Communication in the Presence of Noise——Probability
of Error for Two Encoding Schemes

By S. O. RICE

Recent work by C. E. Shannon and others has led to an expression for the
maximum rate at which information can be transmitted in the presence of ran-
dom noise. Here two encoding schemes are described in which the ideal rate is
approached when the signal length is increased. Both schemes are based upon
drawing random numbers from a normal universe, an idea suggested by
Shannon’s observation that in an efficient encoding system the typical signal
will resemble random noise. In choosing these schemes two requirements were
kept in mind: (1) the ideal rate must be approached, and (2) the problem of
computing the probability of error must be tractable. Although both schemes
meet both requirements, considerable work has heen required to put the expres-
sion for the probability of error into manageable form.

1. INTRODUCTION

In recent work concerning the theory of communication it has been
shown that the maximum or ideal rate of signaling which may be achieved
in the presence of noise is (1, 2, 3, 4, 5)

Ri=F log: (1 + Ws/Wy) bits/sec. (1-1)

In this expression F is the width of the frequency band used for signaling
(which we suppose to extend from 0 to F cps), W is the average signaling
power and Wy the average power of the noise. The noise is assumed to he
random and to have a constant power spectrum of W y/F watts per cps
over the frequency band (0, F).

This ideal rate is achieved only by the most efficient encoding schemes
in which, as Shannon (1, 2) states, the typical signal has many of the prop-
erties of random noise. Here we shall study two different encoding schemes,
both of them referring to a bandwidth F and a time interval 7. By making
the product FT large enough the ideal rate of signaling may be approached
in either case* and we are interested in the probability of error for rates
of signaling a little helow the rate (1-1). The work given here is closely
associated with Section 7 of Shannon’s second paper (2).

In the first encoding scheme the signal corresponding to a given message
lasts exactly 7 seconds, but (because the signal is zero outside this assigned
interval of duration) the power spectrum of the signal is not exactly zero
for frequencies exceeding F. In the second encoding scheme, the signal

* A recent analysis by M. J. E. Golay (Prec. I. R. E., Sept. 1949, p. 1031) indicates

that the ideal rate of signaling may also be approached by quantized PPM under
suitable conditions.
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power spectrum is limited to the band (0, F) but the signal, regarded as a
function of time, is not exactly zero outside its allotted interval of length 7.

It turns out that both schemes lead to the same mathematical problem
which may be stated as follows: Given two universes of random numbers
both distributed normally about zero with standard deviations ¢ and »,
respectively. Let the first universe be called the o (signal) universe and
the second the » (noise) universe. Draw 2N + 1 numbers Ay, A%, -+,
AP, o AY at random from the ¢ universe. These 2V + 1 numbers
may be regarded as the rectangular coordinates of a point Py in 2V 4 1-
dimensional space. Draw 2N + 1 numbers B_y, -+, By, -+, By at
random from the » universe and imagine a (hyper-) sphere S of radius x'

= PyQ, where

N
2 B. =P, (1-2)
n=—N

centered on the point Q whose coordinates are /1 O By,w= —N, o,

0, ---, N. Return to the ¢ universe, draw out K sets of 2V + 1 numbers

each, denote the kth set by A% .. I(“ B ¥ and the associated
point by Py.
What is the probability that none of the K points P, - -+, Pk lie within

the sphere S? In other words what is the probability, which will be denoted
by “Prob. (P10, -+, PxQ > Pu(),” that the K distances £1Q, - -+, PxQ
will all exceed the radius Py(? In terms of the A,’s and B,’s we ask for

the probability that all K of the numbers xj, x, -+« , xx exceed xy where
N
w= 2, (4% — 4" — B) = P, (1-3)
n=—N

Expression (1-2) for xy is seen to be a special case of (1-3). The relationship
between the points Po, Q, P1, Pa, -+, Pr, -+, Pk is indicated in Fig. 1.

The answer to this problem is given by the rather complicated expression
(4-12) which, when written out, involves Bessel functions of imaginary
argument and of order N — 1/2. When N and K become very large the
work of Section 5 shows that the probability in question is given by

Prob. (P1Q, ---, PxQ > PQ)
= (1 + erf H)/2 + 0(1/K) + O(N-"* log"* N) (1-4)

where, with » = »*/a¢?,

1/2
H = (1—4%’) [(.\' +1/2) log, (1 + 1/r) — log, (K + 1)

(1-5)
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The symbol 0(N—/2 log?* N) stands for a term of order N2 log¥? N, i.e.,
a positive constant C and a value N, can be found such that the absolute
value of the term in question is less than CN7!? log?? N when N > N,.
In order to obtain actual numerical values for C and N, considerably
more work than is given here would be required. The term 0(1/K) is of
the same nature. The “order of” terms have been carried along in the work
-of Section 5 in order to guard against error in the many approximations
which are made in the derivation of (1-4).
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I'ig. 1—Diagram indicating relationship between points Po, Q, and Py corresponding
to signal, signal plus noise, and & signal not sent (k > 0), respectively.

i

The last term within the bracket in (1-5) has been retained even though
it gives terms of order N/ log N when (1-5) is put in (1-4) and could
thus be included in O(N—'/* log?? N). As shown by the table in the next
paragraph, inclusion of this term considerably improves the agreement
between (1-4) and values of Prob. (P,Q, - -+, PxQ > Py(Q) obtained by
integrating the exact expression (4-12) numerically. This suggests that
the term O(N—72 log** N) in (1-4) is unnecessarily large.

Although the “order of”” terms in (1-4) give us some idea of the accuracy
of the approximation expressed by (1-4) and (1-5), a better one is desirable.
With this in mind the lengthy task of computing the exact expression (4-12)
for Prob. (P1Q, - - - , PxQ > P,Q) by numerical integration was undertaken.
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The values obtained in this way are listed in the second column of the
following table. The values of Prob. (PQ, -+, PxQ > PyQ) obtained
from (1-4) (in which the “order of”” terms are ignored) and (1-5) are given
in the third column. Column IV lists values obtained from (1-4) and a
simplified form of (1-5) obtained by omitting the last term in (1-5). These
values are less accurate than those in the third column. The values in
Column V are computed from (1-5) and a modified form of (1-4) obtained
by adding the correction term shown in equation (5-53) (with B = H).
The values in Column V are presumably the best that can be done with the
approximations made in Section V' of this paper, although the first entry
renders this a little doubtful.

Prob. (P1Q, -+, PxQ > PyQ) for N = 995 &r =1

K41 Vumarical (1-4) & (1-5) Col. IV Col. V
2000 .094 .0995 .0087 1.0001
2% .962 .9650 .9337 .9710
2% .603 .621 .5000 .605
2% 1196 1159 .0663 1176
2106%0 .0065 00347 .0013 .00586

It will become apparent later that the value K + 1 = 2!% corresponds
to the ideal rate of signaling. The non-integer value of 99.5 for N is ex-
plained by the fact that the calculations were started before the present
version of the theory was worked out. It will be noticed that for K + 1 =
2100,—30 g]1 of the approximate values exceed the .994 obtained by numerical
integration. T am in doubt as to whether the major part of the discrepancy
is due to errors in numerical integration (due to the considerable difficulty
encountered) or to errors in the approximations.

In both encoding schemes, the point P, corresponds to the transmitted
signal, Q to the transmitted signal plus noise, and Py, Pa, -+ Pg to K
other possible signals. The average signal power turns out to be (N + 1/2)s*
and the average noise power to be (N -+ 1/2)”. Furthermore,

2o = twice the average power in the noise.

3 i ‘e 3 o o

Ay = ¢ plus the kth signal.

Prob. (P10, - - PxQ > PyQ) = Probability that none of the K other
signals will be mistaken for the signal sent,
i.e., the probability of no error.

