtained
as gradients of a function

b = —(Eo/y)e 7™ ¢ 77 ¢ (3.15)
where
E. = —oad/0z
(3.16)
E. = —0d/dy
Pd/ax + 9P/dzt = 0 (3.17)

Thus, in the xz plane, ® satisfies Laplace’s equation.
The magnetic field is given by the curl® of the electric field times 7/wu.
Its components are:

Ho = = pyeve e gibow
ue
H. = :} Eoe ¥ —ivz —iBov
: we e e (3.18)
uc
o,=0

8 Maxwell's equations are given in Appendix T.
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The fields in the —zx direction may be obtained by substituting exp(yx)
for exp(—yx).

If the sheet is to roll up properly, the points @ on the bottom coinciding
with the points & on the top, we have

2rya sin ¢ — 2xBoa cos ¢ = 2nw (3.19)

where 7 is an integer.

The solution corresponding most nearly to the wave on a singly-wound
helix is that for # = 0. The others lead to a variation of field by » cycles
along a circumferential line. These can be combined with the » = 0 solu-
tion to give a solution for a developed helix of thin tape, for instance. Or,
appropriate combinations of them can represent modes of helices wound of
several parallel wires. For instance, we can imagine winding a balanced trans-
mission line up helically. One of the modes of propagation will be that in
which the current in one wire is 180° out of phase with the current in the
other. This can be approximated by a combination of the » = 41 and
n = —1 solutions. This mode should not be confused with a fast wave, a
perturbation of a transverse electromagnetic wave, which can exist around
an unshielded helix.

Usually, we are interested in the slow wave on a singly-wound helix, and
in this case we take n = 0 in (3.19), giving

ysny — Bocosy =0

(3.20)
tany = Bo/v
) Bo
smy = Oy g (3.2
cosy = t‘va—:?ﬁ’(ﬂl)_” (3.22)

Let us evaluate the propagation constant in the axial direction. From Fig.
3.8 we see that, in advancing unit distance in the axial direction, we pro-
ceed a distance cos ¥ in the z direction and sin ¢ in the y direction. Hence,
the phase constant 8 in the axial direction must be

8= pBosiny + ycosy (3.23)
Using (3.18) and (3.19), we obtain

B=G+7)" (3.24)

vy = (8" — 8" (3.25)

These are just relations (3.2, 3.3).
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The power flow along the axis is that crossing a circumferential circle,
represented by lines a-b in Fig. 3.8. As the power flows in the y direction,
this is the power associated with a distance 2ra sin ¢ in z direction. Also,
the power flow in the 4« region will be equal to the power flow in the —x
region. Hence, the power flow in the helix will be twice that in the region
x=0tox=4=x,2=0tos = 2rasiny.

2rasiny o0
P= 2[ f (O(E.HY — E.HY) dx ds (3.26)
z=0 =()
This is easily integrated to give
P = 27ra sin Y Fy (327)
yuc
The magnitude E of the axial component of field is
E = Eycosy (3.28)
Using (3.21), (3.22), (3.24) and (3.28) in connection with (3.27) we obtain
(E*/B*P) = (v/B)*(8/Bo)(uc/2mya) (3.29)
We have
ue = u/\ e = /e = 377 ohms
Thus

E/BP = (v/B)*(B/Bo)(60/va) (3.30)

The longitudinal impedance is half this, and the transverse impedance is
(8/v)* times the longitudinal impedance.

3.3 Errict oF WIRE SizE

An actual helix of round wire, as used in traveling-wave tubes, will of
course differ somewhat in properties from the helically conducting sheet
for which the foregoing material applies.

One might expect a small difference if there were many turns per wave-
length, but actual tubes often have only a few turns per wavelength. For
instance, a typical 4,000 mc tube has about 4.8 turns per wavelength, while
a tube designed for 6 mm operation has 2.4 turns per wavelength,

If the wire is made very small there will be much electric and magnetic
energy very close to the wire, which is not associated with the desired field
component (that which varies as exp(—jBz) in the z direction). If the wire
is very large the internal diameter of the helix becomes considerably less
than the mean diameter, and the space available for electron flow is reduced.
As the field for the helically conducting sheet is greatest at the sheet, this
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means that the maximum available field is reduced. Too, the impedance
will depend on wire size.

