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[SECOND INSTALLMENT]

CHAPTER IV
FILTER-TYPE CIRCUITS
SyNopsis OF CHAPTER

SIDE FROM HELICES, the circuits most commonly used in traveling-
wave tubes are iterated or filter-type circuits, composed of linear
arrays of coupled resonant slots or cavities.

Sometimes the geometry of such structures is simple enough so that an
approximate field solution can be obtained. In other cases, the behavior of
the circuits can be inferred by considering the behavior of lumped-circuit
analogues, and the behavior of the circuits with frequency can be expressed
with varying degrees of approximation in terms of parameters which can be
computed or experimentally evaluated.

In this chapter the field approach will be illustrated for some very simple
circuits, and examples of lumped-circuit analogues of other circuits will be
given. The intent is to present methods of analyzing circuits rather than
particular numerical results, for there are so many possible configurations
that a comprehensive treatment would constitute a book in itself.

Readers interested in a wider and more exact treatment of field solutions
are referred to the literature.!?

The circuit of Fig. 4.1 is one which can be treated by field methods. This
“corrugated waveguide” type of circuit was first brought to the writer’s
attention by C. C. Cutler. Tt is composed of a series of parallel equally spaced
thin fins of height /z projecting normal to a conducting plane. The case treated
is that of propagation of a transverse magnetic wave, the magnetic field
being parallel to the length of the fins. Tt is assumed that the spacing ¢ is
small compared with a wavelength. In Fig. 4.2, 8k is plotted vs. 8y Here 8
is the phase constant and 8, = w/¢ is a phase constant corresponding to the
velocity of light.

'E. L. Chu and W. W. Hansen, “The Theory of Disk-Loaded Wave Guides,” Journal
of Applied Plysics, Vol. 18, pp. 999-1008, Nov. 1947,

? L. Brillouin, “Wave Guides for Slow Waves,” Journal of Applied Physics, Vol. 19,
pp. 1023-1041, Nov. 1948,
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For small values of 8ok, that is, at low frequencies, very nearly 8 = fo;
that is, the phase velocity is very near to the velocity of light. The field
decays slowly away from the circuit. The longitudinal electric field is small
compared with the transverse electric field. In fact, as the frequency ap-
proaches zero, the wave approaches a transverse electromagnetic wave
traveling with the speed of light.

At high frequencies the wave falls off rapidly away from the circuit, and
the transverse and longitudinal components of electric field are almost equal.
The wave travels very slowly. As the wavelength gets so short that the
spacing £ approaches a half wavelength (3¢ = ) the simple analysis given
is no longer valid. Actually, 3¢ = = specifies a cutoff frequency; the circuit
behaves as a lowpass filter. ‘

Figure 4.3 shows two opposed sets of fins such as those of Fig. 4.1. Such
a circuit propagates two modes, a transverse mode for which the longi-
tudinal electric field is zero at the plane of symmetry and a longitudinal
mode for which the transverse electric field is zero at the plane of symmetry.

At low frequencies, the longitudinal mode corresponds to the wave on a
loaded transmission line. The fins increase the capacitance between the con-
ducting planes to which they are attached but they do not decrease the
inductance. Figure 4.6 shows gk vs. Bok for several ratios of fin height, A,
to half-separation, d. The greater is //d, the slower is the wave (the larger
is 8/Ba).

The longitudinal mode is like a transverse magnetic waveguide mode; it
propagates only at frequencies above a cutoff frequency, which increases
as h/d is increased. Figure 4.7 shows 8k vs. Boh = (w/c)h for several values
of &/d. The cutoff, for which 8¢ = , occurs for a value of So/ less than /2.
Thus, we see that the longitudinal mode has a band pass characteristic. The
behavior of the longitudinal mode is similar to that of a longitudinal mode of
the washer-loaded waveguide shown in Fig. 4.8. The circuit of Fig. 4.8 has
been proposed for use in traveling-wave tubes.

The transverse mode of the circuit of Fig. 4.3 can also exist in a circuit
consisting of strips such as those of Fig. 4.1 and an opposed conducting
plane, as shown in Fig. 4.5. This circuit is analogous in behavior to the disk-
on-rod circuit of Fig. 4.9. The circuit of Fig. 4.5 may be thought of as a
loaded parallel strip line. That of Fig. 4.9 may be thought of as a loaded
coaxial line.

Wave-analysis makes it possible to evaluate fairly accurately the trans-
mission properties of a few simple structures. However, iterated or repeating
structures have certain properties in common: the properties of filter
networks.

For instance, a mode of propagation of the loaded waveguide of Fig. 4.10
or of the series of coupled resonators of Fig. 4.11 can be represented ac-
curately at a single frequency by the ladder networks of Fig. 4.12. Further,
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if suitable lumped-admittance networks are used to represent the admit-
tances B, and B, the frequency-dependent behavior of the structures of
Figs. 4.10 and 4.11 can be approximated.

It is, for instance, convenient to represent the shunt admittances By and
the series admittances B, in terms of a “longitudinal” admittance B; and
a “‘transverse” admittance By . B and B, are admittances of shunt resonant
circuits, as shown in Fig. 4.15, where their relation to B; and B, and ap-
proximate expressions for their frequency dependence are given. The res-
onant frequencies of B and By, that is, w; and wy, have simple physical
meanings, Thus, in Fig. 4.10, w, is the frequency corresponding to equal
and opposite voltages across successive slots, that is, the = mode frequency.
wy is the frequency corresponding to zero slot voltage and no phase change
along the filter, that is, the zero mode frequency.

If wy, is greater than wy, the phase characteristic of this lumped-circuit
analogue is as shown in Fig. 4.17. The phase shift is zero at the lower cutoff
frequency wr and rises to r at the upper cutoff frequency w;, . If wy is greater
than wy, , the phase shift starts at — at the lower cutoff frequency w;, and
rises to zero at the upper cutoff frequency wr, as shown in Fig. 4.19. In this
case the phase velocity is negative. Figure 4.20 shows a measure of (E*/3*P)
plotted vs. w for w, > wy . This impedance parameter is zero at wy and rises
to infinity at wy, .

The structure of Fig. 4.11 can be given a lumped-circuit equivalent in a
similar manner. In this case the representation should be quite accurate.
We find that w,, is always greater than ws and that one universal phase curve,
shown in Fig. 4.27, applies. A curve giving a measure of (F*/8*P) vs. fre-
quency is shown in Fig. 4.28. In this case the impedance parameter goes to
infinity at both cutoff frequencies.

The electric field associated with iterated structures does not vary sinus-
oidally with distance but it can be analyzed into sinusoidal components.
The electron stream will interact strongly with the circuit only if the elec-
tron velocity is nearly equal to the phase velocity of one of these field com-
ponents. If # is the phase shift per section and L is the section length, the
phase constant 8,, of a typical component is

Bm = (8 + 2m=)/L
where m is a positive or negative integer. The field component for which
m = 0 is called the fundamental; for other values of m the components are
called spatial harmonics. Some of these components have negative phase

velocities and some have positive phase velocities.
The peak field strength of any field component may be expressed

E=-M(V/L)

Here V is the peak gap voltage, L is the section spacing and M is a function
of 8 (or B,) and of various dimensions. For the electrode systems of Figs.
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4.29, 430, 4.31 and 4.32 M is given by (4.69), (4.71), (4.72) and (4.73),
respectively.

The factor M may be indifferently regarded as a factor by which we
multiply the a-c beam current to give the induced current at the gap, or,
as a factor by which we multiply the gap voltage in obtaining the field. We
can go further, evaluate £?/3°P in terms of gap voltage, and use M*I, as the
effective current, or we can use the current /, and take the effective field in
the impedance parameter as

B = MXV/t)?

It is sometimes desirable to make use of a spatial harmonic (m = 0)
instead of a fundamental, usually to (1) allow a greater resonator spacing
(2) to obtain a positive phase velocity when the fundamental has a negative
phase velocity (3) to obtain a phase curve for which the phase angle is
nearly a constant times frequency; that is, a phase curve for which the group
velocity does not change much with frequency and hence can be matched
by the electron velocity over a considerable frequency range. Figure 4.33
shows how 6 + 27 (the phase shift per section for m = 1) can be nearly a
constant times w even when # is not.

Fig. 4.1—A corrugated or finned circuit with filter-like properties.

4.1 FIELD SOLUTIONS

An approximate field analysis will be made for two very simple two-
dimensional structures. The first of these, which is shown in Fig. 4.1, is
empty space for y > 1 and consists of very thin conducting partitions in the
y direction from y = 0 to y = —h; the partitions are connected together
by a conductor in the z direction at y = —/. These conducting partitions
are spaced a distance £ apart in the z direction. The structure is assumed to
extend infinitely in the 4x and — x directions.

In our analysis we will initially assume that the wavelength of the propa-
gated wave is long compared with £. In this case, the effect of the partitions
is to prevent the existence of any y component of electric field below the z
axis, and the conductor at y = —/ makes the z component of electric field
zero at y = —z.

In some perfectly conducting structures the waves propagated are either
transverse electric (no electric field component in the direction of propaga-
tion, that is, z direction) or transverse magnetic (no magnetic field com-
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ponent in the z direction). We find that for the structure under consideration
there is a transverse magnetic solution. We can take it either on the basis
of other experience or as a result of having solved the problem that the
correct form for the x component of magnetic field for y > 0 is

H, = Hye 7 (4.1)
Expressing the electric field in terms of the curl of the magnetic field, we have

()ifzﬁQI]y_(

jwelly = — o )
; dy dz
(4.2)
oldx  allz
EJ = —_— —_— —
JoeSy dz du
— B (—yy—iB2)
E, = — ~ Hgpe (4.3)
we
. alHy  aHx
E, = = — —— 4.4
Jee dx dy 44
Ez — __7 l Hoe(—‘:‘b‘—fﬂz) (4.5)
we
We can in turn express H. in terms of £, and E.
. dEz  0Ey
—jwpH, = —~ - 4.6
Jom ay dz (4.6)
This leads to the relation
B3 — ¥* = wue (4.7)

Now, 1/4/ e is the velocity of light, and w divided by the velocity of light
has been called 3,, so that

B — vt = B¢ (4.8)
Between the partitions, the field does not vary in the z direction. In any
space between from v = 0 to y = —J, the appropriate form for the magnetic
field is
H, = H, cos Buly + 1) (4.9)
cos Bok

From this we obtain by means of (4.4)

E, = _ 1B H, sin Boly 4 1) (4.10)
we cos Boh

Application of (4.6) shows that this is correct.
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Now, at y = 0 we have just above the boundary
By = —j X He (4.11)
WEe .

The fields in the particular slot just below the boundary will be in phase
with these (we specify this by adding a factor exp —jBz to 4.10) and hence
will be

E, = _IBo Hoe ™ tan Boh (4.12)
we
From (4.11) and (4.12) we see that we must have
Bok tan Bolt = I (4.13)
10
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Fig. 4.2—The approximate variation of the phase constant 8 with frequency (propor-
tional to Bok) for the circuit of Fig. 4.1. The curve is in error as 8¢ approaches r, and there
is a cutoff at gt = .

Using (4.8), we obtain

Bh = +Bo ke

= cos Bolk (4.14)

In Fig. 4.2, 8k has been plotted vs Bok, which is, of course, proportional to
frequency. This curve starts out as a straight line, 8 = 8y ; that is, for low
frequencies the speed is the speed of light. At low frequencies the field falls
off slowly in the y direction, and as the frequency approaches zero we have
essentially a plane electromagnetic wave. At higher frequencies, 8 > £,
that is, the wave travels with less than the speed of light, and the field falls
off rapidly in the y direction. According to (4.14), B goes to infinity
at foh = /2.

As a matter of fact, the match between the fields assumed above and below
the boundary becomes increasingly bad as 3£ becomes larger. The most rapid
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alteration we can have below the boundary is one in which fields in alternate
spaces follow a +, —, 4, — pattern. Thus, the rapid variations of field above
the boundary predicted by (4.14) for values of 8ok which make 8¢ greater
than = cannot be matched below the boundary. The frequency at which
B¢ =  constitutes the cutoff frequency of the structure regarded as a filter.
There is another pass band in the region = < 8yt < 37/2, in which the ratio
of E to H below the boundary has the same sign as the ratio of £ to H above
the boundary.

A more elaborate matching of fields would show that our expression is
considerably in error near cutoff. This matter will not be pursued here; the
behavior of filters near cutoff will be considered in connection with lumped
circuit representations.