The random numbers A (,f) are taken to be distributed normally instead
of some other way because this choice makes the encoding signals (in our
two schemes) resemble random noise, a condition which seems to be neces-
sary for efficient encoding (1, 2).
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Both of the encoding schemes are concerned with sending, in an interval
of duration 7', one of K + 1 different messages. According to communica-
tion theory (1, 2, 3) this corresponds to sending at the rate of 7' logs
(K + 1) bits per second. However, instead of discussing the rate of trans-
mission, it is more convenient, from the standpoint of (1-4), to deal with
the total number of bits of information sent in time 7. Thus, selecting and
sending one of the K + 1 possible messages is equivalent to sending

M = logs(K + 1) (1-6)

bits of information. M, or one of the adjacent integers if M is not an integer,
is the number of ‘“‘yes or no” questions required to select the sent message
from the K + 1 possible messages (divide the K + 1 messages into two
equal, or nearly equal, groups; select the group containing the sent message
by asking the person who knows, “Is the sent message in the first group?”’;
proceed in this way until the last subgroup consists of only the sent mes-
sage). The amount of information which would be sent in time T at the
ideal rate R, defined by (1-1) is

M;=TR; = FTlogs (14 1/r)= (N + 1/2) log. (1 + 1/7) (1-7)

where use has been made of Wy/Ws = »*/¢® = 7, and the relation ¥ <
FT < N 4+ 1 (which turns out to be common to both encoding schemes)
has been approximated by ¥ 4+ 1/2 = FT.

When (1-6) and (1-7) are used to eliminate V and K from (1-3) the
result is an expression for the actual amount M of information sent (in
time 7) in terms of (1) the amount M; which is sent by transmitting at
the ideal rate (1-1) for a time 7', (2) the ratio r of the noise power to the
signal power, and (3) the probability of no error in sending M bits of in-
formation in time 7', this probability being given as (1 + erf H)/2:

M= M, — aM"H + b (1-8)

where

YR YR,
=l A Fnlog A+ 1/n] ¢

b=t [ 2r(1 4 2r)M, ]
28 L+ 17 log: (1 + 177)

Here the “order of” terms in (1-4) have been neglected together with
similar terms which arise when N + 1/2 is used for NV in computing a and
b. The term b is usually small compared to aM’2H.

The more slowly we send, the less chance there is of error. The relation-
ship between M, M and the probability of no error, as computed from

(1-9)
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(1-8), is shown in the following table. The probability of no error is de-
noted by p and the terms are given in the same order as on the right of
(1-8) in order to show their relative importance. The ratio M/M (= R/R;)
for r = 0.1 is shown as a function of M in Fig. 2.

TForr = Wxy/Ws= 0.1

M bits Mforp=.5 M for p = 99 M for p = 99999
102 M;—04+ 3.75 M;—243+4+ 3.75 M;— 4.6+ 3.75
0t o« “4 707 ¢ — 2434 T7.07 “ — M6+ 7.07
108« “110.38 ¢ — 2430 + 10.38 “ — 4460 + 10.38

Forr= Wy/Wsg=1

102 M;— 04+ 4.4 M, —33.44+ 4.4 M;—61.2 + 4.4
o4« “4 7076 ¢4 — 334+ 7.76 ¢ — 612 4 T7.76
10° « “ 4 11.08 ¢ — 3340 + 11.08 6120 + 11.08

There may be some question as to the accuracy of the values for p = .99999,
especially for M; = 100, since this corresponds to points on the tail of
the probability distribution where the “order of” terms in (1-4) become
relatively important.

Of course, for a given bandwidth, the ideal rate of signaling R; (given by
(1-1)) for = .1 exceeds that for » = 1 in the ratio (log: 11)/(logz 2) =
3.46.

The above results agree with the statement that, by eflicient ‘encoding,
the rate of signaling R can be made to approach the ideal rate R, = M,;/T
given by (1-1). As applied to our two schemes, the term “efficient encoding”
means using a very large value of FT or N. To see this, divide both sides of
(1-8) by M, and rearrange the terms:

1 — M/M; = al M;"* + 0(M7" log M,) (1-10)

When M is replaced by R;T" in M/M;, the fraction M/T occurs. We shall
set R = M/T and call R the rate of signaling corresponding to some fixed
probability of error (which determines H). Thus, when (1-7) and the defini-
tion (1-9) for a are used, (1-10) goes into

(R: — R) _ 20

- AT g iyn T g FD/FT) (1-11)

Equation (1-11) shows that when r and H are fixed (i.e. when the noise
power/signal power and the probability of error are fixed) R/R; approaches
unity as FT — . This is shown in Fig. 2 for the case r = 0.1. Since R/R; =
M/M,, M/M, must approach unity and consequently 3 as well as M in-
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creases linearly with FT. Thus, for efficient encoding M is large and, from
(1-6), so is K.

It should be remembered that equation (1-8) has been established only
for the two encoding schemes of this article. The question of how much
faster M /T approaches Ry for the more efficient encoding schemes mentioned
at the end of Section 2 still remains unanswered.

1.4
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Fig. 2—Curves showing the approach of R/R; (= M/M;) to unity as the message
length increases and the probability of no error remains fixed. R is the rate of signaling
at which the probability of no error is p and Ry is the ideal rate,

It gives me pleasure to acknowledge the help I have received in the prepa-
ration of this memorandum from conversations with Messrs. H. Nyquist,
John Riordan, C. E. Shannon, and M. K. Zinn. I am also indebted to Miss
M. Darville for computing the tables shown above and for checking a num-
ber of the equations numerically.

2. THE FIrstT ENCODING SCHEME

Suppose that we have K + 1 different messages any one of which is to
be transmitted over a uniform frequency band extending from zero to the
nominal cut-off frequency F in a time interval of length 7. The adjective
“nominal” is used because the sudden starting and stopping of the signals
given by the first encoding scheme produces frequency components higher
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than F. A shortcoming of this nature must be accepted since it is impos-
sible to have a signal possessing both finite duration and finite bandwidth.

The first step of the encoding process is to compute the integer N given
by

N<FT<N+1 (2-1)

We assume that F7T is not an integer in order to avoid borderline cases.
Let W be the average signal power available for transmission and define
the standard deviation ¢ of the ¢ universe introduced in Section 1 by
(N 4 1/2)c> = Ws. To encode the first message, draw 2N - 1 numbers
A(_%, ey .flém,- “e ,{P " at random from the ¢ universe. The signal correspond-
ing to the first message is then taken to be

N
L) = 27240 + > (A cos 2ant/T + AL) sin 2znt/T)  (2-2)
n=]
The remaining K messages are encoded in the same way, the signal repre-
senting the kth message being

N
L) = 2748 + 25 (4% cos 2mni/T + AL sin 2znt/T). (2-3)
n=1
It is apparent that each signal consists of a d-c term plus terms corre-
sponding to IV discrete frequencies, the highest being N/T" < F, and that
the average power (assuming 7,(/) to flow through a unit resistance) in the
kth signal is

T2 N
77 f ) di = 24P + 2 27AE) + (A48 (2-4)
— T2 n=1

Since the A’s were drawn from a universe of standard deviation ¢, the ex-
pected value of the right hand side is (2N + 1)¢?/2 which is equal to the
average signal power IV g, as required.

We pick one of the K + 1 messages at random and send the correspond-
ing signal over a transmission system subject to noise. We choose our nota-
tion so that the sent signal is represented by I,(f) as given by (2-2). Let the
noise be given by

N
J() = 27*By 4+ 2 (B, cos 2mut/T + B_, sin 2xnt/T)  (2-5)
n=l1

where B_y, -+, By, »++, By are (2N + 1) numbers drawn at random from
the normally distributed v universe mentioned in the introduction. The
standard deviation » of the universe is given by (N + 1/2p* = Wy, Wy
being the average noise power. We call J(f) simply “noise’ rather than
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“random noise’’ to emphasize that (2-5) does not represent a random noise
current unless NV and T approach infinity.

The input to the receiver is Io(f) + J(f). Let the process of reception
consist of computing the K + 1 integrals

a = 277" j_'rz [L(0) — L(t) — J7(OFd, k=0,1,---,K (2-6)

and selecting the smallest one (all of the K 4 1 encodings have been carried
to the receiver beforehand). If the value of & corresponding to the smallest
integral happens to be 0, as it will be if the noise J(¢) is small, no error is
made. In any other case the receiver picks out the wrong message.