Tt thus seems desirable to compare in some manner an actual helix and the
helically conducting sheet. It would be very difficult to solve the problem
of an actual helix. However, we can make an approximate comparison by

a method suggested by R. S. Julian.
In doing this we will develop the helix of wires just as the helically con-

Fig. 3.9-—The wires of a developed helix with about two turns per wavelength (case I)
and about four turns per wavelength (case II). In the analysis used, the wires are not
quite round.
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Fig. 3.10—Voltages on a developed helically conducting sheet for two turns per wave-
length.

ducting sheet was developed, by slitting it along a helical line normal to the
wires. We will then consider two special cases, one in which the wires of the
developed helix are one half wavelength long and the other in which the
wires are one quarter wavelength long.

The waves propagated on the developed helix are transverse electromag-
netic waves propagated in the direction of the wires, and the electric fields
normal to the direction of propagation can be obtained from a solution of
Laplace’s equation in two dimensions (as in (3.15)-(3.17)).
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It is easy to make up two-dimensional solutions of Laplace’s equation
with equipotentials or conductors of approximately circular form, as shown
in Fig. 3.9. In case I, the conductors are alternately at potentials —V, 4V,
—V, etc.; and in case II, the potentials are —V, 0, 4V, 0, —V, 0, +V,
etc. Far away in the x direction from such a series of conductors, the field
will vary sinusoidally in the z direction and will vary in the same manner
with v as in the developed helically conducting sheet. Hence, we can make
the distant fields of the conductors of cases I and II of Fig. 3.9 equal to the
distant fields of developed helically conducting sheets, and compare the
E?/B*P and the impedance for the different systems. Case I would correspond
to a helix of approximately two turns per wavelength and case IT to four
turns per wavelength.

3.3a Two Turns per Wavelength

Figure 3.10 is intended to illustrate the developed helically conducting
sheet. The vertical lines indicate the direction of conduction. The dashed
slanting lines are intersections of the original surface with planes normal to
the axis. That is, on the original cylindrical surface they were circles about
the surface, and they connect positions along the top and bottom which
should be brought together in rolling up the flattened surface to reconsti-
tute the helically conducting sheet.

Waves propagate on the developed sheet of Fig. 3.10 vertically with the
speed of light. The vertical dimension of the sheet is in this case taken as
A/2, where X is the free-space wavelength.” The sine waves above and bhelow
Fig. 3.10 indicate voltages at the top and the bottom and are, of course,
180° out of phase. As is necessary, the voltages at the ends of the dashed
slanting lines, (really, the voltages at the same point before the sheet was
slit) are equal.

A wave sinusoidal at the bottom of the sheet, zero half way up and 180°
out of phase with the bottom at the top would constitute along any horizon-
tal line a standing wave,not a traveling wave. Actually, this is only one com-
ponent of the field. The other is a wave 90° out of phase in both the horizon-
tal and vertical directions. Its maximum voltage is half-way up, and it is
indicated by the dotted sine wave in Fig. 3.10. The voltage of this com-
ponent is zero at top and bottom. Tt may be seen that these two compo-
nents propagating upward together constitute a wave traveling to the right.
The two components are orthogonal spatially, and the total power is twice
the power of either component taken separately.

Figure 3.11 indicates an array of wires obtained by developing an actual

7 Section 3.3a is referred to as “two turns per wavelength.” This is not quite accurate;
it is in error by the difference between the lengths of the vertical and the slanting lines in

Fig. 3.10.
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helix which has been slit along a helical line normal to the wire of which the
helix is wound. The dashed slanting lines again connect points which were
the same point before the helix was slit and developed. Again we assume a
height of a half wavelength. Thus, if the polarities are maximum +, —, +.
— etc. as shown at the bottom, they will be maximum —, +, —, +, —, +
etc. as shown at the top, and zero half-way up. In this case the field is a
standing wave along any horizontal line, and no other component can be
introduced to make it a traveling wave. Half of the field strength can be re-
garded as constituting a component traveling to the right and half as a
component traveling to the left.

Top + = + =
J
/ / / !
/ ; ! /
/ / / /
/ / ! /
/ 7 ! /
/ / / /
/ / ]
/ ! ’ i
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/ / ; /
BOTTOM 4 4
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Fig. 3.11—Voltages on a developed helix for two turns per wavelength.