We can obtain the complex power flow P by integrating the Poynting
vector over a plane normal to the z direction in the region ¥ > 0. Let us
consider the power flow over a depth W normal to the plane of the paper.
Then

@ w
P= %f f (E.H) — E,H3) dx dy (4.15)
0 0

Using (4.1) and (4.3), we obtain

P = Efmﬁggg_zw’dy
2 J  we

2 (4.16)

_ 1HDBIV

P =
4 wey

We will express this in terms of E the magnitude of the z component of
the field at ¥ = 0, which, according to (4.5), is

=2 m, (4.17)
we

We will also note that

wV ue/ N /e

we =
= /N e = B/ T (18
and that
Vu/e = 377 ohms (4.19)
By using (4.17)-(4.18) in connection with (4.16), we obtain
E/BP = (4/301)(v/8)" Vu/e (4.20)

We notice that this impedance is very small for low frequencies, at which
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the velocity of the wave is high, and the field extends far in the y direction
and becomes higher at high frequencies, where the velocity is low and the
field falls off rapidly.

We will next consider a symmetrical array of two opposed sets of slots
(Fig. 4.3) similar to that shown in Fig. 4.1. Two modes of propagation will
be of interest. In one the field is symmetrical about the axis of physical
symmetry, and in the other the fields at positions of physical symmetry are
equal and opposite.

In writing the equations, we need consider only half of the circuit. It is
convenient to take the z axis along the boundary, as shown in Fig. 4.4.

Al ‘Wl ! 1
||| ‘.!M
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*JL ' ?/L/ AV 'Ih

2d —ZLLL 2722

,F[ 22222244

N l717171 7

Tig. 4.3—A double finned structure which will support a transverse mode (no longi-
tudmal electric field on axis) and a longitudinal mode (no transverse electric field on axis).
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Fig. 4.4—The coordinates used in connection with the circuit of Fig. 4.3.

This puts the axis of symmetry at y = +d, and the slots extend from y = 0
toy = —h

For negative values of vy, (4.9), (4.10), (4.12) hold.

Let us first consider the case in which the fields above are opposite to the
fields below. This also corresponds to wavesin a series of slots oppositea con-
ducting plane, as shown in Fig. 4.5. In this case the appropriate form of the
magnetic field above the boundary is

cosh y(d — ¥) o
H, = i 4.21
’ cosh vyd (421)
From Maxwell’s equations we then find
E, = — EH cosh v(d — ¥) it (4.22)

we " cosh vyd
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- .Y sinh ’Y(d — J") — jf:
E.:=—j—Hy———M =~ 4.2
) J we ¢ cosh yd ¢ (4.23)

2

Bo=pB—19° (4.24)
At y = 0 we have from (4.23) and (4.12)

E,= — jle Hoe ™ tanh ~d (4.25)
(53]
E. = —j'ﬁﬁ Hoe ™ tan Boh (4.12)
we
Hence, we must have
vh tanh ((d/h)vh) = Boh tan Boh (4.26)

CONOL/CT/NG
APLANE

I

Fig. 4.5—The transverse mode of the circuit of Tig. 4.3 exists in this circuit also.

Here we have added parameter, (d/}). For any value of d/, we can obtain
vh vs Bolt; and we can obtain B/ in terms of ¥/ by means of 4.24

Bh = ((vh)* + (Boh)")'" (4.27)
We see that for small values of 8o/ (low frequencies)

vt = (h/d) Bi (4.28)

1/2
B = B (k * d) (4.29)

d

If we examine Iig. 4.5, to which this applies, we find (4.28) easy to explain.
At low frequencies, the magnetic field is essentially constant from y = d
to y = —h, and hence the inductance is proportional to the height & + d.
The electric field will, however, extend only from v = 0 to ¥ = d; hence
the capacitance is proportional to 1/d. The phase constant is proportional
to v/LC, and hence (4.29). At higher frequencies the electric and magnetic
fields vary with v and (4.29) does not hold.

We see that (4.26) predicts infinite values of v for g = 7/2. As in the
previous cases, cutoff occurs at 8¢ = .
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As an example of the phase characteristic of the circuit, 8 from (4.26)
and (4.27) is plotted vs Bok for /d = 0, 10, 100 in Fig. 4.6. The curve for
k/d = 0 is of course the same as Fig. 4.2.

If we integrate Poynting’s vector from y = 0 to y = d and for a distance
W in the x direction, and multiply by 2 to take the power flow in the other
half of the circuit into account, we obtain

20t 3 sinh® vd —
B8P = N0/ (G 1) Vale 430

28
24 /
7h tanh(%) 7h=@,h tan@eh /
)
20 %: 0, 10,100 / I
on=yomer@e | [ ||
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Fig. 4.6—The variation of 8 with frequency (proportional to Bok) for the transverse
mode of the circuit of Fig. 4.3. Again, the curves are in error near the cutoff at 8 = .

At very low frequencies, at which (4.28) and (4.29) hold, we have

EYBP = (v/88")(d/W) /e
EY/8P = (h/d)" (1 + d/B)"* (d/W) /e

At high frequencies, for which vd is large, (4.30) approaches % of the value
given by (4.20). There is twice as much power because there are two halves
to the circuit.

Let us now consider the case in which the field is symmetrical and E. does
not go to zero on the axis. In this case the appropriate field for y > 0 is

(4.31)

H, = H, M P (4.32)
sinh yd
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Proceeding as hefore, we find

vh

tanh ((d/) iy ~ Pl tan ol (4.33)

We see that, in this case, for small values of v/ we have
Bolt tanh Bokt = I/d (4.33a)
There is no transmission at all for frequencies below that specified by (4.33).
As the frequency is increased above this lower cutoff frequency, v/ and

hence 8/ increase, and approach infinity at 8ok = m/2. Actually, of course,
the upper cutoff occurs at 8¢ = . In Fig. 4.7 8k is plotted vs 8ok for i/d = 0,

24 h
—’—d=ﬁohtanﬁoh
tanh(F)Th

20 h

§ =0»10,100
. Bh = Y (¥h)2 + (B, h)?
Ah
12

]
o|=
A I
{
=

100
4 /
[¢] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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Fig. 4.7—The variation of g with frequency (proportional to 8s/) for the longitudinal
maode of the circuit of Fig. 4.3. This mode has a band pass characteristic; the band narrows
as the opening of width 2d is made small compared with the fin height. Again, the curves
are in error near the upper cutoff at 8¢ = .

10, 100. This illustrates how the band is narrowed as the opening between
the slots is decreased.
By the means used before we obtain

9,09 . 3 cosh® yd —_—
E'/BP = (2/8,W)(v/B) (Sinh ~d coshvd — 7 d) Vife (4.34)

We see that this goes to infinity at vd = 0. For large values of vyd it be-
comes the same as (4.30).
4.2 PracticaL CIRCUITS

Circuits have been proposed or used in traveling-wave tubes which bear
a close resemblance to those of Figs. 4.1, 4.3, 4.5 and which have very similar
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properties’. Thus Field! describes an apertured disk structure (Fig. 4.8)
which has band-pass properties very similar to the symmetrical mode of the
circuit of Fig. 4.3. In this case there is no mode similar to the other mode,
with equal and opposite fields in the two halves. Field also shows a disk-on-
rod structure (Fig. 4.9) and describes a tube using it. This structure has low-

Fig.74.8—This loaded waveguide circuit has band-pass properties similar to those of
Fig. 4.7.

Tig. 4.9—This disk-on-rod circuit has properties similar to those of Fig. 4.6.

D i e S
I = Lj€- -] |-
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| T T A

|
(a) (b)

Fig. 4.10—A circuit consisting of a ridged waveguide with transverse slots or resonators
in the ridge.

pass properties very similar to those of the circuit of Fig. 4.5, which are
illustrated in Fig. 4.6.

Figure 4.10 shows a somewhat more complicated circuit. Here we have a
rectangular waveguide, shown end on in a of Fig. 4.10, loaded by a longi-
tudinal ridged portion R. In & of Fig. 4.10 we have a longitudinal cross sec-

aF. B. Llewellyn, U. S. Palents 2,367,295 and 2,395,560.
4 Lester M. Field, “Some Slow-Wave Structures for Traveling-Wave Tubes,” Proc.

L.R.E., Vol. 37, pp. 3440, Jan. 1949.
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tion, showing regularly spaced slots .S cut in the ridge R. The slots .§ may be
thought of as resonators.

Figure 4.11 shows in cross section a circuit made of a number of axially
symmetrical reentrant resonators R, coupled by small holes H which act as
inductive irises,

It would be very difficult to apply Maxwell’s equations directly in de-
ducing the performance of the structures shown in Figs. 4.10 and 4.11.
Moreover, it is apparent that we can radically change the performance of

Fig. 4.11—A circuit consisting of a number of resonators inductively coupled by means
of holes,

iBy I E I 18, -

. ,
S s

iB2 jB2 1Bz {(b)

~ C

ED. '—MIE E—
o

w

O

Fig. 4.12—Ladder networks terminated in # (above) and T (below) half sections. Such
networks can be used in analyzing the behavior of circuits such as those of Figs. 4.10
and 4.11.

such structures by minor physical alterations as, by changing the iris size,
or by using resonant irises in the circuit of Fig. 4.11, for instance.

As a matter of fact, it is not necessary to solve Maxwell’s equations afresh
each time in order to understand the general properties of these and other
circuits.

4.3 LuMPED ITERATED ANALOGUES

Consider the ladders of lossless admittances or susceptances shown in
Fig. 4.12. Susceptances rather than reactances have been chosen because the
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elements we shall most often encounter are shunt resonant near the fre-
quencies considered ; their susceptance is near zero and changing slowly but
their reactance is near infinity.

If these ladders are continued endlessly to the right (or terminated in a
reflectionless manner) and if a signal is impressed on the left-hand end, the
voltages, currents and fields at corresponding points in successive sections
will be in the ratio exp(-I") so that we can write the voltages,

Ve=Voe " (4.35)

Tf the admittances ¥; and V. are pure susceptances (lossless reactors), T
is either purely real (an exponential decay with distance) or purely imaginary
(a pass band). In this case I' is usually replaced by j8. In order to avoid
confusion of notation, we will use j# instead, and write for the lossless case
in the pass band

Ve=Voe ™ (4.35a)

Thus, 0 is the phase lag in radians in going from one section to the next.
In terms of the susceptances,*

cos @ = 1+ B./2B, (4.36)

We will henceforward assume that all elements are lossless.

Two characteristic impedances are associated with such iterated networks.
If the network starts with a shunt susceptance B/2, as in a of Fig. 4.12, then
we see the mid-shunt characteristic impedance K-

K. = 2(—Bs(B: + 4By))™'* (4.37)
If the network starts with a series susceptance 2B; we see the mid-series
characteristic impedance Kr
KT = :|:(1/2.B1)(—Bz + 4B1)/B2)1"2 (438)
Here the sign is chosen to make the impedance positive in the pass band.
When such networks are used as circuits for a traveling-wave tube, the
voltage acting on the electron stream may be the voltage across B: or the
voltage across B, or the voltage across some capacitive element of Bs or
B, . We will wish to relate this peak voltage V' to the power flow P. If the
voltage across Bs acts on the electron stream
V/P = 2K, (4.39)
If the voltage across ¥ acts on the electron stream
V = 1/iB;

* The reader can work such relations out or look them up in a variety of books or hand-
books. They are in Schelkunoff’s Electromagnetic Waves.
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where [ is the current in B,

P=|I*Ky/2
and hence
V/P = 2/B3?Ky (4.40)
V¥/P = —4(Bs/B1)(—By(Bs + 4By))~12 (4.41)
VP = —2(B:/B)K, (4.42)

Here the sign has been chosen so as to make 72/ P positive in the pass band.

Let us now consider as an example the structure of Fig. 4.10. We see that
two sorts of resonance are possible. First, if all the slots are shorted, or if no
voltage appears between them, we can have a resonance in which the field
between the top of the ridge R and the top of the waveguide is constant

1 ] 1 ]

--- jB - iB - jB -—i-
s o ] e s e s £ e I
QB2 iBa| | |JBa iB2| I B2 iBa| |
Tz =2 |||z 2 ! 2 2 !
| |

Ao [ 1 L1 L.
g i '

i i
Fig. 4.13—A ladder network broken up into  sections.

all along the length, and corresponds to the cutoff frequency of the ridged
waveguide. There are no longitudinal currents (or only small ones near the
slots .S) and hence there is no voltage across the slots and their admittance
(the slot depth, for instance) does not affect the frequency of this resonance.
Looking at Fig. 4.12, we see that this corresponds to a condition in which
all shunt elements are open, or B: = 0. We will call the frequency of this
resonance wy , the T standing for transverse.

