Optical Properties and the Electro-optic and Photoelastic
Effects in Crystals Expressed in Tensor Form

By W. P. MASON

I. INTRODUCTION

HE electro-optic and photoelastic effects in crystals were first investi-

gated by Pockels,! who developed a phenomenological theory for these
effects and measured the constants for a number of crystals. Since then not
much work has been done on the subject till the very large electro-optic
effects were discovered in two tetragonal crystals ammonium dihydrogen
phosphate (ADP) and potassium dihydrogen phosphate (KDP). With these
crystals light modulators can be obtained which work on voltages of 2000
volts or less. Their use has been suggested? in such equipment as light valves
for sound on film recording and in television systems. Furthermore, since
the electro-optic effect depends on a change in the dielectric constant with
voltage, and the dielectric constant is known to follow the field up to 10%
cycles, it is obvious that this effect can be used to produce very short light
pulses which may be of interest for physical investigations and for strobo-
scopic instruments of very high resolution. Hence these crystals renew an
interest in the electro-optic effect.

In looking over the literature on the electro-optic effect and photoelastic
effect in crystals, there do not seem to be any derivations that give them
in terms of thermodynamic potentials, which allow one to investigate the
condition under which equalities occur between the various electro-optic
and photoelastic constants. Hence it is the purpose of this paper to give such
a derivation. Another object is to give a derivation of Maxwell’s equations
in tensor form, and to apply them to the derivation of the Fresnel ellipsoid.

The first sections deal with the optics of crystals, and derive the Fresnel
ellipsoid from Maxwell’s equations. Other sections give a derivation of the
two effects, discuss methods for measuring them by determining the bi-
refrigence in various directions and give the constants for the two effects in
terms of crystal symmetries. The final section discusses the application of
the photoelastic effect for measuring strains in isotropic media.

!'F. Pickels, Lehrbuck Der Kristalloptic, B. Teubner, Leipzig, 1906.

* See Pafent 2,467,325 issued to the writer; “Light Modulation by P type Crystals,”
George D. Gotschall, Jour. Soc. Motion Picture Engineers, July, 1948, pp. 13-20; B. H.,
Billings, Jour. Opt. Soc. Am., 39, 797, 802 (1949),
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1I. SoruTion ofF MaxweLL’s EqQuaTtions INn TeENsOR ForM
In tensor notation, Maxwell’s equations for a nonmagnetic medium with
no free charges take the form
1aD; _ oH; ~ 1aH; _

1oD: _  OH; 0E,,  9D: 9H,
vV ot o TV oal

axs ) 6.’13: = 0; E = {0 (1)

where D;is the electric displacement, H; the magnetic field, E; the electric
field, V the velocity of light in vacuo and e a tensor equal to zero when
i=jorkorj =k, butequal to1or —1 when all three numbers are different.
1If the numbers are in rotation, ie. 1, 2, 3; 2, 3, 1; 3, 1, 2 the value is +1
while, if they are out of rotation, the value is —1.

We assume the electric vector to be representable by a plane wave whose
planes of equal phase are taken normal to the unit vector 7 . Then

Ep = Eo, e ©)

where Eo, are constants representing the maximum values of the field along
the three rectangular coordinates and j = +/—1. Substituting (2) in the
second of equations (1), noting that Ey, are not functions of the space co-
ordinates, we have

1 90H; @ jwlt—zini/v
v a_{) = —v— [fjkiEOk 'H,,']EJ t ! l. (3)
Integrating with respect to the time
vV jwlt—zinifv] Juw(l—zin{/v)
H; = S lejri Eo, nide = Hy,e ) (4)
Hence,
Vv
Hoi = ; [ijiEu;‘ lli] (5)
and therefore the magnetic vector is normal to the plane determined b
P Yy
Euk and ni.
Next, using the first of equations (1),
aD: (?H_,' 681'wl£—zknk.'v]

Wi _ oy iy H, Y
at Ciik o eiie Hoy ——5 0
) (6)
_JeV

jwlt—a
= 'U_ [Ea'jk Huj m_]em IU'H“]'

Integrating with respect to time,

V jwlt—zpng/v
Di= -~ (e Ho, mle™ ", )
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Inserting the value of Hy, from (5), this equation takes the form
& folt—zimg
D,‘ = —— [Efjk(fjk.‘Euk u.-):zk]e’”“ zinilvl
2

and, in general,

2
p= T
.

[éijk(fjki Ey ﬂf)nk]- (9)

Expanding the inner parenthesis, we have the components
(Eony — Eyna)i; (Eyny — Eung)s; (B — Eomy)s. (10)
Then
ein[(Eang — Eym); (Eym — Eug); (Eve — Eamy)lny, gives

V2
D= —-— [(Esm — Exngng — (Exna — Eamy)na]
= [(Esns + Eona + Evm)m — Ex(ni + ns + u3)]

D, = —l':z- [(El na — Es 121)]111 - (E'_! ny — Ey 712)“3]

: (11)
= [(Eyns + Eyny + Evmdns — Ex(i 4 s + 03)]
Dy = —%—; [(Eang — Ezna)na — (Eymy — Eyng)m]
= [(Esny + Eana + Exmdns — Es(ui + ns + n3)].
Now, since #} + n; + n = 1 because # is a unit vector, we have
D; = iij[Ei — (E;jnj)ni or ;—ZD;' — Ei — (Ejnj)ni = 0. (12)

This equation states that D;, E; and n; are in the same plane, H; being
normal to the plane as shown by Fig. 1. The energy flow vector

Si = K eijr 125 Hy (13)
. 4w
also lies in the plane since it is perpendicular to E and H. It is at the same
angle 8 with n that E is with D. The velocity of energy flow is 1/cos 6. The
energy velocity is called the ray velocity and the energy path the ray path.
Next, from the relation for a material medium, that

D; = K;E;or conversely E; = 3;:D; (14)
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where K;; are the dielectric constants measured at optical frequencies and
B;: are the impermeability constants determined from the relations

Bii = A/AT (15)
where
Ku K Ku
A" = |K1; Ky Ko
Ku Ku Kg

and A" the determinant obtained by suppressing the 7™ row and i** column,
we can eliminate E; from equation (12) and obtain

2

%Dl = Bu Dy + B2 D2 + BusDs — (E; ;)1

2

%Dz = B1a Dy + Be2 D2 + B Dy — (E; ni)na (16)

72 D3 = BuD1 + Bz D2 + BunDy — (E; ”:')ns-

This can be put in the form
(Emjm = DB — ¥/V¥ + BuD; + BusDs
(Emne = BuDy + (Baz — v¥/V2)De + BasDs (17)
(Em)ng = BiDy + BasDe + (Bss — v*/V?) Dy
Solving for Dy, D; and Dy
Dy = [(Br — o/ VI (Bas — 9%/ V?) — BusllEsnilm
Dy = [(Bu — v/ V) (Bas — 0/ V) — Bisl[Eniln (18)
Dy = [(Bu — v/ V") (B2 — o/ V?) — BLl[Emjlna.