NN

The equipotentials used to represent the field about the wires of Fig. 3.9,
Case T and Fig. 3.10 belong to the field

V + ¢ = In tan (z + jx) (3.31)

Here V is potential and ¢ is a stream function. There are negative equi-
potentials about z = x = 0 and positive equipotentials about x = 0, 5 =
/2. For an equipotential coinciding with the surface of a wire of z-diam-
eter, 2 swire, d/p is thus

Bwire
d/p = /i (3.32)
atx = 0,z < /4
V =Intans (3.33)
atz =0
V = In tanh x (3.34)

Hence, for an equipotential on the wire with an s-diameter 2z, the x-diam-
eter 2x can be obtained from (3.33) and (3.34) as

2x = 2 tanh™! tan 3 (3.35)
Of course, the ratio of the x-diameter d; to the pitch is given by

X

di/p = /4 (3.36)

where x is obtained from (3.35).
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In Fig. 3.12, d,/d is plotted vs. d/p by means of (3.35) and (3.36). This
shows that for wire diameters up to d/p = .5 (open space equal to wire diam-
eter) the equipotentials representing the wire are very nearly round.

The total electric flux from each wire is 2we and the potential of a wire of

z-diameter 2z is V' = —In tan z. Hence, the stored energy W, per unit length
per wire, half the product of the charge and the voltage, is
W, = —meln tan z (3.37)
1.8 ‘F T
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Fig. 3.12—Ratio of the two diameters of the wire of a helix for two turns per wave-
length (see Fig. 3.9) vs. the ratio of one of the diameters to the pitch.

The total distant field and the useful field component are given by ex-
panding (3.31) in Fourier series and taking the fundamental component,
giving

V = —2 cos 2267 (3.38)
The — sign applies for ¥ > 0 and the + sign for 2 < 0. Half of this can be
regarded as belonging to a field moving to the right and half to a field moving
to the left.

For a field equal to half that specified by (3.38), which might be part of
the field of a developed helically conducting sheet, the stored energy W.
per unit depth can be obtained by integrating (E: + EJ) €/2 from x =
—® tox = + % and from z = —x/4 to +r/4, and it turns out to be

Wy = § me (3.39)

If we add another field component similar to half of (3.38), but in quadra-

ture with respect to z and ¢, we will have the traveling wave of a helically

conducting sheet with the same distant traveling field component as given

by (3.31). Hence, the ratio R of the stored energy for the developed sheet
to the stored energy for the developed helix is
1

In tan 2

R =2Wqy/W, = (3.40)



40 BELL SYSTEM TECHNICAL JOURNAL

R is the ratio of the stored energies, and hence of the power flows (since
the waves both propagate with the speed of light) of a developed helically
conducting sheet and a developed helix with the same distant traveling fun-
damental field components. Hence, at a given distance (E?/8*P)'/ for the
helix is R times as great as for the helically conducting sheet. In Fig.
3.13, R is plotted vs. d/p.
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Fig. 3.13—Ratio R'/ of (E*/*P)'* for a helix to the value for a helically conducting
sheet for the distant field.
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The maximum available field for the developed helically conducting sheet
(equation (3.38)) is that for = 0. The maximum available field for the
developed helix (equation (3.31)) is that for an electron grazing the helix
inner or outer diameter, that is, an electron at a value of x given by (3.35).
The fundamental sinusoidal component of the field varies as exp(—2x)
for both the sheet and the helix, and hence there is a loss in E* by a factor
exp(—4x) because of this, We wish to make a comparison on the basis of
E?and power or energy. Hence, on basis of maximum available field squared
we would obtain from (3.40)

R = 1 (3.41)

“Intans

where ¥ is obtained from (3.35). Figure 3.14 was obtained from (3.32),
(3.35) and (3.41).
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FFig. 3.15—The transverse impedance of helices with two and four turns per wavelength
vs. the ratio of wire diameter to pitch.

In a transmission line the characteristic impedance is given by

K = 1/ % (3.42)

Here 1 and C are the inductance and capacitance per unit length. This im-
pedance should be identified with the transverse impedance of the helix.
We also have for the velocity of propagation, which will be the velocity of
light, ¢,

1
¢ = - '\/,LTE (3.43)
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From (3.42) and (3.43) we obtain
K. = Vue/C = V/u/e(e/C)

(3.44)
= 377¢/C
Now C is the charge Q divided by the voltage V. Hence
K, = 377€¢V/Q (3.45)
In this case we have
K, = 337¢ln tan 2z
2me
(3.46)
K; = —60 In tan,

To obtain the impedance of the corresponding helically conducting sheet
we assume, following (3.30)

K. = (v/B) (v/Bo) (30/va) (3.47)
and assuming a slow wave, let v = B, so that
K, = 30/Bwa (3.48)

If we are to have n turns per wavelength, and the speed of light in the
direction of conduction, then we must have

Boa = 1/n (3.49)

whence

K:= 30n (3.50)

For n = 2 (two turns per wavelength), K = 60. In Fig. 3.15, the charac-
teristic impedance K, as obtained from (3.46) divided by 60 (from (3.50))
is plotted vs. d/p.

