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of the preface and the historical introduction and chapter 6 in its entirety.

PREFACE

Though it has been scarcely fifteen years since the waveguide was pro-
posed as a practicable medium of transmission, rather important applica-
tions have already been made, The first, which was initiated several years
ago, was in connection with radar. A more recent and possibly more im-
portant application has been in television where waveguide methods pro-
vide a very special kind of radio for relaying program material cross-country
from one tower top to another. Already Boston and New York have been
connected by this means and shortly Chicago and intervening cities will
be added. Other networks extending as far west as the Pacific may be ex-
pected. It is reasonable to expect that these two applications will be but
the beginning of a more general use.

Interest in the subject of waveguide transmission is not limited to com-
mercial application alone. A comparable interest, perhaps less readily evalu-
ated but nevertheless extremely important, lies in its usefulness in teaching
important physical principles. For example there are many concepts that
follow from the electromagnetic theory that, in their native mathematical
form, may appear rather abstract. However, when translated to phenomena
actually observed in waveguides, they become very real indeed. As a re-
sult, these new techniques have already assumed a place of considerable
importance in the teaching of electrical engineering and applied physics both
in lecture demonstrations and in laboratory exercises. It is to be expected
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that they will be used even more extensively as their possibilities become
better appreciated.

Interest in waveguides has been greatly enhanced by the fact that they
brought with them a series of extremely interesting methods of measure-
ment, comparable both in accuracy and scope, with similar measurements
previously made only at the lower frequencies. This extension of the range
over which electrical measurements may be made has contributed also to
neighboring fields of research. One early application led to the discovery of
centimeter waves in the sun’s spectrum. Another led to important new infor-
mation about the earth’s atmosphere. Still another contributed to the study
of absorption bands in gases, particularly bands in the millimeter region.
Also of great importance was its contribution to our knowledge of the prop-
erties of materials for it led at a fairly early date to measurements at higher
frequencies than heretofore of the primary constants, permeability, dielectric
constant and conductivity—all for a wide array of substances ranging from
the best insulators to the best conductors and including many of the so-
called semi-conductors. It is because this new art has already attained con-
siderable stature and is already showing promise as an educational medium
that this book has been prepared.

CHAPTER 1
INTRODUCTION

1.5 EarrLy HisTorRY oF WAVEGUIDES

That it might be possible to transmit electromagnetic waves through
hollow metal pipes must have occurred to physicists almost as soon as the
nature of electromagnetic waves became fully appreciated. That this might
actually be accomplished in practice was probably in considerable doubt,
for certain conclusions of the mathematical theory of electricity seemed to
indicate that it would not be possible to support inside a hollow conductor
the lines of electric force of which waves were assumed to consist. Evidence
of this doubt appears in Vol. I (p. 399) of Heaviside’s “Electromagnetic
Theory” (1893) where, in discussing the case of the coaxial conductor, the
statement is made that ““it does not seem possible to do without the inner
conductor, for when it is taken away we have nothing left on which tubes
of displacement can terminate internally, and along which they can run.”

Perhaps the first analysis suggesting the possibility of waves in hollow
pipes appeared in 1893 in the book ‘“Recent Researches in Electricity and
Magnetism” by J. J. Thomson. This book, which was written as a sequel
to Maxwell’s “Treatise on Electricity and Magnetism,” examined mathe-
matically the hypothetical question of what might result if an electric charge
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should be released on the interior wall of a closed metal cylinder. This
problem is even now of considerable interest in connection with resonance
in hollow metal chambers. The following year Joseph Larmor examined as
a special case of electrical vibrations in condensing systems the particular
waves that might be generated by spark-gap oscillators located in hollow
metal cylinders. A more complete analysis relating particularly to propaga-
tion through dielectrically-filled pipes both of circular and rectangular cross
section was published in 1897 by Lord Rayleigh. Later (1905) Kalihne
examined mathematically the possibility of oscillations in ‘‘ring-shaped”
metal tubes. Still later (1910) Hondros and Debye examined mathematically
the more complicated problem of propagation through dielectric wires, Trans-
mission through hollow metal pipes was also considered by Dr. L. Silberstein
in 1915,

As regards experimental verification, it is of interest that Sir Oliver Lodge
as early as 1894 approached but probably did not quite realize actual wave-
guide transmission. In a demonstration lecture on electric waves given before
the Royal Society, he used, as a source of waves, a spark oscillator mounted
inside a “‘hat-shaped” cylinder. An illustration published later suggests that
the length of the cylinder was only slightly greater than its diameter. There
is no very definite evidence that the short cylinder functioned as a waveguide
or that such a function was discussed in the lecture. Perhaps of greater
significance were some experiments reported a year later by Viktor von Lang
who used pipes of appreciable length and repeated for electric waves the
interference experiment that had been performed for acoustic waves by
Quincke some years earlier. Other similar experiments were later performed
by Drude and by Weber.

About 1913 Professor Zahn of the University of Kiel became interested
in this problem and assigned certain of its aspects to two young candidates
for the doctorate, Schriever and Reuter by name, They had barely started
when World War 1 broke out, and both left for the front. Zahn continued
this work until he was called a year later. It is reported that by this time he
had succeeded in propagating waves through cylinders of dielectric, but it
is understood that he did little or no quantitative work. Reuter was killed
at Champagne in the autumn of 1915, but Schriever survived and returned
to complete his thesis in 1920, using for his source the newly available
Barkhausen oscillator.

The contributions of Thomson, Rayleigh, Hondros and Debye, and
Silberstein were, of course, purely mathematical. Those of von Lang, Weber,
Zahn and Schriever were experimental, but they were of rather limited
scope, The concept of the hollow pipe as a useful transmission element, for
example as a radiator or as a resonant circuit, apparently did not exist at
these early dates. Nothing was yet known quantitatively about attenuation,
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and little or nothing of the present-day experimental technique had yet
appeared. At this time, the position of this new art was perhaps comparable
with that of radio prior to the time of Marconi.

The history of waveguides changed abruptly about 1933 when it was
shown that they could be put to practical use. Several patent applications
were filed,! and numerous scientific papers were published. More recently a
great many papers have appeared, too many in fact for detailed consideration
at this time. Three of the earlier papers are mentioned in the footnote
below.? Others will be referred to in the text that follows.

The writer’s interest in guided waves stems from some experiments done
in 1920 when such waves were encountered as a troublesome spurious effect
while working with Lecher wires in a trough of water. In one case there were
found, superimposed on the waves that might normally travel along two
parallel conductors, other waves having a velocity that somehow depended
on the dimensions of the trough. These may now be identified as being the
so-called dominant type. In another case, the depth of water was apparently
at or near “cut-off,” and conditions were such that water waves in the
trough gave rise to depths that were momentarily above cut-off, followed a
moment later by depths that were below cut-off. This led not only to varia-
tions in power at the receiving end of the trough but also to variations in
the plate current of the oscillator supplying the wavepower. Indeed these
effects could be noted even when the wires were removed from the trough.
These waves were recognized as being roughly like those described the same
year by Schriever.?

Several years later this work was resumed and since that time a con-
tinued effort has been made to develop from fundamental principles of
waveguide transmission a useful technique for dealing with microwaves.
The earliest of these experiments consisted of transmitting electromagnetic
waves through tall cylinders of water. Because of the high dielectric con-
stant of water, waves which were a meter long in air were only eleven centi-
meters long in water. Thus it became possible to set up in the relatively
small space of one of these cylinders many of the wave configurations pre-
dicted by theory. In addition it was possible, by producing standing waves,
to measure their apparent wavelength and thereby calculate their phase
velocity. Also by investigating the surface of the water by means of a probe,

1 Reference is made particularly to U.S. Patents 2,129,711 (filed 3/16/33, 2,129,712
(filed 12/9/33), 2,206,923 (filed 9/12/34) and 2,106,768 (filed 9/25/34).

2 Carson, Mead and Schelkunoff, ““Hyper-frequency Waveguides—Mathematical
Theory,”” B.S.T.J., Vol. 15, pp 310-333, April 1936. G. C. Southworth, ‘' Hyper-frequency
Wave Guides—General Considerations and Experimental Results,”" B.S.T.7., Vol. 15, pp
284-309, April 1936. Also ““Some Fundamental Experiments with Waveguides,” Proc.
I.R.E.,Vol. 25, pp 807822, July 1937. W. L. Barrow, ‘ Transmission of Electromagnetic
Waves in Hollow Tubes of Metal,” Proc. I.R.E., Vol. 24, pp 1298-1398, October 1936.

3 The waves actually observed are now known as TE,, waves in a rectangular guide,
while those described by Schriever are now recognized as TMy; waves in a circular guide.
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the directions and also the relative intensities of lines of electric force in the
wave front could be mapped. It is probable that certain of these modes were
observed and identified for the first time.

Shortly afterwards, sources giving wavelengths in air of fifteen centi-
meters became available and the experimental work was transferred to air-
filled copper pipes only 5 inches in diameter. At this time, a 5-inch hollow-
pipe transmission line 875 feet in length was built through which both
telegraph and telephone signals were transmitted. Measurements showed
that the attenuation was relatively small. This early work, which was done
prior to January 1, 1934, was described along with other more advanced work
in demonstration-lectures and also in papers published in 1936 and 1937.

It was recognized at an early date that a short waveguide line might, with
suitable modification, function as a radiator and also as a reactive element.
These properties were likewise investigated experimentally, and numerous
useful applications were proposed. Descriptions may be found in the numer-
ous patents that followed. These properties were also the subject of several
experimental lectures given before the Institute of Radio Engineers and
other similar societies by the writer and his associates during the years 1937
to 1939.% Included were demonstrations of the waveguide as a transmission
line, the electromagnetic horn as a radiator, and the waveguide cavity as a
resonator. An adaptation of the waveguide cavity was used to terminate a
waveguide line in its characteristic impedance.

From the first, progress was very substantial and by the autumn of 1941
there were known, both from calculation and experiment, the more important
facts about the waveguide. In particular, the reactive nature of discon-
tinuities became the subject of considerable study, and impedance matching
devices (transformers), microwave filters, and balancers soon followed. Also
a wide variety of antennas was devised. Similarly, amplifiers and oscillators
as well as the receiving methods followed.

