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Both the relativistic and wave mechanical properties of particles appear to
be consistent with a picture in which particles are represented by localized oscil-
latory disturbances in a mechanical ether of the MacCullagh-Kelvin type. Gyro-
static forces impart to such a medium an elasticity to rotation, such that, for
very small velocities, its approximate equations are identical with those of Max-
well for free space. The important results, however, follow from the inherent
non-linearity of the complete equations and the time dependence of the elas-
ticity associated with finite displacements. These lead to reflections which permit
of a wave of finite energy remaining localized. Because of the non-linearity, the
amplitude and energy of a stable mode, as well as the frequency, are determined
by the constants of the medium. Such a stable mode is capable of translational
motion and so is suitable to represent a particle. The mass assigned to it is de-
rived from its energy by the relativity relation. While this mass is dimensionally
the same as that of the medium it is differently related to the energy and so
need not conform to the classical laws which the latter is assumed to obey.

Exchanges of energy between particles and between a particle and radiation
involve frequency changes as in the quantum theory. The experimental detection
of a uniform velocity relative to the medium is not to be expected. Besides pro-
viding a new approach to the problems of particle mechanics, the theory offers
the prospect of incorporating the present pictures into a more comprehensive
one, with a material reduction in the number and complexity of the independent
assumptions.

INTRODUCTION

HE following quotation states a conclusion which is widely held: “But
in view of the more recent development of electrodynamics and optics
it became more and more evident that classical mechanics affords an in-
sufficient foundation for the physical description of all natural phenomena.’”
This implies that classical mechanics and classical electromagnetics are so
alike that one may be condemned for the shortcomings of the other. Actu-
ally, classical electromagnetics is in open disagreement with classical mech-
anics particularly with respect to those features for which it has been most
criticized. According to the mechanical principle of relativity,? the equations
of any mechanical system are invariant under the Newtonian transformation,
a=za'+ Vi',y=9",5=13 1 = t', where V isa constant velocity in the x
direction. Since the classical electromagnetic equations are not invariant
under this transformation, they cannot describe the performance of any
classical mechanical system. Their failures, therefore, should not stand in
the way of a study of the possibilities of such systems.
The system considered here is the so-called rotational ether, suggested
1 A. Einstein, The Theory of Relativity, Methuen & Co., Ltd., London, 1921; p. 13.
2 Haas, Introduction to Theoretical Physics, 2nd Ed., Vol. I, p. 46.
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by MacCullagh and elaborated by Kelvin, in which the stiffness is associ-
ated with gyrostatic forces. Some consideration has been given to an alter-
native model consisting of a non-viscous liquid in a high state of fine scale
turbulence. It is well known that, by virtue of the gyrostatic forces associ-
ated with it, a vortex will transmit a wave of transverse displacement along
its axis. It would appear, therefore, that a gross wave involving similar
displacements would be passed along from vortex to vortex, much as a
sound wave is passed from molecule to molecule. However, since this model
has not yet been shown to be fully equivalent to Kelvin’s, attention will be
confined to the latter. While this, as developed by Kelvin, gave a satis-
factory description of electromagnetic waves in free space, it had nothing
to represent matter. This was assumed to be something different from ether,
which might or might not be pervaded by it. A closer study of the model has
indicated that the peculiar nature of its stiffness makes possible sustained
oscillatory disturbances in which the energy remains localized about a
center which may move with any velocity less than that of a free wave.
It is proposed to use such quasi-standing wave pattérns to describe material
particles. Matter, then, has no existence apart from the ether, and the
motion of particles is the motion of patterns of mechanical wave motion.
While the ether itself conforms to Newtonian mechanics, the mechanics of
such a wave pattern, considered as a particle located at its center, is much
more complicated than that of the familiar mass point of particle dynamics.
This complexity provides a bridge from the older concepts of particle be-
havior to the new.