3.3b Four Turns per Wavelength

In this case there are enough wires so that we can add a quadrature com-
ponent as in Fig. 3.10 and thus produce a traveling wave rather than a stand-
ing wave. Thus, we can make a more direct comparison between the de-
veloped sheet and the developed helix.

For the developed helix we have

A

w2Grm O

V +j¢ = Intan (z + jx) +
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If we transform this to new coordinates z;, x; about an origin at z = 0,
x = /4 we obtain

_— 1 + tan (z +j.n)) _ ( A )
Vtw =l (1 — tan (z1 + ja) sin 2 (z; + jx1) (3.52)

We can now adjust A to give a zero equipotential of diameter 2z, about x =
= 0,2 = 0 (z = w/4) by letting

(3.53)

A = (sin 251) In (Ml)

1 —tangz

If A is so chosen, there will be roughly circular equipotentials of z-diameter
2z about z = =& /4, etc. There will also be roughly circular equipotentials
of the same z-diameter about z = 0, &=7/2, etc., of potential V. That
about z = 0 has a potential

V= In (1 + tan zl) A (3.54)

1 — tan z/ cos 2z

where A is taken from (3.53).
The distance between centers of equipotentials is p = =/4, so that the
ratio of z-diameter of the equipotentials to pitch is

d/p = 2a/(r/4) = z/(n/8) (3.55)
The x-diameter of the equipotential about 2 = 0 (and of those about z =
:1:32r etc.) can be obtained as 2x by letting 7 have the value given by (3.54)

and setting s = 0 in (3.51), giving

- - )
! In tanh x + cosh 2x (3.56)

The ratio of this a-diameter to the pitch, di/p, is
di/p = y/(x/8), (3.57)

x is obtained from (3.56).
To obtain the x-diameter of the 0 potential electrodes we take the deriva-
tive (3.52) with respect to z;, giving the gradient in the z direction

av i W _ sec” (z; + j.r.l)__ sec” (z; + jxi)
% 8z 14 tan(z +jx) 1 — tan (; + jo)

_ 24 cos 2(z + jx1)
sin 2(z; + ja)

(3.58)
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We then let z; = 0 and find the value of %, for which ¥V /dz; = 0. When 2, =
0, (3.58) becomes

(1 — tanh® x,)

(1 + tanh? ;) (3.59)

A = s'nh 2x, tanh 2a;

As A is given by (3.53), we can obtain x, from (3.57), and the ratio of the
x-diameter d» to the pitch is

dofp = %/(m/8) (3.60)
Figure 3.16 shows d,/d and ds/d vs. d/p.
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Fig. 3.16—Ratios of the wire diameters for the four turns per wavelength analysis.

The ratios R and the impedance are obtained merely by comparing the
power flow for the developed sheet with a single sinusoidally distributed
component with the power flow for case II for the same distant field. In a
comparison with the helically conducting sheet, # = 2 is used in (3.50). The
results are shown in Figs. 3.13, 3.14, 3.15. We see that on the basis of the
largest available field, the best wire size is d/p = .19.

3.4 TransmissioN LINE Equarions AND HELICES

It is of course possible at any frequency to construct a transmission line
with a distributed shunt susceptance B per unit length and a distributed
shunt reactance X per unit length and, by adjusting B and X to make the
phase velocity and E?/B*P the same for the artificial line as for the helix.
In simulating the helix with the line, B and X must be changed as frequency
is changed. Indeed, it may be necessary to change B and X somewhat in
simulating a helix with a forced wave on it, as, the wave forced by an elec-
tron stream. Nevertheless, a qualitative insight into some problems can be
obtained by use of this type of circuit analogue.
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3.4a Effect of Dielectric on Helix I'mpedance Parameler

One possible application of the transmission line equivalent is in estimating
the lowering of the helix impedance parameter (E?/g2P)!/3.

In the case of a transmission line of susceptance B and reactance X per
unit length, we have for the phase constant 8 and the characteristic imped-
ance K

B8 =/BX (3.61)
K = +/X/B (3.62)

Now, suppose that B is increased by capacitive loading so that 8 has a
larger value 8;. Then we see that K will have a value K4

Ka = (B/BoK (3.63)

Where should K be measured? It is reasonable to take the field at the
surface of the helix or the helically conducting sheet as the point at which
the field should be evaluated. The field at the axis will, then, be changed
by a different amount, for the field at the surface of the helix is 7y(ya) times
the field at the axis.