Now, since D and # are at right angles,

Dyny + Danig + Dy = 0. (19)
Hence,
0 = [(B — ¥/ V)(Bss — ¥/ V?) — Baglni
+ [(Bu — ¥/ V) (B — ¥/ V) — Bislnz (20)

+ [(Bu — v/ V) (B — 22/ V?) — Blaln.



OPTICAL PROPERTIES IN CRVSTALS 165

-]
] E
n
e

H s
PLANE OF
CONSTANT

PHASE

Fig. 1—Position of electric, magnetic and normal vectors for an electromagnetic plane
wave in a crystal.
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By choosing the original x, y, z axes so that 812 = B3 = f2; = 0 and using
the values B = B, B2 = B2, B33 = B3 this gives the equation

2 2
n1 n n3

L -+ s = 0. (21)

For transmission along the X axis »#, = 1, #s = n3 = 0 and the two velocities
are given by

F=RVE=, F=f= (22)
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Similarly the third velocity 12 = $1V? = @* can also be used and equation
(21) reduces to

2 2 2
M1 /2] 13 _
a”—v’+bﬂ—t}2+c2—v‘3_0' (23)

This is a quadratic equation for the velocities v in terms of the principal
velocities a, b and ¢ which are usually taken so that a > & > ¢.
Solving for the velocities, we obtain the quadratic equation

? — 202+ &) + na(a® + ) + n3(a® + b)) ”
4
+ nibic® + nia’c® + niab? = 0.

Letting L = ni(d: — &), M = my(c® — a?), N = nj(a® — b?) the solutions
for the velocities become
2 = wi* + &) + ni(c + o) + ni(d® + b)

. . (29)
+ /I + M® + N* — 2LM — 2LN — 2MN

This equation can be put into a simpler form if we change to the coordinate
system shown by Fig. 2. Here the rotated system is related to the original
system by three angles 0, ¢, Y. 6 is the angle between the Z' axis and the
Z axis, ¢ is the angle the plane containing Z and Z' makes with the X axis
while ¥ represents a rotation of the primed coordinate systems about the
7' axis. The direction cosines for the primed system with respect to the
normal system are designated by the matrix

X 7V £
X’ fl mi ny (26)
' e my e
z' f:] my N3

where, in terms of 8, ¢ and ¥, these direction cosines are,

£1 = cos @ cos ¢ cos ¥ — sin ¢ sin ¢,

m; = cos f sin ¢ cos ¥ + cos ¢ sin ¢, 7y = — sin 8 cos ¥
{» = —cos 0 cos ¢ sin ¢ — sin ¢ cos ¢,
Ma = COS ¢ COS Y — Sin ¢ sin ¢ cos 6, 1, = sin @ sin ¢
{3 = cos g sin 6, m; = sin ¢ sin 6, nz = cos 6. (27)

If we take Z’ as the direction of the wave normal, then in equation (25)

m = {, Ng = M3, Ny = N3
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and the equation for the velocities becomes

20" = a°(sin’ gasm_ﬂ_-k cos 8) + b’(cos” ¢ sin® @ + cos” 6) + c sm 0
(a® — b*)*(cos® 8 cos® ¢ + sin® ¢)® + 2(a* — b°)(c® —
sin2#(cos® 8 cos? ¢ — sin® ¢) + (2 — b*)? sm“g

(28)

A very elegant construction for the wave-velocities and the directions of
vibration is the Fresnel index ellipsoid. Consider the ellipsoid

a4+ by 4 =1 (29)

Then Fresnel® showed that, for any diametral plane perpendicular to the
wave normal, the two principal axes of the ellipse were the directions of the
two permitted vibrations, while the wave velocities were the reciprocals of
the principal semi-axes.

We wish to show now that the maximum and minimum values of the im-
permeability constants in a plane perpendicular to the direction of the
wave normal determine the directions of vibration and the values of the two
velocities. To show this we make use of the fact that 8,; is a second rank
tensor and transforms according to the tensor transformation formula

' 5 Xy 61,
ii = ; 30
Bii = 5 awe Pt (30)
where the partial derivatives are the direction cosines
o _ £ ot _ m 6—"1’ =n
6.1‘1 b 6.1'2 b 6.1'3 !
ax; = z 6.7\:; = m % = 5
6.1'1 o 6.'(?2 b a:l';; -
o3 — ¢ s — axs —
ax[ i 8.1'2 i a:t3 A

Expanding equation (30) the six transformation equations become
Bu = (iBu + 26miBre + 26mBrs + miBes + 2mmBas + 11
Bz = OBy + (lma + mibo)Bre + (s + mbe)Brs + mumafan
+ (mne + mma)Bey + mnaBs;
OB + (bomz + muls)Br + (fina + mla)Brs + mamaBos
+ (mmy + mynz)Bez + mingBa; (31)

3See for example “Photoelasticity,” Coker and Filon, Cambridge University Press,
pages 17 and 18.

I
Bis
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Bre = £Bu + 2lomeBis + 2msBis -+ maBa + 2manaBoy + n2Bas
Bay = bolsBu + (ams + maly)Bie + (fang + mals)Bus + mamaBen

+ (mans + 1mamz)Bas -+ nemaBay
Bis = £8u + 2lomsBre + 2sn:Bis + m3Bee + 2msnaBs + n3B5a.