There is another simple resonance possible; that in which the fields across
successive slots are equal and opposite. Looking at Fig. 4.12, we see that
this means that equal currents flow into each shunt element from the two
series elements which are connected to it. We could, in fact, divide the net-
work up into unconnected m sections, associating with each series element of
susceptance B half of the susceptance of a shunt element, that is, B./2,
at each end, as shown in Fig. 4.13, without affecting the frequency of this
resonance. This resonance, then, occurs at the frequency w; (L for longi-
tudinal) at which

By + Bs/4 = 0. (4.43)

We have seen that the transverse resonant frequency, wr, has a clear
meaning in connection with the structure of Fig. 4.10; it is (except for small
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errors due to stray fields near the slots) the cutoff frequency of the wave-
guide without slots. Does the longitudinal frequency w; have a simple
meaning?

Suppose we make a model of one section of the structure, as shown in
Fig. 4.14. Comparing this with b of Fig. 4.10, we see that we have included
the section of the ridged portion between two slots, and one half of a slot
at each end, and closed the ends off with conducting plates C. The resonant
frequency of this model is w, , the longitudinal resonant frequency defined
above.

We will thus liken the structure of Fig. 4.10 to the filter network of Fig.

o
el el

1
> SLOTS

Fig. 4.14—A section which will have a resonant frequency corresponding to that for =
radians phase shiit per section in the circuit of Fig. 4.10.

BL= Bt+%£ %CL % Br=8;2 %CT %

BL= 2C, (w-w) Br= 2Cr (w-wT)

Fig. 4.15—The approximate variation with frequency (over a narrow band) of the
longitudinal (B;) transverse (Br) susceptances of a filter network.

4.12, and express the susceptances B; and B, in terms of two susceptances
By and B, associated with the transverse and longitudinal resonances and
defined below

Br= By (4.44)
B. = B+ By/4 (4.45)

At the transverse resonant frequency wy, By = 0, and at the longitudinal
resonant frequency w; , B, = 0. So far, the lumped-circuit representation
of the structure of Fig. 4.14 can be considered exact in the sense that at
any frequency we can assign values to By and B, which will give the correct
values for 6 and for V2/P for the voltage across either the shunt or the series
elements (whichever we are interested in).
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We will go further and assume that near resonances these values of By
and B behave like the admittances of shunt resonant circuits, as indicated
in Fig. 4.15, Certainly we are right by our definition in saying that By = 0
at wr, and B, = 0 at w,. We will assume near these frequencies a linear
variation of By and B, with frequency, which is very nearly true for shunt
resonant circuits near resonance*

Br = 2Cr(w — wr) (4.46)
BL = ZC'L(I’.U - WL) (4.47)

Here Cr can mean twice the peak stored electric energy per section length
for unit peak voltage between the top of the guide and the top of the ridge R
when the structure resonates in the transverse mode, and C;, can mean twice
the stored energy per section length L for unit peak voltage across the top

}‘—-;z-::%--—l
2
| | /2

wr Wy

Fig. 4.16—Longitudinal and transverse susceptances which give zero radians phase
shift at the lower cutoff (w = wr) and 7 radians phase shift at the upper cutoff (w = wp).

of the slot when the structure resonates in the longitudinal mode.
In terms of By and B, , expression (4.36) for the phase angle # becomes

cosf =~ — (4.48)

We see immediately that for real values of 8 (cos 8 < 1), By and B, must
have opposite signs, making the denominator greater than the numerator.

Figure 4.16 shows one possible case, in which wy < wy . In this case the
pass band (8 real) starts at the lower cutoff frequency w = wr at which By
is zero, cos # = 1 (from (4.48)) and # = 0, and extends up to the upper
cutoff frequency w = wy, at which B, = 0,cos 8 = —1and 6 = 7.

* In case the filter has a large fractional bandwidth, it may be worth while to use the
accurate lumped-circuit forms

Br = mTCT(nJ/wT - r.uvp/m) (4.46&)
By, = wiCrlw/wr, — wr/w) (4.46b)
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The shape of the phase curves will depend on the relative rates of varia-
tion of By and B, with frequency. Assuming the linear variations with fre-
quency of (4.46) and (4.47) the shapes can be computed. This has been done
for C,/Cr = 1, 3, 10 and the results are shown in Tig. 4.17.

7

@
ME]

CL d
E?‘)// /// /
AT |/
L
/////
L1

=

wr W —> WL
Fig. 4.17—Phase shift per section, 6, vs radian frequency w for the conditions of Fig. 4.16.

W w1

Fig. 4.18—Longitudinal and transverse susceptances which give —= radians phase
shift at the lower cutoff (w = wy) and O degrees phase shift at the upper cutoff (w = wr).
This means a negative phase velocity.

Tt is of course possible to make w; > wyr. In this case the situation is as
shown in Fig. 4.18, the pass band extending from w; to wr. At w = wg,
cos = —1,0 = —m. At w = wr, cos = 1 and 8 = 0. In Fig. 4.19, as-
suming (4.46) and (4.47), 8 has been plotted vs w for C,/Cr = 1, 3, 10.

The curves of Figs. 4.17 and 4.18 are not exact for any physical structure
of the type shown in Fig. 4.10. In lumped circuit terms, they neglect coupling
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between slots. They will be most accurate for structures with slots longitu-
dinally far apart compared with the transverse dimensions, and least ac-
curate for structures with slots close together. They do, however, form a
valuable guide in understanding the performance of such structures and in
evaluating the effect of the ratio of energies stored in the fields at the two cut-
off frequencies.

%=|0 ///::/
Sae=g
, /// P
/
//
/
/

gig. 4.19—Phase shift per section, #, vs radian frequency, w, for the conditions of Fig
4.18.

It is most likely that the voltages across the slots would be of most in”
terest in connection with the circuit shown in Fig, 4.10, We can rewrite
(4.41) in terms of By and B,

1
2(1 — 4B,/By)(— By B)'*

We see that 1?/P goes to 0 at By = 0 (v = wy) and to infinity at B, = 0
(w = wy). In Fig. 4.20 assuming (4.46) and (4.47), (V"-/P)(wLCLwTCT) is
plotted vs w for C,/Cr = 1, 3, 10.

Let us consider another circuit, that shown in Fig. 4.11, We see that this
consists of a number of resonators coupled together inductively. We might
draw the equivalent circuits of these resonators as shown in Fig. 4.21. Here
L and C are the effective inductance and the effective capacitance of the
resonators without irises. They are chosen so that the resonant frequency
wy is given by

VP = (4.49)

w = VLC (4.50)
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and the variation of gap susceptance B with frequency is
3B/dw = 2C (4.51)

The arrows show directions of current flow when the currents in the gap
capacitances are all the same.

: n
| I

.07
3
1, 0.6
3
S o5 /
3 /|
Y 0.4 /
& / /]
>' &/
Cr 3/ 19
0.2
)
0.1 7
o ____‘--"‘_""_'_':_-/---——'"' i—//
wr W — @

Fig. 4.20—A quantily proportional to (E*/*P) vs w for the conditions of Figs. 4.10

Fig. 4.21—A representation of the resonators of Fig. 4.11.

We can now represent the circuit of Fig. 4.11 by interconnecting the
circuits of Fig. 4.21 by means of inductances L of Fig. 4.22. This gives a
suitable representation, but one which is open to a minor objection: the
gap capacitance does not appear across either a shunt or a series arm.

It is important to notice that there is another equally good representa-
tion, and there are probably many more. Suppose we draw the resonators as
shown in Fig. 4.23 instead of as in Fig. 4.21. The inductance L and capaci-
tance C are still properly given by 4.50 and 4.51. We can now interconnect
the resonators inductively as shown in Fig. 4.24.

We should note one thing. Tn Fig. 4.21, the currents which are to flow in
the common inductances of Fig. 4.22 flow in opposite directions when the
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gap currents are in the same directions. In the representation of Fig. 4.23
the currents which will flow in the common inductances of Fig. 4.24 have
been drawn in opposite directions, and we see that the currents in the gap
capacitances flow alternately up and down. In other words, in Fig. 4.24,
every other gap appears inverted. This can be taken into account hy adding
a phase angle —r to # as computed from (4.48).

L
2

L L L L L
3 ¢ 3 z ¢ 3 3 ¢
Lm %LM %LM Lm

Fig. 4.22—The resonators of Fig. 4.11 coupled inductively.

SRR

Fig. 4.23—Another representation of the resonators of Fig. 4.11.

2L 2L 2L 2L 2L 2L
T T 1
Fig. 4.24—TFigure 4.23 with inductive coupling added.
La La Lmb
I-- --I 1-- -1
Lma Lb Lb
@ = (o) M
Fig. 425—A T — 7 transformation used in connection with the circuit of Fig. 4.24.

Now, the T configuration of inductances in a of Fig. 4.25 can be replaced
by the = configuration, b of Fig. 4.25. ITmagine I and II to be connected
together and a voltage to be applied between them and ITT, We see that

‘r-b = Lu + 2L Ma (4-52)
Imagine a voltage to be applied between I and TT. We see that
I/L‘g = 1.,'JLb + 2/[4_"& (4.53)

If Lya < La, then L, will be nearly equal to L, and L,y >> L .
By means of such a 7" — = transformation we can redraw the equivalent
circuit of Fig. 4.24 as shown in Fig, 4.26. The series susceptance B is now
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that of L;, and the shunt susceptance is now that of the shunt resonant
circuit consisting of C» (the effective capacitance of the resonators) and Lo .

o]

- i
2

1

v

/|

-1
wr W—> we

Fig. 4.27—The phase characteristic of the circuit of Fig. 4.11.

The transverse resonance, By = 0, occurs at a frequency

wr = VCy Ly (4.54)
Near this frequency the transverse susceptance is given by
BT = ZCQ((U - OJT) (4.55)
The longitudinal resonance occurs at a frequency
wr = V20, Ly Lo/ (Ly + 2Ly) (4.56)
and near wy, ,
BL = Cz(m - w;_,) (457)

These are just the forms we found in connection with the structure of Fig.
4.10; but we see that, in the case of the circuit of Fig. 4.11, the effective
transverse capacitance is always twice the effective longitudinal capacitance
(C1/Cr = 1/2 in Fig. 4.19), and that wz, > wr for attainable volume of Z;.
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We obtain f vs @ by adding —= to the phase angle from 4.48, using (4.55)
and (4.57) in obtaining Br and B . The phase angle vs. frequency is shown
in Fig. 4.27. As the irises are made larger, the bandwidth, w; — wr , becomes
larger, largely by a decrease in w., .

The voltage of interest is that across C., that is, that across the gap.
From (4.37), (4.44), (4.45), (4.55) and (4.57) we obtain

V/P = 2/(—=BrBy)" (4.58)

VQ/P = (\/EI/CE)((U-’L — o)(w — w‘r))_m (4-59)

This goes to infinity at both @ = w, and @ = «r. In Fig. 4.28,

(V2/P)CaV/wy, wr is plotted vs w. This curve represents the performance of
all narrow band structures of the type shown in Fig. 4.11.

10

|
|
|
|

o |
wr Wo— wy,

Fig. 4.28—A quantity proportional to (E2/8*P) for the circuit of Fig. 4.11, plotted vs
radian frequency w.

In a structure such as that shown in Fig. 4.11, there is little coupling
between sections which are not adjacent, and hence the lumped-circuit
representation used is probably quite accurate, and is certainly more ac-
curate than in structures such as that shown in Fig. 4.10.

Other structures could be analyzed, but it is believed that the examples
given above adequately illustrate the general procedures which can be
employed.

4 4 TRAVELING FIELD COMPONENTS

Filter-type circuits produce fields which are certainly not sinusoidal with
distance. Indeed, with a structure such as that shown in Fig. 4.11, the elec-
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trons are acted upon only when they are very near to the gaps. It is possible
to analyze the performance of traveling-wave tubes on this basis®. The chief
conclusion of such an analysis is that highly accurate results can be obtained
by expressing the field as a sum of traveling waves and taking into account
only the wave which has a phase velocity near to the electron velocity. Of
course this is satisfactory only if the velocities of the other components are
quite different from the electron velocity (that is, different by a fraction
several times the gain parameter C).