Suppose, then, we design a helix to have a phase constant 8 (a phase
velocity w/8) and, in building it, find that the dielectric supports increase
the phase constant to a value 84 giving a smaller phase velocity w/84. Sup-
pose 8/8, is large, so that v is nearly equal to 3. How will we estimate the
actual axial value of (E*/82P)1*? We make the following estimate:

2,02 py1/3 B 1!3(‘;"(‘6“) )-3.'3 2 192 py1/3
(E° /8" P)d” = (f?d) To(Bad) (E°/B° P) (3.64)

Here the factor (8/84)'/* is concerned with the reduction of impedance
measured at the helix surface, and the other factor is concerned with the
greater falling-off of the field toward the center of the helix because of the
larger value of y (taken equal to 8 and B4 in the two cases).

The writer does not know how good this estimate may be.

3.4b Coupled Helices

Another case in which the equivalent transmission line approach is par-
ticularly useful is in considering the problem of concentric helices. Such
configurations have been particularly suggested for producing slow trans-
verse fields. They can be analyzed in terms of helically conducting cylinders
or in terms of developed cylinders. A certain insight can be gained very
quickly, however, by the approach indicated above.

We will simulate the helices by two transmission lines of series impedances
X and jX,, of shunt admittances jB; and jB. coupled by series mutual
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impedance and shunt mutual admittance jX» and jBy,. If we consider a
wave which varies as exp(—jI'z) in the z direction we have

PI]_ - _-,r'BlVl _ jBqu = O (3.65)
PV1 - lefl —lezfz =0 (3.66)
I'l, — jBsVa — jBuV,i =0 (3.67)
I'Ve — jXol, — jX2f =0 (3.68)
If we solve (3.65) and (3.67) for I; and I, and eliminate these, we obtain
Ve _ —(" 4+ X\ B + X2 Biy)
- = 3.69
Vi X1Bp+ By Xn (3.69)
/. — 2 X Bo 9
-[_’l' — (P + .\_B_ + X12B1-) (3.70)
Vs Xy Byy 4 By Xy

Multiplying these together we obtain
Pd + (Xl Bl + XZ BE + 2X12 Bl?)l-|2 (3 71)
+ (Xu X'z—Xlzz) (31-32_3122) =0 .

We can solve this for the two values of T
I? = —1(X, Bi + X2 Bs + 2X12 Bpo)
+ 3 (X1 Bi — X2 Bo)* + 4 (X1 Bi + Xz By) (X2 Be)  (3.72)
+ 4 (X1 X2 Bi? + By B: X))

Each value of T represents a normal mode of propagation involving both
transmission lines. The two square roots of each I of course indicate waves
going in the positive and negative directions.

Suppose we substitute (3.72) into (3.69). We obtain

—(Xa By — X2 By) & (X, By — X2 Bo)* .
Va _ 4 4(X3 By + Xo B)(Xis Bu) + 4(Ni Xa Bt + By B Xl (5 0o
Vi 2(Xy By + By X12) o
We will be interested in cases in which X8, is very nearly equal to X.B,.
Let

AT = X1B, — X:B» (3.74)
and in the parts of (3.73) where the difference of (3.74) does not occur use

Xi=Xo=X
(3.75)
B1 = Bz = B
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Then, approximately

Ve _ —AT} = [(ATY)’ 4 4(XBw + BX)"
Vi 2(XB;; + BXp)

(3.76)

Let us assume that AT? is very small and retains terms up to the first
power of AT?

Ve AT}
7 - T W%E, + BX) (3.77)
Let
It = — XB (3.78)
Ve AT3/Tg
o 41 — 3.79
V 2(Bu/B + X1o/X) (3.79)

Let us now interpret (3.79). This says that if AT is zero, that is, if X,B, =
X2 B, exactly, there will be two modes of transmission, a lonzitudinal mode
in which Vo/V, = +1 and a lransverse mode in which Vy/V, = —1. If
we excite the transverse mode it will persist. However, if A # 0, there
will be two modes, one for which V; > V; and the other for which V, < Vi
in other words, as AT is increased, we approach a condition in which one
mode is nearly propagated on one helix only and the other mode nearly
propagated on the other helix only. Then if we drive the pair with a trans-
verse field we will excite both modes, and they will travel with different
speeds down the system.