Now, if the axes refer to the axes of a Fresnel ellipsoid, 812 = B3 = 23 = 0
and one of the impermeability constants for any direction, say B33, can be
expressed in the form

.3;3 = f;ﬁ[ + mgﬁe + Tlgﬁs (32)

If r, which lies along Z’ of Fig. 2, is the radius vector of the Fresnel ellipsoid,
then the direction cosines {3 , m3 and n; are

x z
fa=-, m3=y, Mg = —.
r r

From equation (24) 81 = a%/V? B2 = b¥/V?, B = ¢/V? and equation (32)
hecomes
r2V23;3 = &'’ + br"y2 + &= 1.

Hence the square of the radius vector of the Fresnel ellipsoid is 1/ VBas
and the radius vector of the impermeability ellipsoid agrees with that of the
Fresnel ellipsoid. Hence, the directions of vibration can be determined from
the principal axes of the impermeability ellipsoid for any diametral plane.

When light transmission occurs along Z’, the direction for maxmlum and
minimum impermeability can be obtamed by evaluating By and deter-
mining the angle y for which it has an extreme value. Inserting the direction
cosines {1 , my and n; from equation (27), we find

sin 2¢ sin 2¢ cos @

5{1 =B [cos2 8 cos” @ cos’ ¥ — 5 + sin® @ sin” w:l

sin 2¢ sin 2y cos 8 (33)

+ 8, [cos2 0 sin® ¢ cos” ¢ + 5 + cos’ ¢ sin® :,f/:|

+ B3 sin® 8 cos” Y.
Differentiating with respect to y and setting the resultant derivative equal
to zero, the value of ¢ that will satisfy the equation is given by
(82 — B1) sin 2¢ cos §
(81 — B2) (cos?® 8 cos? ¢ — sin® @) + (B3 — B2) sin? @
_ (8" — a”) sin 2¢p cos 8
(a2 — b?) (cos? 0 cos? ¢ — sin? @) + (& — b?) sin?2 8’

tan 2y =
(34)
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For a given value on the right-hand side there are two values of ¢, 90° apart,
that will satisfy the equation and hence we have two directions of vibration
at right angles to each other. Inserting (34) in (33) the values of B and
811 for these two directions are

2811 = Bi(sin? ¢ sin? 0+ cos? 8) + Ba(cos® ¢ sin2 6 + cos? ) + B sin? @
" 1/(61 — B2)* (cos® 0 cos® ¢ + sin® ¢)* + 2(B1 — B2)(Bs — Bs)

- sin? @ (cos® @ cos® ¢ — sin® ¢) = (B3 — B2)? sin? 6.

Since 3 corresponds to a?, etc., this equation agrees with the two velocities
given in equation (28) and sho\\s that the d1rect10ns of vibration correspond
with the maximum and minimum values of B1; .

It can also be shown that the two directions of electric displacement co-
incide with the two values of ¢ given by equation (34). Transforming the
electrical displacements to the X', ', Z’ set of axes we have

ds d 0
Dy = £D1+_SC_1D“+_x1D3= €101 + mi D2 + 1 Dy
1 ‘
d d d
Dy = 637:2 D, + ﬂDz—}—ﬂ s = £2D1+ my Dy + na Dy (35)
a d
D = gj;a 1+ —foz -|- xa = £3D1 + myD: + n3D;3.

Hence, inserting the values of Dy, Ds, D; from equation (18), we find

D; 5153( - 511){.33 - 1311 -+ m1m3(f31 - f311 (ﬂs - 1311)
+ (B — 311)(132 - {31’1)

Dy = (648 ~ B1)(Bs — Br) + w8 — B1)(Bs — Br) (36)
+ nans(By — Bi)(B: — B) )
D; = f%(ﬁz - ﬁ::)(ﬂ:l - rB;i) + "’%(‘3‘ - ‘8;1)(63 - 'B;I)

= ni(ﬂl - 5;1)ﬁ2 - 13;1)-

From equation (20) with gy = B13 = Ba3 = 0, it is evident that the D; com-
ponent vanishes and hence the two values of electric dlSpl'lCClTlEl’lt lie in a
plane perpendicular to Z’. By inserting the values of B and the value of
¢ found from equation (34) we find that D» = 0 and hence the electric dis-
placement lies along the dlrectmm of the greatest value of B . Similarly,
from the second value of 8y, , Dy vanishes and hence the second wave is per-
pendicular to the first and in the direction of the smallest value of ,B“ .
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III. Location oF Opric Axes IN A CRYSTAL

When the expression in the radical of equation (28) vanishes the two
velocities are equal and an optic axis exists. Since the expression inside the
radical can be written

[(a> — b%)(cos? fcos® ¢ + sin*p) — (6 — ¢*)sin® 6

(37)
— 4a® — ) (® — b?) sin®Bsin’p = 0

then, since the square is always positive and since (a* — %) > 0 and
(5* — ¢ > 0, the equation can vanish only if ¢ = 0. But ¢ = 0 indicates
that the two optic axes always lie in a plane perpendicular to the inter-
mediate velocity . With ¢ = 0 then the square vanishes when

(@ — b") _ a? — b?
(?)TCE)- or tan @ = & m .

If (a* — b?) < (b — ¢ the value of the tan @ is less than unity and the
crystal is called a positive crystal. For this case the two axes approach more
closely the Z axis having the velocity ¢ than they do the X axis. If
(a2 — 1) > (B* — @) the crystal is negative.

If @ = b or b = ¢ the crystal has a single optic axis and is respectively a
positive or negative uniaxial crystal. For the first case the two velocities

tan’ 8 =

(38)

are given by

9= a = b, 2o = \/a® cos? @ + ¢ sin? 6. (39)

The first velocity is that of the ordinary ray while that of the second is that
of the extraordinary ray. Since @ > ¢, the ordinary ray will have a velocity
greater than the extraordinary ray except along the optic axis where they
are equal. Since ¢ < @, the maximum axis for any ellipse, formed by inter-
secting the Fresnel ellipsoid at an angle to the optic axis, will lie in the plane
formed by the normal and the ¢ axis and hence the direction of polarization
of the extraordinary ray will lie in the ¢, » plane. The polarization of the
ordinary ray will be perpendicular to this plane.
If b = ¢ the a axis is the optic axis and the velocities of the two rays are
again
7, = cand 73 = @*(1-sin® fcos’ ) + ¢*(sin® Acos’ @) (40)

Hence, when 8= 90°, ¢ = 0°, the two velocities are equal and a is the optic
axis. In this case the velocity of the extraordinary ray is greater than that
of the ordinary ray except along the @ axis, and the crystal is a negative
uniaxial crystal. The polarization of the extraordinary ray lies again in the
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plane of the normal and the optic axis while the ordinary ray is perpendicu-
lar to it.