As an example, consider a traveling-wave tube in which the electron stream
passes through tubular sections of radius a, as shown in Fig. 4.29, and is
acted upon by voltages appearing across gaps of length ¢ spaced L apart.

e amniel S
I | ™

7 7)) A A
I T L T
Vn-1 Vn V4 Vh+2

Fig. 4.20—A series of gaps in a tube of inside radius a. The gaps are  long and are
spaced L apart. Voltages V,, elc,, act across them.

A wave travels in some sort of structure and produces voltages across the
gaps such that that across the nth gap, V, is
V.= Voe ™ (4.60)

where # is any integer.
We analyze this field into traveling-wave components which vary with
distance as exp(-j8.2z) where

Bm = (6 + 2mm)/L (4.61)

where m is any positive or negative integer. Thus, the total field will be
E= 2 En= 2 Awe ™ Ii(yar) (4.62)
Sl Bo® (4.63)

Here Ii(y.r) is a modified Bessel function, and v,, has been chosen so that
(4.62) satisfies Maxwell’s equations.

5 J. R. Pierce and Nelson Wazx, “A Note on Filter-Type Traveling-Wave Amplifiers,”
Proc. I.R.E., Vol. 37, pp. 622-625, June, 1949.
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We will evaluate the coefficients by the usual means of Fourier analysis.
Suppose we let z = 0 at the center of one of the gaps. We see that

o0

Li2 Ll2
f , EE* dz = z -[ ; -“[ m 1‘1:13(7!7! r) dz
—rl2 — L2

me=—u0

(4.64)

o0

= 2, AwAnIi(ynr)L
m==—=00
All of the terms of the form E,E,, p # m integrate to zero because the
integral contains a term exp(-j2r(p — m)/L)z.
Let us consider the field at the radius ». This is zero along the surface of
the tube. We will assume with fair accuracy that it is constant and has a
value — V/{ across the gap. Thus we have also at » = a,

L2 0 tle
, EE*¥dz = — (V/{) Z f . A:,e_"‘a'"zfu('yma) dz
—LI2 m=—o J-¢/2
. . (4.65)
ki —iBmtl2 L iBmtl2
- W0 Y UDTma) (8__8_)
m=—c JB
We can rewrite this
Li2 %0 .
r ml/2)
EE*ds = — (V/( A Io(y ) S0 Bnl/2)
[ 2 (V/e) ,,.g'-"m o(yma) B.t)2 (4.66)
By comparison with (4.64) we see that
| A = —(V/L)(sin Bul/2)/ Bt/ 2)(1/ Io(ya) .67)

This is the magnitude of the mth field component on the axis. The magnitude
of the field at a radius » would be Zy(yr) times this,

The quantity B.{ is an angle which we will call 4, , the gap angle. Usually
we are concerned with only a single field component, and hence can merely
write v instead of v, . Thus, we say that the magnitude £ of the travelling
field produced by a voltage 1" acting at intervals L is

E=—-M(V/L) (4.68)

sin (8g/2) To(yr)
(6g/2)  Io(va)
g = B¢ (4.70)

M = (4.69)

The factor M is called the gap factor or the modulation coefficient*,
For slow waves, v is very nearly equal to 8, and we can replace yr and ya
by Br and Ba. For unattenuated waves, M is a real positive number; and,

* This factor is often designated by 8, but we have used § otherwise.
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for the slowly varying waves with which we deal, we will always consider
M as a real number.

The gap factor for some other physical arrangements is of interest. At a
distance y above the two-dimensional array of strip electrodes shown in

Fig. 4.30

. _ sin (9g/2) —TYy
M _-——(Gg/Z) e (4.71)

‘

e
Tig. 4.30—A series of slots 6, radians long separated by walls L long.

Vs / CONDUCTING
PLANE

Fig. 4.31—A system similar to that of Fig. 4.30 but with the addition of an opposed
conducting plane.

If we add a conducting plane ¢ at y = %, as in Fig. 4.31,

_ sin (8g/2) sinh y(k — )
= (6g/2) sinh v/ (4.72)

For a symmetrical two-dimensional array, as shown in Fig. 4.32, with a
separation of 2 /r in the y direction and the fields above equal to the fields

below

= sin (3g/2) cosh )
M (6g/2) cosh vk (4.73)

4.5 Errective FIELD AND EFrFeCcTIVE CURRENT

In Section 4.4 we have expressed a field component or “effective field”
in terms of circuit voltage by means of a gap-factor or modulation coeffi-
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cient M. This enables us to make calculations in terms of fields and currents
at the electron stream.

The gap factor can be used in another way. A voltage appears across a
gap, and the electron stream induces a current at the gap. At the electron
stream the power P;, produced in a distance L by a convection current
i with the same z-variation as the field component considered, acting on the
field component is

Py = —Ei*L

(4.74)

+(MV)*

4 U/
 u - -
Y W] ks
h
.

-
1,

Fig. 4.32—A system of two opposed sets of slots.

QIE

At the circuit we observe some impressed current I flowing against the
voltage V' to produce a power

Py = VI* (4.75)

By the conservation of energy, these two powers must be the same, and we
deduce that

I* = Mi* (4.76)
or, since we take M as a real number
I =Mi (4.77)

Thus, we have our choice of making calculations in terms of the beam
current and a field component or effective field, or in terms of circuit voltage
and an effective current, and in either case we make use of the modulation
coefficient M.

Our gain parameter C* will be

C3 = (V/L)MI,/862V,
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where V is circuit voltage. We can regard this in two ways. We can think
of —(V/L)M as the effective field at the location of the current I, , or we
can think of M, as the effective current referred to the circuit.

If we have a broad beam of electrons and a constant current density Jo
we compute (essentially as in Chapter III) a value of C* by integrating

G = (1/882V0)To(V/L) f M2 do (4.78)

where do is an element of area. We can think of the result in terms of an
effective field E,

f M do (4.79)

o

E; = (V/L)

where o is the total beam area, and a total current .7, , or we can think of
the integral (4.77) in terms of an effective current 7, given by

In = JofM"‘ dﬂ' (4.80)

and the voltage at the circuit.

Of course, these same considerations apply to distributed circuits. Some-
times it is most convenient to think in terms of the total current and an
effective field (as we did in connection with helices in Chapter III) and
sometimes it is most convenient to think of the field at the circuit and an
efiective current. Either concept refers to the same mathematics.

4.6 HarMoNIC OPERATION

Of the field components making up E in (4.62) it is customary to regard
the m = 0 component, for which 8 = 6/L, as the fundamental field com-
ponent, and the other components as karmonic components. These are some-
times called Hariree harmonics. If the electron speed is so adjusted that the
interaction is with the m = 0 or fundamental component we have funda-
mental operation; if the electron speed is adjusted so that we have interac-
tion with a harmonic component, we have harmonic operation.

There are several reasons for using harmonic operation in connection
with filter-type circuits. For one thing the fundamental component may
appear to be traveling backwards. Thus, for circuits of the type shown in
Fig. 4.11, we see from Fig. 4.27 that 6 is always negative. Now, in terms of
the velocity v

8 =w/v=10/L (4.81)

and if 6 is negative, v must be negative. However, consider the m = 1
component

B = w/v = (2r + 6)/L (4.82)
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We see that, for this component, v is positive.

The interaction of electrons with backward-traveling field components
will be considered later. Here it will merely be said that, in order to avoid
interaction with waves traveling in both directions, one must avoid having
the electron speed lie near both the speed of a forward component and the
speed of a backward component.

In order that the fundamental component be slow, § must be large or L
must be small. The largest value of 8 is that near one edge of the band, where
6 approaches m. Thus, the largest fundamental value of 8 is m/L, and to make
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Fig. 4.33—The variation of phase with frequency for the fundamental (0 to = over the
band) and a spatial harmonic (2r to 3= over the band). The dotted lines show w divided
by the electron velocity for the two cases. For amplification over a broad band the dotted
curve should not depart much from the filter characteristic.

B large with m = 0 we must make L small and put the resonators very close
together. This may be physically difficult or even impossible in tubes for
very high frequencies. The alternative is to use a harmonic component,
for which 8 = (2mr + 6)/L.

Another reason for using harmonic operation is to achieve broad-band
operation. The phase of a filter-type circuit changes by = radians between
the lower cutoff frequency w; and the upper cutoff frequency w.f. Now,
for the wave velocity to be near to the electron velocity over a good part
of the band, 3 must be nearly a constant times w. Figure 4.33 shows how
this can be approximately true for the #» = 1 component even when it ob-
viously won’t be for the m = 0 or fundamental component. Similarly, for
a filter with a narrower fractional bandwidth and hence a steeper curve of
6 vs w, a larger value of m might give a nearly constant value of v.

T The phase of some filters changes more than this, but they don’t seem good candidates
for traveling-wave tube circuits.
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CHAPTER V
GENERAL CIRCUIT CONSIDERATIONS

Synopsis oF CHAPTER

N CHAPTERS III AND IV, helices and filter-type circuits have been
considered. Other slow-wave circuits have been proposed, as, for in-
stance, wave guides loaded continuously with dielectric material. One may
ask what the best type of circuit is, or, indeed, in just what way do bad cir-
cuits differ from good circuits.

So far, we have as one criterion for a good circuit a high impedance,
that is, a high value of E?/8*P. If we want a broad-band amplifier we must
have a constant phase velocity; that is, 8 must be proportional to frequency.
Thus, two desirable circuit properties are: high impedance and constancy
of phase velocity.

Now, E2/@*P can be written in the form

EY@P = F/BWhr,

where W is the stored energy per unit length for a field strength E, and v,
is the group velocity.

One way of making E?/B*P large is to make the stored energy for a given
field strength small. In an electromagnetic wave, half of the stored energy
is electric and half is magnetic. Thus, to make the total stored energy for a
given field strength small we must make the energy stored in the electric
field small. The energy stored in the electric field will be increased by the
presence of material of a high dielectric constant, or by the presence of large
opposed metallic surfaces, as in the circuits of Figs. 4.8 and 4.9. Thus, such
circuits are poor as regards circuit impedance, however good they may be in
other respects.

If the stored energy for a given field strength is held constant, E*/8*P
may be increased by decreasing the group velocity. It is the phase velocity
2 which should match the electron speed. The group velocity 7, is given in
terms of the phase velocity by (5.12). We see that the group velocity may
be much smaller than the phase velocity if —dv/dw is large. It is, for in-
stance, a low group velocity near cutoff that accounts for the high imped-
ance regions exhibited in Figs. 4.20 and 4.28. We remember, however,
that, if the phase velocity of the circuit of a traveling-wave tube changes
with frequency, the tube will have a narrow bandwidth, and thus the high
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impedances attained through large values of —dv/dw are useful over a nar-
row range of frequency only.

If we consider a broad electron stream of current density J, , the highest
effective value of E?/3°P, and hence the highest value of C, will be attained
if there is current everywhere that there is electric field, and if all of the
electric field is longitudinal. This leads to a limiting value of C, which is
given by (5.23). There )\, is the free-space wavelength. The nearest practical
approach to this condition is perhaps a helix of fine wire flooded inside and
outside with electrons.

In many cases, it is desirable to consider circuits for use with a narrow
beam of electrons, over which the field may be taken as constant. As the
helix is a common as well as a very good circuit, it might seem desirable
to use it as a standard for comparison. However, the group velocity of the
helix differs a little from the phase velocity, and it seems desirable instead
to use a sort of hypothetical circuit or field for which the stored energy is
almost the same as in the helix, but for which the group velocity is the same
as the phase velocity. This has been referred to in the text as a “forced
sinusoidal field.” In Fig. 5.3, (E*/8*P)'* for the forced sinusoidal field is
compared with (E?/g*P)'3 for the helix.

Several other circuits are compared with this: the circular resonators of
Fig. 5.4 (the square resonators of Fig. 5.4 give nearly the same impedance)
and the resonant quarter-wave and half-wave wires of Figs. 5.6 and 5.7.
The comparison is made in Fig. 5.8 for three voltages, which fix three phase
velocities. In each case it is assumed that in some way the group velocity
has been made equal to the phase velocity. Thus, the comparison is made on
the basis of stored energies. The field is taken as the field at radius e (cor-
responding to the surface of the helix) in the case of the forced sinusoidal
field, and at the point of highest field in the case of the resonators.

We see from Figs. 5.8 and 5.3 that a helix of small radius is a very fine
circuit.

In circuits made up of a series of resonators, the group velocity can be
changed within wide limits by varying the coupling between resonators, as
by putting inductive or capacitive irises between them. Thus, even cir-
cuits with a large stored energy can be made to have a high impedance by
sacrificing bandwidth.