When the representations (2-2), (2-3), and (2-5) are put in (2-6) and the
integrations performed, it is found that

N N
w= 2 (40 — A" =B, w= X B (2-7)
n=—N n=-]

which have already appeared in equations (1-2) and (1-3). If, as in Section
1, P, is interpreted as a point in 2V 4- 1 — dimensional Euclidean space with
coordinates A%y, -+, A%, -+, A¥ and ( is the point A + B_y, -+,
A" + B, ..., AY + By, then x is the square of thedistance between points
Py and Q. Point P, corresponds to the signal actually sent, points Py, « -+,
Pg to the remaining signals, and point Q to the signal plus noise at the
receiver. The expected distance between the origin and Py is ¢(2N + 1)'2
= (2W ', that between P, and Q is »(2N 4+ 1)V = (2IWy)'? and that
between the origin and Q is

(6* 4+ #22N + 112 = 2Wy + 2W )12

No error is made when x is less than every one of xy, a9, « -+, xk, lLe.,
when none of the points Py, -+, Pk lies within the sphere .S of radius x?
centered on Q and passing through P,. Therefore the probability of obtain-
ing no error when the first encoding scheme is used is equal to the probability
denoted by Prob. (P1Q, -+, PxQ > Py(Q) in the mathematical problem of
Section 1.

One might wonder why probability theory has played such a prominent
part in the encoding scheme just described. It is used because we do not
know the best method of encoding. In fact, it would not be used if we knew
how to solve the following problem:* Arrange K 4 1 points Py, -+ Pxon
the hyper-surface of the 2¥ 4 1 — dimensional sphere of radius (2 g)'/2

* C. E. Shannon has commented that although the solution of this problem leads to a
good code, it may not be the best possible, i.e., it is not obvious that the code obtained
in this way is the same as the one obtained by choosing a set of points so as to minimize

the probability of error (calculated from the given set of points and some given Wy)
averaged over all K + 1 points.
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in such a way that the smallestof the K(K 4 1) /2 distances PrP¢, k, £ = 0, 1,
-+« , K, k # I, has the largest possible value. This would maximize the dif-
ference (as measured by the distance between their representative points)
between the two (or more) most similar encoding signals.}

In this paper we have been forced to rely on the randomness of probability
theory to secure a more or less uniform scattering of the points Py, -+, Pk.
In our work they do not lie exactly ona sphere of radius (217 s)'/* but this
causes us no trouble.

3. THE SeEconD ExcopING SCHEME

The second of the two encoding schemes is suggested by one of Shannon’s
(2) proofs of the fundamental result (1-1). In this scheme the K + 1 mes-
sages are to be sent over a transmission system having a frequency band ex-
tending from zero to F cycles per second, and are to be sent duringa time
interval of nominal length 7.

The first few steps in the encoding process are just the same as in the first
scheme. I is still given by (2-1) and ¢ by (V 4 1/2)¢* = W 4. After drawing
K + 1 sets of A’s, with 2¥ 4 1 in each set, the K 4 1 messages are
encoded so that the signal corresponding to the kth message, # = 0,1, - -,
K, is

1) = (FT}]_,‘E i AH;) sin 7 (2Ft — n)

"= T(2Ft — n) (3-1)

From (3-1), the value of I(#) at { = n/(2F) is zero if the integer » exceeds
N in absolute value. If the integer  is such that | #| < N, the corresponding
value of I.() is (FT)Y24%¥ . The energy in the kth signal is obtained by
squaring both sides of (3-1) and integrating with respect to /. Thus

] N
[ Bwa=2"7 2 a4 (3-2)
— o0 n=—N
which has the expected value (N + 1/2)¢*T. The average power developed
when this amount of energy is expended during the nominal signal length
Tis (N 4+ 1/2)a* which is equal to Vs, as it should be.
The noise introduced by the transmission system is taken to be

¥ .
J() = (FT)"* X B, sin 7(2Ft — )

n m(2Ft — n) (3-3)

t Possibly if K + 1 discrete unit charges of electricity were allowed to move freely
on the sphere, their mutual repulsion would separate them in the required manner. In
2N + 1 dimensions this leads to the problem of minimizing the mutual potential energy

=P Y

where N > 1and the summation extends over k, { = 0, 1, ... K with £ ¢ ¢. However,
this problem also appears to be difficult.
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where the » universe from which the B’s are drawn has, as before, standard
deviation » given by (¥ 4 1/2%? = Wy. When the signal 7,(f) is sent, the
input to the receiver is 7,(f) + J(/) and the process of reception consists of
selecting the smallest of the K 4+ 1 a’s

ay = 27" fm [1:(6) — Io(8) — J(O)) d! (3-4)

z (l(“ _ ALO' _ B,,)"'

n=—N
The second expression for x; is the same as the one given by (2-7) for the
first encoding scheme, and the discussion in Section 2 following (2-7) may
also be applied to the second encoding scheme. In particular, the probability
of obtaining no error in transmitting a signal through noise is the same in
both systems of encoding, and is given by the Prob. (P1Q, - -+, PxQ > PyQ)
of the mathematical problem of Section 1.

4. SoruTioN OF THE MATHEMATICAL PROBLEM

We shall simplify the work of solving the mathematical problem stated
in Section 1 by taking ¢ = 1 and »*/¢® = 7. First regard the 4V + 2 numbers
AL B,,m= —N, -+, N asfixed or given beforehand. Geometrically, this
corresponds to having the points P, and Q given. Select a typical set of
random variables 45’ ,m = —N, -+, N, k> 0and consider the associated

set of variables
yu= A — 40 — By = AP 4 3. (41)
y. is a random variable distributed normally about its average value
o = —A)" = Ba (4-2)

with standard deviation ¢ = 1. The quantity i, defined by (1-3) and repre-
senting the square of the distance between Py and (, may be written as
N
2 v (4-3)
n=—N
Thus 13 is the sum of the squares of 2N + 1 independent and normally

distributed variates, having the same standard deviation but different
average values. The probability density of such a sum is remarkable in
that it does not depend upon the #,’s individually but only on the smu of their
squares which we denote by

w= i 2o 3 (AQ 4 B

y -~
. (4-4)
_ [Energy in sent signal + Energy]

in noise
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This behavior follows from the fact that the probability density of Py has
spherical symmetry about the origin (because all the 4 Y75 have the same
). For the probability that a; is less than some given value x is the prob-
ability that P lies within a sphere of radius 47/ centered on Q, and this,
because of the symmetry, depends only on x and the distance %'/ of Q from
the origin. Accordingly, we write p(x, u)dx for the probability that
x < ap < a + dx when the _\'-f,’s (and hence u) are fixed.

The probability density p(x, #) may be obtained from its characteristic
function:

Il

(21r)_lf ¢ lave. ¢ dz

N
ave, ¢ = ave. exp |:z; > yi:‘ (4-5)

n=—N

plx, u)

N
11 ave. explizys] = (1 — 2iz) ¥ exp [ius(1 — 2iz)7"]
n=—N
where we have used (4-3) and, since y, is distributed normally about ¥,

oo

ave. exp {izyf‘] = (2m)™" f I gy,
= (1 — 2i) P exp [35 is(1 — 2i5)7]
Hence

plx, u) =(2x)7" j;: (1 — 2iz)™ " exp [isu(1 — Qiz)_lA—- izx] dz (4.6)

- Z—I(x/u).’v'f'.’-—l.f‘l Ij\'—l_n'ﬂ [(ﬂ.’l’) If?] 67(u+2”2

where it is to be understood that x is never negative. The Bessel function
of imaginary argument appears when we change the variable of integra-
tion from z to ! by means of 1 — 2iz = 2{/x, and bend the path of integra-
tion to the left in the ¢ plane (6). This expression for the probability density
of the sum of the squares of a number of normal variates having the same
standard deviation but different averages has been given by R. A. Fisher
(7).

We are now in a position to solve the following problem which is somewhat
simpler than the one stated in Section 1: Given the 2V + 1 coordinates
A of the point Py and the 2N + 1 numbers B, so that the coordinates
A" 4 B, of the point  are given. What is the probability that noneof the
K points Py, Ps, - -+, Px, whose coordinates 4 %) are drawn at random from
a universe distributed normally about zero with standard deviation ¢ = 1,
be inside the sphere centered on the given point Q and passing through the
other given point Py? In other words, what is the probability that all K of the
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independent random variables x;, a, -+, xx Will exceed the given value
xp when « has the value defined by (4-4) together with the given values of
the 4"”’s and B.’s? The variables x), %», ---, xx have the probability

density p(x, %) shown in (4-6) and x, is defined by (1-2) and the given values
of the B,’s.