As might be expected, a great many people have contributed in one way
or another to the success of this venture. Particular mention should be
made of the very important parts played by the author’s colleagues, Messrs.
A. E. Bowen and A. P. King, who, during its early and less promising period,
contributed much toward transforming rather abstract ideas into practical
equipment, much of which found important military uses immediately upon
the advent of war. Also of importance were the parts played by the author’s
colleagues, Dr. S. A. Schelkunoff, J. R. Carson, and Mrs. S. P. Meade, who,
in the early days of this work, provided a substantial segment of mathe-
matical theory that previously was missing. During the succeeding years,
Dr. Schelkunoff, in particular, made invaluable contributions in the form

* A description of one of the earlier lectures appears in the Bell Laboratories Record
for March 1940. (Vol, XVIII, No. 7, p. 194.)
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of analyses which in some cases indicated the direction toward which experi-
ment should proceed and, in others, merely confirmed experiment, while,
in still others, gave answers not readily obtainable by experiment alone. In
the chapters that follow, the author has drawn freely on Dr. Schelkunoff,
particularly as regards methods of analysis.

Beginning sometime prior to 1936, Dr. W. L. Barrow, then of the Massa-
chusetts Institute of Technology, also became interested in this subject and
together with numerous associates made very substantial contributions. No
less than eight scientific papers were published covering special features of
hollow-pipe transmission lines and electromagnetic horns. For several years
the work being done at the Massachusetts Institute of Technology and at
the Bell Telephone Laboratories probably represented the major portion, if
not indeed the only work of this kind in progress, but with the advent of
World War II, hundreds or perhaps thousands of others entered the field.
For the most part, the latter were workers on various military projects.
Starting with the considerable accumulation of unpublished technique that
was made freely available to them at the outset of the war, they, along with
others in similar positions elsewhere in this country and in Europe, have
helped to bring this technique to its present very satisfactory state of de-
velopment.

CHAPTER VI

A DESCRIPTIVE ACCOUNT OF ELECTRICAL
TRANSMISSION

6.0 GENERATL CONSIDERATIONS

The preceding four chapters presented the more important steps in the
development of the theory of electrical transmission, particularly as it
applies to simple networks, wire lines, and waves in free space and in guides.
For the most part, the analysis followed conventional methods and made use
of the concise and accurate short-hand notation of mathematics. It had for
its principal objective the derivation of a series of equations useful in the
practical application of waveguides.

Closely associated with the theory of electricity and almost a necessary
consequence of it are the numerous concepts and mental pictures by means
of which we may explain rather simply the various phenomena observed in
electrical practice Though extremely important, this aspect of the theory
was not stressed before. Instead it was deferred to the present chapter where
it could be considered by itself and from the purely qualitative point of
view. It is hoped that this arrangement of material will be of special use to
those who find it necessary to substitute for mathematical analysis, simple
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models to explain the phenomena which they ohserve in practice. It is be-
lieved that, for these people, this chapter together with a few key formulas
taken from the earlier sections will be helpful in gaining a fairly satisfactory
understanding of the practical aspects of waveguide transmission.

At the lower frequencies, the current aspect of electricity meets most of
the needs and in comparison it is only occasionally that there is a need to
discuss lines of electric and magnetic force. In waveguide practice, on the
other hand, currents are usually not available for measurement and, al-
though we recognize their reality, they necessarily assume a secondary role.
In contrast with currents, we consider the fields present in a waveguide as
very real entities and we attach a very great importance to their orientations
as well as to their intensities.

6.1 THE NATURE oF FIELDS oF FORCE

As a suitable introduction to the discussion that follows, we shall review
some of the fundamental properties of lines of electric and magnetic force
and show pictorially the part that they play in transmission along an or-
dinary two-wire line.

The Electrostalic Field

As is well known, the concept of the electric field was devised by Faraday
to explain the force action between charged bodies. According to his view
there exist in the space between the charged bodies, lines or tubes of electric
force terminating respectively on positive and negative charges attached to
the bodies. These tubes of force are endowed with a tendency to become
as short as possible and at the same time to repel, laterally, neighboring lines
of force. Their direction at any point is purely arbitrary, but, by subsequent
convention, the positive direction is taken from the positively charged body
to the negative. This is such that a small positive charge (proton) placed in
the field tends to be displaced in the positive sense while an electron tends to
move in a negative direction. The force exerted on the unit charge is a
measure of the magnitude of the electric intensity E. It is measured in volts
per meter and, since it has direction as well as magnitude, it is a vector quan-
tity.! Figure 6.1-1 illustrates in a general way the arrangement of lines of
electrostatic force that are assumed to exist between two oppositely charged
spheres. Also shown is a representative vector E.

The Magnetostatic . Field

In the same way that Faraday provided a satisfactory explanation for
the forces between charged bodies, so was he able to explain the forces be-

! Black-face type will be used when it seems desirable to emphasize the vector proper-
ties of quantities having direction as well as magnitude.
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tween magnetized bodies. In the latter case, the two kinds of electrostatic
charge are replaced by north-seeking and south-seeking magnetic poles re-
spectively. Similarly the tubes of electric force are replaced by tubes of
magnetic force. Roughly speaking, the two kinds of tubes are endowed with
analogous properties. Because these magnetic lines are at rest, it is appro-
priate to speak of them as magnetostatic lines of force and consider them as
being comparable but of course not identical with electrostatic lines already
discussed. The force exerted on a unit magnetic pole is a measure of magnetic
intensity H. Like its electric counterpart, it is a vector quantity. In the par-

Fig. 6.1-1. Arrangement of lines of electrostatic force in the region between two oppositely
charged spheres.
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Fig. 6.1-2. Arrangement of lines of magnetostatic force in the region between two
oppositely magnetized poles.

ticular system of units used in this text, it is measured in amperes per meter.
Figure 6.1-2 illustrates the arrangement of the lines of magnetic force that
are assumed to exist between two opposite magnetic poles.

Interrelationship of Electric and Magnetic Fields

As a result of the electromagnetic theory, there are certain properties with
which we may endow lines of electric and magnetic force and thereby ex-
plain numerous phenomena of electrical transmission. This establishes a
relationship between electric and magnetic fields that makes them appear
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at times as if they were different aspects of the same thing. They are as
follows:

1. Lines of magnelic force, when displaced laterally, induce in the space
immedialely adjacent, lines of eleciric force. The direction of the induced electric
Jorce is perpendicular (o the direction of motion and also perpendicular lo the
direction of the original magnetic force. The intensity E of the induced electric

Y

LINE OF ELECTRIC FORCE

—

\LINE OF MAGNETIC FORGE

Fig. 6.1-3. Directions of electric vector E and magnetic vector H relative to the velocity
v of motion of such lines.

Fig. 6.1-4. Simple corkscrew rule for remembering the directions of £, H and 2.

Jorce is proportional lo the velocity v of displacement and proportional to (he
intensity H of the original lines of magnelic force.

The directions of the vectors v, E and H are shown in Fig. 6.1-3. They
are so related that, when E moves clockwise into H, it is as though a right-
hand screw had progressed in the direction of v as shown in Fig. 6.1-4.
A convenient short-hand notation used rather generally by mathematicians
makes it possible to express these facts by the following vector equation:

E = —pu(vxH) (6.1-1)
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The quantity p is the magnetic permeability of the medium under considera-
tion.

2. Lines of electric force, when displaced laterally, induce in the immedialely
adjacent space lines of magnelic force. The direction of the induced magnetic
force is perpendicular to the direction of motion and also perpendicular lo the
direction of the original electric force. The intensity H of the induced magnetic
force is proporiional to the velocity v of displacement and proportional lo the
intensity E of the original lines of electric force.

Y

X

UNIT VOLUME CONTAINING
STORED ENERGY

POYNTING VEGCTOR

/\— FLOW OF POWER

Fig. 6.1-5. Directions of the vectors E and H relative to the Poynting vector P in an
advancing wave front.

Again Fig. 6.1-3 and also the right-hand or cork-screw rule apply. In the
short-hand notation these facts may be expressed by the following vector
equation:

H = e(vxE) (6.1-2)

In this equation, e is the dielectric constant of the medium.*

3. When an electric field of intensily E is translated laterally, it logether with
its associated magnetic field H represents a flow of energy. The direction of the
flow of energy is perpendicular to both E and H and is therefore in the direction
of the velocity v. The magnitude of the energy flow per unil volume across a unil
area measured perpendicular to v is proportional lo the product of the electric
intensity E and the magnetic intensity H. It may be designaled by the vector P.

The relative directions of the vectors P, E, and H are shown in Fig. 6.1-5.
The energy per unit volume moves with a velocity expressed by

1
‘Z)-—-‘\/.LE

* The values of permeability u and dielectric constant ¢ appearing in these equations
are not the values found in most tables of the properties of materials. As here given u is
smaller than the usual value u, by a factor of 1.257 X 107 while e is smaller than ¢ by
a factor of 8.854 X 10712 The use of these special values leads to certain mathematical
simplifications.

(6.1-3)
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It therefore corresponds to a flow of power. In the notation just referred to,
it may be expressed by the vector equation

P=ExH (6.1-4)

4. Lines of force exhibit the properties of inertia. They therefore resist ac-
celeration.

Other principles not quite so fundamental but nevertheless useful in
application are:

5. Lines of force are under tension and at the same time are under lateral
pressure.

6. For perfect conduclors there can be no tangential component of electric
force. That is to say, lines of electric force when attaching themselves to a
perfect conductor must approach perpendicularly. This is substantially
true also for common metals such as copper.

In passing it is well to point out that the first principle is really that by
which the ordinary dynamo operates. The second is, for practical purposes,
Oersted’s Principle, if we assume that the lines of electric force are attached
to charges flowing in near-by conductors. The third is known as the Poynting
Principle. It has a wide field of application contributing very materially to
the physical pictures of both radio and waveguide transmission. When ap-
plied to the very simple case of low frequencies propagated along a trans-
mission line, it gives a result that is in keeping with the usual view that the
power transmitted is equal to the product of the total voltage times the total
current. The fourth principle is useful in explaining qualitatively how radia-
tion from an antenna takes place. The usefulness of these four principles will
be made more evident by the examples that follow.