The circuits of Fig. 5.4 have a large stored energy because of the large
opposed surfaces. The wires of Fig. 5.6 have a small stored energy asso-
ciated entirely with “fringing fields” about the wires. The narrow strips of
Fig. 5.5 have about as much stored energy between the opposed flat sur-
faces as that in the fringing field, and are about as good as the half-wave
wires of Fig. 5.7.

An actual circuit made up of resonators such as those of Fig. 5.4 will be
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worse than Fig. 5.8 implies. Thus, there is a decrease of (E?/8°P)"? due to
wall thickness. Thickening the flat opposed walls of the resonators decreases
the spacing between the opposed surfaces, increases the capacitance and
hence increases the stored energy for a given gap voltage. In Fig. 5.9 the
factor f by which (E2/82P)'3 is reduced is plotted vs. the ratio of the wall
thickness ¢ to the resonator spacing L.

There is a further reduction of effective field because of the electrical
length, 6 in radians, of the space between opposed resonator surfaces.
The lower curve in Fig. 5.10 gives a factor by which (£?/8*P)"* is reduced
because of this. If the resonator spacing, @, in radians, is greater than 2.33
radians, it is best to make the opening, or space between the walls, only
2.33 radians long by making the opposed disks forming the walls very
thick.

There is of course a further loss in efiective field, both in the helix and in
circuits made up of resonators, because of the falling-off of the field toward
the center of the aperture through which the electrons pass. This was dis-
cussed in Chapter IV.

Finally, it should be pointed out that the fraction of the stored energy
dissipated in losses during each cycle is inversely proportional to the Q of
the circuit or of the resonators forming it. The distance the energy travels
in a cycle is proportional to the group velocity. Thus, for a given Q the sig-
nal will decay more rapidly with distance if the group velocity is lowered
(to increase E?/G*P). Equations (5.38), (5.42) and (5.44) pertain to attenu-
ation expressed in terms of group velocity. The table at the end of the
chapter shows that a circuit made up of resonators and having a low enough
group velocity to give it an impedance comparable with that of a helix can
have a very high attenuation.

5.1 Group AND PHASE VELOCITY

Suppose we use a broad video pulse F(¢), containing radian frequencies
# lying in the range 0 to pq , to modulate a radio-frequency signal of radian
frequency w which is much larger than p,, so as to give a radio-frequency

pulse f()
1) = €°'F(0) (5.1)
the functions F(f) and f(#) are indicated in Fig. 5.1.

F(f), which is a real function of time, can be expressed by means of its
Fourier transform in terms of its frequency components

F@t) = _[m A(p)e™ dp (5.2)
2o
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Here A(p) is a complex function of p, such that A(—p) is the complex con-
jugate of A(p) (this assures that F(¢) is real).
With F(f) expressed as in (5.2), we can rewrite (5.1)

f(f) — ‘[pu A (P)ej{w+p)1 dp (5'3)

Now, suppose, as indicated in Fig. 5.2, we apply the r-f pulse f(t) to the
input of a transmission system of length L with a phase constant 8 which

Fig. 5.1—A radio-frequency pulse varying with time as f(¢). The envelope varies with
timﬁ a.s( F(f). The pulse might be produced by modulating a radio-frequency source
with F({).

PHASE CONSTANT (w)

F(t) o o 6{t)
— —
f(t) o < g(t)

Fig. 5.2—When the pulse of Fig. 5.1 is applied to a transmission system of length L
and phase constant 8(w) (a function of w), the output pulse g(#) has an envelope G(1).

is a function of frequency. Let us assume that the system is lossless. The
output g(/) will then be

o) = j:p" A(p)e P =tn gy (5.4)

We have assumed that p, is much smaller than w. Let us assume that over
the range w — po to @ + po , B can be adequately represented by

B=tt+ 2y (5.5)
In this case we obtain
o(l) = @Pon [”A(P) (ORI gy (5.6)
Po
The envelope at the output is

G) = p"A( ) gin-@BaIL) g
= [ ape » (5.7)
Po
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By comparing this with (5.2) we see that
G = F (z _% L) (5.8)
dw

In other words, the envelope at the output is of the same shape as at the
input, but arrives a time r later

T = @ L (5.9)

This implies that it travels with a velocity z,

b = L/r = ("_’3)_1 (5.10)

dw

This velocity is called the group velocity, because in a sense it is the veloc-
ity with which the group of frequency components making up the pulse
travels down the circuit. It is certainly the velocity with which the energy
stored in the electric and magnetic fields of the circuit travels; we could ob-
serve physically that, if at one time this energy is at a position x, a time ¢
later it is at a position x + .t

If the attenuation of the transmission circuit varies with frequency, the
pulse shape will become distorted as the pulse travels and the group velocity
loses its clear meaning. It is unlikely, however, that we shall go far wrong
in using the concept of group velocity in connection with actual circuits.

We have used earlier the concept of phase velocity, which we have desig-
nated simply as ». In terms of phase velocity,

g=2 (5.11)

We see from (5.10) that in terms of phase velocity v the group velocity

7, is
-1
P (1 e a”) © (5.12)

For interaction of electrons with a wave to give gain in a traveling-wave
tube, the electrons must have a velocity near the phase velocity v. Hence,
for gain over a broad band of frequencies, » must not change with frequency;
and if v does not change with frequency, then, from (5.12), 7, = v.

We note that the various harmonic components in a filter-type circuit
have different phase velocities, some positive and some negative. The group
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velocity is of course the same for all components, as they are all aspects of
one wave. Relation (4.61) is consistent with this:

Bm = (0 4+ 2m=)/L (4.61)
1/1, = 8Bn/dw = (86/9w)/L (5.13)
3.2 Gain AnD BaNDWIDTH IN A TRAVELING-WAVE TUBE

We can rewrite the impedance parameter E*/B°P in terms of stored
energy per unit length TV for a field strength E, and a group velocity 1, .
If I is the stored energy per unit length, the power flow P is

P =Wy (5.14)
and, accordingly, we have
B3P = B/ Wy, (5.15)
And, for the gain parameter, we will have
C = (B/BWu )"t (Ly/8Vy)"? (5.16)

For example, we see from Fig. 4.20 that E*/8*P for the circuit of Fig. 4.10
goes to infinity at the upper cut-off. From Fig. 4.17 we see that 96/dw,
and hence 1/v, , go to infinity at the upper cutoff, accounting for the infinite
impedance. We see also that d6/dw goes to infinity at the lower cutoff, but
there the slot voltage and hence the longitudinal field also go to zero and
hence F2/8:P does not go to infinity but to zero instead.

In the case of the circuit of Fig. 4.11, the gap voltage and hence the longi-
tudinal field are finite for unit stored energy at both cutoffs. As 90/dw is
infinite at both cutoffs, V*/P and hence E?/B*P go to infinity at both cut-
offs, as shown in Fig. 4.28,

To get high gain in a traveling-wave tube at a given frequency and volt-
age (the phase velocity is specified by voltage) we see from (5.16) that we
must have either a small stored energy per unit length for unit longitudinal
field, or a small group velocity, 7, .

To have amplification over a broad band of frequencies we must have the
phase velocity v substantially equal to the electron velocity over a broad
band of frequencies. This means that for very broad-band operation, »
must be substantially constant and hence in a broad-band tube the group
velocity will be substantially the same as the phase velocity.

If the group velocity is made smaller, so that the gain is Increased, the
range of frequencies over which the phase velocity is near to the electron
velocity is necessarily decreased. Thus, for a given phase velocity, as the
group velocity is made less the gain increases but the bandwidth decreases.

Particular circuits can be compared on the basis of (E?/8*P) and band-
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width. We have discussed the impedance and phase or velocity curves in
Chapters III and IV. Field! has compared a coiled waveguide structure with
a series of apertured disks of comparable dimensions. Both of these struc-
tures must have about the same stored energy for a given field strength.
He found the coiled waveguide to have a low gain and broad bandwidth
as compared with the apertured disks. We explain this by saying that the
particular coiled waveguide he considered had a higher group velocity than
did the apertured disk structure. Further, if the coiled waveguide could be
altered in some way so as to have the same group velocity as the apertured
disk structure it would necessarily have substantially the same gain and
bandwidth.

In another instance, Mr. Q. J. Zobel of these Laboratories evaluated the
effect of broad-banding a filter-type circuit for a traveling-wave tube by
m-derivation. He found the same gain for any combination of  and band-
width which made v = v,(d7/de0 = 0). We see this is just a particular
instance of a general rule. The same thing holds for any type of broad-
banding, as, by harmonic operation.

5.3 A ComparisoN oF CIRCUITS

The group velocity, the phase velocity and the ratio of the two are param-
eters which are often easily controlled, as, by varying the coupling between
resonators in a filter composed of a series of resonators. Moreover, these
parameters can often be controlled without much affecting the stored energy
per unit length. For instance, in a series of resonators coupled by loops or
irises, such as the circuit of Fig. 4.11, the stored energy is not much affected
by the loops or irises unless these are very large, but the phase and group
velocities are greatly changed by small changes in coupling.

Let us, then, think of circuits in terms of stored energy, and regard the
phase and group velocities and their ratio as adjustable parameters. We
find that, when we do this, there are not many essentially different configura-
tions which promise to be of much use in traveling-wave tubes, and it is
easy to make comparisons between extreme examples of these configura-
tions.

5.3a Uniform Current Density throughout Field

Suppose we have a uniform current density J, wherever there is longi-
tudinal electric field. We might approximate this case by flooding a helix
of very fine wire with current inside and outside, or by passing current
through a series of flat resonators whose walls were grids of fine wire.

! Lester M. Field, “Some Slow-Wave Structures for Traveling-Wave Tubes,” Proc.
I.RE., Vol. 37, pp. 3440, January 1949.
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In the latter case, if resonators had parallel walls of very fine mesh normal
to the direction of electron motion there would be substantially no trans-
verse electric field. All the electric field representing stored energy would
act on the electron stream. In this case, we would have ’

W= f E*ds (5.17)

Here dZ is an elementary area normal to the direction of propagation. W
given by this expression is the total electric and magnetic stored energy
per unit length. Where E is less than its peak value, the magnetic energy
makes up the difference.

In evaluating E, in (5.16) we will have as an effective value

(E@)ete = Jo f Edz (5.18)
Hence, we will have for the gain parameter C

113

Jo f E*dx

w\” e
- 5 | E? dE) 1,(8V)
(T') (2 f nene (5.19)
C= Jn 1/3
4 (7_21)- €ly Vo

It is of interest to put this in a slightly different form. Suppose A is the
free-space wavelength. Then

C =

2 -
w _<me (5.20)
v hg v
where ¢ is the velocity of light
¢ =3 X 10" ecm/sec = 3 X 10° m/sec
Further, we have for synchronism between the electron velocity uo
and the phase velocity v

» =29V, (5.21)
Also
¢ =1/Vpe
e = 1/c\/u/e (5.22)
vV u/e = 377 ohms
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Using (5.20), (5.21), (5.22) in connection with (5.19), we obtain
¢ = (1Tt 20"

16mct, (5.23)

11.16 (JoAi2/v )1

We have in (5.23) an expression for the gain parameter C in case longi-
tudinal fields only are present and in case there is a uniform current density
Jo wherever there is a longitudinal field.

In a number of cases, as in case of a large-diameter helix, or of a resonator
with large apertures, the stored energy due to the transverse field is about
equal to that due to the longitudinal field and C will be 27 times as great
as the value of C given by (5.23). Thus, the value of C given by (5.23), or
even 271/ times this, represents an unattainable ideal. It is nevertheless
of interest in indicating how limiting behavior depends on various parame-
ters. For instance, we see that if the wavelength X, is made shorter, a higher
current density must be used if C is not to be lowered; for a constant C
the current density must be such as to give a constant current through a
square a wavelength on a side.

In the table below, some values of C have been computed from (5.23)
for various wavelengths and current densities. The broad-band condition
of equal phase and group velocities has been assumed, and the voltage has
been taken as 1,000 volts.

AN

Wavelength™ Amp/cm?
Cm

1 1
5 060 130

5| 013 028

For larger voltages, C will be smaller. C can of course be made larger by
making the group velocity smaller than the phase velocity.

Of course, if the electron stream does not pass through some portions of
the field, C will be smaller than given by (5.23). C will also be less if there
are “harmonic” field components which do not vary in the z direction as

exp(jwz/v).

5.3b Narrow Beams

Usually, no attempt is made to fill the entire field with electron flow even
though this is necessary in getting a large value of C for a given current
density. Instead a narrow electron beam is shot through a region of high
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field. We then wish to relate the peak field strength to the stored energy in
comparing various circuits.