The answer to the above problem follows at once when we note that the
probability of any one of xy, -+, x&, say x; for example, being less than
Xy 18

Plxy,u) = j:“ plx, u) dx. (4-7)

The probability of x; exceeding xo is then 1 — P(xo, ) and the probability
of all K of xy, -+ - , xx exceeding xp is

[1 — P(x,, w)]* (4-8)

Instead of being assigned quantities, xy and # are actually random varia-
bles when we consider the problem of Section 1. Now we take up the problem
of finding the probability density of # when xy is fixed. Thus, from (4-4),
we wish to find the probability density of

N

w= 3 (47 + B (4-9)
in which the 2N + 1 numbers A are drawn at random from a universe
distributed normally about zero with standard deviation ¢ = 1 and the
numbers B_y, -++, By, --+ , By are given. It is seen that « is the sum of
the squares of 2V 4 1 normal variates all having the standard deviation
¢ = 1. The nth variate, 4% + By, has the average value B,. This is just
the problem which was encountered at the beginning of this section. Equa-
tion (4-9) is of the same form as (4-3) and we have the following correspond-

ence:

Equation (4-3) Equation (4-9)
Xk n
Yu 43" + B
n B

u = Ej"f, X = ZB?.

The probability that # lies in the interval «, # + du when x, is given is there-
fore p(u, x,) du where p(u, xp) is obtained by putting « for x and x, for u
in the probability density p(x, ).

Until now x, has been fixed. At this stage we regard B_y, -+, By, **+, By
as random variables drawn from a normal universe of average zero and
standard deviation v = ¢r'/* = 712 If the standard deviation were unity,
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the probability density of x; could be obtained directly from p(x, u) by
letting % — 0 in (4-6). As it is, the &’s appearing in the resulting expression
must be divided by r to obtain the correct expression. Thus, the probability
of finding ay between ay and ¥y + dxo 1s

['-‘-0/27‘]»"—1,'2 —zxgl2r

21(N + 1/2) (4-10)

polxo) =

which is of the x? type frequently encountered in statistical theory.
It follows that the probability of finding # in (u, # 4+ du) and xo in
(xo, ¥ + daxg) at the same time is po(u, x0) du dxo where

Pg(n, ;1'0) = P(’M, .\'Q)Pa(ﬂ.’o)

1 wxp\V Y2 —lutzg(+1/r)]/2
eI e

The replacement of (v, #) in (4-6) by (u, xo) should be noted.

Now that we have the probability density of u and x; we may combine it
with the probability (4-8) that all K of ay, -+ -, xx exceed a9 when %, and
are fixed. The result is the answer to the problem stated in Section 1:

Prob. (P]Q, e, PKQ>PDQ)

= fm du fm daxy polae, x0)[1 — Plag, )"
o )

(4-11)

(4-12)

This result is more complicated than it seems, for po(1, x0) is given by (4-11)
and P(xy, ) is obtained by integrating p(x, u) of (4-6) from x = O to x = x
in accordance with (4-7). The remaining portion of the paper is concerned
with obtaining an approximation to (4-12) which holds when N and K are
very large numbers.

5. BEHAVIOR OF PROB. (P,Q, -+, PxQ > PyQ) as N and K BEcoME LARGE

In this section we introduce a number of approximations which lead to a
manageable expression for Prob. (PiQ, ---, PxQ > P¢Q) when N and K

become large.
Since # and xp are sums of independent random variables, namely

N
w= 2, (4 + B.)*
n=—N

(5-1)

N

the central limit theorem tells us that the probability density po(x, %) ap-
proaches a two-dimensional normal distribution centered on the average
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values
~

i = Z_rave. A L Bl = 2N + 1)1 +7)

65
T = ., ave. B = (2N + 1)r

n=—N
Here we keep the convention ¢ = 1, »*/6®> = r used in Section 4. The same

sort of reasoning as used to establish (5-2) shows that the spread about these
average values is given by

ave. (. — @)* = (AN + 2)(1 + )?
ave. (xg — )2 = (4N + 2)* (5-3)
ave. (0 — @)(xo — %) = AN + 2)r

If the parameters N, K, and r in the integral (4-12) are such that its value
is appreciably different from zero, most of the contribution comes from the
region around # and %, where py(#%, x,) is appreciably different from zero.
However, instead of taking # and <, as reference values, we take the nearby
values

e =1 — 2 —2r=(02N — DA +r) = 2¢(1 4 1)

xg =& — 2r = 2N — 1)r = 2¢gr

(5-4)

as these turn out to be better representatives of the center of the distribu-
tion. We have introduced the number

g=N—1/2 (5-5)
in order to simplify the writing of later equations. We assume ¢ > 1.

First, we shall show that
Prob. (P\Q, - -+, PxQ > PoQ)

ug+ta zo+b x (5_6)
= f du f dxo pola, x0)[1 — Plxo, #)]” + Ry
us—a za—b

where @ = 2(1 4+ 7)(2g log 9)%, b = 2r(2¢ log ¢)'* and R, is of order 1/¢
(denoted by 0(1/g)), i.e. a constant C and a value g can be found such that
| Ri| < C/q when ¢ > go. From (4-12) it is seen that R, is positive and less

than
ﬂz—ﬂ L) {--]

[ [ du 4+ a‘u:l f dxo po(2e, o)
0 usta (1]

1+ I: j; = dxy + L :Lb d.ru:| '{ i dupo(u, xo)

(3-7)
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Since po(u, x) is the joint probability density of u and xo, the integration
with respect to x, in the first part of (5-7) yields the probability density of
u, and the integration with respect to x in the second part gives the prob-
ability density po(xo) (stated in (4-10)) of x. Thus (8)

[_T_"‘/Z(l + ,—)]qe—umuﬂ-)
20+ Nl + 1)

_ [xo/2r] ¢l

jo dupo(u, x9) = I+ 1)

fm dxo poln, xo) =
’ (5-8)

Setting (5-8) in (5-7) and putting # = 2(1 4 r)y and xy = 2ry in the two
parts of (5-7) reduces them to the same form. Thus (5-7) is equal to

2 a+l B
2~ D o 59

with € = (2¢ log @)'/% In order to show that (5-9) is 0(1/¢) we use the ex-
pansion

—y+glogy=—g+qlogg— (v — ¢%Q29 + v — ¢*/(3¢")
— (v — @¥lg + (v — oI/4

where 0 < ¢ < 1. Let v represent the sum of the (y — ¢)* and (y — ¢)* terms,
and expand exp v as 1 + v plus a remainder term. The integral of exp —
(y — ¢)*/(2g), taken between the limits ¢ &= f, can be shown to be of the
form 1 — 0(1/¢) by integrating by parts as in obtaining the asymptotic
expansion for the error function. The term in (y — ¢)* vanishes upon integra-
tion and the remainder terms may be shown to be of 0(1/¢g). In all of this
work a square root of ¢ comes in through the fact that

1> (2mg)%"e*/T(g+ 1) > exp [-1/(12¢)] (5-10)

We have just shown that the error introduced by restricting the region of
integration as indicated by (5-6) introduces an error of order 1/g which
vanishes as ¢ — . The normal law approximation to polu, xg) predicted by
the central limit theorem holds over this restricted region. However, instead
of appealing to the central limit theorem to determine the accuracy of the
approximation, we prefer to deal directly with the functions involved.

Consideration of (5-4) and the behavior of py(, x) suggests the substitu-
tion

x = 2r(g + a)

(3-11)
u=21+ng+ 8
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where @ and 8 are new variables whose absolute values never exceed
(2 g log g)M* in the restricted region of integration of (5-6). From (4-11)

4 a/2 a. 9
po(1,%x0) du dxy = r%ﬁ-% (4—’) I,z M Crtet® g0 43 (5-12)

in which
3= uxg = 4r(1 + 7)(¢ + a)(g + B) (5-13)
In Appendix IT it is shown that

qq-l'l."-? e ? quﬂ exp [(qi‘. + 5)112 + V}
P(g+ D¢ + g + (¢ F 7

where | V| < 1/(2g — 1) when ¢ > 1. Upon using (5-10) and (5-14) the right
hand side of (5-12) may be written as

da dB(2m) A + @) g+ 2 Mexp [ (1 + N2+ a+ B)  (5-15)
+ f(z) — log (g + 1) + 0(1/9)]

L") = (5-14)

with
f() = glogz — glogg + (¢* + 2)'*] + (¢* + 2)'” (5-16)
The value 22 of z corresponding to the central point (us, xs) of py(u, ;) is
obtained by putting « = 8 = 0 in (5-13):
20 = 4r(1 + r)¢*
4(1 + nlgla + B) + ofl.