6.2 TransMISSION OF POWER ALONG A WIRE LINE
Direct Current

According to the Poynting concept, one may think of an ordinary dry
cell as two conductors combined with chemical means for producing a con-
tinuous supply of lines of electric force. This need not be counter to the ac-
cepted views concerning electrolysis, for we may think of these lines of force
as being attached to ionic charges incidental to dissociation. As long as the
cell is on open circuit, these lines of electric force remain in a static condition
in which many are grouped in the neighborhood of the terminals of the cell
as shown in Fig. 6.2-1(a). In this state of equilibrium, the forces of lateral
pressure are balanced by the forces of tension. There is no motion and hence
no flow of power. For an ordinary dry cell such as used in flashlights, the
electric intensity E will depend on the spacing of electrodes, but it may be
as much as 200 volts per meter If we attach to the dry cell two parallel
wires spaced perhaps a centimeter apart with their remote ends open, electro-
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static lines will be communicated to the wires, thereby providing a dis-
tribution roughly like that shown in Fig. 6.2-1(b). Except at the moment of
contact, there is no motion of the lines of electric force and therefore no
magnetic field and, accordingly, there can be no flow of power. The final
configuration is to be regarded as the resultant of the forces of tension and
lateral pressure. The electric intensity, E, measured in volts per meter at
any point along the line, may be altered at will, merely by changing the
spacing.

If, next, we close the remote end of the line by substituting a conducting
wire for the particular line of force shown as a heavy line in Fig. 6.2-1(c),
the adjacent lines of electric force will collapse on the terminating conductor,
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Fig. 6.2-1. Lines-of-force concept applied o the transmission of d-c power along a wire line.

as opposing charges unite. This removes the lateral pressure on the neighbor-
ing lines with the result that the whole assemblage starts moving forward.
Each line of force meets in its turn the fate of its forerunners, thereby de-
livering up its energy to the resistance as heat. As soon as the lateral pressure
at the cell is relieved, chemical equilibrium is momentarily destroyed and
more lines of force are manufactured to fill the gaps of those that have gone
before. All of this is, of course, at the expense of chemical action.
According to the electromagnetic theory, as set forth in the second prin-
ciple, this is but a part of the story of transmission. We must add that the
motion of the lines of electric force from the dry cell toward the resistance
gives rise in the surrounding space to lines of magnetic force in accordance
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with Equation 6.1-2 and furthermore the two fields together give rise to
component Poynting vectors representing power flow. Each component
vector has a magnitude at any point equal to the product of the electric and
magnetic intensities there prevailing and a direction at right angles to the
two component forces in accordance with Equation 6.1-3. This is illustrated
in Fig. 6.2-1(d).

Since the fields reside largely outside the conductors, we conclude that
the principal component of power flow is through the space between the
wires and not through the wires themselves. If, in the case cited above,
there is appreciable resistance in the connecting wires, then we may expect
that there will be a small component of energy flowing into the wires to be
dissipated as heat. To account for this, we may picture lines of electric force

Circle enclosing
one half
transmitted power —

Dissipative Material

(a) (b)
Fig. 6.2-2. Fields of electric and magnetic force and also direction of power flow in the
vicinity of conductors. (a) Magnified view showing power flow along a single
dissipative wire. (b) Cross-sectional view of parallel-wire line.

which in the immediate vicinity of the conducting wire lag somewhat behind
the portions more remote. This is illustrated by Fig. 6.2-2(a) which shows a
highly idealized and greatly enlarged section of the field in the immediate
vicinity of one of the two dissipative conductors. The very small component
of power flowing into the conductor is designated as the vector ' to dis-
tinguish it from the much greater power P which we shall assume is being
propagated parallel to the conductor.?

The magnetic field associated with two cylindrical conductors consists of
circles with centers on the line joining the two conductors, whereas the
electric field consists of another series of circles orthogonally related to the

3 For all metals from which conducting lines are ordinarily made, the component of
power flowing into the conductor is extremely small compared with the power flowing

parallel to its surface. In Fig. 6.2-2(a) therefore, we should regard vector P as greatly
exaggerated in magnitude relative to that of vector P.
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first, and having centers on a line at right angles to the first as shown in
Fig. 6.2-2(b). The total flow of power through any plane set up perpen-
dicular to the wires is found by adding up the various component products
of E and H from the boundaries of the wires to infinity. The method by which
this is carried out is outside of the scope of this chapter, but, as already
pointed out, it leads to the same result as obtained by multiplying together
the total voltage and the total current. There are two results of this integra-
tion that are of special interest. (1) In the case of two parallel cylinders, one-
half of the total power flows through the space enclosed by a circle drawn
about the wire spacing as a diameter [see Fig. 6.2-2(b)]. The remaining half
extends from this circle on out to infinity. (2) Since both the electric and
magnetic intensities are greatest in the neighborhood of the wire, most of
the total power flow takes place in the immediate vicinity of the wire.

Transmission of A-c Power

If the simple d-c source mentioned previously is replaced by an alternat-
ing electromotive force, a variety of phenomena may take place, the more
important of which will depend on the frequency of alternation. If this fre-
quency is low (very long wavelength), the line may be relatively short com-
pared with the wavelength, with the result that changes occurring at the
source may appear very soon at the remote end. For this case, the observed
phenomena will vary sinusoidally with time everywhere along the line, in
substantially the same phase. This is the typical alternating-current power
line problem' and, except for minor details, which we shall not discuss at
this time, it does not differ materially from the simple d-c case already
covered.

If, on the other hand, the frequency is high (short wavelength), the line
may be regarded as being elecirically long, with the result that sinusoidal
changes occurring at the source may not have traveled very far before the
direction of flow at the source has changed. The over-all result in extreme
cases may become very complicated indeed; for, wavepower may not only
be reflected from the remote end of the line but, if there are sharp bends in
the line or abrupt changes in spacing, it may be reflected from these points
also. The phenomenon observed is usually referred to as wave inlerference
and it often leads to standing waves. Though described above as complicated,
there are many cases where the results of wave interference may be suffi-
ciently simple to be readily visualized. Practical difficulties of various kinds
may arise from these effects, but they may also serve very useful purposes.
In fact, a substantial portion of our microwave technique is based on wave

1 The wavelength corresponding to a frequency of 60 cycles per second is five million

meters. A commercial power line having a length as great as 100 miles is therefore but
0.03 wavelength long. It is said to be electrically short.
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interference. Certain specific examples will be discussed later, but first we
shall discuss a somewhat simpler case.

The Infinite Line

Let us take, for discussion, a uniform two-wire line that is infinitely long.
Waves launched on such a line are assumed to be propagated to infinity.
There are no reflected components and hence no wave interference. If the
frequency is very high, the forerunners of the lines of force sent out by the
source will not have traveled very far when the emf at the source will have
reversed its direction. This gives rise at the source to a second group of lines
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Fig. 6.2-3. (a) Arrangement of lines of electric and magnetic force in both the longitudinal
and transverse sections of an infinitely long transmission line. (b) Space relationship
between electric vector £ and magnetic vector I as observed in a plane conlaining
the two conductors.

of force exactly like the first except oppositely directed. This, in turn, will be
followed by a third group identical with the first and a fourth identical with
the second and so forth until equilibrium is reached. Because the lines of
electric force are in motion, we must expect them to be accompanied by
lines of magnetic force. Both are of equal importance. Therefore it is not
correct to refer to either alone as a distinguishing feature of the wave. Both
components are shown in cross section at the right in Fig. 6.2-3(a).

The distance between successive points of the same electrical phase in a
wave is known as the wavelength X. It depends on the frequency f of alterna-
tion and the velocity of propagation v; A = v/f. The velocity of propagation
in turn depends on the nature of the medium between the two wires. For
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air, the velocity 7, is substantially 300,000,000 meters per second (186,000
mi per sec). For other media v = 1, /e, Thus it will be seen that, by re-
placing the air normally found between the two wires of a transmission line
by another medium such as oil (e, = 2 and g, = 1), the wavelength will be
reduced by a factor of 1/4/2.

If A, is the maximum amplitude reached by the oscillating source during
any cycle, the amplitude at any time f, measured from an arbitrary begin-
ning, may bhe expressed by the equation

A = Aysin (wf + ¢) = Ay sin (2%— o + ¢> (6.2-1)

where ¢ is the initial phase of the amplitude relative to an arbitrary refer-
ence angle.

If the transmission line is free from dissipation and we choose a datum
point in a plane at right angles to the direction of propagation and at a
distance far enough from the source that the lines of force have had an oppor-
tunity to conform to the wire arrangement and if we designate the electric
intensity at this point as E, and the corresponding magnetic intensity as
H,, then the electric and magnetic intensities at other corresponding points
at a distance z further along the line may be represented by

E = E,sin 2—; (z — 20)

and

I

Il

H, sin 2}\1 (z — o) (6.2-2)

These ecuations are the trigonometric representations of an unattenuated
sinusoidal wave of electric intensity and magnetic intensity traveling in a
positive direction along the 5 axis. They are plotted in the yz and xz planes of
Fig. 6.2-3(b). An electromagnetic configuration similar to the above bhut
traveling in the opposite direction is given hy

.2
E = E,sin —;r (z + o)
and

I = Hysin 2—; (z + o) (6.2-3)

These equations may be further confirmed by plotting arbitrary values on
rectangular-coordinate paper. In an infinite line the magnetic intensity H
and the electric intensity E are in the same phase as shown in Fig. 6.2-3.
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If the wave is subject to an attenuation of @ units per unit distance,
possibly due to resistance in the wires, the corresponding components of
E and H are equally attenuated. Either component may be expressed by
an equation of the type

= FEye ™ sin %\E (z — o) (6.2-4)

This is a very special form of certain equations appearing in Sections 3.2
and 3.3

distance=2z

(o)
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Fig. 6.2-4. Effect of attenuation on an advancing wave front.

1f the attenuation is negligible, then & = 0 and the term e—=* will be unity.
Equation 6.2-4 will then reduce to 6.2-2. I, on the other hand, the attenua-
tion is considerable, the product of « times z will increase rapidly with dis-
tance, and the factor e will have the effect of reducing the electric
intensity E prevailing at various points along the line. Figure 6.2-4(a) illus-
trates the variation, with distance, of the electric intensity £ for an un-
attenuated wave o = 0. There is included for comparison purposes the case,
a = 0.1. Figure 6.2-4(b) shows the effect of this rate of attenuation on waves
that have traveled for some distance. Tt is significant that moderate amounts
of attenuation have little or no effect on wavelength.
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At low frequencies, conductor loss is often the principal cause of atteni-
ation. At high frequency, this loss may be still more important® and in addi-
tion there may be losses in the medium around the two conductors. The
latter is particularly true when the conductors are supported on insulators
or are embedded in insulating material. There may also be losses due to
lines of force that detach themselves from the wires and float off into the
surrounding space (radiation). All three lead to attenuation and may be
expressed in terms of an equivalent resistance. They are amenable to cal-
culation for certain special cases.

According to one view of electricity, the individual charges to which
lines of force attach themselves are unable to flow through the conductor
with the velocity of light. If this is true, lines of force snap along from one
charge to the next in a rather mysterious fashion which we will not attempt
to picture at this time. This view, like others mentioned previously, tends to
relegate the charges and hence the currents to a secondary position.