The study of this model given below reveals no insuperable obstacles such
as were encountered by the electromagnetic theory and the simpler ether
model. The properties of the wave-patterns are qualitatively consistent
with many of the concepts of modern physics, though in some cases not
with the generality of application which is now assigned to them. Among
these concepts are: the space-time of special relativity, relativistic mechanics,
de Broglie waves, proportionality of energy and frequency, energy thresh-
holds, and transfers of energy according to the quantum frequency formula.
The ether model also leads to certain concepts not found in the present
theories. It provides, for example, for a possible failure of the mass-energy
balance such as has been observed in nuclear reactions. It also suggests the
possibility of a new type of particle which, by virtue of its negative inertial
mass, is capable of exerting a binding force between other particles.

These results make it more probable that classical mechanics may, after
all, afford a sufficient “foundation for the physical description of all natural
phenomena’” even though the super-structure be very different from that
contemplated by its originators. The present argument, however, is not
that this particular description is necessary, but rather that it offers distinct
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advantages. On the philosophical side, there is the prospect of greater
unification of the basic theory through a reduction in the number of inde-
pendent assumptions. Matter and radiation appear as wave motions which
satisfy the same equations. The apparent conflicts between current concepts
appear to be reconcilable through a more exact determination of the con-
ditions under which each applies. On the more practical side, the ether
model provides a different approach and technique. It has the advantage
inherent in all models that, once one is found which fits one set of condi-
tions, a study of its properties under widely different conditions may bring
out relations which it would be difficult to postulate solely on the basis of
observations made under the second conditions. The suggested existence
of particles having negative inertia, as discussed near the end of the paper,
should it lead to anything of value, would be an example of such a relation.
Also it makes available the added relationships which are characteristic of
non-linear equations, without encountering those difficulties with respect
to absolute motion which may arise when non-linearity is introduced ar-
bitrarily. While the working out of the quantitative relations involved is
a rather formidable undertaking, any effort in that direction may well
throw new light on those problems which have not yielded to other methods.

THE GYROSTATIC ETHER

As stated above the specific form of gyrostatic medium on which the
present discussion is based is the ether model proposed by Kelvin. This is
discussed in detail in a companion paper.® It is there shown that, for in-
finitesimal displacements, it is characterized by the wave equations:

TN o7
VX(E)_!MEE (1)
_ 1a(T
qu‘—%a(i)’ (2)

where po is the density, no is a generalized stiffness determined by the con-
stants of the medium, 7 is the vector velocity, and T is a vector torque per
unit volume, which has its origin in the torque with which a gyrostat op-
poses an angular displacement of its axis. For a plane polarized plane wave,

Il

the quantity 7 can be interpreted as a surface tractive force per unit area,
which a layer of the medium normal to the direction of propagation exerts
on the layer just ahead. Tts direction lies in the surface of separation, and
is parallel to that of the velocity 7.

3R. V. L. Hartley, “The Reflection of Diverging Waves by a Gyrostatic Medium"—
this issue of The Beil System Technical Journal.
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These equations become identical with those of Maxwell for free space,

oFE

v T = 22
X H T
oH
VXE~_,U':97,

if we replace § by E, T by A, po by € and1 by p. Then po§ corresponds to
Ui

D and —2¢ to B where ¢ is the angular displacement of an element of the
medium. Or the roles of the electric and magnetic quantities may be inter-
changed.

For present purposes, however, we are more interested in finite displace-
ments. The relations which then apply are discussed in detail in the com-
panion proper. It is there shown that changes of two kinds appear in (1)
and (2), with corresponding changes in the transmission properties of the
medium. The simple linear relations are to be replaced by non-linear ones,
which cause distortion of a wave but no reflection. In addition, a qualitative
difference appears in the nature of the elasticity, as was pointed out by
Kelvin. The restoring torque is no longer proportional to the angular dis-
placement alone. When the axis of a gyrostat is displaced it begins rotating
toward the axis of the displacement, thereby decreasing the component of
its spin which is normal to that axis. Thus the restoring torque for a con-
stant angular displacement decreases with time. The restoring torque is
therefore a function of the time as well as of the displacement. Because of
this time dependence, a disturbance of finite amplitude generates waves
which propagate both backward and forward.