Since we are interested in the form of po(#, xp) in the restricted region of
integration of (5-6) we expand f(z) about 5 = 5, in a Taylor’s series plus a
remainder term.

f(z) = qlog2rq+ ¢(1 4 2r) + (2 — 2,)/(4rq)

(z — 52)° + (2 — 2)° [(Es + ¢)*(3& — QJ:I (5-18)
T 329 (1 + 2n) 3! 8 75 &5

(5-17)

Z = Zs

In the last termz; = 52+ (z — 2200, 0 < 0 < 1, £ = ¢+ z3. The work of
obtaining this expansion is simplified if (¢* + 2)!/* is replaced by £ in (5-16)
before differentiating. For example, by using 2¢’¢ = 1, it can be shown that
f'(z) is simply (g + £)/(2z). When the extreme values of @ and § are put in
(5-17), it is seen that z — 22 does not exceed 0(g*" log!/? g) in the restricted
region of integration. In the last term of (5-18) z3 is 0(¢%), & is 0(¢) and con-
sequently the last term itself is 0(g~'/* log*? g).
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When the expression (5-17) for (z — z.) is put in (5-18) an expression for
f(z) is obtained. This expression, together with

logI'(g+ 1) = (g+ 1/2) log g — ¢+ (1/2) log 2x + 0(1/¢),

enables us to write the argument of the exponential function in (5-15) as
qlog 2r — (1/2) log 2mq — Q(a, B) 4 0(¢'2 log®? ¢) where Q(a, B) denotes
the quadratic function

Qle, B) = [(1+ r)a+ ) — 2r(1 + r)aBID
D = 1/[2¢(1 + 2r)]
Similar considerations show that
(¢ + =)' = (1 + 2r)7'2L + 0(g'7 log'” q)] (5-20)

When the above results are gathered together it is found that (5-12)
may be written as

polte, xo) du dxo = Dy exp [—Q(a, 8) + 0(¢™" log?”? ¢)] da dB (5-21)

where

(3-19)

_ 147
 2mg(1 + 20)'

Expression (5-21) is valid as long as [« | and | 8| do not exceed
(2¢ log g)*.

Expression (3-21) differs from the one predicted by the central limit
theorem (and (3-2) and (3-3)) in that it is not quite centered on the average
values &, 11, which correspond to & = 1, 8 = 1, respectively. Also, g enters
in place of ¢ + 1. However, these differences amount to 0(g'”* log'/* g)
at most, as may be seen by putting & — 1 and 3 — 1 for a and 8 in (5-19).

By using relations (5-6) and (5-21), it may be shown that

Prob. (PlQ,"',PKQ>P0Q)

(5-22)

Dy

= ® e ) (5-23)
= f (iaf dB Dye P — Plxo, w)]® 4 0(g""* log"”* ¢)
PR

where it is understood that xp and % in P(x;, %) depend on « and 3 through
(5-11). The term 0(g~"* log*”* ¢) in (5-23) represents the sum of three con-
tributions. The first is R; in (3-6) which is 0(1/g). The second arises from
the fact that when the factor exp [0(¢7/* log*”* ¢)] in (5-21) is neglected in
integrating (5-21) over —¢{ < o« < {,—f < B < {, where { =
(2¢ log ¢)'?, the resulting integral is in error by 0(g~** log®” g). The third
is due to the contributions of the integral from the region || > £, | 8| > £.
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By introducing polar coordinates @ = p cos 6, 8 = p sin § it can be shown
that the region p > £ more than covers the region in question and that

Qe,8) 2 (1+1)p’D (5-24)

Upon integrating with respect to p and setting in the lower limit £, it is
seen that the third contribution is 0(g7?).
We now assume K to be large. Since 0 € P(xp, ) € 1 we have

0™ -1 =P "< KPe " <1/K (5-25)

The last inequality follows from a? exp (—x) < 1 for x 2> 0. A proof of the
remaining portions will be found in “Modern Analysis” by Whittaker and
Watson, Cambridge University Press, Fourth Edition (1927), page 242.
When we observe that replacing [1 — P(xo, #)]* by 1/K in the right hand
side of (5-23) gives an integral whose value is less than 1/K, we see that

Prob. (P10, -+ , PxQ > PyQ) (5-26)

= [ da [ dg D@t 4 0/K) + 067 log™ o)
[ de |

We now take up the problem of expressing the cumulative probability
density P(xq, %) in terms of & and 8. When x, and # lie in the restricted re-
gion of integration shown in (5-6) they are near their average values &, =
(2N 4 1)rand @ = (2N + 1)(1 + 7). On the other hand the average value
Z of » and the mean square value as of (v — &)? as computed from (4-6), or
directly, are 2V + 1 4 u and 4N + 2 + 4u, respectively. Thus we see that
Z — ap is of the same magnitude as 4V and becomes much larger than ¢: as
N — . The asymptotic development of Appendix I may therefore be used.
In Appendix 7 (equations (A1-27) and (A1-29)) it is shown that when
M(= 2m = 2N + 1) is a large number and 1 << (2 — x9)/0,

Py, ) = (dremba)™* (1 + 0(1/m)) exp [mF(vy)] (5-27)

where we have introduced the number m = N + 1/2 = ¢ + 1 to save writ-
ing N + 1/2 or ¢ + 1 repeatedly and where

26y = (1 — 1/00)*(1 + 4s1)
wo= (14 (1 + 4s))/2s

Flo) =1+ ds)V? — s — { — log (5-28)
Xo = 2ms = (21\T + l)s, w = 2mt = (2 N _|_ 1)[

Comparison of the last line in (5-28) with (5-11) shows that ms and m/
are equal to (g + @) = r(m + a — 1) and

(1+n@+8=>0+n0m+8-1),
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respectively. It is convenient to introduce the notation
Yy=a—1, i=8—1

s =4 y/m), =014+ nN1+ 5/m)

Tt is seen that for the restricted region in which | « | and | 8| are less than

¢ = (29 log 9)'7,

(5-29)

v| and | 8| are at most
0(g"2 log!? ¢) = O(m'* log'? m).

Hence s, £, (1 4 4s0)'/2, v, differ at most from », 1.+ 7, 1 + 2r, 1 + 1/7,
respectively, by terms of order m~/* log!”* m. Similar considerations show
that

(dembs)™12 = (2r@*Dy[1 + 0(m72 log'? m)] (5-30)

The argument of the exponential function in (5-27) must be expanded in
powers of ¥ and &, It turns out that when v and & lie in the restricted region,
powers above the second may be neglected. For the sake of convenience we
rewrite (5-13) and introduce 3::

5= xgu = dm?st = (L + 7)m + v)(m + 8)
5 = 4r(1 + P)m? (5-31)
5 — 5= 41+ Nmly + 8) + 4]
so that 3 — zp is 0(m*2 log!? m). Then
(1 + 4s0 = (1 4 5/m*)'?
S s G — (A s (5-32)
— (3 — 2*(1 + 5/mH) 2/ (8m') + Re

- 6 0
where R, is of the same order as (z — z)%/m’, or m~* log®”* m. It follows
that

2r(1 +r) [:_v +o v_ﬁ:l

e m?

14 2r

2?'2(1 + T)2 (‘Y + 5)2 —3/2 a2
L1208 wt + 00m ™" log”" m)

(149 r [v+5 b
“‘m{“wzr[%‘**ﬁ]

r(1+ )y +0)° —ar o
— AT 2 + 0(m™" log"* m) ».