Although infinitely long transmission lines cannot be constructed in prac-
tice, it is possible, by a variety of methods, to approximate this result. In
general, a resistance connected across the open end of a short transmission
line, of the kind here assumed, absorbs a portion of the arriving wavepower
and reflects the remainder. If the resistance is either very large or very small,
the reflected power may be very substantial but, by a suitable choice of inter-
mediate values of resistance, the reflected part may be made very small in-
deed. In the ideal case, the arriving wavepower is completely absorbed. A
line connected to this particular value of resistance appears to a generator
at the sending end as though it were infinitely long. The particular resistance
that can replace an infinite line at any point, without causing reflections, is
known as the characleristic impedance of the line. This quantity depends on
the dimensions and spacings of the two conductors as well as the nature of
the medium between. A parallel-wire line, in air, usually has a characteristic
impedance of several hundred ohms. A coaxial line filled with rubber often has
a characteristic impedance of a few tens of ohms. A line having characteristic
impedance connected at its receiving end is said to be match-lerminated.

Reflections on Transmission Lines

If the transmission line ends in a termination other than characteristic
impedance, or if there are discontinuities, due to impedances connected
either in series or in shunt with the line, reflections of various kinds will
occur.® Much of the practical side of microwaves has to do with these re-
flections.

5 The losses in most conductors increase with the square root of the frequency.

6 At the higher frequencies, reflections may also occur at points where the wire spacing
changes abruptly. In some instances abrupt changes in wire diameter may be sufficient
to cause reflection. These discontinuities may be regarded as changes in characteristic
impedance.
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A particularly simple form of reflection occurs when the high-frequency
transmission line is terminated in a transverse sheet of metal of good con-
ductivity, as for example, copper. An arrangement of this kind is shown in
Fig. 6.2-5. As it is difficult to represent a wave front moving toward the
reflecting plate, we shall substitute an imaginary thin slice or section of the
electromagnetic configuration. A slice of this kind is shown in Fig. 6.2-5(a).

Experiment shows that, at the boundary of the nearly perfect reflector,
the transverse electric force E is extremely small. This is consistent with
the sixth principle set forth in the previous section which states that there
can be no tangential component of electric force at the boundary of a per-
fect conductor. The result actually observed can be accounted for if it is
assumed that the reflecting conductor merely reverses the direction of lines
of electric force as they become incident, thereby giving rise to two sets of
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Fig. 6.2-5. (a) Propagation of an electromagnetic wave along a two-wire line terminated
by a large conducting plate. (b) Representative lines of force reflected by the
conducting plate.

lines of force as shown in Fig. 6.2-3(b), one of intensity E, = E directed
downward in the figure and moving laterally toward the metal sheet (in-
cident wave) and the other of intensity £, = — E directed upward and mov-
ing away from the metal sheet (reflected wave). Accordingly the resultant
electric intensity at the surface is zero.

If the reflector is non-magnetic, the magnetic intensity H will be un-
affected by the reflecting material. We find by applying the right-hand rule
of Fig. 6.1-4 that the electric intensity E, = —E when combined with H
constitutes a wave that must travel in a negative direction of v. This wave
may be represented by Equation 6.2-3. In a similar way the Poynting vector
which before reflection is represented by P = E x H now takes the form
P = (—ExH). The negative sign according to the right-hand rule of
Fig. 6.1-4 shows that the power approaching the conductor is reflected back
upon itself. If E and H are respectively equal in magnitude before and after
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incidence, the reflection is perfect, and the coefficient of reflection is said to
be unity. Bearing in mind that H; = e(v x E) before reflection and H, =
e(—vx —E) after reflection, it is evident that the direction of the magnetic
intensity has been unchanged by the process of reflection and that the re-
sultant magnitude at the surface of the metal is | Hi| + | H,| = 2 | H|.
Thus we see that, at the moment of reflection from a metallic surface, the
resultant electric force vanishes and the resultant magnetic force is doubled.

The reflection of waves at the end of the line naturally gives rise to two
oppositely directed wave trains. This is a well-known condition for standing
waves. Though a complete discussion of standing waves calls for the math-
ematical steps taken in Section 3.6, there are certain qualitative results that
may be deduced from relatively simple reasoning. Some of these deductions
will be made in the paragraphs that follow.

If an observer, endowed with a special kind of vision for individual lines
of force, were to be stationed at various points along a lossless transmission
line as shown in Fig. 6.2-5, he would observe a variety of phenomena as
follows. Near the reflector he would observe a waxing and waning of lines
of force, both electric and magnetic, corresponding to the arrival of crests
and hollows of waves. Also he would observe a similar waxing and waning
corresponding to waves leaving the reflector. The sum of the two waves
would give rise at the conducting barrier to a resultant electric intensity of
zero and to a corresponding magnetic intensity that would oscillate between
limits of plus or minus 2H. Since it is the magnetic component that is the
the more evident near the barrier, this region would appear to the observer
much like the interior of a coil carrying alternating current.

If the observer were to pass along the line to a point one-eighth wave-
length to the left of the reflector, the distance up to the reflector and back
would then be a quarter wave and he would then find that at the moment
that a wave crest (maximum intensity) was passing on its way toward the
reflector a point on the wave corresponding to zero intensity would be re-
turning from the reflector. Adding the corresponding electric and magnetic
intensities at this point, he would observe that the electric intensity would
not always be zero but instead it would oscillate between limits of plus or
minus v/2 E. Similarly the corresponding magnetic intensity would no longer
oscillate between limits of plus or minus 2/, but instead it would never reach
limits greater than plus or minus v/ 2 H. Thus at this point the electric and
magnetic components would have the same average intensity.

1f the observer were to move farther along the line, stopping this time at a
distance of one-fourth wavelength to the left of the metal plate, the total
electrical distance to the barrier and back again would be a half wave-
length and he would now find that at the time a crest passed on its way
toward the reflector a hollow (maximum negative intensity) would be pass-
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ing on its return journey. This time, the resultant electric intensity would
oscillate between limits of plus or minus 2E, and the resultant magnetic
intensity would be zero at all times. To this observer then, this quarter-wave
point on the line would have many of the characteristics of the interior of
a condenser charged by an alternating voltage.

If our observer were to move another one-eighth wave farther along the
line, he would note that the resultant electric and magnetic forces would
again be equal. Proceeding on to a point one-half wavelength from the metal
reflector, he would observe that, at the time crests (maximum positive in-
tensity) were passing on their way toward the reflector, hollows would be
returning, and accordingly upon examining the resultant electric intensity
he would find it to be zero at all times, whereas the corresponding magnetic
intensity would be oscillating between limits of plus or minus 2H. At this
point along the line, he would be unable to distinguish his electrical environ-
ment from that prevailing at the metal boundary. The half-wave line, there-
fore, has had the effect of translating the metal barrier to another point in
space a half wave removed.

If the observer were to continue still farther along the line, he would
pass, alternately, points where the resultant electric force is zero and other
points where the resultant magnetic force is zero. It is important to note
that at points in a standing wave where the magnetic force is a maximum,
the electric force is a minimum and at points where the electric force is a
maximum, the corresponding magnetic force is a minimum. It is customary
to call the points of minimum E (or H) “mins,” though the term node is
sometimes substituted. Points of maximum E (or H) are known as “maxs”
with the term loop as its alternative. If the observer were to measure current
and voltage along the line, he would find that points of maximum voltage
correspond to maximum £ and that points of maximum current correspond
to maximum H.

An examination of the energy associated with the incident and reflected
waves shows that, except for minor losses not to be considered here, there
is as much energy led away from the reflector as is led up to the reflector,
and that there is associated with the standing wave a stored or resident
energy. The regular arrangement of nodes and loops along a standing wave
with minima at half-wave intervals is a very important characteristic, for
such points may be located very accurately experimentally, and accordingly
wavelength may be measured with considerable precision.

If, instead of terminating the wire line in a large conducting plane as-
sumed previously, it is terminated in a relatively thin cross bar as shown in
Fig. 6.2-6, the reflection will assume a somewhat more complicated form.
First of all, the thin cross bar will intercept, initially at least, only a portion
of the total wave front. The particular lines of force arriving along a plane
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containing the two wires will be the first to be reflected and they will behave
at reflection much like those already discussed, whereas those outside the
plane of the two wires will not be intercepted initially by the thin cross bar
but instead will advance for a short distance beyond the end of the line
before their forces of tension bring them to rest. These outlying lines of
force are represented by the lines designated as ¢ in Fig. 6.2-6. After the
first lines of force have been reflected, lateral pressure will be removed from
those adjacent, with the result that they will close in and collapse on the
conductor at a slightly later time than their neighbors. One over-all result
of this process is to make the effective length of such a line slightly greater
than the true length. Effects of this kind are observed in practice and they
are referred to as fringing. Discrepancies between the wavelength as
measured in the last section of line where fringing may take place and that
measured between other minima along the same line are usually small but
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Fig. 6.2-6. (a) Representative Lransmission line terminated by a conductor of finite
dimensions. (b) Nature of reflection by a finite conductor.

they are nevertheless measurable It is also true that, as the wave front ap-
proaches a limited barrier of this kind, some of its energy continues on into
the space beyond and is lost as radiation. In general, the smaller the barrier,
the larger will be the losses.

Consider next a line open at its remote end, as shown in Fig. 6.2-7. In
this case, none of the lines of force of the advancing wave is intercepted by
a conductor, with the result that a very considerable number momentarily
congregate near the end of the line and, because of inertia, they extend into
the space beyond as suggested by Fig. 6.2-7(b). This process continues until
forces of tension in the lines, still clinging fast to the ends of the wires, bring
the assemblage temporarily to rest. At this moment, there is no magnetic
component; for v, in the relation H = (v x E), is zero while the correspond-
ing electric intensity is approximately 2E. The lines of electric force, being
momentarily at rest, represent energy stored in the electric form.

,
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This static situation is extremely temporary, for the tension momentarily
created in the lines of electric force soon forces the configuration as a whole
to move backward. As the wave front gets under way, the magnetic force
H increases in magnitude in accordance with the relation H = &(vxE).