We see that to get a good transverse field we must make

AT o )
T << 2(Bi/B + X1i/X) {(3.80)
In other words, the stronger the coupling (Bis, X12) the more the helices
can afford to differ (perhaps accidentally) in propagation constant and the
pair still give a distinct transverse wave.
Thus, it seems desirable to couple the helices together as tightly as pos-
sible and especially to see that B and X, have the same signs.

“Let us consider two concentric helices wound in opposite directions, as in
Fig. 3.17. A positive voltage V; will put a positive charge on helix 1 while a
positive voltage V. will put a negative charge on helix 1. Thus, Bys/B is
negative. It is also clear that the positive current /3 will produce flux link-
ing helix 1 in the opposite direction from the positive current I, thus mak-
ing X12/X negative. This makes it clear that to get a good transverse field
between concentric helices, the helices should be wound in opposite direc-
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tions. If the helices were wound in the same direction, the “transverse”
and “longitudinal’’ modes would cease to be clearly transverse and longitu-
dinal should the phase velocities of the two helices by accident differ a little.
Further, even if the phase velocities were the same, the transverse and longi-
tudinal modes would have almost the same phase velocity, which in itself
may be undesirable.

Field analyses of coupled helices confirm these general conclusions.

+I) +V

Fig. 3.17—Currents and voltages of concentric helices.

3.5 Asour Loss N HELICES

The loss of helices is not calculated in this book. Some matters concern-
ing deliberately added loss will be considered, however.

Loss is added to helices so that the backward loss of the tube (loss for a
wave traveling from output to input) will be greater than the forward gain.
If the forward gain is greater than the backward loss, the tube may oscillate
if it is not terminated at each end in a good broad-band match.

In some early tubes, loss was added by making the helix out of lossy wirz,
such as nichrome or even iron, which is much lossier at microwave frequen-
cies because of its ferromagnetism. Most substances are in many cases not
lossy enough. Iron is very lossy, but its presence upsets magnetic focusing.

When the helix is supported by a surrounding glass tube or by paralle!
ceramic or glass rods, loss may be added by spraying aquadag on the in-
side or outside of the glass tube or on the supporting rods. This is advan-
tageous in that the distribution of loss with distance can be controlled.

It is obvious that for lossy material a finite distance from the helix there
is a resistivity which gives maximum attenuation. A perfect conductor would
introduce no dissipation and neither would a perfect insulator.

If lossy material is placed a little away from the helix, loss can be made
greater at lower frequencies (at which the field of the helix extends out
into the lossy material) than at higher frequencies (at which the fields of
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the helix are crowded near the helix and do not give rise to much current in
the lossy material. This construction may be useful in preventing high-
frequency tubes from oscillating at low frequencies.

Loss may be added by means of tubes or collars of lossy ceramic which fit
around the helix.
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APPENDIX 1
MISCELLANEOUS INFORMATION

This appendix presents an assortment of material which may be useful
to the reader.

CONSTANTS

Electronic charge-to-mass ratio:

n = e¢/m = 1,759 X 10" Coulomb/kilogram
Electronic charge: e = 1.602 X 107"
Dielectric constant of vacuum: e = 8.854 X 107" Coulomb/meter
Permitivity of vacuum: u = 1.257 X 10~ Henry/meter

Boltzman’s constant: £ = 1.380 X 10~ Joule/degree

Coulomb

Cross Probpucis

! H

(A" X A")e = Ay AY — A, 4,
(A" X A"), = AL A7 — A, A
(A’ X A”"). = AL Ay — A, A

MAXWELL’S EQUATIONS: RECTANGULAR COORDINATES

dE, 0K, . oI, oH, .

0% _ O~ juuH, — 5 jweE, + J.
ay a9z Jon dy dz JueEs + J
ok, OE, . aH, oH. D

— = — H - —_— —_ =

az dx Jont dz dx Jueky + Jy
AE, Ik, . afn, oH. .