IV. DerIvaTION OF THE ELECTRO-O0PTIC AND PHOTOELASTIC EFFECTS

In a previous paper' and in the book “Piezoelectric Crystals and Their
Application to Ultrasonics”, D. Van Nostrand, 1950, it was shown that the
electro-optic and photoelastic effects can be expressed as third derivatives
of one of the thermodynamic potentials. Probably the most fundamental
way of developing these properties is to express them in terms of the strains,
electric displacements and the entropy. For viscoelastic substances it has
been shown that the photoelastic effects are directly related to the strains.
In terms of the electric displacements, the electro-optic constants do not
vary much with temperature whereas, if they are expressed in terms of the
fields, the constants of a ferroelectric type of crystal such as KDP increase
many fold near the Curie temperature. The entropy is chosen as the funda-
mental heat variable, since most measurements are carried out so rapidly
that the entropy does not vary.

The thermodynamic potential which has the strains, electric displace-
ments and entropy as the independent variables is the internal energy U,
given by

D\ @ 4q (41)

dU = Ti;dS:;; + En
4

where S;; are the strains, 7';; the stresses, E,, the fields, D,, the electric dis-
placements, © the temperature and o the entropy. In this equation the
strains S;; are defined in the tensor form

1 fou;  ou;
S=-\-—+ — 42
Y 2 (a.lfj + f’;\:,' ( )
where the u’s are the displacements along the three axis. In the case of a
shearing strain occurring when i # j, the strain is only half that usually

used in engineering practice. In order to avoid writing the factor 1/4x, we
use the variable 8,= D, /4r. Then, from (41),

at at g _ U

,111":7, Emzi, _ .
T a8y 8., do

(43)
Since, for most conditions of interest, adiabatic conditions prevail, we can
set do equal to zero and can develop the dependent variables, the fields and

1 “First and Second Order Equations for Piezoelectric Crystals Expressed in Tensor
Form,” W. P. Mason, B.S.T.J., Vol. 26, pp. 80-138, Jan., 1947.
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the stresses in terms of the independent variables, the strains and the elec-
tric displacements. Up to the second derivatives, these are

IE,
E, = Sy
aS; " +
1 dEn 20 E,,. N Em
7 Sij Sor Sijbn 5,6
+ 2![6.5’.-,-6.5‘4, Se + 35,0, 3508, " + 3,05, 36, 96, :|+
aT aT ()
{ |24
T; B S+ o ba
K = BS.., i + ETR
1[ & Tu 29° Tue 9° Tre
= —— ij r '_——'Si'an ‘__“_anao et
+ [asf,- a8, " + 35486, + 8¢, 36, ] T
For the electro-optic and photoelastic cases, the two tensors of interest are
FTw __ OV _ FE._
36,00, 0S5¢00,080, OSiL b, Home )
FEn _ U _ (4x)r
35,08,  06m 98, 3d, e
For the first partial derivatives, we have the values
Tt _ LI aTwt _ g _ 9B, _ ot
a5y U a5, aSwds.  0Sk ""'
E (46)
8 m S
= 4wfBun
%, P

where c?,-kc are the elastic stiffnesses measured at constant electric displace-
ment, /¢ are the piezoelectric constants that relate the open circuit voltages
to the strains, and B, are the impermeability constants measured for con-
stant strain.

With these substitutions and neglecting the other second partial deriva-
tives, we have, from (44),

S
En = —hnijSi; + Da [55.7; + MijmnSi; + r";"' Do] 4 .
,, ’ (47)
Tet = cintSi; + Do l:—ﬂ’ + ’i‘iu]
A 2

This equation shows that there is a relation between the change in the im-
permeability constant due to stress in the first equation, and the electro-
strictive constant in the second equation through the tensor #;jm. . These
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effects, however, have to be measured at the same frequency before equality
exists.

To obtain the changes in the optical properties caused by the strain and
the electric displacement we have to determine the fields and displacements
occurring at the high frequencies of optics. Even for piezoelectric vibrations
occurring at as high frequencies as they can be driven by the piezoelectric
effect, these frequencies are small compared to the optic frequencies f and
can be considered to be static displacements or strains. Hence, writing

En = Ep + E,¢™, D, = D%+ D,e™,
D, = D+ D,e™,  S;=S5
where w = 2xf, the first of equation (47) can be written in the form
Bp = —hni;Ssi + DS, [ B+ MijmnSii + ’—'5’2' Dﬁ]
- (48)
Ene’ = Dye™ [ﬁ + Mg Sis + D?,] + ”"7 DD, e™.
If we develop one of the fields, say E, , this can be written in the form
E ¢ = [Bir + mij11Sy 4+ ria DY + 112 DY 4 7113 DD
+ [Bre + Mo Sis + 1Dl + r1aa Dy + riay DiIDy ™ (49)
+ [B1s + Mij1aSi; + rin Dy + rise D2 + 1153 DD ™

where the first number of r refers to the field, the second to the optical value
of D and the third to the static value of D. Hence, for the general case,

Em ejmt - Dﬂ eiwt [nﬂmn + Mijmn St'j + Tmno Dg] . (50)

From the definition of the two tensors mj,, and ru., given by equation
(45), we can show that there are relations between the various components
of the tensors. For the first tensor mj, , since S;; = §;; is a symmetrical
tensor, then

Mijno = Mjino (51)
From the definition of the tensor #,,, in the form
a (U
drmijne = o | 0o 45
e = a5y (aan aa,,) (45)
it is obvious that we can interchange the order of 8, and 8, so that

Mijno = Mijon
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Since ij and #0 are reversible, it has been customary to abbreviate the tensor
by writing one number in place of the two in the following form:

11=1;22=2;33=312=21=6;13=31=5;23=32=4 (52

Since the reduced tensor is associated with the engineering strains, it is
necessary to investigate the numerical relationships between the four in-
dex symbols and the two index symbols. From equation (48), when m
# n, the change in the impermeability constant ., is given by

M ijmn S\'j + mjimqui = Mrs Sr (53)
Since §. = 25;; = 25;; we have the relation that
Mijmn = m,a(i, j, m,n=1to3,r,s = 1to 6) (54)