The fact that the wave front extends momentarily for a short distance
beyond the physical end of the line and requires time to come to rest and
get into motion in the reverse direction implies inertia or momentum in the
wave front. This is the inertia referred to in the fourth principle mentioned
in Section 6.1. In this form of reflection, fringing is usually very evident,
and because of fringing we may have an apparent reflection point that is
considerably beyond the end of the wires. Thus the distance from the end
of the wires back to the first voltage minimum is much less than the quarter
wave that otherwise might be expected.
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Fig. 6.2-7. (a) Transmission along a line open at the remote end. (b) Nature of reflection
from open end.

Tt is generally true that processes of reflection in which fringing takes place
are usually attended by considerable amounts of radiation. This suggests
that in the process of reflection some of this extended wavepower detaches
itself from the parent circuit and is lost. Experience shows that this lost
power may be greatly enhanced by separating the two wires or by flaring
their open ends. The so-called half-wave dipole, sofamiliar in ordinary radio,
is but a transmission line in which the last quarter-wave length of each wire
has been flared to an angle of 90 degrees. If we wish to minimize radiation,
we follow a reverse procedure and reduce the spacing between the two parallel
wires. This also reduces fringing, for we find that the measured distance from
the ends of the wires to the first voltage minimum is now more nearly a
quarter wave. .

It is of interest to compare reflections taking place at the open end of a
transmission line with those at a closed end. When a wave front becomes
incident upon a perfect conductor, the electric force vanishes. At the same
time, the lines of magnetic force, though effectively brought to rest, are
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momentarily doubled in intensity. The energy is predominantly magnetic,
and the type of reflection may be regarded as inductive. When the wave is
reflected from the ideal open-end line, a reverse situation prevails. The lines
of magnetic force momentarily vanish while lines of electric force, though
brought to rest, are doubled in intensity. At this moment the energy is pre-
dominantly electrostatic, and the reflection may be considered as being
capacitive.

When a line is terminated in a sheet of metal of good conductivity such
as copper or silver, reflection is almost perfect. If the sheet is a poor conductor
such as lead or German silver, most of the incident power will still be re-
flected; but if a semi-conductor, such as carbon, is used as a reflector, a per-
ceptible amount of the incident power will be absorbed. It is interesting also
that the penetration into all metals at the time of reflection is very slight,
for relatively thin sheets seem to serve almost as well as thick plates. It is
therefore possible to use as reflectors extremely simple and inexpensive
materials, for example, foils or electrically deposited films fastened to a
cheaper material such as wood.”

‘A more general study of reflections on transmission lines shows that the
examples cited previously are special cases of a very general subject. Not
only may there be reflections from the open and closed ends of a transmission
line, but there may be reflections also when the line is terminated in an in-
ductance, in a capacitance, or in a resistance. Details concerning the re-
flections that may be observed from various combinations of these three
impedances are discussed in connection with Fig. 3.6-3. The outstanding
results of these discussions may be summarized for the ideal case as follows:

1. A pure inductance (positive reactance) connected at the end of a
transmission line always leads to a reflection coefficient having a magnitude
of unity. The standing wave resulting from this reflection will be charac-
terized by the following: (a) If the terminating inductance is infinitely large
(reactance of positive infinity), the reflection will be identical with that from
an ideal open-end line, and the distance to the nearest voltage minimum will
be a quarter wave. [See Fig. 3.6-3(a).] (b) If the inductance is finite but very
large, the distance to the nearest voltage minimum, as measured toward the
generator, will be somewhat greater than a quarter wave. [See Fig. 3.6-3(b).]
(c) If the inductance is reduced progressively toward zero (reactance ZET0),
the distance to the same voltage minimum will approach one-half wave-
length. In this limiting case, another voltage minimum will appear at the
end of the line. [See Fig. 3.6-3(c) and 3.6-3(d).]

2. A pure capacitance (negative reactance) connected at the end of a

7 One convenient and inexpensive form of reflector is a kind of building paper coated
with copper or aluminum foil. Moderately good reflectors can also be made by covering

wood with a special paint containing finely divided silver in suspension (Du Pont’s 4817).
Most aluminum paints are unsatisfactory for this purpose.
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transmission line also leads to a reflection coefficient having a magnitude of
unity. In this case, the resulting standing wave will be characterized as
follows: (a) If the capacitance is zero, (reactance equal to minus infinity),
the reflection will correspond to that from the open end of a transmission
line, and a voltage minimum will be found at a distance of a quarter wave
from the end. [See Fig. 3.6-3(g).] (b) If the capacitance is increased from
zero to a small finite value, the distance to the nearest voltage minimum
will be somewhat less than a quarter wave. [See Fig. 3.6-3(f).] (c) If the ca-
pacitance is increased progressively toward infinity (reactance zero), the
distance to the nearest voltage minimum will approach zero. [See Figs.
3.6-3(e) and 3.6-3(d).] The limiting condition, in which the terminating
capacitance is zero, is comparable with that in which the termination is an
infinitely large inductance.

3. If a pure resistance is connected at the end of a transmission line, the
magnitude of the reflection coefficient varies with the resistance chosen.
The relations are such that: (a) If the terminating resistance is infinite, the
magnitude of the reflection coefficient will be unity and its sign will be posi-
tive. [See Fig. 3.6-3(h).] (b) If the terminating resistance approaches the
characteristic impedance of the line, the distance to the nearest voltage
minimum will remain constant, but the magnitude of the reflection coefficient
will approach zero. [See Figs. 3.6-3(i) and 3.6-3(j).] (c) If the terminating re-
sistance is made less than characteristic impedance, the sign of the reflection
coefficient will be reversed, and, as the terminating resistance approaches
zero, its magnitude will approach unity. [See Figs. 3.6-3(k) and 3.6-3(1).]

When the terminating resistance is infinite, the reflection is comparable
with that in an ideal open-end line, and the nearest voltage minimum will
be found at a distance of a quarter wave. When the terminating resistance
is zero, the reflection is comparable with that in a closed-end line, and the
voltage minimum will appear at the end of the line and also at a point one-
half wave closer to the generator. If the line is terminated in a pure resistance
of intermediate value, the voltage minima of such standing waves as may
be present will be found at the end of the line for all values of the resistance
that are less than characteristic impedance and a quarter wave removed from
the end of the line for all values greater than characteristic impedance. When
the terminating resistance equals characteristic impedance, there is no
standing wave,

If, instead of terminating the line considered above in an inductance coil
orin a capacitance or a resistance, we assume that it continues indefinitely
into a mass of material having either a conductivity or a dielectric constant
different from that of air, similar reflections may take place at the surface.
A particular example is shown in Fig. 6.2-8. In general, a part of the wave-
power arriving at the surface will be reflected and a part will be transmitted.
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One may picture a portion of the Faraday tubes of force turned back at the
interface while the remainder continue into the second medium. If one were
to reverse the direction of transmission and consider wavepower transmitted
from the second medium back into the first, a similar partial reflection would
be noted. In both cases the part turned back and returned to the source may
be regarded as a reactive component since no energy is really lost. In a similar
way, the transmitted component, since it is not returned to the source, may
be regarded as a resistive or dissipative component.

If the medium into which wavepower is transmitted is a perfect insulator,
the transmitted wave will continue indefinitely except as attenuated by the
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Fig. 6.2-8. Reflection and transmission of lines of force incidental to a change of medium
along a transmission line.

wires along which it is guided. Its wavelength, A, in the dielectric will be
less than the wavelength, Ay, in air as expressed by the relation
_ M
YTV
If the second medium is somewhat conducting, the wave will be further
attenuated, the rate of attenuation being related in a rather complicated
way not only to the conductivity of the second medium b t to its dielectric
constant and permeability as well. Thus far in microwave pract ce, litce
practical use has been made of materials having permeabilities very different
from unity. However, considerable use has been made of materials having
various dielectric constants, e,, and conductivities, g. Sometimes these take
the form of plates placed across a waveguide transmission line. Examples
will appear in Section 9.8.
If a thin sheet of insulating material having a dielectric constant, e,
and conductivity of zero is placed across a two-wire transmission line, the
percentage of power reflected is given approximately by

g = ;Lz ¢ — 1) (6.2-5)

A thin sheet of this kind is approximated when wires carrying very high
frequencies pass through the glass walls of a vacuum tube. If the glass
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thickness, /, is small compared with the wavelength in air, Ay, the power
reflected by the glass envelope will likewise be small.

Sometimes it is not feasible to reduce the wall thickness sufficiently to
avoid serious reflections. In these instances it may be possible to make the
thickness one-half wavelength as measured in glass whereupon the wave
reflected from one face of the plate will be approximately equal in amplitude
to that from the other face and, since they are separated by one-half wave-
length, they tend to cancel.

Another case of practical interest is that in which the line is terminated
in a plate of very special dielectric constant e,, conductivity g1, and thick-
ness /. This is followed by a second plate of nearly infinite conductivity.
This arrangement is shown in longitudinal section in Fig. 6.2-9. By a proper
choice of constants, the combination may be made a good absorber of wave-
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Fig. 6.2-9. A transmission line terminated in a conductor coated with a special materia
such that all of the incident wave power is absorbed.

power. It will therefore be substantially reflectionless It may be shown that
to satisfy this requirement
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(6.2-6)
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and

1 Ao
b= Soran — 1)~ ave @n — 1)

where # is any integer. One common example is that in which # = 0. The
plate is then a quarter wave thick as measured in the medium.® A reflection-
less plate of this kind when placed at the end of a transmission line appears
to the source as though the line were terminated in its characteristic im-
pedance. Devices incorporating this principle are sometimes used as match
terminators for waveguides.®

(6.2-7)

% A more complete discussion of this problem was published in 1938 by G. W. O. Howe,
‘‘Reflection and Absorption of Electromagnetic Waves by Dielectric Strata,’”’ Wireless
Engr., Vol. 15, pp 593-595, November 1938.

? Plates of this kind may be made very simply by mixing carbon with plaster in vary-
ing proportions until the right combination is reached.
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When a two-wire transmission line assumes the coaxial form, the lines
of electric force are radial and lines of magnetic force are coaxial circles.
The directions of these two components obey the right-hand rule. (See I'ig.
6.2-10.) Since the wave configuration is completely enclosed except for a
small exposure at each end, radiation from this type of line can be made very
small.
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Fig. 6.2-10. Arrangement of lines of electric and magnetic force associated with transmission
along a coaxial arrangement of conductors.

0.3 RADIATION

Electromagnetic waves, including both light and radio waves, are not
unlike the waves that are guided along wire lines. Their difference is largely
a matter of environment. In one case they are attached to wires while in
the other they have presumably detached themselves from some configura-
tion of conductors and are spreading indefinitely into surrounding space.
We shall present in this section one of several possible pictures of the launch-
ing of radio waves from a transmission line. Like other verbal pictures drawn
in this chapter, it should be regarded as highly qualitative.