Let us first consider a helically conducting sheet of radius a. The upper
curve of Fig. 5.3 shows (E2/8*P)"*(v/c)'® vs. Ba. In obtaining this curve it
was assumed that v < ¢, so that v can be taken as equal to 8. The field E
is the longitudinal field at the surface of the helically conducting cylinder.
Figure 5.3 can be obtained from Fig. 3.4 by multiplying F(ya) by (Io(yva))**
to give a curve valid for the field at » = a.

The helix has a very small circumferential electric field which represents
“useless” stored energy. The lower curve of Fig. 5.3 is based on the stored
electric energy of an axially symmetrical sinusoidal field impressed at the
radius a.T This field has no circumferential component but is otherwise the

A
51— B-‘H -
P
4 Ny
\ HELIX
3 =4
FORCED
SINUSOIDAL \\
FIELD ™~
2
Cc
1
0.8
0.3 0.5 0.7 [ 2 3 4 5 6 78910
pa

Fig. 5.3—The impedance parameter (E2/82P)""* compared for a helically conducting

sheet (4) and a forced sinusoidal field (B) with a group velocity equal to the phase ve-
locity. The helix has a higher impedance because the phase velocity is higher than the
group velocity by a radio shown to the } power by curve C.

same as the electric field of the helix (again assuming v << ¢). We can imagine
such a field propagating because of an inductive sheet at the radius a,
which provides stored magnetic energy enough to make the electric and
magnetic energies equal. The quantity plotted vs. ga is (E*/g*P)'" (v/c)"®
(v,/7)"5,

The forced sinusoidal field is not the field of some particular circuit for
which a certain group velocity z, corresponds to a given phase velocity 7.
Hence, the factor (z, v)'* is included in the ordinate, so that the curve will
be the same no matter what group velocity is assumed. For the helically
conducting sheet, a definite group velocity goes with a given phase velocity.
In Fig. 5.3, the ordinate of the curve for the helically conducting sheet
does not contain the factor (v, )". If, for instance, we assume 7, = 7

t See Appendix IIT.
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in connection with the curve for the forced sinusoidal field, then the two
ordinates are both (E2/82P) (u/c)V® and the curve for the sheet is higher
than that for the forced field because, for the helically conducting sheet,

fm=r-0707Ag ===

Fig. 5.4—Pillbox and rectangular resonators. When a number of resonators are coupled
one to the next, a filter-type circuit is formed.

_::::S 7, < v for small values of ya. Curve C shows (v/9,)'/3
ob DP for the sheet vs. a. Aside from the influence of group
velocity, we might have expected the curve for the
sheet to be a little lower than that for the forced field
because of the energy associated with the transverse
electric field component of the sheet. This, however,
becomessmall in comparison with the transverse mag-
netic component when v < ¢, as we have assumed.
Various other circuits will be compared, using
the impressed sinusoidal field as a sort of standard
L of reference.
3 One of the circuits which will be considered is a
| series of flat resonators coupled together to make a
ke filter. Figure 5.4a shows a series of very thin pill-
gppﬁox‘ boxes with walls of negligible thickness. A small cen-
) 023 tral hole is provided for the electron stream, and the
witﬁ’fﬁj&i@i‘f&’%ﬁﬁf field E is to be measured at the edge of this hole.
lel surfaces reduced to The diameter is chosen to obtain resonance at a
gz‘c‘;izzéoir;]dp:g:;i.and wavelength Ao . Figure 5.4b shows a similar series
of flat square resonators.

For the round resonators it is found that*

T__

)
fe— — —APPROX. £ — —

/

¥_

(E2/82P)3 = 5.36 (v/c)'® (v/v,)" (5.24)
for the square resonators™®
(E/B2P)3 = 5.33 (v/c)'P (v/v)'2 (5.25)

For practical purposes these are negligibly different.
* See Appendix IIT.
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Suppose we wanted to improve on such circuits by reducing the stored
energy. An obvious procedure would be to cut away most of the flat opposed
surfaces as shown in Fig. 5.5. This reduces the energy stored between the
resonator walls, but results in energy storage outside of the open edges,
energy associated with a “fringing field.”

Going to an extreme, we might consider an array of closely spaced very
fine wires, as shown in Fig. 5.6. Here there are no opposed flat surfaces,
and all of the electric field is a fringing field; we have
reached an irreducible minimum of stored energy in
paring down the resonator.

The structure of Fig. 5.6 has not been analyzed
exactly, but that of Fig. 5.7 has. In Fig. 5.7, we have
an array of fine, closely spaced hali-wave wires be-
tween parallel planes.* This should have roughly
twice the stored energy of Fig. 5.6, and we will esti-
mate (£2/8*P)V* for Fig. 5.6 on this basis. We obtain
in Appendix III:

For the half-wave wires, Fig. 5.6—Quarter-wave
wires, which have a min-
(E2/82P)'3 = 6.20 (v/1,)" (5.25) imum of stored energy.

and hence for the quarter-wave wires, approximately
(B3P = 781 (v/,)® (5.26)

As we have noted, (v/c), which appears in the expression for (E£*/3*P)3
for the sinusoidal field impressed at radius ¢ and in (5.24) and (5.23), is a

Fig. 5.7—Half-wave wires between parallel planes. The stored energy can be calculated
for this configuration, assuming the wires to be very fine. The circuit does not propagate a
wave unless added coupling is provided.

function of the accelerating voltage. Figure 3.8 makes a comparison be-
tween the sinusoidal field impressed at a radius a, curve A ; the flat resona-
tors, either circular or square, B; the half-wave wires, C; and the quarter-

* There is no transverse magnetic wave propagation along such a circuit unless extra
coupling or loading is provided. Behavior of nonpropagating circuits in the presence of an
electron stream is considered in Section 4 of Chapter XIV.
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wave wires C’. In all cases, it is assumed that the coupling is so adjusted as
to make (z,/v) = 1 (broad-band condition).

What sort of information can we get from the curves of Fig. 5.87 Con-
sider the curves for 1,000 volts. Suppose we want to cut down the opposed
areas of resonators, as indicated in Fig. 5.5, so as to make them as good as
half-wave wires (curve C). The edge capacitance in Fig. 5.5 will be about
equal to that for quarter-wave wires (curve C’). Curve C " is about 3.7 times
as high as curve B, and hence represents only about (1/3.7)* = .02 as much
capacitance. If we make the opposed area in Fig. 5.5 about .01 that in Fig.
5.4a or b, the capacitance* between opposed surfaces will equal the edge

16
100 VOLTS A IMPRESSED SINUSOIDAL FIELD
B CIRCULAR RESONATORS
4 C HALF-WAVE WIRES
C' QUARTER-WAVE WIRES
12
\Q 1000 VOLTS 10,000 VOLTS
10 AN A
"\:--—. c’/ c’/ c’
w8 r I == EF==am==f== 4 E== =
Yl
S IRC= S AV W O
T~ N
. —] \
4 '-—.._____
B T
B
2 B
o}
0 2 4 ) 8 0 2 4 6 8 0 2 4 6 8
fAa a s

Fig. 5.8—Comparisons in terms of impedance parameter of an impressed sinusoidal
field (4), circular resonators (B), half-wave wires (C) and quarter-wave wires (C’) assuming
the group and phase velocities to equal the electron velocity. The radius of the impressed
sinusoidal field is a.

capacitance and the total stored energy will be twice that for quarter-wave
wires, or equal to that for half-wave wires. This area is shown approxi-
mately to scale relative to Fig. 5.4 in Fig. 5.5. Thus, at 1,000 volts the
resonant strips of Fig. 5.5 are about as good as fine, closely spaced half-
wave wires. '

Suppose again that we wish at 1,000 volts to make the gain of the reso-
nators of Fig. 5.4 (or of a coiled waveguide) as good as that for a helix with
Ba = 3. For Ba = 3 the helix curve 4 is about 3.2 times as high as the resona-

* This takes into account a difference in field distribution—that in Fig. 5.4b.
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tor curve B. As (E/82P)'3 varies as (v/7,)'%, we must adjust the coupling
between resonators so as to make

7, = 2/(3.2)) = 031 v

in order to make (E?*/8*P)"* the same for the resonators as for the helix.
From (5.12) we see that this means that a change in frequency by a frac-
tion .002 must change v by a fraction .06. Ordinarily, a fractional variation
of v of .03 would cause a very serious falling off in gain. At 3,000 mc the
total frequency variation of .002 times in  would be 6 mc. This is then a
measure of the bandwidth of a series of resonators used in place of a helix
for which 8a = 3 and adjusted to give the same gain.

1.0

T~

AN

0.4

0 0.2 0.4 0.6 0.8 1.0
A

Fig. 5.9—The factor f by which (E2/B2P)'® for a series of resonators such as those of
Fig. 5.4 is reduced because of wall thickness ¢, in relation to gap spacing L.

5.4 PHYSICAL LIMITATIONS

In Section 3.3b the resonators were assumed to be very thin and to have
walls of zero thickness. Of course the walls must have finite thickness, and
it is impractical to make the resonators extremely thin. The wall thickness
and the finite transit time across the resonators both reduce F?/GP.

5.4a Effect of Wall Thickness

Consider the resonators of Fig. 5.4. Let L be the spacing between resona-
tors (1/L resonators per unit length), and ¢ be the wall thickness. Thus, the
gap length is (L — /). Suppose we keep L and the voltage across each
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resonator constant, so as to keep the field constant, but vary . The capaci-
tance will be proportional to (L — #)~! and, as the stored energy is the
voltage squared times the capacitance, we see that (E?/2P) ' will be re-
duced by a factor f

f=QaQ—yLys (5.27)
The factor f is plotted vs. //L in Fig. 5.9.
1.0
0.9
0.8 \
NE\S
0.6 ™
. ~ 7
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TRANSIT ANGLE IN RADIANS

Fig. 5.10—The lower curve shows the factor by which E*/g*P is reduced by gap length,
8 in radians. If the gap spacing is greater than 2.33 radians, it is best to make the gap 2.33
radians long. Then the upper curve applies.

5.4b Transit Time

As it is impractical to make the resonators infinitely thin, there will be
some transit angle #, across the resonator, where

8, = BL (5.28)

Here ¢ is the space between resonator walls, or, the length of the gap.
If we assume a uniform electric field between walls, the gap factor M,
that is, the ratio of peak energy gained in electron volts to peak resonator
voltage, or the ratio of the magnitude of the sinusoidal field component
produced to that which would be produced by the same number of infinitely
thin gaps with the same voltages, will be (from (4.69) with r = a)

ur = Sin 6/2) e(‘;ﬂz/ 2) (5.29)
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For a series of resonators 8, long with infinitely thin walls £?/32P will be
less than the values given by (5.24) and (5.25) by a factor M*3, This is
plotted vs. 8, in Fig. 5.10.

54c Fixed Gap Spacing

Suppose it is decided in advance to put only one gap in a length specified
by the transit angle 8, . How wide should the gap be made, and how much
will E2/8°P be reduced below the value for very thin resonators and infi-
nitely thin walls?

Let us assume that all the stored energy is energy stored between parallel
planes separated by the gap thickness, expressed in radians as 6 or in dis-
tance as L

91 = ,Bg
0, = BL
Here £ is the gap spacing and L is the spacing between resonators.

From Section 4.4 of Chapter IV we see that if V is the gap voltage, the
field strength E is given by

E=MV/L
The stored energy per unit length, W, will be
W = WoV?/{(L (5.30)
Here W, is a constant depending on the cross-section of the resonators.
Thus, for unit field strength, the stored energy will be
W = W,L/{M?
W = Wy(6./6,)(8,/2)%/ sin® (8,/2)
We see that ¥, is merely the value of W when 8, = §; and 8, = 0, or,
for zero wall thickness and very thin resonators. Thus, the ratio W /W, re-
lates the actual stored energy per unit length per unit field to this optimum
stored energy for resonators of the same cross section.
For 8, < 2.33, W/W, is smallest (best) for 8, = 6, (zero wall thickness).

For larger values of 6., the optimum value of 6, is 2.33 radians and for
this optimum value

(5.31)

(Wo/ W)U = (1.450/6,)13 (5.32)

If 9, < 2.33, it is thus best to make 8, = 8,. Then (E*/p*P)'" is re-
duced by the factor [sin(8/2)/(6/2)]*%, which is plotted in Fig. 5.10. If
g, > 2.33, it is best to make § = 2.33. Then (E?*/82P)'? is reduced from the
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value for thin resonators with infinitely thin walls by a factor given by
(5.32), which is plotted vs. 8, in Fig. 5.10.