For a plane progressive sine wave it is found that the reflected waves
interfere destructively. However, if a central generator starts sending out
a diverging sinusoidal disturbance, a part of the energy is reflected inward
as a wave of the same frequency as the generator and another smaller part
as waves the frequencies of which are odd multiples of that frequency. This
reflection attenuates the outgoing wave. If the incoming wave is reflected
rather than absorbed at the generator, it tends to set up a standing wave
pattern. As time goes on, the impedance of the medium as seen from the
generator becomes more reactive and less power is drawn from the generator.
Due to the attenuation, the energy in spherical shells of a given thickness
decreases with increasing radius, so that it and the power transmitted at the
wave front approach zero as r approaches infinity. This falling off is some-
what similar to that suffered by a wave the frequency of which lies in the
stop band of a filter, but with one important difference. There the attenua-
tion is independent of the distance. But here, since the attenuation is a
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function of the magnitude of the disturbance and of the curvature of the
wave-front, the attenuation constant approaches zero as r increases in-
definitely.

Whether or not the total energy stored in the wave pattern will approach
a finite or infinite value depends on how fast the attenuation decreases with
distance, and a more complete solution is needed to give an exact answer.
If it does approach infinity it will do so much more slowly than for a medium
which does not reflect.

The disagreement between classical electromagnetics and mechanics, re-
ferred to above, may now be stated more explicitly. The former says that
electromagnetic waves are represented exactly by Maxwell’s equations,
regardless of the magnitudes of the electromagnetic variables. When these
waves are interpreted as existing in a mechanical ether, classical mechanics
says that Maxwell’s relationship is approached as a limit as the mganitudes
approach zero. Waves of finite amplitude are to be represented by the more
complicated relations.

The two systems differ in three important respects; their relation to
uniform linear motion, the linearity of their equations and the nature of
the elasticity involved. Because the classical electromagnetic equations are
not invariant under a Newtonian transformation, the set of axes to which
the equations refer are uniquely related to other sets which are moving
uniformly with respect to them. In special relativity, this condition is
avoided by modifying the classical concepts of space and time to conform
to the fact that the equations are invariant under the Lorentz transforma-
tion. The Newtonian invariance of the ether equations, however, insures
that a set of axes at rest with respect to the undisturbed ether is not unique.
Hence in the modified model, in which the motions which constitule maller
conform to the laws of the ether, a uniform linear velocity of the entire
system cannot be detected. This is consistent with the accepted principle
that absolute velocity is meaningless.

We are, however, still faced with the question of the detection of uniform
motion of matter relative to the ether. This is discussed at length below,
where it is shown that the properties of the ether lead directly to an auxili-
ary space-time, which applies very closely under the experimental condi-
tions and accounts for the failure to detect the motion. This ‘“‘experimental”
space-time is formally identical with that of special relativity. Thus the
modification of the space-time of classical electromagnetics which appears in
special relativity might be said to bring it into closer formal agreement
with the classical mechanics of ether wave patterns. At any rate the es-
tablishing of this theoretical connection between the space-time of special
relativity and a classical mechanical model is a step toward unification.