Assume a two-wire line with one end flared as shown in Fig. 6.3-1. If at
some point to the left there is a source of wavepower, there will flow from
left to right along the line a sinusoidal distribution of lines of electric and
magnetic force not unlike that shown in Fig. 6.2-7. In order to simplify our
illustration, we shall single out for examination two representative lines of
electric force a-b and c—d located a half wave apart. Tt is understood, of
course, that there are present many other lines both before and behind those
represented. Also there are lines of magnetic force at right angles to the
electric force. As time progresses each element of length of the line of force
a-b moves laterally with the velocity of light. In the region where the wires
are parallel, it remains straight but, upon reaching the flared section, its
two ends fall behind the central section, thereby forming a curve as shown
in Fig. 6.3-1(c). As this line of force moves to the end of the flared section
[Fig. 6.3-1(d)], its successor ¢-d follows one-half wavelength behind.
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Because of the property of inertia with which all lines of force are assumed
to be endowed, the central section of a-b, which is already greatly extended
due to curvature, continues in motion for some time after the two ends, at-
tached to the conductors, have come to rest. The result is shown approxi-
mately by Fig. 6.3-1(e). An instant later and perhaps after the two ends of
line of force a-b have started on their return journey, the line of force c—d
approaches sufficiently close to a-& that a coalescence ensues [Fig. 6.3-1(f)].
An instant later fission takes place as illustrated in Fig. 6.3-1(g), leaving a
portion of the energy of each ¢-b and ¢ now shared by a radiated com-

A\"‘z ))
4"‘:‘/ r

TFig. 6.3-1. Successive epochs in a highly idealized representation of radiation from the
flared end of a transmission line.

ponent, 7, and a reflected component, x. That the two components 7 and «
should travel in opposite directions seems reasonable when it is noted that
lines of electric force in x are in the same direction as in the adjacent portion
of r. They may therefore be expected to repel. The first of these components,
r, appears to the transmitter as though it were a resistance since it represents
lost energy. The second, x, appears as a reactance since it represents energy
returned to the transmitter. The radiated compenent, r, will be followed by
other components r;, 7, etc., as represented in Fig. 6.3-1(h).

In the radiated wave front, the two components E and H are everywhere
mutually perpendicular and in the same phase. Because the wave front
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is curved, as shown in cross section in Fig. 6.3-2, the component Poynting
vectors which specify the directions in which energy is flowing will be slightly
divergent. As a result, only a portion of the total wavepower will proceed
in the preferred direction. It follows that, for best directivity, the emitted
wave front should be substantially plane, and the lines of force should be as
nearly straight as possible. There is shown in Fig. 6.3-3 a series of configura-

—_—

Direction of propagation

Fig. 6.3-2. Cross section of electromagnetic waves radiated from the flared end of a trans-
mission line. Lines of electric force lie in the plane of the illustration; lines of magnetic
force are perpendicular to the illustration while the flow of power is along the divergent
arrows P.

tions based partly on speculation and partly on deductions from Huygens’
principle. They illustrate in a rough way how, by increasing the aperture
between the two wires of the elementary radiator, we may make the indi-
vidual component Poynting vectors more nearly parallel.’

10 Figure 6.3-3 has been greatly oversimplified. Experiment shows that, to achieve the

result desired, the angle between the two wires of Fig. 6.3-3 must be smaller for larger
apertures than for small apertures.
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Thus far, we have restricted our considerations to directivity in the plane
of the two conductors (vertical plane as here assumed). Experiment shows
that, in the plane perpendicular to that illustrated, the directivity from a
single pair of wires is slight. However, we may obtain additional directivity
by increasing the horizontal aperture. One method of accomplishing this
result is to array, at rather closely spaced intervals, identical elementary
radiators each of the kind just described. [See Fig. 6.3-4(a).] An infinite num-
ber of these elements infinitesimally spaced become two parallel plates as
shown in Fig. 6.3-4(b). If metal plates are now attached at the right and left

—) =) <

(a) (b) (c)

Fig. 6.3-3. Nlustrating how radiating systems of large aperture may give rise to wave fronts
of large radius of curvature and hence lead to increased directivity.

(a) (b)
Fig. 6.3-4. Alternate ways by which the aperture of a flared transmission line radiator may
be increased.

sides, the resulting configuration will become a waveguide horn. As a general
rule, the larger the area of aperture, the more directive will be the antenna.
The highly schematic array shown in Fig. 6.3-4(a) is introduced for illustra-
tive purposes only. It is not one of the preferred forms used in microwave
work. More practicable forms will be found in Chapter X.

The wave model shown in Fig. 6.3-2 conveys but a portion of the known
facts about a radiated wave. A more accurate model is shown in skeleton
form in Fig. 6.3-5. It is assumed that the transmitted wave has been launched
with about equal directivity in the two principal planes and that the ob-
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server is looking into one-half of a cut-away section of the total configuration.
In the complete configuration, the individual lines of electric force (solid
lines) and magnetic force (dotted lines) form closed loops, thereby pro-
ducing in each half-wave interval a packet of energy. The stream of projected
energy from an antenna is, according to this view, a series of these packets
one behind the other moving along the major axis of transmission. At the
transmitter each packet may have lateral dimensions that are only slightly
greater than the corresponding dimensions of the radiating antenna; but,
since the packet has curvature and since propagation is radial, the packet
spreads as it progresses so that at the distant receiver it may be very large
indeed.

Fig. 6.3-5. Highly idealized representation of a wave-packet radiated by a typical micro-
wave source. One half of the total packet is assumed to be cut away.

Around the edge of each packet there is a region where the relationship
between the vectors E, H, and v is rather involved. For example, in the vicin-
ity of point 1 in Fig. 6.3-5, there is a substantial component of £ but at this
point the vector H is zero and accordingly the Poynting vector P’ at that
point is also zero. (See Equation 6.1-4.) In a similar way there may be in the
vicinity of point 2 a substantial component of magnetic force H; but, since
at this point the electric force is substantially zero, we conclude that the
Poynting vector P is again zero and again no power is propagated.!

1 The peculiar edge effects noted may be regarded as a result of a kind of wave inter-
ference not unlike that prevailing in the regions of minimum E and H in the case of stand-

ing waves as discussed in Section 6.3. A similar kind of wave interference is cited in Section
6.5 to account for regions of low E and H in transmission along a waveguide.
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The sharpest radio beams now in general use are only a few tenths of a
degree across. We conclude that for these sharp beams a small but neverthe-
less appreciable curvature remains in the radiated wave packet. This means
that, when the wave front has arrived at a distant receiver, it is still many
times larger than any receiving antenna it may be practicable to construct,
and accordingly the latter can intercept but a small portion of the total
advancing wavepower. This implies a considerable loss of power, which is
indeed the case.

In the process of radio reception, one may think of the antenna structure
as a device that cuts from the advancing wave front a segment of wavepower
which it subsequently guides, preferably without reflection, to the first
stages of a nearby receiver. To be efficient, the wavepower intercepted should
be large. This, in turn, calls for a receiving antenna of considerable area. It
will be remembered that a large aperture was also a necessary feature for
high directivity at the transmitter. This is consistent with the accepted view
that the processes of reception and transmission through an antenna are
entirely correlative and that a good transmitting antenna is a good receiving
antenna and vice versa. The directive properties of an antenna are some-
times specified in terms of its effective area. (See Section 10.0.)

The term wniform plane wave is a highly idealized entity assumed in
many problems for purposes of simplicity but never quite attained in prac-
tice. In an idealized wave front, the electric and magnetic components
E and H are not only everywhere mutually perpendicular but both com-
ponents are exclusively transverse. That is, there is no component of either
E or H in the direction of propagation. Such a wave belongs to a class
known as fransverse eleclromagnelic waves (TEM). These may be com-
pared with others, to be described later, known as transverse eleciric waves
(TE) and lransverse magnetic (TM) waves. Waves guided along parallel
conductors are also TEM waves, but except in the case of infinitely large
conductors they are not uniform plane waves.

6.4 REFLECTION OF SPACE WAVES FROM A METAL SURFACE

One of the early triumphs of the electromagnetic theory was its ability
to account satisfactorily for the reflection and refraction of light. This
theory was so general as to include not only a wide range of wavelengths
but also a wide range of surfaces as well. According to this theory, re-
flections may occur whenever electromagnetic waves encounter a dis-
continuity. This may happen, for example, when waves fall on a sheet of
metal, in which case the discontinuity is due to the sudden change in
conductivity. Reflection may also occur when waves are incident on a
thick slab of glass or hard rubber, in which case reflection is due to a sud-
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den change in dielectric constant.”® Similar reflections may theoretically
take place also at an interface where the permeability of the medium
changes suddenly. The case in which there is a change of conductivity has
an important bearing on waveguide transmission. It will therefore be dis-
cussed in considerable detail.

Assume a plane wave incident obliquely upon a conducting surface as
shown in Fig. 6.4-1. The line along which the wave is progressing (wave-
normal) is referred to as the inciden! ray. It intersects the conducting
surface or interface at a point O and makes an angle # with the perpendicu-
lar OZ. After reflection, the normal to the new wave wave front makes an
angle ¢ with the perpendicular OZ. This second wave-normal is known as the

Medium |

M-, i

s ///

Medium 2

M=,

Fig. 6.4-1. Reflection at oblique incidence from a metal plate for the particular case where
the electric vector is perpendicular to the plane of incidence.

reflected ray, and its angle with the perpendicular OZ is known as the angle
of reflection. The plane containing the incident ray and the perpendicular
OZ is known as the plane of incidence. The incident and reflected rays lie
in the same plane, and their corresponding angles of incidence and reflection
are numerically equal.

In problems of oblique incidence there are two cases of interest, depend-
ing on whether the electric or the magnetic component lies in the plane of
incidence. For our particular purpose, the second of these two cases is of
special interest and it will therefore be discussed in considerable detail.
The vector relations corresponding to this case are shown in Fig. 6.4-1.

12 For a more general discussion of the electromagnetic theory of reflection: L. Page
and N. I. Adams, ‘‘Principles of Electricity,” D. Van Nostrand Co., Inc., pp 569-575,

New York 1931. R. I. Sarbacher and W. A. Edson, ‘‘Hyper and Ultra-high Frequency
Engineering,’”” John Wiley & Sons, Inc., pp 105-116, New York 1943.
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Included are the relative directions of E and H both before and after
reflection.