If there are edge effects, the optimum gap spacing and the reduction in
(E2/B2P)'3 will be somewhat different. However, Fig. 5.10 should still be a
useful guide.

In case of wide gap separation (large 8,), there would be some gain in
using reentrant resonators, as shown in Fig. 4.11, in order to reduce the
capacitance. How good can such a structure be? Certainly, it will be worse
than a helix, Consider merely the sections of metal tube with short gaps,
which surround the electron beam. The shorter the gaps, the greater the
capacitance. The space outside the beam has been capacitively loaded,
which tends to reduce the impedance. This capacitance can be thought of
as being associated with many spatial harmonics in the electric field, which
do not contribute to interaction with the electrons.

5.5 ATTENUATION

Suppose we have a circuit made up of resonators with specified unloaded
(.1 The energy lost per cycle is

W, = 2rWs/Q (5.33)

In one cycle, however, a signal moves forward a distance L, where

L = v/f (5.34)
The fractional energy loss per unit distance, which we will call 2«, is

W1
whence
w
a = 200, (5.36)

So defined, « is the attenuation constant, and the amplitude will decay
along the circuit as exp(—az).
The wavelength, A, is given by

A= v/f = 2m/w (5.37)
The loss per wavelength in db is
db/wavelength = 20 logio exp(a))
db/wavelength = 273 v (5.38)
Q u

t Disregarding coupling losses, the circuit and the resonantors will both have this
same
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We see that, for given values of v and Q, decreasing the group velocity,
which increases /2P, also increases the attenuation per wavelength.

5.5a Attenuation of Circuils

For various structures, ( can be evaluated in terms of surface resistivity,
R, the intrinsic resistance of space, v/u/e = 377 ohms, and varous other
parameters. For instance, Schelkunoff* gives for the Q of a pill-box resona-
tor

1.20(\/p/e/R)
= - 5.39
0 14+ a/h (5.39)
Here a is the radius of the resonator and / is the height. If we express the
radius in terms of the resonant wavelength Ay (¢ = 1.2\o/w), we obtain
/
0 = "Wwe/R) (/) (5.40)

(14 hfa)n

Here n is the number of resonators per wavelength (assuming the walls
separating the resonators to be of negligible thickness); thus

n= /N = (I/Xo)(c/v) (5.41)
From (5.40) and (5.38) we obtain for a series of pill-box resonators
db/wavelength = 8.68(R/\/u/e)(c/v,)(1 + hfa)n (5.42)

In Appendix I1T an estimate of the Q of an array of fine half-wave paral-
lel wires is made by assuming conduction in one direction with a surface
resistance K. On this basis, Q is found to be

Q = (Vu/e/R)(v/c) (5.43)
and hence
db/wavelength = 27.3(R/A/u/e)(c/v,) (5.44)

For non-magnetic materials, surface resistance varies as the square root
of the resistivity times the frequency. The table below gives R for copper
and db/wavelength for pill-box resonators for 7i/a << 1 (5.42) and for wires
(5.44) for several frequencies

f, mc R, Ohms (db/wavelength)/ (c/vy)
Pill-box Resonators Wires
3,000 0142 3.3 X 107 10.3 X 10~
10,000 .0260 6.0 X 107 18.1 X 10~
30,000 0450 10.4 X 10740 32.6 X 10~

In Section 3.3b a circuit made up of resonators, with a group velocity
031 times the phase velocity, was discussed. Suppose such a circuit were
2 Electromagnetic Waves, S. A. Schelkunoff, Van Nostrand, 1943. Page 269.
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used at 1,000 volts (¢/» = 16.5), were 40 wavelengths long, and had three
copper resonators per wavelength. The total attenuation in db is given below

f, mc Attenuation, db
3,000 21
10,000 38

30,000 67
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CHAPTER VI

THE CIRCUIT DESCRIBED IN TERMS OF
NORMAL MODES

Synopsis oF CHAPTER

N CHAPTER 1T, the field produced by the current in the electron stream,
which was assumed to vary as exp (—I'z), was deduced from a simple
model in which the electron stream was assumed to be very close to an ar-
tificial line of susceptance B and reactance X per unit length. Following
these assumptions, the voltage per unit length was found to be that of
equation (2.10) and the field £ in the z direction would accordingly be T

times this, or

K

E=I—1§__Fg1

(6.1)
Here we will remember that I'; is the natural propagation constant of
the line, and K is the characteristic impedance.

We further replaced K by a quantity

E/8P = 2K (6.2)

where E is the field produced by a power flow P, and g is the phase constant
of the line. For a lossless line, T’y is a pure imaginary and
gt = —Ti (6.3)

From (6.1) and (6.2) we obtain
I\ (E'/6° P) .

AT} — T?)

To the writer it seems intuitively clear that the derivation of Chapter
II is correct for waves with a phase velocity small compared with the
velocity of light, and that (6.4) correctly gives the part of the field asso-
ciated with the excitation of the circuit. However, it is clear that there are
other field components excited; a bunched electron stream will produce a
field even in the absence of a circuit. Further, many legitimate questions
can be raised. For instance, in Chapter II capacitive coupling only was
considered. What about mutual inductance between the electron stream
and the inductances of the line?

E= (6.4)
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The best procedure seems to be to analyze the situation in a way we know
to be valid, and then to make such approximations as seem reasonable. One
approximation we can make is, for instance, that the phase velocity of the
wave is quite small compared with the speed of light, so that

[T1 23 65 = (w/c)? (6.5)

In this chapter we shall consider a lossless circuit which supports a group
of transverse magnetic modes of wave propagation. The finned structure of
Fig. 4.3 is such a circuit, and so are the circuits of Figs. 4.8 and 4.9 (assum-
ing that the fins are so closely spaced that the circuit can be regarded as
smooth). It is assumed that waves are excited in such a circuit by a current
in the z direction varying with distance as exp (—I'z) and distributed normal
to the z direction as a function of x and y,f (%, ). Such a current might
arise from the bunching at low signal levels of a broad beam of electrons
confined by a strong magnetic field so as not to move appreciably normal
to the z direction.

The structure considered may support transverse electric waves, but these
can be ignored because they will not be excited by the impressed current.

In the absence of an impressed current, any field distribution in the struc-
ture can be expressed as the sum of excitations of a number of pairs of nor-
mal modes of propagation. For one particular pair of modes, the field dis-
tribution normal to the z direction can he expressed in terms of a function
(%, ¥) and the field components will vary in the z direction as exp(4T'z2).
Here the + sign gives one mode of the pair and the — sign the other, If
I, is real the mode is passive; the field decays exponentially with distance.
If T, is imaginary the mode is active; the field pattern of the mode propa-
gates without loss in the z direction.

An impressed current which varies in the z direction as exp(— I'z) will
excite a field pattern which also varies in the z direction as exp(—T'%), and
as some function of x and y normal to the z direction. We may, if we wish,
regard the variation of the field normal to the z direction as made up of a
combination of the field patterns of the normal modes of propagation, the
patterns specified by the functions #,(x, ). Now, a pattern specified by
#.(x, ¥) coupled with a variation exp(£T},2) in the z direction satisfies
Maxwell’s equations and the boundary conditions imposed by the circuit
with no impressed current. If, however, we assume the same variation with
x and y but a variation as exp(—I'z) with z, Maxwell’s equations will be
satisfied only if there is an impressed current having a distribution normal
to the z direction which also can be expressed by the function #,(x, ¥).

Suppose we add up the various forced modes in such relative strength
and phase that the total of the impressed currents associated with them is
equal to the actual impressed current. Then, the sum of the fields of these
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modes is the actual field produced by the actual impressed current. The
field is so expressed in (6.44) where the current components J, are defined
by (6.36).

If it is assumed that there is only one mode of propagation, and if it is
assumed that the field is constant over the electron flow, (6.44) can be put
in the form shown in (6.47). For waves with a phase velocity small compared
with the velocity of light, this reduces to (6.4), which was based on the simple
circuit of Fig. 2.3.

Of course, actual circuits have, besides the one desired active mode, an
infinity of passive modes and perhaps other active modes as well. In Chapter
VII a way of taking these into account will be pointed out.

Actual circuits are certainly not lossless, and the fields of the helix, for
instance, are not purely transverse magnetic fields. In such a case it is per-
haps simplest to assume that the modes of propagation exist and to cal-
culate the amount of excitation by energy transfer considerations. This has
been done earlier!, at first subject to the error of omitting a term which
later® was added. In (6.55) of this chapter, (6.44) is reexpressed in a form
suitable for comparison with this earlier work, and is found to agree.

Many circuits are not smooth in the z direction. The writer believes that
usually small error will result from ignoring this fact, at least at low signal
levels.

6.1 ExcrtaTioN OF TRANSVERSE MAGNETIC MODES OF PROPAGATION BY
A LoncrrupiNaL CURRENT

We will consider here a system in which the natural modes of propagation
are transverse magnetic waves. The circuit of Fig. 4.3, in which a slow wave
is produced by finned structures, is an example. We will remember that the
modes of propagation derived in Section 4.1 of Chapter IV were of this
type. We will consider here that any structure the circuit may have (fins,
for instance) is fine enough so that the circuit may be regarded as smooth
in the z direction.

Any transverse electric modes which may exist in the structure will not
he excited by longitudinal currents, and hence may be disregarded.

The analysis presented here will follow Chapter X of Schelkunoff’s
Electromagnetic Waves.

The divergence of the magnetic field H is zero. As there is no 2 component
of field, we have

! J. R. Pierce, “Theory of the Beam-Type Traveling-Wave Tube,” Proc. I.R.E., Vol.
35, pp. 111-123, February, 1947.

2J. R. Pierce, “Effect of Passive Modes in Traveling-Wave Tubes,” Proc. I.R.E.,
Vol. 36, pp. 993-997, August, 1948.
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aH,

ax (6.6)

This will be satisfied if we express the magnetlc field in terms of a ‘“‘stream
function”, =

o
a
H = — 6_1 (6.8)

7 can be identified as the z component of the vector potential (the vector
potential has no other components).
We will assume 7 to be of the form
T = # (x, y)e_rl (6.9)

Here # («, y) is a function of x and y only, which specifies the field dis-
tribution in any #, ¥ plane.
We can apply Maxwell’s equations to obtain the electric fields

9H, dH,

ady dz
Using (6.7) and (6.8), and replacing differentiation with respect to z by
multiplication by —T', we find

4T ar

E, = c:e a (610)
Similarly
_ L or (6.11)
we 3y

We see that in an x, ¥ plane, a plane perpendicular to the direction of propa-
gation, the field is given as the gradient of a scalar potential V'

V= (=jT/we)r (6.12)

This is because we deal with transverse magnetic waves, that is, with waves

which have no longitudinal or #z component of magnetic field. Thus, a closed

path in an x, y plane, which is normal to the direction of propagation, will

link no magnetic flux, and the integral of the electric field around such a
path will be zero.

We can apply the curl relation and obtain E.
0H, oH,
ox ay

. 2 2

j (om o7
E, ==\ —

we («3:’(:2 T ay’)

= juwek,
(6.14)
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Applying Maxwell’s equations again, we have

dE. OE,
— . = H:
dy dz Joow
) \ ) . (6.15)
ii(‘ﬁ+ﬁ) et _ . ot
wedy\o2 ) T weay I35y
This is certainly true if
L L (6.16)
a9x? ay? o )
Bo = w\/pe = w/c (6.17)

We find that this satisfies the other curl E relations as well.
From (6.16) and (6.14) we see that

E, = (—j/we)(T? + Bo)#(x, y)e ™ (6.18)

For a given physical circuit, it will be found that there are certain real
functions #,(x, ¥) which are zero over the conducting boundaries of the
circuit, assuring zero tangential field at the surface of the conductor, and
which satisfy (6.16) with some particular value of T, which we will call I, .
Thus, as a particular example, for a square waveguide of width W some
(but not all) of these functions are

#a(x, ¥) = cos (nry/W) cos (nwrx/W) (6.19)

where » is an integer. We see from (6.10), (6.11) and (6.18) that this makes
E,, E, and E, zero at the conducting walls x = £W/2, y = =W/2.