On the matter of linearity, proposals have been made to add arbitrary non-
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linear terms to Maxwell’s equations. While this also makes the electro-
magnetic equations more like those of the ether, an important difference
still remains. An equation obtained in this way is not necessarily invariant
under either a Newtonian or a Lorentz transformation. If, then, the axes
with respect to which it is expressed are not to be unique, it must be shown
that some transformation exists under which it is invariant. Not only is
the form of the equation important here but also the interpretation of the
dependent variables. For example, since the complete equations of the
ether contain ¢V, if the mechanical variables be replaced by the analogous
electromagnetic ones, the equations will be Newtonian invariant only if
E, which replaces g, is interpreted as a velocity. It is evident, therefore,
that the fact that we are dealing with a mechanical model is an important
point in the argument. Also, unless the added terms make the effective
constants depend on the time as well as the dependent variables, there will
be no reflection of the energy in a finite disturbance and the medium will
not have the energy trapping property which is essential to the present
argument.

STATIONARY WAVE PATTERNS

The first question to be considered is the possibility of setting up a sus-
tained wave pattern suitable to represent a particle at rest with respect to
the ether. The simplest procedure might seem to be to look for it as a solu-
tion of the approximate linear equations in the form of a pair of spherical
waves propagating radially, one outward and one inward, so as to form
together a standing wave pattern. However, certain difficulties are en-
countered. There is nothing in the free linear ether which can serve as
boundary conditions to fix the position or size of the pattern. Even if these
were determined, there would be nothing to fix the amplitude, and so the
energy. Most patterns, particularly those which involve a single frequency,
have one or more of the following features. Some of the variables become
infinite at the center; the total energy is infinite, energy is propagated away
radially.

These difficulties disappear, however, when we take account of the prop-
erties of the ether for disturbances of finite amplitude. Let us suppose that
the energy which is to constitute the pattern is supplied by a central gener-
ator, the impedance of which is mainly reactive, so that reflected waves
which reach it are reflected outward again. Once a standing wave pattern
has been established as described above, let the force of the generator be
reduced to zero without changing its impedance. The pattern will then
persist except for a small and decreasing damping due to the outward radia-
tion at its periphery. However, in the region near the center the displace-
ments will be very large, and the incoming reflected waves will suffer reflec-
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tions which increase with decreasing radius. These reflections will effectively
take the place of the assumed reactive impedance of the generator, and so
the latter may be discarded. The fact that the reflections take place from
a somewhat diffuse inner boundary prevents the amplitude from building
up to an infinite value at the center as it would with a linear medium.

However, the reflected wave includes components of triple and higher
frequencies and, due to the non-linearity, other frequency components will
be generated. If the entire pattern is to be stable, all of these must satisfy
the boundary conditions. Their magnitudes relative to the fundamental, for
a particular mode of oscillation, will depend on the amplitude and fre-
quency of the fundamental, as well as on the constants of the medium.
Hence the amplitude as well as the frequency of a stable pattern of a par-
ticular mode should be uniquely determined. Particles of different prop-
erties would then be expected to consist of patterns involving different
modes of oscillation.

Returning to the lack of complete reflection at the outer boundary and
the change it might be expected to make in the pattern with time, this
might be an important factor for a single particle alone in the universe.
Actually, however, a very large number of particles are present. If we con-
sider a point at a considerable distance from any one particle, a point ina
vacuum, the resultant of the disturbances produced there by all the patterns
will be very large compared with that due to any one. But the effect on a
particular pattern of its own loss by radiation will be determined by this
small component, and so will be small compared with the effect exerted on
it by the combined small fields of its neighbors. This combined field due
to a large number of patterns, randomly placed, and moving at random, will
constitute a randomly varying electromagnetic field in a vacuum, such as
has recently been postulated for other reasons. If, now, the center of a
pattern be placed at the point in question, this random field may occasion-
ally take on so large a value as to disturb the equilibrium conditions of
the pattern.

It may be argued that, in spite of the merging of a given pattern in that
of the random group, the group as a whole will suffer a progressive loss of
energy through incomplete reflection. Were this to occur the total loss of
energy would not be evenly distributed among the particles. As discussed
below the particles would exchange energy through the mechanism of the
non-linearities, continually forming less stable group patterns of greater
energy, which in turn suffer transitions to more stable patterns of lower
energy. A small continuous decrease in total energy would manifest itself
as an increase in the rate of transitions downward in energy compared to
those upward.