In Fig. 6.4-2 there are shown in cross section representative lines of
electric force in an advancing plane wave front. They are numbered re-
spectively 1, 2, 3, 4, 5, 6, and 7. Each individual figure [(a), (b), (c), etc.]
represents a succeeding period of time. We shall assume that the particular
wave front singled out for illustration represents the crest of a wave
Both ahead and behind this crest there are located alternately at half-wave
intervals other crests and hollows, and their respective lines of force alternate
in direction. Each line of force in the wave front is assumed to be moving
in a direction indicated by the vector v. It is furthermore assumed that
there is also present a magnetic component, indicated by the dotted vector
H that is perpendicular to £ and also to ». The vectors v and H must of
course be so directed as to be in keeping with the right-hand or cork-screw
rule, both hefore reflection and after reflection. Also at the point of incidence
the tangential electric force must be zero. To account for this, we assume
that as each line of electric force moves up to the conducting plane it is
reversed in direction, thereby making on the average as many lines of
electric force at the surface directed toward the observer as directed away
from the observer. Consider, for example, lines of force 3 and 5, 2 and 6,
and 1 and 7, in Fig. 6.4-2(c).

Associated with these two components of electric force which, let us say,
are E and E’, there are two components of magnetic force I and H'.
These may be specified by H = ¢(v x E), each of which at the interface may
be resolved into two components shown in Fig. 6.4-3 as H = H, + H|
at the left and H," = —H} at the right. Combining these four vec-
tors, assuming reflection to be perfect, we find that at the interface
H, —H,'=0and H, — (—H}) = 2H, giving as an over-all result:
(1) the electric force at the interface is everywhere zero; (2) the vertical
component of the magnetic force at this point is also zero; and (3) the
tangential component of the magnetic force at the interface is 2H.

The peculiar configuration that resides close to the metal boundary is
propagated to the right as a kind of magnetic wave. It has rather inter-
esting properties which will become more evident by referring again to
Fig. 6.4-2. Two conclusions may be drawn from this figure, depending
on the point of view assumed. To a myopic observer located at the inter-
face and unable to see far beyond the point p and unable to distinguish one
line of force from another, the advancing wave front would look like a con-
figuration of amplitude #; = 2H and E, = 0 moving parallel to the inter-
face with velocity . = o/sin 6. To this observer the apparent velocity
would increase as # becomes progressively smaller until, at perpendicular
incidence, 7. would approach infinity. These results follow from the geo-
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Fig. 6.4-2. Successive steps in the reflection of a single plane wave front by a metal plate.
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metrical relations shown in the lower part of Fig. 6.4-2. Phenomena
similar to this are sometimes observed when water waves, coming in from
the ocean, break upon the beach. If the approach is nearly perpendicular,
the point at which the wave breaks may proceed along the beach at a
phenomenal speed. A similar effect may be produced by holding at arm’s
length a pair of scissors and observing the point of intersection as the blades
are showly closed. A relatively slow motion of the blades leads to a rather
rapid motion of the point of intersection.

Since, in the case of incident waves, the apparent velocity is v, = v/sin 6,
the corresponding wavelength is A. = A/sin 6. Both quantities play an
important part in the picture of waveguide transmission to be drawn later.
In particular, the apparent velocity », will prove to be identical with a
quantity known as phase velocily.

Path of Incident Path of Reflected
Line of Force H:- H; +H, = 2H, Line of Force
Hr= H‘_— H“ =0 \
E-E-E =0
A~ 7 % JJ' >

Electric Vector—=" Electric Vecforfm

(directed away (directed toward | *

from observer) observer)

Fig. 6.4-3. Relationship between various components of E and H before and after reflection
by a metal plate.

A second observer located at the interface, shown in Fig. 6.4-2, endowed
with better vision and able to single out particular lines of force may obtain
a somewhat different view of reflection. If he observes a particular line of
force such as (4) in Fig. 6.4-2 for the considerable period of time, ¢, required
for it to approach the conducting interface [Figs. (a) to (c)] and recede to
a comparable distance [Figs. (c) to (e)], he will note that, whereas the line
of force has really traveled a total distance , its effective progress parallel
to the interface has been vt = f sin 6. (See geometrical relations in lower
part of Fig. 6.4-2.) This provides another kind of velocity (+" = v sin 6)
known as group wvelocity. It is the effective velocity with which energy is
propagated parallel to the metal surface. It approaches zero at perpen-
dicular incidence. It will be observed that

v = 7, sin?@
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and

vy, = 1? (6.4-1)

Group velocity also plays an important part in waveguide transmission.

6.5 WAVEGUIDE TRANSMISSION

It was pointed out in an earlier chapter that each of the various con-
figurations observed in waveguides may be considered as the resultant of a
series of plane waves each traveling with a velocity characteristic of the
medium inside, all multiply reflected between opposite walls. In the case
of certain of these waves, this equivalence may not be readily obvious, but
for the dominant mode in a rectangular guide, which is one of the more
important practical cases, it is relatively simple. It also happens that the
analysis of such waves throws considerable light on the nature of guided
waves, and furthermore it enables us to deduce many of the useful relations
used in waveguide practice—relations that might otherwise call for rather
complicated mathematical analysis.

It is assumed in Fig. 6.5-1 that we are viewing, in longitudinal section
and at successive intervals of time, a hollow rectangular pipe having
transverse dimensions of @ and & measured along the x and y axes respec-
tively. In this case the illustration is in the xz plane. It is further assumed
that the electric force lies perpendicular to the Jarger dimension ¢ and is
consequently perpendicular to the plane of the illustrations. We assume
in Fig. 6.5-1 (a) a particular plane wave front 1, perhaps a crest, that has
recently entered the guide from below. Let us say that its velocity is
= 1!,,/\/;;?5, and that is it so directed as to make an angle 8 with the left-
hand wall as shown.’® Reflection at the left-hand wall will therefore be
identical with that already shown in Fig. 6.4-2. A portion of the wave front
that has just previously undergone reflection is shown immediately below
at 2 in Fig. 6.5-1(a). We assume further that this front is made up of lines
of electric force perpendicular to the illustration together with associated
lines of magnetic force lying in the plane of the illustration. It will be
obvious presently that, like the case of reflection from a single conduct-
ing sheet discussed in the previous section, we may obtain two rather
different pictures of what takes place within the guide, depending on
whether we fix our attention on the configuration as a whole or on some
particular line of force which we may identify and follow through a con-
siderable interval of time. We shall first consider the configuration as a
whole.

13Tt is to be noted that the angle ¢ which the wave [ront makes with the metal wall is

equal to the angle which the wave-normal (ray) makes with the perpendicular to the metal
wall.
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We show in Fig. 6.5-1(b) the same wave front shown in Fig. 6.3-1(a)
but at an epoch later—after it has progressed a considerable distance along
the guide. We now find the reflected portion 2 complete and a new portion
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Fig. 6.5-1. The propagation of a multiply reflected wave front between two metal plates

[Figs. (a)—(d)] is equivalent to the transmission of a TE wave parallel to the
two plates. [Fig. (0)].

3 about to enter the guide. Following wave front 1 and at a distance of
one-half wave behind, we find, shown dotted, the “hollow” of the wave.
This we shall designate by the numeral 1’. We find here also a new portion
of the “hollow” 2’ that has just undergone reflection.
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In Fig. 6.5-1(c) and again in Fig. 6.5-1(d) we find successive positions
of these same wave fronts as they have moved forward in the guide. We
may, if we like, think of these fronts as discrete waves moving zig-zag
through the guide or as a single large wave front folded repeatedly back
upon itself. Fixing our attention for the moment on Fig. 6.5-1(d), we
observe that the velocity » at which any point of incidence of the wave front
(say at point 5) moves along the guide is given by the relation

v

sin @

v, =

z

This particular velocity v, is the phase velocity of the wave as seen by a
myopic observer located near a lateral wall of the guide.

Referring again to Fig. 6.5-1(d) and fixing our attention on the geometri-
cal relation between the wavelength A and the width of the guide @, we
may construct a right triangle with A/2 and @ as sides and show that

A
. 5—
cos % (6.5-1)
and since
sinf = /1 — cos’ # (6.5-2)
sin 6 = 1/1 - (_) (6.5-3)
2a
and
v
v, = (6.5-4)

This says that for very large guides, that is, A < 2a, 7, = v, but as A ap-
proaches 2a, v, approaches infinity. The particular case where X = 2a
and v, = = is referred to as the cut-off condition. At cut-off, it would appear
that the individual waves approach the wall at perpendicular incidence
and a kind of resonance between opposite walls prevails. At wavelengths
greater than cut-off no appreciable amount of power is propagated through
the guide.

The particular value of wavelength measured in air, corresponding to
cut-off, is referred to as the critical or cul-off wavelength and is designated
thus: A. = 2a. The corresponding frequency is similarly known as the
critical or cut-off frequency and it is designated thus: f. = v/A.. It is sometimes
convenient to designate the ratio of the operating wavelength to the
critical wavelength by the symbol ». From Equation 6.5-4 it follows that
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Referring to Fig. 6.5-1(a) we have indicated that the wave front 1 is
made up of lines of electric force directed through the plane of the illustra-
tion and hence away from the observer. There are, of course, lines of mag-
netic force and also other lines of electric force both ahead and behind the
wave front drawn, but these have purposely been omitted in order to
simplify the illustration. If we were to take the magnetic force into con-
sideration we would find as in Fig. 6.4-2 that, at the reflecting surface, a
tangential component only is present and its magnitude is twice that of
the magnetic component of the incident wave.

In the discussion of reflection of plane waves in the previous section, it
was also pointed out that the act of reflecting a wave reverses the direction
of the electric force. Applying this principle to the case at hand, we see
that if the electric force is directed downward in the section of wavefront
1 of Fig. 6.5-1(a), it will be directed upward in 2. Carrying this idea for-
ward to Fig. 6.5-1(e) we find that in fronts 1, 2, 3, etc., which we rather
arbitrarily called crests, the electric vector alternates in direction as shown
by the open and solid circles. Likewise the direction of the electric vector
alternates in the fronts designated as 1’, 2, and 3, but in this case they
are respectively opposite in direction to 1, 2, and 3. Continuing to fix
our attention on Fig. 6.5-1(e), it will be observed that the direction of lines
of force is the same in 1’ and 2, in 2’ and 3, and in 3’ and 4, indefinitely along
the entire length of the guide. Thus there are regularly spaced regions
along the length of the guide where the electric vector is directed toward
the observer alternating with other regions where the electric vector is
directed away from the observer. Between the two are still other regions
where the respective component vectors are oppositely directed and hence
their sum may be zero.