Each possible real function #,(x, y) is associated with two values of
I'., one the negative of the other. The I',’s are the natural propagation
constants of the normal modes, and the #,’s are the functions giving their
field distribution in the «x, y plane. The #,’s can be shown to be orthogonal,
at least in typical cases. That is, integrating over the region in the x, y
plane in which there is field

f f #a(x, 9) #m(z,3) dxdy = 0 (6.20)

n = m

For a lossless circuit the various field distributions fall into two classes:
those for which I', is imaginary, called active modes, which represent
waves which propagate without attenuation; and those for which T, is
real, which change exponentially with amplitude in the z direction but do
not change in phase. The latter can be used to represent the disturbance
in a waveguide below cutofi frequency, for instance.
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If T, is imaginary (an active mode) the power flow is real, while if T, is
real (a passive mode) the power flow is imaginary (reactive or “wattless”
power).

The spatial distribution functions #, and the corresponding propagation
constants I', are a means for specifying the electrical properties of a physical
structure, just as are the physical dimensions which describe the physical
structure and determine the various #,’s and T,’s. In fact, if we know the
various m,’s and T',’s, we can determine the response of the structure to an
impressed current without direct reference to the physical dimensions.

In terms of the #,’s and T',’s, we can represent any unforced disturbance
in the circuit in the form

D dn(w, ¥)[Aue " 4 Bue™ (6.21)

Here A, is the complex amplitude of the wave of the nth spatial distribu-
tion traveling to the right, and B, the complex amplitude of the wave of
the same spatial distribution traveling to the left.

It is of interest to consider the power flow in terms of the amplitude, 4,
or B, . We can obtain the power flow P by integrating the Poynting vector
over the part of the x, ¥ plane within the conducting boundaries

%ff EXIH* ds

%ff (E.HY — E,HY) dx dy

P

Il

(6.22)

I

])

By expressing the fields in terms of the stream function, we obtain

P=A,4* ( - ) [/ [(a’“‘) (‘Z’;) ] dxdy  (623)

We can transform this by integrating by parts (essentially Green’s
theorem). Thus

2 i, Ofn . O0f,
dx = ffn —

I -a;a dax

L f RPN (6.24)
1]

) Bx'-’

Here ; and a2, the limits of integration, lie on the conducting boundaries
where #, = 0, and hence the first term on the right is zero. Doing the same
for the second term in (6.23), we obtain

et (£5) [ (G ) re
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By using (6.16), we obtain
Py = A, A ( ) %+ ) [ @#)* ax ay (6.26)

It is also of interest to express the z component of the nth mode, E.,,
explicitly. For the wave traveling to the right we have, from (6.18),

E. = A, (wlj) (% + B)#u(x, ) (6.27)
Let the field at some particular position, say, x = y = 0, be E.,; . Then
jweEan
An = E] .
(I, + B2) #(0, 0) (6.28)

and from (6.26)
—jwel’,

I n = (Eznll Ezn(l*) mg), ff [f‘r,,(x, )’)]" dx d}' (6-29)

We can rewrite this
Ezul) Eznl)* . n(O O (1-‘ + JBD)

(—1T)P, el (—T2) ff o, D dx dy (6.30)

For an active mode in a lossless circuit, I', is a pure imaginary, and the
negative of its square is the square of the phase constant. Thus, for a par-
ticular mode of propagation we can identify (6.30) with the circuit parame-
ter K?/8*P which we used in Chapter II.

Let us now imagine that there is an impressed current J which flows in
the z direction and has the form

J=J(x,v)e " (6.31)
According to Maxwell’s equations we must have
aH, BU, . '
% = L. u
e oy Jwell, 4+ T (6.32)

Now, we will assume that the fields are given by some overall stream func-
tion = which varies with x and y and with z as exp(—T%).

In terms of this function =, H., H, and E., E, will be given by relations
(6.7), (6.8), (6.10), (6.11). However, the relation used in obtaining E, is
not valid in the presence of the convection current. Instead of (6.16) we
have

oH, ol

v _ Tz _ e E,
o 9y JweE, 4+ T

i (o'r  on i
E =1 omy L L
we (6:(:2 + 63)2) + we I

(6.33)
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Again applying the relation

dE, OE .
Gy a5~ JouH
we obtain
o' ' 2 2
g T+ —J (6.34)

We will now divide both 7 and J into the spatial distributions charac-
teristic of the normal unforced modes.
Let

J(x, 9) = ; Tufta(, 3) _ (6.35)

f J(z, y)#a(x, v) dx dy
Jn = (6.36)

ff [#a(x, ] dx dy
This expansion is possible because the m,’s are orthogonal. Let
=6 Cuttalx, ¥) (6.37)

Here there is no question of forward and backward waves; the forced ex-
citation has the same z-distribution as the forcing current.
For the nth component, we have, from (6.16),

2 A 2 A
T TREmD o @+ D) (639

From (6.34) we must also have

c. (air‘rﬂ(x, » 4 @z, y))

ox? 9y (6.39)
= —Cu(l® +8D)n(x, y) — Tattalx, 3)
Accordingly, we must have
Jn
Cﬂ = I‘zn _ I.,z (6.40)
The overall stream function is thus
T = 6—1\3 E TrI,:ﬂ(x,_y)I-in (6.41)

From (6.33) and (6.34) we see that

E, = =i (T* + B (6.42)
We
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So
—rs = —i(T* + B (x, )T,
£=em LR wfrfn)—w r(f) = (643)
_ _i(PE + Bg) —Tz 'ﬁ'ﬂ(x| y)-fn
b= L (644)

6.2 ComparISON WITH RESULTS OF CHAPTER II

Let us consider a case in which there is only one mode of propagation,
characterized by #:(x, ), T1, and a case in which the current flows over a
region in which #,(x, v) has a constant value, say, #;(0, 0). This corre-
sponds to the case of the transmission line which was discussed in Chapter
II.

We take only the term with the subscript 1 in (6.44) and (6.30). Combin-
ing these equations, we obtain for the field at 0, 0

/6P + g T [[ e razay o

B (% + 63) 240, 0)
We have from (6.36)
Jl = TI(O! 0)
[[ sty 301 dx dy \646)
From (6.45) and (6.46) we obtain
2 D\ mdr 2 42
_ (" + BTI(E/BP) Jer (6.47)

ot @i -1

Let us compare this with (6.4), which came from the transmission line
analogy of Chapter II, identifying E. and J with E and 7. We see that,
for slow waves for which

By << | T | (6.48)
B & | T (6.49)

(6.47) becomes the same as (6.4). It was, of course, under the assumption
that the waves are slow that we obtained (2.10), which led to (6.4).

6.3 ExpPANSION REWRITTEN IN ANOTHER FORM

Expression (6.44) can be rewritten so as to appear quite different. We
can write

I+ gl = T" = I% + T% + 65
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Thus, we can rewrite the expression for E: as

2 2
E =¢" ((-ﬂj/wE) ; € +P§0?1?n§vf, %L

(6.50)
+ (/) T al y)fn)

The second term in the brackets is just j/we times the impressed current,
as we can see from (6.35). The first term can be rearranged

(—j/we)([‘i + B0)Tx
(—i/w)(0h + 89 [[ #alo, DI N dxdy  o51)

i [[ e 1 ds ay

Referring back to (6.29), let ¥, be twice the power P, carried by the
unforced mode when the field strength is

| Eao| = 1 (6.52)

Further, let us choose the#,’s so that, at some specified position, x = y = 0,
) p P

2(0,0) =1 (6.53)
Then
_ —jwels . )
V= f f [, DI dc dy (6.54)

Using this in connection with (6.51), we obtain

[pita(x, ) ff n (2, y)j(x, y) dx dy
" V(% — T?) -

(6.55)
+ (j/welJ (, )

An expression for the forced field in terms of the parameters of the nor-
mal modes was given earlier'”. In deriving this expression, the existence of
a set of modes was assumed, and the field at a point was found as an in-
tegral over the disturbances induced in the circuit to the right and to the
left and propagated to the point in question. Such a derivation applies for
lossy and mixed waves, while that given here applies for lossless transverse-
magnetic waves only.
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The earlier derivation! leads to an expression identical with (6.55) except
that W} appears in place of ¥, . In this earlier derivation a sign was im-
plicitly assigned to the direction of flow of reactive power (which really
doesn’t flow at all!) by saying that the reactive power flows in the direction
in which the amplitude decreases. If we had assumed the reactive power to
flow in the direction in which the amplitude increases, then, with the same
definition of W, , for a passive mode ¥ would have been replaced by —¥;
which is equal to ¥, (for a passive mode, ¥, is imaginary).

In deriving (6.55), no such ambiguity arose, because the power flow was
identified with the complex Poynting vector for the particular type of wave
considered. In any practical sense, ¥ is merely a parameter of the circuit,
and it does not matter whether we call Im ¥ reactive power flow to the right
or to the left.

The existence of a derivation of (6.35) not limited in its application to
lossless transverse magnetic waves is valuable in that practical circuits often
have some loss and often (in the case of the helix, for instance) propagate
mixed waves.

6.4 ITERATED STRUCTURES

Many circuits, such as those discussed in Chapter IV, have structure in
the z direction. Expansions such as (6.55) do not strictly apply to such struc-
tures. We can make a plausible argument that they will be at least useful
if all field components except one differ markedly in propagation constant
from the impressed current. In this case we save the one component which
is nearly in synchronism with the impressed current and hope for the best.
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APPENDIX TIII

STORED ENERGIES OF
CIRCUIT STRUCTURES

A3.1 Forcen SINUSOIDAL FIELD
Tf v < ¢, the field can be very nearly represented inside the cylinder of
radius a by

IO(B") — ifiz — E I(](,BP’) e—-;ﬂz (1)

V
V="1G6e® T BB

and outside by

Kolyr) —i
V = VOA( ) € (2)
Inside
av _ I|(,3?’) —iBs
'5 - ﬁIU(,Ba) 4 Vﬂ . (3)
ov _ . ToBr) s
i 78 158a) eV (4)
QOutside
av _ K. (Br) s =
o= PR ®)
3V _ Kﬂ Br) —;,ﬂz
5 Prent ©

Because there is a sinusoidal variation in the z direction, the average stored
electric energy per unit length will be

Wy = (;)(2) [ () + Bamae 127 1) 1)

Here E; maz and E. na: are maximum values at r = a. The total electric
plus magnetic stored energy will be twice this. This gives
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- oo re(ya)’ [13 —Ioly | KoKy — Ki| 12
"= Tt E o
weya | Ty Kl] 2
W = — — | E
¥? [In + K,
A 120 13
(E./'B. P)lﬂ'n’i — (6/!})”3 (v/z'g)lfa
W@ B)| o
Iy K,

A3.2 Pir-Box RESONATORS

Schelkunoff gives on page 268 of Electromagnetic Waves an expression
for the peak electric energy stored in a pill-box resonator, which may be
written as

135 7 e a®hE?
Here a is the radius of the resonator and / is the axial length. For a series

of such resonators, the peak stored electric energy per unit length, which is
also the average electric plus magnetic energy per unit length, is

W = 135 7 e a?F* (10)
For resonance
a = 1.2/ (11)
Whence
W = .0618 e\ E? (12)
And
(B/B2P)' = 5.36 (1/2,)' (/)" (13)

The case of square resonators is easily worked out.

A3.3 ParALLEL WIRES

Let us consider very fine very closely spaced half-wave parallel wires with
perpendicular end plates.

If z is measured along the wires, and y perpendicular to z and to the
direction of propagation, the field is assumed to be

27
E. = E cos Bx¢™ cos Z
0

(14)

. 2r
E, = E sin fxe*® cos o
0

Here the - sign applies for y < 0 and the — sign for y > 0. We will then
find that
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W ="2Ws = E#EZ Xo f ey
(1}

N (15)
y = Do
w 465

and
(B*/@*P)' = 6.20 (v/v,)"® (16)

The surface charge density o on one side of the array of wires (say, y > 0)
is given by the y component of field at y = 0.

o = eE, = ¢E sinﬁxcosi—f z (17)
0

This is related to the current / (flowing in the z direction) per unit distance
in the x direction by

a do

- —— 18)
oz at (18)

From (18) and (17) we obtain for the current on one side of the array

I =

—_I9NE B in Bx sin 2 z (19)
211' 7\0

If we use the fact that who/2r = ¢ and ¢ e = 1/4/u/e, we obtain
—JjE . . 2
I = sin 8% sin — 2 20
ol B " (20)
If R is the surface resistivity of either side (y > 0,y < 0} of the wires, when

the wires act as a resonator (a standing wave) the average power lost per
unit length for both sides is

P = 1RNE/(n/e) (21)

In this case the stored electric energy is half the value given by (15), and
we find

Q = (Vu/e/R) (/c) (22)