Associated with a standing wave pattern such as that described above
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would be three regions. Near the center would be a relatively small core in
which the non-linear effects predominate and linear theory is totally inap-
plicable. Farther out the departure from linearity is only moderate, and the
variation of the constants with distance is slow enough that the reflections
are small. It should be possible to treat wave propagation in this region by
the methods developed for a string of variable density, which are sometimes
cited as analogous with those employed in wave mechanics. The analogy is
made closer by the fact that the variations in impedance which correspond
to the varying density are determined by the energy density of the pattern
itself. Still farther out the amplitudes become still smaller, the ether con-
stants become very nearly but not quite uniform, and the pattern ap-
proaches very closely to that in a linear medium.

While the nature of the pattern is determined largely by the non-linear
inner region, because of the small volume of this region most of the energy
will be located in the nearly linear region. So we might expect some at least
of the macroscopic properties of the pattern to differ very little from those
deduced from a consideration of the corresponding pattern in a linear me-
dium. We will therefore begin by examining such a pattern. For the linear
case, when the axes are at rest with respect to the undisturbed ether, (1)
and (2) lead to the wave equation for the vector displacement 3,

3’5 ace.
9 — ¢ V©3. 3)
As is well known, this is satisfied by any function of the form

§ = flot £ kv = kyy = k3),

where
2
w

=kt kR, 4)

and the constants w, ks, k, and k., are real or complex. Since an imaginary
frequency is interpreted as an exponential change with time, it is not suit-
able for representing a permanent pattern, so « will be taken to be real.
Imaginary values of %k are interpreted as exponential variations with dis-
tance. But, since § is always real, we may, by a four-dimensional Fourier
analysis, represent f as the summation of components of the form

§ = A cos (w =+ ko 4 by + k), (5)

where 4 is a complex vector representing the amplitude and phase of the
component, and &z, &, and £, are real. Since each component must satisfy
(3), the new constants must satisfy (4). Each such component constitutes
a plane progressive wave traveling, with velocity ¢ in a direction, the cosines
of which are proportional to the wave numbers k. , etc.
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As a first step in building up a stationary pattern, in which there is no
steady propagation of energy in any direction, we combine two progressive
wave components (5) which are identical, except that their directions of
phase propagation along, say, the z axis are opposite. The signs of the last
terms are then opposite and the sum can be written

§ = 24 cos (wl &= ksx == kyy) cos kaz.

Proceeding in the same way for x and y, we arrive at the standing wave
pattern,

§ = 84 cos wl cos kzx cos kY cos k2. (6)
Components of this sort, each with its own amplitude and phase, may be
combined to build up possible stationary patterns. However, we shall not
attempt here to build such patterns, but rather to deduce what information
we can from a study of a single component.

Movine WAVE PATTERNS

In order to represent approximately a particle in uniform linear motion,
we are to look for a solution of (3) which represents a moving wave pattern.
For this we make use of two functions which may readily be shown to be
such solutions,

§ =g+ (,G(w + Vk)t — B (k,, + Iz_w) x =+ ky+ k,z),

where w, k. , k, and k, are real and satisfy (4), V is a real constant, and
1

g, represents a plane progressive wave the propagation of which along the
x axis is in the positive direction. g_ represents one of lower frequency,
propagating in the negative x direction. Their wave numbers in the x direc-
tion differ in such a way that those in the ¥ and z direction are the same for
the two. In the plane wave case, where k, = k., = 0 and @ = ¢k, they re-

duce to
§=gi(ﬂ(1:§:%)w(t—i—-§)).