In equation (45) we cannot in general interchange the order of ij and no
since U does not contain product terms of strains and electric displace-
ments and hence in general

Myrg 7= Myr . (35)

Hence in the most general case there are 36 photoelastic constants. Crystal
symmetrics cut down the number of constants as shown in a later section.
The tensor #.., defined in equation (45) as
(4 rame = 00 (56)
6y, 08, 36,

shows that we can interchange the order of m and # since U contains product
terms of 8, and 6, . Hence

Tmno = Tamo (57)

and this is usually replaced by the two index symbols
Tgo = Tmno(m, 1,0 = 1t03;¢ = 11t006).
The so called “true” electro-optic constants are measured at constant
strain and for this case the modifications in the impermeability constants
are given by the equation

Em = D, [lg;grm + fgmaDo] . (58)

Since m and » are interchangeable, the third rank tensor is usually replaced
by the two index symbols
Yoo = raolm, my0 = 1to3;9 = 1to6). (59)

As discussed in the next sections, these constants can be determined by
applying an electric field of a frequency high enough so that the principal
resonances and their harmonics cannot be excited by the applied field, and
measuring the resulting birefringence along definite directions in the crystal.
On the other hand if we apply a static field to the crystal, an additional effect
occurs because the crystal is strained by the piezoelectric effect and this
causes a photoelastic effect in addition to the “true” electro-optic effect. A
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better designation for these effects is the electro-optic effect at constant
strain and stress.

This latter effect can be calculated from equation (47) by setting the
stresses T3¢ equal to zero and eliminating the S;; strains. After neglecting
second order corrections,

En = D,e™ [5;1,. + (rn. - ’—”“"”";,""*“) D?,]. (60)
4#61,‘;—(
Since Jiort/cint = goij, the other piezoelectric constant relating the open
circuit voltage to the stress, the electro-optic effect at constant stress can be
written in the form

Too = Toy 4 B0l (61)
4r
In terms of the two index symbols
rh o= yS, 4 Mraor (62)
4r

since it has been shown® that g,;; = gop/2 wheni # 4, and the tensor in (61)
has ij as common symbols which involves the summations of two terms.

The electro-optic effect is usually measured in terms of an applied field.
The change in the impermeability constant gy, for this case can be de-
termined from the first equations (47), setting 7%¢ equal to zero and neglect-
ing second order terms. Multiplying through by the tensor Kj, of the di-
electric constants

D, = Es Ko, (63)
since the product K;,8;, = 1. Introducing this equation into (58) we have
En = DalBun + Tann Koy Eol = DulBun + sno Eol. (64)
where the new tensor z,. is equal to
Zno = TonpKoyp - (65)
In terms of the two index symbols
Zho = Ty Koy, (66)

in which the repeated index indicates a summation. The difference between
the electro-optical constant at constant stress expressed in terms of the field
and the e]ectro-oplical constant at constant strain is

T Mijmn guU T S
Smne = Zmno + ! ]\ = Zmno + M ijmn dpz'j (67)
7]'

since the piezoelectric constants d,;; are related to the g constants by the
equation
%0ii Kop

dvij = d

(68)
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In terms of two index symbols
2T = 28 4 Mpgldep(p, g = 110650 = 110 3) (69)

where a repeated index means a summation with respect to this index.

Finally the photoelastic effect is sometimes expressed in terms of the
stresses rather than the strains. As can be seen from equation (47), the new
set of constants is

D
Tpg = MprSrq (70)
where the sp, are the elastic compliances measured at constant electric dis-

placement.

V. BIREFRINGENCE ALONG ANY DIRECTION IN THE CRYSTAL AND
DETERMINATION OF THE ELECTRO-OPTIC AND
ProtoerAsTiIC CONSTANTS

Ti we take axes along the Fresnel ellipsoid when no stress or field is ap-
plied to the crystal, the result of the electro-optic and photoelastic effects
is to change the impermeability constants by the values

.311=61+Al; 322:52+Az; Baz = Bz + Az

(71)
Bz = Ay Bz = As; B2 = Ag
where
A = znEy + 21Es 4 2133 + muS1 + MmSs + 1Sy + Mm1aSs
+ m15Ss + m165s
Ae = z01Fy + 200Fs + 2By + mnS1 + maaSe + mapSs + maaSiy
+ mesSs + a6
Ay = zuEy + 200Fs + 233E + maSt + maSe + ma3Ss + 3454
+ mySs + maSs
(72)

Ay = zaly + 2pFs + 2By + myS1 + MmeS: + Ma3Sy + MaaSy
+ mSs + maeSe

As = zFEy + 25aFs + 2aEs + maS1 + mpSe + msaSs + MeaSa
+ mssSs + 7565

As = 2By 4 ze2Fs + 263Ea + maS1 + meSe + m63Ss + MmeaSs
+ mesSs + mesSs .

If we transmit light along the 2’ axis which, as shown by Fig. 2, makes an
angle of 6 degrees with the z axis in a plane making an angle ¢ with the xz
plane, the birefringence can be calculated as follows: Keeping 2’ fixed and
rotating the other two axes about 2’ by varying the angle , one light vector
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will occur when $1; is a maximum and the other when B11 is a minimum.
Using the lransformallon equations (31) and the direction cosines of (27),
we find that ,611 is given by the equations

sin 2¢ sin 2¢ cos @

Bi1 = Bu |:cos2 8 cos’ ¢ cos” Y — + sin® ¢ sin’ 1[l:l

2
+ Bualsin 2¢ cos 2y — sin® 6 sin 2p cos” ¥ + cos 6 sin 2 cos 2]
+ Bus[—sin 20 cos ¢ cos® ¥ + sin ¢ sin @ sin 2] (73)
+ Bas [cos2 0 sin” ¢ cos” ¢ + Mlﬂ + cos’ ¢ sin’ \b]

+ Bas[—sin 26 sin ¢ cos® ¢ — sin 0 cos ¢ sin 2¢] + Bj; sin® 0 cos® ¢

5611 _

Differentiating with respect to ¢ and settmg = 0, we find an ex-

pression for tan 2y in the form
—B11 sin 2¢ cos 8 + 28;2 cos 8 cos 2p
+ 2813 sin @ sin 0 4 B2 cos 8 sin 2¢p — 2823 sin 8 cos ¢