(1 +4st)* = 14 2r +

(5-33)
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Combining these and a similar expression for log z; leads to
mP(n) = —mlog (1 + 1/r) + v — &
[t + 7y — rB/2m(1 + 20)] + O(m~ log m)
=—(g+Dlog(1+1/1) +a—8— 1+ 7)o — 78FD
+ 0(g™'"* log*” g)
Substitution of (5-30) and (5-34) in (5-27) gives the result we seek:
Plag, w) = (1 + 1/r)7'2wq)2Dy
exp (@ — B — [(1 + na — 78D + 0(g™' log** g))

Since P(xy, %) occurs only in the product KP(xy, %) in (5-26) we set, in
view of (5-33),

(5-34)

(5-35)

KP(xo, u) = AN(e, 8) exp S(a, B) (5-36)

where M e, 8) stands for the terms denoted by exp [0(g72/* log?? ¢)] in (5-35)
and

A = K(1 + 1/r)~7(27¢)"2D,

(5-37)
S(e, ) = a— B8 —[(1+ 7)a — 78D
Aslongas|a| < fand | B8] < £, Ma, 8) is nearly unity and we write
M < Me, 8) < A
(5-38)

M=1l—¢gha=14¢e=Cqglog* g
where C is a positive constant large enough to make ¢ dominate the terms
of order g~1/2 log?/? g in (5-33). ¢ is supposed to be so large that e is very small

in comparison with unity.
Setting (5-36) in (5-26) gives

Prob. (PiQ, -+ » PxQ > PoQ) = I + 0(1/K) + 0(g* logh* ¢) (5-39)
where the contribution of the region outside |a| < £, | 8] < { has been
returned to the terms denoted by 0(g—/2 log®? q) (we could have stayed in
the region || < 4, | 8| < £ from (5-23) onward, but didn’t do so because
we wanted to show that the results coming from (5-25) were not restricted
to this region) and

{ £
I = [tda 'Ld,s Diexp [— O(a, B) — AN(a, B)e¥P]  (5-40)

Let L(\) denote the integral obtained by replacing the function A(e, 8) in
I by the positive constant A (which we shall take to be either A; or A defined
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by (5-38)). Then, since A exp S(a, 8) is positive, it follows from (5-40) that
L) > T > Lke) (5-41)

Also since exp [—AX exp S(a, )] lies between 0 and 1 for all real values of
o and B it may be shown from (5-24) that L()) is equal to J(\) + (g%
where

JN) = f_m da f_w dB Dy exp [— Qla, B) — AN"P]  (5-42)

Here ) is a constant and Q(a, 8), 4, S(a, 8) are defined by (5-19) and (5-37).
From (5-39) and (5-41) we obtain

Prob. (P10, -+, PxQ > PoQ) = J(1) + 67(\) — J(1)] (5-43)
+ (1 = O[T — J(] + 0(1/K) + 0(g ' log* g)
where 0 < 8 < 1. It will be shown later that J(\;) and J(A.) differ from J(1)
by terms which are certainly not larger than 0(g~*/).
The problem now is to evaluate the integral (5-42) for J (A). Tt turns out
that exp [— A\ exp S(a, 8)] acts somewhat like a discontinuous factor which

is unity when S(a, 8) + log A\ is negative and zero when it is positive. In
order to investigate this behavior we make the change of variable

a—B=w o=y —rw
A4+na—m=y p=y—-{1+nw (5-44)
do dB = dw dy
From (5-19), (5-37), and (5-42)
Qle, B) = [y* + (1 + 2nNEYD = ¥°D + B*/2¢
S(e, B) = w — ¥*D (5-45)

JN) = f dyf dw Dy exp [— v'D — 8°/2q — ANV

Here and in the following work § is to he regarded as a function of w and y.
Split the interval of integration with respect to w into the two subintervals

(— oo, wy) and (wy, ©) where
wy = 2D — log AM (5-46)

and vy is temporarily regarded as constant. In the first interval
"-'D 9 w—u
f exp [— B7/2¢ — "] dw
T v (5-47)
- f e g — f (1 — exp [— "™ e ™" du
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Splitting the interval of integration (— e, wg) into (— <, — log A\) and
(— log A\, w,) in the first integral on the right of (5-47) shows that its con-
tribution to J(A) is

wo

w —log AR o
Dlj dyf dwe VR D1[ dyf dw ¢ VPR (5.48)

log AN

Integrating with respect to y, after inverting the order of integration, shows
that the value of the first integral is

i3
e f " dt = (1 + erf B)/2 (5-49)

where, from (5-37) and the definition (5-22) of D,
B = —%(1 + »)Y%172 log AN
AKr(1 4 1/1)7" (5-50)
7 [2mwq(1 + 2n)]7
That the value of J(A) differs from (5-49) by 0(g7'?) may be seen as
follows. Since 0 < exp [—f%/2¢] < 1, the integral over (wq, «) (mentioned

just above (5-46) and obtained by taking the limits of integration to be w,
and o in the left side of (5-47)) is positive and less than

= 314 "¢ "o

f exp [—¢" " dw = f € “dy/x = .210... (5-51)
wo 1
Likewise, the second integral on the right side of (5-47) is less than
wy 1
f (1 —exp[— 7)) dw = f (1 — ¢ %) dx/x = .796... (5-52)
. 0

Therefore the contribution of the first integral on the right of (5-47) differs
from J(\) by a quantity less than

f D: " P(.219 + .796) dy = 0(g")

in absolute value. The contribution of the first integral on the right of (5-47)
differs from (5-49) by the second integral in (5-48) which is 0(g~1/*) because
it is less than

f Di(y*D)e ™ dy

The factor (¥?D) arises from wy — (— log AX) when the mean value theorem
is applied to the integral in w. Hence J(\) differs from (5-49) by 0(¢g~'/?).
Although (5-49) is a sufficiently accurate expression of J(A) for our pur-
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poses, it seems worthwhile to set down approximate expressions for the
terms which have been dismissed as 0(g~!/?). From the above work,

J(}\) = (1 + erf B)/Z -+ le_ dy e—zﬂp{f e—ﬂ'.‘fztz exp I_‘ cw—wa] dw
—_ [wne_ﬂﬂf2ﬂ(1 — exp [_ ew—mu]) dw

YO g
+ f_lo, . dw} (5-53)

~ (1 +erfB)/2+ D f dy ™' (=577 4+ y'D}e '™

1/2
_ (1 +eriB)/2 + (14+ ") [— 577 -« +
mq

101+ 1 + 2 + 4nBle ™

where 81 = y + (1 + r) log A\ and we have made use of the fact that
#2/2q changes relatively slowly in comparison with w when ¢ is large.

Since J(\) differs from (1 + erf B)/2 by 0(¢7*/*), and since the three B’s
for A equal to Ay, 1, and A, differ by not more than 0(g~"/* log (A2/A1)) =
0(g! log*? g), from (5-50) and (5-38), it follows that the terms involving
J(\) and J(\,) in (5-43) may be included in the term 0(g~'/* log** g). In
using our result it is more convenient to deal with N and K + 1 instead of
g = N — 1/2 and K. Hence instead of B we deal with H defined by

L (K+ DA+ 1/ + f)_ (5-54)

H==5GF 127" % g+ 1/ + 201"

The difference B — H, with A = 1 and H finite, may be shown to be (with
considerable margin) 0(1/K) + 0(g™'/%). From (5-43), as amended by the
first sentence in this paragraph, it follows that

Prob. (P\Q, - -+ , PxQ > PyQ) = (1 + erf H)/2 + 0(1/K) + 0(g'/* log** g)
(1-4)

where the difference between erf B and erf H has been absorbed by the
“order of”’ terms. When ¢ + 1/2 is replaced by N in (5-54) the result is ex-
pression (1-5) for H.
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APPENDIX I

CUMULATIVE DISTRIBUTION FUNCTION FOR A SUM OF SQUARES OF NORMAL
VARIATES

Let x be a random variable defined by

P
1
M=
2
37

(A1-1)

[l
-

n

where vy, is a random variable distributed normally about its average value
$a with unit standard deviation. In writing (41 — 1} we have been guided
by (4-3), where M = 2N + 1, but here we shall let M be any positive integer.
In much of the following work M /2 occurs and for convenience we put

m= M/2 (A1-2)

From the work of Section 4 it follows that the probability density p(x, u)
of x is given by Fisher’s expression

pla, 1) = 274 (a/u)™ 2102 I [ (u) 2] (et /2 (A1-3)

where # is the constant

=

I
M=
;‘::

(A1-4)

I
-

n

Here we are interested in the cumulative distribution function, i.e., the
probability that x is less than some given value xo,

Pxg,u) = ‘[0 plx, u) dv (A1-5)

as M becomes large. In this case the central limit theorem tells us that
p(x, u) approaches a normal law with average ¥ = M + u and variance =
ave. (x — X)? = 2M + 4u. The function P(x,, %) has been studied by J. I
Marcum in some unpublished work, and by P. K. Bose(9). In particular,
Marcum has used the Gram-Charlier series to obtain values for P(xo, #) in
the vicinity of & for large values of M. However, since I have not been able
to find any previous work covering the case of interest here, namely values
of P(x,, 1) when x; is appreciably less than , a separate investigation is
necessary and will be given here.