The two waves then travel in the x direction with velocities ¢ and —¢, and

. . . . C
their frequencies are in the ratio

V
c—V’
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In order to derive a quasi stationary pattern we replace the functions
g+( ) and g-( ) by Beosa( ) and combine components in a manner
similar to that used in deriving (6). The result is
I . -
— &) cos Bk (x — Vi) cos ak, y cos ak.z, (7)

C

§ = 8B cos afw (f —

where B is a complex vector, and « may be any real scalar function of V.
When we compare this with (6) we find that the last three factors, which
in (6) describe a fixed envelope, in (7) describe an envelope which moves in
the x direction with velocity V. For the same values of %, , %, and &, , the
moving pattern has its dimensions in the x direction reduced relative to

those in the v and 5 in the ratio 5 The first factor in (6) describes a sinusoidal

variation with time which is everywhere in the same phase. In (7) it de-
scribes one, the phase of which varies linearly with x. This factor also de-
a2

scribes a wave which progresses in the x direction with a velocity v The

existence of such a wave as a factor in the expression for a moving wave
pattern was commented on by Larmor.* Aside from the constant « in (7)
it will be recognized as the Lorentz transform of (6), as it should be since
the approximate equations of which it is a solution are invariant under
this transformation.

We shall take (7) to represent one component of a moving wave pattern
which represents a moving particle. If we transform this to axes moving
with the pattern by a Newtonian transformation it becomes

BV

§=8Bcosa(r — 2" +) cos aBk, 2’ cos ak,y' cos ak.s’,  (8)
3 s vy

in which the envelope is at rest. This may be thought of as a stationary wave
in an ether which is moving relative to the axes with a velocity — V. It
is a solution of the wave equation for such an ether, as obtained by trans-
forming (3) to the moving axes, or
3*F _ . 8’5 2 8°3
=FVis v o — 1P
A" ax' ot ax"

)

The one dimensional form of this equation is identical with that given by
Trimmer® for compressional waves in moving air, except that in one case §
is solenoidal and in the other divergent.

So far we have found no reason to associate any particular moving
pattern with the assumed stationary one, in the sense that the moving pat-

1 Larmor, Ency. Brit. 11th Ed., 1910; 13th Ed., 1926, Vol. 22, p. 787.
& J. D. Trimmer, Jour. Acous. Soc. Am., 9, p. 162, 1937.
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tern describes the result of setting in motion the particle which is described
by the stationary pattern. Without further knowledge or assumptions re-
garding the factors which control the form of the pattern, we can go no
farther in this direction by theory alone. Rather than try to guess at these
factors, it seems preferable to investigate what properties the wave patterns
must have in order to conform to the known results of experiment.

Let us start with the Michelson-Morley experiment to which the earlier
ether theory did not conform. The entire apparatus involved in the experi-
ment is now to be considered as made up of particles each of which consists
of a wave pattern in the ether. The apparatus as a whole may be regarded
as a more complicated wave pattern. The interference pattern formed by
the light beams may, if we wish, be included in the over-all pattern. The
results to be expected in the experiment do not depend on the oscillatory
nature of the wave, nor on its amplitude or phase, but only on its spatial
distribution, which is determined by the envelope factors. It is obvious from
(8) that, for any uniform velocity — I of the ether relative to the apparatus,
the ratios of the dimensions of the envelope along the motion to those across

it are reduced, relative to their values when V is zero, in the ra,tloa. That is

to say the apparatus like the fringes undergo this change in relative dimen-
sions. But, as is well known, this is exactly what is required in order that
there shall be no apparent motion of the fringes. Hence any one of the
stationary patterns in a moving ether, as represented by (8), is consistent
with the experiment. This experiment therefore furnishes no basis for select-
ing any particular pattern.