Bii[cos® 8 cos’ ¢ — sin” @] 4+ Bua[(1 + cos® 8) sin 2(p]
— By sin® 0 ccs ¢ + Baa(cos’ Osin’ ¢ — cos’ ga)
— Bay sin 20 sin ¢ + B3 sin” 0

tan 2¢ = (74)

Inserting this value back in equation (73) we find that the two extreme values
of 811 are given by the equation

28'n = 2B + (B — PBas)(cos? O cos? ¢ + sin? ©) + (Bas — Ba) sin?b
— fhe sin® 0 sin 20 — B3 sin 26 cosg — By sin 26 sin ¢

(Bu — Ba2)*(cos® O cos® ¢ + sin® p)* 4 2(By — B22)(Baz — Ba2) sin? BX
(cos? @ cos? ¢ — sin? @) + (B3 — Baa)? sin' 8 — 2(By — Ban) X
[Bia(sin 2¢ sin® f(cos® 0 cos® ¢ + sin® @) + Bz sin 26 cos ¢ X
(cos® f cos® ¢ + sin%) — ey sin 20 sin (1 + cos? ¢ sin? 0)]

+ 2(B33 — Ba) sin? OB sin 2¢(1 + cos?§) — Biysin 26 cos ¢
— B sin 20 sin @] + (2B1)*[sin” 6 sin® ¢ cos? ¢ + cos? 0]
— 4812815 sin? @ sin ¢cos® 8 cos® ¢ + sin? ] — 4(B1Bay)
[sin 20 cos ¢(sin® ¢ cos? 04 cos? ¢)] + (2B13)? sin? 83X
(cos? 0 cos? ¢ + sin? @) — 481383 sin 2¢ sin’ §
1/ + (2B23)? sin® 0(cos? 0 sin? ¢ + cos? )
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The birefringence in any direction can be calculated from equation (75);
since 3;1 =/V? it equals 1/u; where p, is the index of refraction corre-
sponding to a light wave with its electric displacement in the 8’11 direction.
Similarly, for the second solution at right angle to the first,

L 1
pi=— =5 (76)
TER:
Hence if we designate the expression under the radical by K and half the
expression on the right outside the radical by Ky, we have

[=xT)

1 1 1 1
S+ =K1; TS 3= VK. (77)
M1 M2 M1 M2

Since w and ps are very nearly equal even in the most birefringent crystal,
we have nearly

3
.uz—m=B=%\/Ke- (78)

For special directions in the crystal, the expression for K, simplifies very
considerably. Along the x, ¥ and z axes, the values are

Il

X, (@ = 0° 6 = 90°); B. % V(B35 — B2)? + (282)°

Y, (p = 90° 6 = 90°); B,

b B — Bl 283 (79)

3
Z, (g =10%6=0%; B “5 V(B — Bm)® + (2B1)”

If any natural birefringence exists along these axes, (28:5)* will be very
small compared to this and

3 3/1 1

B==%(ﬁ3—ﬂa+ﬂa—ﬂe)=82'("5——2+A3*A2)
He Hb

3 w1 1
By=5 Bi—f+a—a) =3 (m—mt+h—M) (80)

2 2 \pa He

3 8 /1 1
Bo=2 B —ptd—a) =" (- 5+ a0 M)

2 2 Npta M3

Hence, for this case, measurements along the three axes will tell the differ-
ence between the three effects A, , As and Ay . To get absolute values requires
a direct measurement of the index of refraction along one of the axes and
its change with fields or stresses. This is a considerably more difficult meas-
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urement than a birefringence measurement and requires the use of an ac-
curate interferometer.

If, however, the Z axis is an optic axis as it is in ADP, for example, and
A; = As = 0, a birefringence occurs due to the term £ . As shown in the
next section, the electro-optic constants for ADP (tetragonal 42m) are zs
and 2s3 . 23 occurs in the expression for 8 = Ag, as can be seen from equa-

tions (72), and hence the birefringence along the Z axis is
3

B, = % %2B1s = o zes Es. (81)

The constants zg; and 24 have been measured independently by W. L. Bond,
Robert O’B. Carpenter, and Hans Jaffe. Probably the most accurate meas-
urements, and the only one published, are those of Carpenter,® who finds
that the indices of refraction and the zg and 2y constants for ADP and
KDP are in cgs units

Ha He Tadxao? Faaxo?
ADP 1.5254 1.4798 2.54 4 0.05 6.25 4= 0.1
KDP 1.5100 1.4684 3.15 = 0.07 2.58 £ 0.05

An even larger constant has been found for heavy hydrogen KDP by Zwicker
and Scherrer.® They find at 20°C that rg3 = 6 X 1077, Using this constant, a
half wave retardation for a A = 5461 A° mercury line occurs for a voltage
of 4000 volts.

For tetragonal crystals of these types the only photoeleastic constant for
the z axis is ms , and the birefringence for this case is given by

B, = pimesSs (82)
When a natural birefringence exists for the crystal, measurements of the
other three effects Ay, A; and As can be made by determining the bire-
fringence along other directions than the Fresnel ellipsoid axes. In a direction
of Z' lying in the XZ plane ¢ = 0, f# = variable and
B. = #3 [(311 - 1822) COS»"3 7] + (,533 —_ ,822) 5i112 g — 613 Siﬂ2 9]2 (8"})
== 9 + [2B12 cos O + 233 sin 4], -

When a natural birefringence exists, this reduces to

Pava 1 5
By == |\ 23— 2+ At — Ay Jcos™ b
2 Ha Hb

1 1 o
+ (‘5 — 54 Ay — Ag) sin” # — Agsin 28]
He Hb

(84)

5 “The Electro-optic Effect in Uniaxial Crystals of the Type XH.PO,,"” Robert O'B.
Carpenter, Jour. Opt. Soc. Am., in course of publication.
6 Zwicker and Scherrer, Helv. Phys. Acta., 17, 346 (1944).
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and hence, by measuring at 45° between the two axes, one can evaluate the
Ag term.
Similarly, for the VZ plane, ¢ = 90°, § = variable and

’ I‘/[*(ﬁu — 822) + (B — ) sin®0 — By sin 20]° (85)

By: = £ 2 2. gl 2
2 + [ ;'31'_' cos 8 — 2[]]3 sin 6] .