- = - H, - = E, P
dx ay Jen dx ay juels + 7

MAXWELL’S EQUATIONS: AXIALLY SYMMETRICAL

E . aH -

6__¢ = — jopH, = —(JweF, + J,)

0z dz

dEp ak, . al, aH, .

oLp _ dL: _ oW Wy Oz _ . E

92 ap Joultd, 9z ap Jwek, + T,
d

d . .
f‘}_p (Pqu) = —jwupH, (PHw) = p(jweE. + J2)

dp
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MISCELLANEOUS ForRMULAE INVOLVING [,(x) AND K, (x)

L L) = L) = 2 1Z),  KealZ) = Kenl2) = — 2 KA2)
2 Loo(Z) + La(Z) = 2I0(Z),  K.a(Z) + Ka(Z) = — 2K,(Z)

3. Z1NZ) + vI,(Z) = ZI,\(2Z), ZK.(Z) + vK.(Z) = — ZK,\(Z)
4. ZI(2) — vI(Z) = ZLn(Z),  ZK[(Z) — vK\(Z) = — ZK,n(Z)

d " y—m d m -

51

= ( - )mzv_vafm (Z)

y ( d ) (4)} _Lan(2) ( d ){K (7)}_( n Keinl(2)
" \ZdZ zZr Zvim ZdZ zr Zrim

7. I(Z2) = I(Z), Kio(Z) = —K\(2)
8. I.,(2) =1.2), K_(2)=K,(2)

1/2
(=) o
9. KL,"_!(Z) = (zz) (4

10. I(Ze™) = ™"'1,(2)

S n mwr
1.(2)
sm

12. I(Z2) Kua(Z) + L.n(Z) K.(Z) = 1/Z

For small values of X:

13. I(X) = 1 4+ .25 X* 4 015625 X* +

14. L,(X) = .5X + .0625 X* 4+ 002604 X4+ ...

11' Ky(zcmri) — —mvnK (7)

_ N\, v . |
15. Ko(X) = —{'y—l-ln (’2)} 1,,(\)+ X +128 g o

N X 11 3
16. K,(‘\)—{-y—l—ln(? L(X) + X—i,\ _61\ + }
¥ = .5772 ... (Euler’s constant)

For large values of X:

!.\- )’- - -
nnm~—h_@+w+£wb+mm+ }

(27 X) X Xt
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. e¥ 375 1171875 .102539
18100 ~ o {1 - T - MR - R
1/2 -
. P —x 125 . 0703125 073242
19. Ku(\) ~ (_QX) e {1 — 'X— + XQ —_ X:l —|— . .}

1/2
. T — 375 1171875 | 102539

Fig. A1.1 shows I,(X) (solid line) and the first two terms of 13 and the
first term of 17 (dashed lines).

Fig. A1.2 shows 7,(X) (solid line) and the first term of 14 and the first
term of 18 (dashed lines).

Fig. A1.3 shows K,(X) (solid line) and u{'y + In (JE{)} Iy(X) and the
first term of 19 (dashed lines).

Fig. A1.4 shows Ky(X) (solid line) and {T +ln @)}II(X) + 1/X and
the first term of 20 (dashed lines).

200 l

100 /
sof /

60

. | /
at

1

0 I 2 3 a 5 6 7
x
Fig. A1.1—The correct value of Io(X) (solid line), the first two terms of the series

expansion 13 (dashed line from origin), and the first term of the asymptotic series 17
(dashed line to right).
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Fig. A1.2—The correct value of I1(X) (solid line), the first term of the series ex-
pansion 14 (lower dashed line), and the first term of the asymptotic series 18 (upper
dashed line).
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Fig. A1.3—The correct value of Ky(X) (solid line), — (v + In (E)} Iy(X) from the

series expansion 15 (left dashed line), and the first term of the asymptotic series 19
(right dashed line).
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Fig. A1.4—The correct value of K,(X) (selid line), {v +In (f)} L(X) from the

series expansion 16 (upper dashed line), and the first term of the asymptotic series 20
(lower dashed line).
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APPENDIX II

PROPAGATION ON A
HELICALLY CONDUCTING CYLINDER

The circuit parameter important in the operation of traveling-wave tubes
is:

(E:/8°P)" ¢

8 = w/v. (2)
Here E, is the peak electric field in the direction of propagation, P is the
power flow along the helix, and v is the phase velocity of the wave. The
quantity E%/BP has the dimensions of impedance.

While the problem of propagation along a helix has not been solved, what
appears to be a very good approximation has been obtained by replacing
the helix with a cylinder of the same mean radius « which is conducting
only in a helical direction making an angle ¥ with the circumference, and
nonconducting in the helical direction normal to this.