Integrating the general expression (4-5) with respect to x between —X
and xy, letting X — o, and discarding the portions of the integrand which
oscillate with infinite rapidity gives
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1 “ _1 —i ;
P(xo, 1) = 5 e " [ave. ¢77] dz

21['1. — o, abovel

(A1-6)

1 -
1 - — <o F 0 [ave. 7] dz
21”' — o0, below 0

where the subscripts “above 0” and “below 0" indicate that the path of
integration is indented so as to pass above or below, respectively, the pole
at 5 = 0. The value of ave. exp (izx) may be obtained by setting ¥V + 1/2
= m in (4-5). The new notation

xo = Ms = 2ms, u = 2mi, =t (A1-7)

enables us to write
Plag, u) = — 2:;_ — ¢ exp ml—ist — log (1 — if) (ALS)
=411 —ig)7") dt.
The further change of variable
) — ?f =7 (Al-g)

carries (A1-8) into
Plso,w) = o [ (1= 0 exp [mF@)] do (A1-10)
27i Jg

where the path of integration K is the straight line in the complex » plane
running from 1 + i» to 1 — 7= with an indentation to the right of v = 1,
and

F@@) = sv —logo+ /v —s— L (A1-11)

The K used here should not be confused with the K denoting the number
of messages in the body of the paper. We have run out of suitable symbols.

An asymptotic expression for (A1-10) will now be obtained by the method
of “steepest descents.” The saddle points are obtained by setting the
derivative

F'@)=s—=1/v — 1/2* (A1-12)
to zero and are at
vy = [1 4+ (14 4s)']/2s
o = [1 — (1 4 4s)'?]/2s (A1-13)
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As %o and s increase from O to o, % and ¢ of course being fixed, we have the
following behavior:

Xp = 0 I 0
s=0 1414
(A1-14)
7 = © 1 0
v = —1 —t/(1+ 1) 0

[t is seen that v, = 0 and »» < 0.

Putting aside for the moment the factor (1 — v)~* in (A1-10), the path of
steepest descent through the saddle point 7, is one of the two curves specified
by equating the imaginary part of F(z) to zero. Introducing polar coordi-
nates gives

10

v = pe
Real F(v) = (sp 4+ 1/p) cos§ — logp — s — ¢
_ & (A1-15)
Imag. F(v) = (sp — {/p) sinf — 6
At o, 6 = 0, p = v;. Imag. F(vy) = 0 and, from (A1-12),
Real F(v,) = (251 — 1) — log vy — 5 — ¢
(o ' g (A1-16)

= (1 + 4s)V* — logwy — s —

The path of steepest descent through v; may be obtained in polar form
by solving

(sp — t/p) = 6/sin B (A1-17)

for p as a function of 6. Setting ¢ = 6 csc 6 and taking the positive value of
p leads to

p=lo+ (& + 4s)'/2s (A1-18)

As 6 increases from 0 to , ¢ increases from 1 to «, and p starts from v, (as
it should) and ends at «. Thus, the path of steepest descent through #;
comesin from v = — o + ix/s (when@ isnearly =, p X ¢/s, 0 /(7 — 6)
and p(r — 6) & m/s), crosses the positive imaginary v axis and bends down
to cut the real positive v axis (at right angles) at v1, and then goes out to
v = — o — im/s along a similar path in the lower part of the plane. It thus
avoids the branch cut (which we take to run from — e to 0) in the » plane
necessitated by the term log v in F(v). Since m and s are positive the path of
integration K in (A1-10) may be made to coincide with the path of steepest
descent when 1; > 1. This corresponds to the case in which xy < ¥ as (A1-14)
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shows. When 0 < #; < 1, ie., ® > x, > &, the two paths may still be made
to coincide but it is necessary to add the contribution of the pole at » = 1
as K is pulled over it. This is equivalent to passing from the first to the
second of equations (A1-6). The path # = 0 which makes Imag. F(z) of
(A1-15) zero turns out to be the curve of “steepest ascent” and hence need
not be considered. As (A1-13) shows, the saddle point v, does not enter into
our considerations because it lies on the negative real v axis and the path
of integration K in (A1-10) cannot be made to pass through it without
trouble from the singularity of F(v) at v = 0.

We now suppose xp < ¥ so that s and / are such as to make »; > 1. In
order to remove the factor (1 — ») from the denominator of the integrand
in (A1-10), we change the variable of integration from v to w:

?— 1= ¢v, (1 — o)y = —dw
(A1-19)
P(xo,u) = — Lf exp [mF(1 + €°)] dw
27 L

As v comes in along the path of steepest descent, the path of integration L
for w comes in from w = « -+ ir and dips down towards the real w axis
as arg v decreases from m. L crosses the real w axis perpendicularly at the
point

w, = log (v, — 1) (A1-20)

and then runs out to w = o« — {7 along a curve which tends to become
parallel to the real w axis. w; may be either positive or negative. When x,
is almost as large as %, w, is large and negative,

Since F(v) is real along the path of steepest descent, F(1 4 ¢*) is real
along L. This real value is — = at the ends of L and attains its maximum
value F(v), given by (A1-16), at w = w,. w; is a saddle point in the complex
w plane because

diw F 4 ¢*) = F/(1 + é°)e® = F'(0)e” (A1-21)

vanishes at w = w,.
Instead of F(1 4 ¢v) itself we shall be concerned with

r = F(1 4 ¢ — F(1 + &) (A1-22)
so that (A1-19) may be written as
Plvo,u) = — =P [mF(1 4 €7)] f ™ duw, (A1-23)
27 L

The variable 7 is real on the path of integration L, is zero at w,, and in-
creases to + = as we follow L out to w = e« =t iw. It is convenient to split
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K into two parts (10). The first part connects e =+ i to w; and the second
part connects w; to « — im. The values of w on these two parts will be
denoted by w; and w;;, respectively. Corresponding to each value of 7 there
is a value w; and a value wy; (in fact it turns out that wy, is the conjugate
complex of w;). Changing the variable of integration in (A1-23) from w to
7, and remembering that K starts at o + i, gives

P('.Ug, “) — exp [WII'(]-?‘l_ € )]'L- B—mr [i w; _d% w[!] dr (A1-24)

2 dr

Since m is large, most of the contribution to the value of the integral
comes from around r = 0 or w = w,. In order to obtain an expression for
the integrand in this region we note that, because F'(n) = 0, the Taylor
series for (A1-22) is of the form

T = —bg('w - 'i.ll'j)2 — ba('w —_ wl)3 - b.;('w - w1)4 —_ vt (A1—25)

The circle of convergence of this series is centered on w; and extends out to
w = =i, these points being the nearest singularities of F (1 4+ e*) as may
be seen by setting v = 1+ ¢* in (A1-11) and observing that the singularities
of log v — 1/v in the finite portion of the w plane occur at odd multiples of
~iw. We imagine the branch cuts associated with log v to run out to the
right from these points along lines parallel to the real w axis. Since (A1-25)
has a non-zero radius of convergence, the same is true of the two series ob-
tained from it by inversion, namely

wy — wy = b3 4 byr/203

2 N (A1-26)
+ ilbyh, — Sb33/AlF /288 4 -

and the series for w;; — w, obtained from (A1-26) by changing the sign of
i. Differentiation of these two series gives a series for d(w; — wrr)/dr which
also converges for sufficiently small | 7| (putting aside the term in 77'7),
and which, when put in (A1-24), leads to

mF(vy)
Plxo, 1) ~ (4:”72)”-3 {1 + 4%, (6276, — Bby b3/4] 4 } (A1-27)
That this is an asymptotic expansion holding for large values of m follows
from a lemma given by Watson (11). The conditions of the lemma hold
since we have already shown that the series for d(w; — wir)/dr converges
for | 7| small enough. Furthermore, d(w; — wi)/dr is bounded for a <7
where 7 is real and 0 < @ < the radius of convergence of (A1-26). This
follows the fact that

-1
@[] - ra+eer
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is bounded except near w = w, (i.e.,, + = 0) and, indeed, decreases to zero
like —ev/sasw— o + ir (le, 7 — =),

The values of b2, bs, by obtained by expanding (A1-22) and comparing
the result with (A1-25) are

by = F”(v))e™"/2
by = [F"'(v)e™™* + 3F"(0,)c™""]/6 (A1-28)
by = [F""(v)e™" + 6F" (v))e™ + TF"(v)e™!]/24

F'(v) = v 420078, F""(v) = =203 — 6lv—4, F""(1) = 6v~* 4 24105

I

I

Our asymptotic expression for P(x,, %), when x, < %, is given by (A1-28)
and (A1-27). Only the leading term of (A1-27) is used in the paper. Some-
times the following expressions are more convenient than the ones which
have already been given.

bo = v (v + 20€™/2 = v (01 + 20)(v, — 1)/2
= (1 — 1/v)1 + 4s)'2/2 (A1-29)
F(v) = (1 4 4st)'* — 5 — ¢ — log ..