Hence, when a natural birefringence exists, we have

AT /11
B=%|—|7— 3+ 4 — A
2 Ha Hb

1 1 )
=+ ('5 — 5+ Ay — Ag) sin” @ — A4 sin ZB:I.
Me My

(86)

In the XV plane #= 90°, ¢ = variable and
By = &3 1/[(1311 — Bu) sin® ¢ — (B — 522_) — P sin 2¢)? (87)

2 + [2613 sin ¢ — Ba cos ]

Then, for natural birefringence,

P‘a 1 1 .on
BzﬂiE = — 2+ A — Ay )sin ¢
Ha Uy

1 1
- (_2 — 2+ Ay — Ag) — A sin 2@].
Me Kb

Hence, with measurements at 45° between the axes and with suitably ap-
plied fields and strains, the three effects A4, As and A; can be measured.
Since the axes of the test specimen are turned with respect to the X, ¥ and
Z axes, suitable transformations of the effects A; to Ag with respect to the
new axes will have to be made. These can be done as shown in reference (4)
by means of tensor transformation formulae.

Another method for measuring the constants in Ay, Az, Ag is to measure
the amount they rotate the axes of the Fresnel ellipsoid. As an example con-
sider the 2y constant of ADP. For example, if we look along the X axis and
apply a field in the same direction, then, in equation (74), 8 = 90°, ¢ = 0 and

(88)

— 2843 — 2z Ey _2#-2?: P-:z: 21 By
tan 2y = = = . (89)
v B — B 1 1 (w4 ) — pe)
T

According to Carpenter, the zy electro-optic constant of ADP is 6.25 X 1077
in cgs units. p; = gy = 1.5254; y, = 1.4798; hence the angle of rotation for
a field of 30,000 volts per centimeter = 100 stat volts cm is

¢ = —2.25 X 107 radians = 7.7 minutes of arc. (90)
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VI. ELECTRO-0PTIC AND PHOTOELASTIC TENSORS FOR VARIOUS
CrysTaL CLASSES

Since Tmnoe = Famo ANA Zpne = Zume are third rank tensors similar to the
Jmij piezoelectric tensor, they will have the same components for the various
crystal classes. For the twenty crystal classes that show the electro-optic
effect these tensors are given below. They are given with the crystal system
they belong to, and the symmetry is designated by the Hermann-Mauguin
symbol. The last number of the subscript of z designates the direction of the
applied static field.

(91)
Triclinic; 1 Zn 201 Za1 241 Z51 261
Z12 %o 230 242 252 262
213 Zag Z33 243 253 Zg3
Monoclinic; 2 0 0 0 2a1 0 261
21 Zan Zp 0 Z52 0
0 0 0 243 0 Zg3
Monoclinic; 2 = m| 2y 2 2 0 251 0
0 0 0 24 0 62
213 2oy Z33 0 Z53 0
Orthorhombic; 222 | 0 0 0 Za1 0 0
0 1] 0 0 Zs 0
0 0 0 0 0 263
Orthorhomic; 2mm | 0 0 0 0 251 0
1 223 2y 0 0 0
Tetragonal; 1 0 () 0 Za Zn1 0
0 0 0 —Zn Fa 0
213 —Z1a 0 0 0 263
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Tetragonal; 4

Tetragonal; 42m

Tetragonal; 422

Tetragonal; 4mm

Trigonal; 3

Trigonal; 32

Trigonal; 3m

Hexagonal; 6

0
0

213

213

Zn
—&a22

213

£1

—22

213

211

0
0

713

213

—Zn

Z13

—Zun

213

—21

0
0

233

251

241

251

241

251
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251

—241

—Za

251

251

—Za

241

251

2

—Zn

—Z1

it )

it )

—21




Hexagonal; 6m2

Hexagonal; 6

Hexagonal; 622

Hexagonal; 6mm
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Cubic; 23 and 43m

Zn —Zn
0 0
0 0
0 0
0 0
213 Z13
0 0
0 0
0 0
0 0
0 0
213 213
0 0
0
0 0

The r tensor has similar terms.

The photoelastic constants are similar to the elastic constant tensors
except that s, # m, in general. However, for the tetragonal, trigonal,
hexagonal and cubic systems, Pockels found that mns = . . This follows
from the transformation equations about the Z axis which is the = fold
axes for these groups. For a rotation of an angle # about Z, the direction

cosines are

_ Bx{
{1 = a—xl
dxs
=

£2 B ax]_
%3

= 8
£3 - 6371

cos ¢ mi
—sin @ Mo
0 My

o

ax{
0

’
dxs

Il

9%,
ax;

- 3.%'2

0 0

0 0

0

Za 251
251 —Z41
0 0

24 0

0 41
0 0

0 Z51
Z51 0

0 0

241 0

0 241

0 0

4

. axl
sinf #n = —
axa

r

6:02

cosf ne = —
éJxa

!

ox

0 Nz = -3
ax;

—Zn

241

183

(92)
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. ! ! ! 4
Transforming the two terms s = mye and man = ma by the tensor
transformation equation

Mmijpl = Ofs 0% I% I Mmnop (93)

we find, for these two coefficients,
myg = (mn + ma — dme) sin® 0 cos® 6 + 2(me — Mg

. 3 ] 4 - 4
sin @ cos” 6 + 2(mg — mug) sin” 6 cos 8 + ma cos 6 4 may sin @

Moy = (May + Moy — mgg) sin? 8 cos® 0 + 2(myg — M) &4
sin® 0 cos 6 + 2(meg — mer) sin 0 cos” @ + may cos' @ + mug sin® 6
If m;g, = ma for all angles of rotation we must have
Mg + Mg = Mer + Mgz
For all the classes that . = iy, either mog = —mye and me = —mg or

else myg = Mag = Mg = Mg = 0.