An appropriate solution of the wave equation in cylindrical co-ordinates
for a plane wave having circular symmetry and propagating in the z direc-
tion with velocity

w
= —, 3
3 (3)
less than the speed of light ¢, is
E, = [ALy(yr) + BKo(yn)]e ™ (4)
where 7, and K, are the modified Bessel functions, and
2
V=8~ (‘;’) = 8~ Bi. (5)

The form of the z (longitudinal) components of an electromagnetic field
varying as ¢ and remaining everywhere finite might therefore be

Ha = Bo(yr)e' ™™ ©)

Ey = Byly(yr)e“' ™ (7)
inside radius @, and

Hp = BzKu(‘Yf)ej (wt—pe) (8)
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Eu = BuKo(yr)e ™™™ 9

outside radius a. Omitting the factor ¢’ “*~" the radial and circumferential
components associated with these, obtained by applying the curl equation,
are, inside radius «,

Hy = B;j%e Li(yr) (10)
H = BI%B L) (11)
Ea = = B2 1) (12)
E,s = ang Li(y7) (13)
and outside radius a
Hew = — B2 Kyl (14)
Hy = —32-%5 Ky(yr) (15)
Eor = B2 Koo (16)
Es = r—B4j?'6 Ki(yr). (17)

The boundary conditions which must be satisfied at the cylinder of radius
« are that the tangential electric field must be perpendicular to the helix
direction

Essin ¥ + Egcos¥ =10 (18)

E.sin ¥ + Eycos ¥ = 0, (19)
the tangential electric field must be continuous across the cylinder

E. = Eu (and Ey = Ey), (20)

and the tangential component of magnetic field parallel to the helix direc-
tion must be continuous across the cylinder, since there can be no current
in the surface perpendicular to this direction.

H;] sin ¥ + Hau cos ¥ = H;:g sin ¥

(21)
+ Hy4 cos V.
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These equations serve to determine the ratios of the B’s and to determine
v through

s Io(ya)Ko(ya) 2
('YC!) m = (,Boa cot ‘I’) . (22)

We can easily express the various field components listed in (6) through
(17) in terms of a common amplitude factor. As such expressions are useful
in understanding the nature of the field, it seems desirable to list them in
an orderly fashion.

InsipE THE HELIX:

E, = BIy(yr)e@t=# (23)
E =g g Tu(yr)e? @ (24)
. phlya) 1 (wt—fz)
f.'.fp = B Il('ya) m Il('yr)e (25)
_ B yI(ya) 1 jwi—fz)
H. = —j % B Ii(va) cot ¥ Io(vyr)e (26)
B 8 Ip(ya) 1 (at—pz)
H, =2 B2ye) 1 i
¥ 8 hi(va) cot g 17 @
Hy = ] g @3 I(Tr)e:'(wt—ﬁz)_ (28)
v
OutsipE THE HELIX:
o _ o Lo(ya) itat—pz)
E.=B Kova) Ko(yr)e (29)
. . B Io(ya) . $(wt—B2)
E. = —jB= K
B2 va) Ki(yr)e (30)
Io(‘Ya) 1 - F(wt—fz2)
Ey = —B 2270
@ B Klya) ot ¥ Ki(yr)e (31)
_ . B v ID(‘YII) 1 - i wi—Bz)
H, = 7 E IB_[) Kl('ya)- C()_tlj/ f\n(')’f)e (32)
B Iy(ya) 1 i(wt—Bz)
o, == — e
% Ki(ya) cot ¢K1(7r)c (33)
Heo = —i B o Io(va) Ky (yr)ei#o (34)

k y Ky(ya)
Here o
kE = v/u/e = 120 = ohms (35)
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The power associated with the propagation is given by
P=%RefEXH*d.r (36)
taken over a plane normal to the axis of propagation. This is
P = rRe [fo (E.Hy — E« HOrdr + f (E HE - Eq,Hf)ra'r] (37)

or

il

2oy BB
rE.(0) Vo |:(1 + ¢ IIKU) f Ii(yr)r dr

+ (I{") (1 + I‘A")f Ki(yr)r dr}

I)

.3.3 LK (%)
_ T ﬂa 0 1 2 _
- 0 F P (14 1 M) 03—
LY LK, o
+ () (1+ k) ok - 1]

where £ = 120 7 ohms.
Let us now write

(E3/B'P)" = (8/80)"(v/8)*F(va) (39)
where
\ _ (7‘1)2 2 LK,
Flya) = {(-m)[(h Iofz)( + IIKU)

(40)

LY ,,. . g2 11 K, -
+ (K'_n) (KoK, — K7) (1 + KIIO)]} .

We can rewrite the expression for F(ya) by using relations, Appendix I:

o Yo In Il . [0 Ko . Kl -4 1%
Flya) = (EE)R}[(E Tl) + (f: K_u) + Ta]) SNC1Y