In all of these formulas v; is given in terms of s and ¢ by (A1-13) and s and
{ in terms of xy and # by (A1-7).

When xy > &, the saddle point 7, lies between 0 and 1 in the v plane. As
v follows the path of steepest descent (discussed just below equation (A1-18))
arg (v — 1) now stays close to 7. From (A1-19) Imag. w stays close to 7 on
the new path of steepest descent in the w plane, and the saddle point w,
now lies on the negative real portion of the line Imag. w = . The new path
starts at w = oo -+ ¢m, swings down a little as it comes in, swerves up to
pass through w, and then goes out to w = e -+ ir above the branch cut
joining w = ir to w = o 4 im. The analysis goes along much as for »; > 1
except that instead of being 0 the imaginary part of w; is #w. This causes
the terms in &; and &; containing exp (3w:) to change sign. The numerical
values of b, and F(v;) are computed by the formulas (A1-29) as before. The
fact that b, contains the factor exp (i27) shows up only in changing the sign
of by to give the minus sign in the leading term:

P(xo, ) ~ 1 — (dmm| ba )72 exp [mF(v))]

which holds for xy > #. The one arises from the pole at = 1 and is the
same as the one in the second of equations (A1-6).

In order to see how (A1-27) breaks down near x, = x, we set xy — & =
2m(s — 1 —1) = —2meors = 1+ — e where ¢ is a small positive number
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Using oz = ave. (x — %)? = 4(m + u) = 4m(1 + 2¢) it is found that
14 ¢/(1+2) =1 — 2(x — %oz
mF(v) = —me/(2 + &) = —(x0 — %)/20%

Imbs = m(vy — 121 + 20) = (xo — %)*/o:

and that, since w, — — ©, b3 — bz and by — 7b2/12. When these values are
put in (A1-27) the leading term becomes

P(x0, u) ~ (2m)~1%(g./5) exp [—3*/203)

and the term within the braces in (A1-27) reduces to 1 — o/3" where z = &
— %, > 0. Since the asymptotic expansion is useful only in the region where
the second term within the braces is small in comparison with the first term,
which is unity, # — « must be several times as large as o before we can use
(A1-27). It will be noticed that the above expression for P(xo, %) is closely
related to the asymptotic expansion of the error function.

APPENDIX II

I

N1

AN APPROXIMATION FOR Iy(x)

When z in the Bessel function J,(gz) is imaginary a formula given by
Meissel (12) becomes

(g9)* exp (qw + V)
el'(g + 1)w'2(1 4 w)e (42-1)
where w = (1 + 3%)!2 and V is a function of y and ¢ which, when g is large,
has the formal expansion

1, 2-3 ¥ -4
V“zfq{z w }+ Tog*

I(qy) =

2 4 6 (A2-2)
1 16 — 16 + 1512y° — 3654y + 375y o
57609% w?
Here we shall show that fory 2 Oand ¢ > 1
|VI<1/(2¢—1) (A2-3)

Consideration of (A2-2) and also of the method used to establish (A2-3)
indicates that the inequality is very rough. It doubtlessly can be greatly
improved (but not beyond the 1/(12g) obtained by letting y and ¢ — < in
(A2-2)). Incidentally, it may be shown that the constant terms which re-
main in (A2-2) when y = « are associated with the asymptotic expansion
of log T'(g + 1).
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When (A2-1) is substituted in Bessel’s differential equation, which we
write as
2

¥y 0%2 L(gy) + ya% 1,(gy) = ¢(1 + y)1(gy) = 0,
we obtain a differential equation for V:

VY= (4 — e — Qo+ w VY — VR (A2
Here the primes denote differentiation with respect to y. The constants of
integration associated with (A2-4) are to be chosen so that
V— 4%/ (4g + 4) asy — 0. (A2-5)

This condition is obtained by comparing the limiting form of (A2-1), in
which w — 1 + 3%/2, with

(99/2)* (/07 _, /2" 4
Hq+n[1+q+1] r@+1ﬁp[ﬁm+u]

Condition (A2-5) completely determines V since substitution of the
assumed solution

I(qy) —

V=4 + D)7+ eyt + ooy’ +

in (A2-4) leads to relations which determine ¢, ¢z, -+ - successively.
Let V' = v. Then (A2-4) becomes
v =¢— 20y — (A2-6)

where ¢ and b are known functions of y defined by
=4 —w/4, b= (qw+ w?/ 2y (A2-7)
From (A2-5), » — 9/(2¢ + 2) as y — 0 and therefore

v
Vo= f v dy (A2-8)
0

We first show that | v| < 1/(2¢ — 1) when ¢ > 1. The (y, v) plane may
be divided into regions according to the sign of ¢’. The equations of the
dividing lines between these regions are obtained by setting " = 0 in (A2-6).
Thus, for a given value of v, 2’ is positive if v» < v < 7; and negative if
v > vy or v < vs where

m=—b+ @+ = /b + B+ o
v = —b+ (b* 4 )12 (A2-9)

When y > 0 we have b 2> ¢. A plot of ¢ versus y shows that | ¢ | < 1. Hence,
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when ¢ > 1,
Btosg—1> (- 10
|n| < 1/(2¢ — 1) (A2-10)
b < —2¢+ 1

The curve obtained by plotting v; as a function of y plays an important
role because, as we shall show, the maxima and minima of the curve for »
lie on it. Therefore, the maximum value of | v | cannot exceed the maximum
value of | 7, |. The maxima and minima must lie on either the v; or the »,
curve since ¢’ vanishes only on these curves. In order to show that it is the
v, curve we note from (A2-9) that, near y = 0, v behaves like y/(2¢ + 1).
Consequently both the »; and » curves start from » = O at ¥ = 0 but for a
while 1, lies above » which behaves like v/(29 4 2). Here v lies ina o > 0
region and continues to increase until it intersects »; (as it must do before
y reaches 2 because v; = 0 at y = 2) at which point 2’ = 0, 71 £ 0,and v
has a maximum which is less than the maximum of | »; | so » < 1/(2¢ — 1)
when ¢ > 1. Upon passing through »;, v enters a »* < 0 region and decreases
steadily until it either again intersects the v, curve or else approaches some
limit as y — . In either case | v | does not exceed 1/(2¢ — 1), since, in the
first case ¢ would have a minimum at the intersection and in the second
v; — 0 as y — . The same reasoning may be applied to the remaining
points of intersection, if any, of the v and v, curves.

Tn order to obtain an inequality for V itself we rewrite (A2-6) as

v =c¢— (20 + v)v (A2-11)

The solution of this equation which behaves like y/(2¢ + 2) as y — 0 also
satisfies the relation

o(y) = fﬂy c(x) exp [—f: [20(8) + o(8)] df] dx.

as may be verified by making use of the relations ¢(x) — 1 as + — 0 and
26(8) — (2¢ + 1)/, v(E) — £/(2¢ 4+ 2) as £ — 0. For then

[ 26 + #(&)] d — (2 + 1) log v/
vy = fn (e/9)* ™ dv = 3/(29 + 2)
Hence, from (A2-8)

oo = [y [ e exp[— [ 12866) + oo ds] ax
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and

ool [ ay [ 1) e [— [ 2 — o 1t |

Fromd 2 gand |v| < 1/(2¢ — 1) it follows that 2b(¢) — |v(¢) | > 2¢ — 1
when ¢ > 1. This and | ¢(x) | £ (4 4+ 2*)(1 4 2?)~2/4 gives

[ V() | < fn ) dy fn ’ 44+ 1+ )4 exp [—(2¢ — 1(y — a)] dx

Sm 1
62g—1) “29 =1
which is the result we set out to establish. The double integral may be
reduced to a single integral by inverting the order of integration and inte-

grating with respect to y. Incidentally, most of the roughness of our result
is due to the use of the inequality for | ¢(x) |.
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