Now, if Z is a four-fold axis, as it is in the tetragonal and cubic systems,

s ’
then, for a 90° rotation, the value of mf;- or mg, must repeat. From the first
of (92) this means that
me = ma and ma = M

For a trigonal or hexagonal system additional relations are obtained between
#gs and #yy , Mee and e in the usual manner. Hence the photoelastic matrices
become, for the various crystal classes,

Triclinic 36 | my w2 g3 My m Mg The = ten-
Constant | sor is en-

My Mo M May Mas Map tirely anal-

ogous

My Mz Maz My Mys Mias

ma My Mgy Mgy Mys My

M1 Mgs Me3 M54 M55 Msa

LT Mgz Mea Mgy Mes Mgg
Monoclinic | muy ma muz 0 Mg 0 The = ten-
20 Con- sor is en-
stants nia Mz Wiz 0 M2 0 tirely anal-

na Maz Mz 0 M6 0 ogous

0 0 0 My 0 Mg

ms Mz M 0 Mg 0

0 0 0 May 0 Mios




Ortho-
rhombic 12
Constants

Tetragonal
4,4,4/m9
Constants

Tetragonal
42m, 422
4mm,
(4/m)mmn

7 Constants

Trigonal
3,311 Con-
stants

nyy
Mmay

may

my
M2

ma

Mmel

nyy
nya

My

mi

Mma

M

myq

| — Mgz

Trigonal
32,3m
3(2/m) 8

Constants

mn
Mia
mmu

Mgy

0
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nys
Maa
Mmye
0
0
0

{m
m

Mma

— Mal

my2
myy

My

nya
myy
Mma
— N

Mga

Mo
hn
Ny

— My

0

My
Mag

Mz

0
0
0

myy
niy

Mg

miz
My

Mys

My
M3

LR

0

Ny
My
Mgy
0
0

4]

m

— M

Mgy

— My

May

m

— M

My

Q0

0
0
0
0

[T — T — R =]

My

— M

May

M5

Mgy

My

Mgy

Mmyy

IN CRYSTALS

Mss

o @ @ o O

m

0
0
0
Mz
M

my— e

2
0
0
0
0

My

My — gz

2

185
The = ten-
sor is en-
tirely anal-
ogous
The 7 ten-
sor is en-
tirely anal-
ogous
The = ten-
sor is en-
tirely anal-
ogous
The = ten-
sor is anal-
ogous  ex-
cept that
T = 2ma
T = 2ma
e —
(mu — 11‘12)
The = ten-
sor Is ana-
logous  ex-
cept  that
me = 2w
Tee =
™ T T2
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Hexagonal | mn My My 0 0 0 The = ten-
6,6m2,6 sor is anal-
622,6/m; My M Mg 0 0 0 ogous  ex-
6mm,—mm | ma  Ma  Ma 0 0 0 cept _ that
m e =

6 Constants | 0 0 0 Mg 0 0 L s

0 0 0 0 m 0

0 0 0 0 0 M — M2

2

Cubic Sys- My Mg M 0 0 0 The = ten-
tem 23,432 sor is en-
2 42| M2t M 0 0 0 tirely anal-
1;3,431;1,;3;]—1 0 0 0 ogous

My My W
3 Constants . ! " (93)

0 0 0 My 0 0

0 0 0 0 My 0

0 0 0 0 0 M
Isotropic mp My M 0 0 0 The = ten-
Systems 2 sor is anal-
Constants Mz P Mz 0 0 0 ogous  ex-

i Mgz Mo 0 fl_e::t — that

— Wi T T Mz
0o 0 o0 Tuzthe g 0
2
0 0 0 0 my—me 0
2
0 0 0 0 0 Ny — Mz
2

From measurement” on the photoelastic effects at high pressure for cubic
crystals, it has become apparent that the second derivatives of equation
(44) are not sufficient to represent the experimental results and derivatives
up to the fourth power should be included. This extension, however, is not
considered in the present paper.

VII. PrOTOELASTICITY IN Isorroric MEDIA

The photoelastic effect in isotropic solids has been used extensively in
studying the stresses existing in machine parts and other pieces. For this
purpose a plastic model cut in the shape of the original is used and is loaded
in a similar manner to that of the machine part to be studied. Since stresses
are applied, the m; photoelastic constants are most useful. If we look along

7H. B. Maris, Jour. Optical Society of Amer., Vol. 15, pp. 194-200, 1927.
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the Z axis, the last of equations (79) shows that the birefringence is equal
to

3
B, = “5 V(B A1 — Ba — A)E + 4(Ag)? (96)

Since, for an isotropic substance 8; = B2, we have, after substituting the
value of A; and A, , with the appropriate photoelastic constants from equa-
tion (95), (last tensor):

3
B, = % (rin — m)V/(Ty — To)? + 4T¢ (o7

If we transform to axes rotated by an angle 6 about Z, the values of Th
’ .
and T, are given by

Ty = cos 0Ty + 2 sin 8 cos 8T + sin? 67T,

(98)
Tg = sin %67; — 2 sin 6 cos 68T + cos 20T
If, now, we choose the angle @ so that T1, is a maximum, we find
_ 2T
tan 20 = T =T, (99)
Inserting this value of tan 26 in (98) we find
T
r{ = DI Ly =Ty Ty
it T (100)
Ty = 25—~ 1T - Ty + 4T¢
and, hence,
T1 — Ts = V/(Th = T2 + 4T¢ (101)

Hence the birefringence obtained in stressing a material is proportional to
the difference in the principal stresses. By observing the isoclinic lines of a
photoelastic picture, methods® are available for determining the stresses
in a model. A photograph® of a stressed disk is shown by Fig. 3. The high
concentration of lines near the surface shows that the shearing stress is
very high at these points. By counting the number of lines from the edge
and knowing the stress optical constant, the stress can be calculated at any
point.

If we apply a single stress 71, the birefringence is given by the equation

3

B, = % (ry — m2) T (102)

8 See Photoelasticity, Coker and Filon, Cambridge University Press, 1931.
9 This photograph was taken by T. F. Osmer.
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Instead of using the constants my; and m it is customary to use a single
constant C given by

B=p —p=r=CT (103)

where the constant C is called the relative stress optical constant and r the
retardation. The dimensions of C are the reciprocal of a stress and are

Fig. 3—Photoelastic picture of a disk in compression.

measured in cm? per dyne. A convenient unit for most purposes is one of
1018 cm?/dyne; if this is used, the stress optical coefficients of most glasses
are from 1 to 10 and most plastics are from 10 to 100. This unit so defined
has been called the “Brewster”’. In terms of the Brewster, the retardation is

r=CTd (104)

If C is measured in Brewsters, d in millimeters and 7 in bars (10° dynes/
cm?) then r, as given by the formula, is expressed in angstrom units,