Adding the foregoing effects, bearing in mind that there are lines of force
both ahead and behind the highly simplified wave fronts shown, we have
a new wave configuration moving parallel to the main axis of the guide
with a phase velocity ». as suggested by Fig. 6.5-1(f). Examining more
carefully the wave interference that is here taking place, it becomes evident
that if we pass laterally across the guide along the line x in Fig. 6.5-1(e)
the instantaneous value of the resultant electric vector as shown is every-
where zero. On the other hand, if we cross the guide along a parallel line
a/, the electric vector varies sinusoidally beginning at zero at either wall
and reaching a maximum in the middle of the guide. It will be observed
that if we pass along the major axis z of the guide the electric vector at

(6.5-5)
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any instant again varies sinusoidally with distance. However, at the
boundary of the guide the resultant electric vector is everywhere zero.
Since there was no component of the electric force lying along the axis s
of the guide in the component waves that gave rise to this configura-
tion, there can be no such component in the resultant. Waves in which
the electric vector is exclusively transverse are known as fransverse eleclric,
or TE, waves.

A complete account of transmission of this kind should include, of course,
a consideration of the lines of magnetic force. From Fig. 6.4-3 it is evi-
dent that, at the point of reflection of the component plane wave on the
guide wall, there are two components of magnetic force H . and H in
both the incident and reflected waves. When these are added, the re-
sultant of the transverse magnetic force, like that of the electric force,
differs at different points in the guides. Following alone the line &/, it
is found that for the particular condition here assumed, the magnetic
force is zero at each wall increasing sinusoidally to a maximum midway
between. At this point the magnetic component is entirely transverse.
Following along the line #, it will be found that the magnetic vector is a
maximum near each wall decreasing cosinusoidally to zero in the middle.
It is of particular interest that, at the wall of the guide, the magnetic
component lies parallel to the axis. Magnetic lines of force are, in this type
of wave, closed loops, whereas lines of electric force merely extend from
the upper to the lower walls of the guide. The arrangement of lines of
electric and magnetic force in this type of wave is shown in Fig. 5.2-1.
The quantitative relationships between the various components of E and
H are specified more definitely by Equation 5.2-1. The significance of the
wavelength \, of this new configuration will be obvious from Fig. 6.5-1(f).

There are certain useful results that follow from Fig. 6.5-1(f). It may
be seen from the triangle there shown that

Ao a
2 — Z cot 5—
L = 5cotb (6.5-6)
From Equations 6.5-1 and 6.5-3, it will also be seen that
A
cot § = 2 b - - (6.5-7)
sin 6 /‘/ ( A )2
2a 1—1(5
2a
Therefore
A A
(6.5-8)

B
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Since 1/4/1 — »* is the ratio of the apparent wavelength in the guide to
that in free space and since for hollow pipes it is greater than unity, it is
sometimes referred to as the streiching facior. It appears frequently in
quantitative expressions relating to waveguides. Since velocity is equal
to the number of waves passing per second times the length of each wave,
we have

7

P, = \/——— i;;—' (6 5—9)

This is equivalent to the relation shown as Equation 6.5-5,

A matter of special interest is the rate at which energy is propagated
along the guide. For present purposes, it is convenient to regard a moving
line of force and its associated magnetic force as a unit of propagated energy.
A knowledge of the path followed by such a line of force will therefore
shed light on the rate at which energy is propagated along a waveguide.

It was pointed out in connection with Equation 6.4-2 that, when a wave
is incident obliquely upon a metal surface, the apparent phase of the wave
progresses at a velocity v, greater than the velocity of light », but that the
energy actually progresses parallel to the interface at a velocity v’ less than
the velocity of light. It was pointed out, too, that v = v sin § = v, sin? 4.
Because of multiple reflections between opposite walls of a waveguide, its
phase velocily is identical with v.. Also, because of these multiple reflections,
energy being carried by these component plane waves follows a rather
devious zig-zag path and will therefore progress along the axis of the guide
at a relatively slow rate. This velocity which is known as the group velocily
is idential with ?" above. From relations already given, it will be seen that

v =11 — 2 (6.5-10)

also
Y = (1 =) (6.5-11)
It will be apparent from this relation that, at cut-off, where » = 1,

energy is propagated along the guide with zero velocity. This is consistent
with the idea already set forth that, at cut-off, energy oscillates back and
forth between opposite faces of the guide. As we leave cut-off and progress
toward higher frequencies (shorter waves), the group velocity v increases
as the phase velocity ». decreases, until, at extremely high frequencies,
both approach the velocity v characteristic of the medium. This relation-
ship is made more evident by Fig. 6.5-2.

Reviewing again the simple analysis just made, we find that the wave
configuration that actually progresses along a conventional rectangular
waveguide may be regarded as the result of interference of ordinary uni-
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form plane waves multiply reflected between opposite walls of the guide.
This viewpoint accounts for not only the distribution of the lines of force
in the wave front but also for the velocity at which the phase progresses
and the velocity at which energy is propagated. As we shall soon see, it
accounts also for the rate of attenuation.

In the particular configuration just described the electric component is
everywhere transverse, whereas the magnetic component may be either
longitudinal or transverse, depending on the point in a guide at which
observations are made. These waves are plane waves, but, since the elec-
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Fig. 6.5-2. Relative phase velocity 7: and group velocity ¢ for various conditions of
operation of a waveguide.

tric intensity is not uniformly distributed over the wave front, they are not
uniform plane waves.

The concept of multiply reflected waves provides a basis for calculating
the attenuation in rectangular guides as was shown by John Kemp several
years ago.! The procedure is outlined briefly below. The reader is referred
to the published article for details.

There is shown in Fig. 6.5-3 a short section of hollow waveguide in which
we imagine multiply reflected plane waves are propagated. We fix our
attention on a zig-zag section cut from the guide and so directed that it

1 John Kemp, *“ Electromagnetic Waves in Metal Tubes of Rectangular Cross-section,”’
Jour. 1.E.E., Part III, Vol. 88, No. 3, pp 213-218, September 1941.
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lies parallel to the direction of propagation of the elemental wave fronts.
The top and bottom conductors so formed may be regarded as a uniform
flat-conductor transmission line with oblique reflecting plates (sections
of the side walls) spaced at regular intervals. Other transmission lines
adjacent to that under consideration behave in exactly the same way as
that singled out for examination and at the same time act as guard plates
to insure that the lines of force so propagated remain straight.

It is clear that the attenuation in each elemental transmission line will
be that incidental to losses in the upper and lower conductors plus the
losses incidental to reflection at oblique incidence from the several reflecting

—— O —

o

Fig. 6.5-3. Elementary transmission lines terminated periodically by reflecting plates
which go to make up a rectangular waveguide.

plates. The total attenuation of the rectangular guide may then be found
by summing up over a unit length of waveguide all of the elemental lines.
This has been done with results that are equivalent to the corresponding
equations given in Chapter V. The results are plotted in Fig. 6.5-4.
Certain characteristics of these curves may be readily accounted for.
For instance, at cut-off (# = 0), both the number of unit reflection plates
and the number of flat-plate transmission lines in a given length of wave-
guide will be infinite. As a result, the component attenuations arising in
each of these two sources will likewise be infinite. As the frequency is in-
creased ahove cut-off the angle 6 will increase accordingly, leading thereby
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to fewer side-wall reflections and to a shorter over-all length of zig-zag
transmission line. Thus, in this frequency range, the attenuations con-
tributed both by the side walls and by the top and bottom plates de-
crease with increasing frequency. Proceeding to frequencies far above cut-off,
where 6 approaches 90 degrees, there will not only be very few reflections
but the over-all length of zig-zag line will approach as its limit a single,
straight two-conductor line made up of the top and bottom plates alone.
Thus the attenuation due to the side walls will approach zero and that
due to the top and bottom plates will increase as the square root of the
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Fig. 6.5-4. Component attentuations contributed hy the top and bottom plates and also
the two side walls of a rectangular waveguide.

frequency. Since the attenuation contributed by the top and bottom plates
first decreases but later increases with frequency, we may expect, be-
tween these two ranges, a region of minimum attenuation. The attenu-
ations contributed by the upper and lower plates and also by the side walls
of a 7.5 cm X 15 cm copper guide carrying the dominant mode have been
calculated. The results have been plotted as curves 4 and B in Fig.
6.5-4. They follow the courses predicted by the preceding qualitative
reasoning.

The fact that the reflection type of attenuation, such as is evident in the
side walls above, decreases with frequency, suggests that, if a kind of wave-
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guide could be devised where this type of attenuation alone exists, we
could then operate the guide at extremely high frequencies and thereby
obtain relatively low attenuations. This can, in effect, be done. It calls
for a guide of circular cross section and a special configuration, known as
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¢ TOWARD OBSERVER © AWAY FROM OBSERVER
Fig. 6.5-5. The circular electric or TE« configuration in a circular waveguide.

Fig. 6.5-6. Evolution of the circular-electric wave in a circular pipe from a dominant wave
in a rectangular pipe.

the circular-electric wave. In this configuration, the resultant electric force
is everywhere parallel to the conducting boundary as shown in Fig. 6.5-5
That such a wave will lead to the interesting frequency characteristic
noted is made more plausible by referring to Fig. 6.5-6 and its associated
discussion. TFigure 6.5-6(a) shows a conventional form of rectangular
guide in which plane waves are multiply reflected from the two short sides,
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In Fig. 6.5-6(b) the proportions of the guide have been altered some-
what, but since the lines of electric force are still perpendicular to the top
and bottom plates, the guide may be expected to function substantially
as before. At the most, some attenuation that previously originated in
the left-hand side wall may now be transferred to the top and bottom
walls. As a second step, we may extend the width of the top and bot-
tom walls as shown in Fig. 6.5-6(c) until they intersect, thereby forming
an arc-shaped guide. The attenuation now prevailing is evidently confined
to the top and bottom walls and the right-hand wall. It is reasonable to
assume that the side wall attenuation still decreases with frequency
since incident lines of force are everywhere parallel to this wall. As
a third step, we assemble as in Fig. 6.5-6(d) a number of identical arc-
shaped guides to form a composite circular guide with radial partitions.
I, finally, we imagine the radial partitions removed as in Fig. 6.5-6(e), the
resulting configuration will not be altered and we shall have removed the
component of attenuation attributable to the top and bottom walls leaving
only the component of attenuation attributable to the one side wall, which,
as we have pointed out, becomes progressively smaller as the frequency is
in lefinitely increased.