More generally, in any experiment, the distances and time intervals
which are available as standards of comparison are associated with the
wave patterns and change with their motion. Thus we may, following the
special theory of relativity, define an auxiliary space and time, the units
of which are associated with the dimensions and cyclic interval of a par-
ticular periodic wave pattern. This pattern then plays the roles of the
“practically rigid body” and the “clock” which determine space and time in
relativity theory. An examination of (8) shows that the dimensions of the
pattern, its frequency, and its phase change with the velocity of the ether
relative to the pattern in just the way that the corresponding quantities
associated with the rigid body and clock change with velocity in the rela-
tivity theory. But there these changes are known to be such that no experi-
ment can detect the velocity involved. It follows, therefore, that no experi-
ment in which the apparatus consists of wave patterns of small amplitude
is capable of detecting the velocity V, in (8), which in this case is the velocity
of the ether relative to the apparatus. Hence any of the above patterns are
consistent with the failure of all experiments designed to detect motion
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relative to the ether. When account is taken of the non-linearity of the
ether the result to be expected should differ from that just found for the
linear case only by the small difference between the linear and non-linear
patterns, which may easily be too small to measure. Thus the principal
obstacle to the older ether theory is removed.

While the special theory of relativity is usually written in the form
which corresponds to « being unity in (8), it has long been recognized that
there is no theoretical basis for this particular value. The ether patterns
are consistent with the more general formulation. In order to pin down
the value of « for the ether patterns we resort to another experiment.
Ives and Stillwell’ found that a molecule which emits radiation of fre-

quency w when at rest emits a frequencygwhen in motion. This moving
frequency is taken relative to axes moving with the molecule, and so is to
be compared with the frequency of oscillationg w in (8). This indicates that

in order to represent a component of the pattern which results when the
fixed pattern is set in motion, we are to put « equal to unity.

Another observed relation is that the energy of a moving particle is 8
times that of the same particle at rest. This information should be useful
in checking any theory of the mechanism by which the non-linearity of the
medium determines the energy of the pattern. All we shall do here is to point
out one relation, the significance of which from the standpoint of mecha-
nism will be discussed below. In (7), where the frequency is expressed rela-
tive to the same axes as the energy of the moving pattern, if we put «
equal to unity, the frequency also varies as 8. Hence if the pattern conforms
to experiment with respect to its energy, the energy must be proportional
to the frequency.

Obviously, if we define the mass of the particle-pattern as its energy over
¢2, the particle will conform to relativistic mechanics. The mass of a particle
as so defined, while dimensionally the same as that of the ether, is in other
respects quite different. Since it is derived from the energy associated with a
disturbance of the ether, it would be zero in the undisturbed ether, while
the ether mass would be finite. The momentum of a particle would be deter-
mined by the flow of energy associated with it. Also within a particle, if the
mode of oscillation were such that the wave propagated continuously around
the axis in one direction, the resulting rotation of the energy would be
interpreted as an angular momentum or spin. This concept of spin was
suggested by Japelsky” in connection with cylindrical waves in a linear
medium. There is, therefore, no a priori reason to expect that the motion

i H, E. Ives and C. R. Stillwell, Jour. Opt. Soc. Am., 28, 215, 1938 and 31, 369, 1941.
TN, S. Japolsky, Phil. Mag. 20, 417, 1935.
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of particles should conform to the laws of classical mechanics. As just noted,
it should conform much more closely to those of relativistic mechanics.
Also, to the extent that the flow of energy follows the laws of wave mechan-
ics, as suggested below, the behavior of the particles will also conform to
those laws. Similar considerations apply to the mass of radiation as derived
from its energy.

Another experiment which helps to fix the required properties of the
patterns is that of Davisson and Germer, in which it is shown that a particle
moving with velocity V is diffracted as if it had a wave length A such that

ok
= GV
where 7 is Planck’s constant and m, is the rest mass.

Tf, in (7) with « unity, we assume the energy frequency ratio to be equal
to k, the wavelength associated with the first factor reduces to the value
given by experiment. This does not mean that an ordinary physical wave of
this length is present in the pattern. It does mean that, at any instant, the
amplitude of the sinusoidal variation of displacement with distance, as
given by the remaining factors, varies sinusoidally with the wave length A,

and is zero as points separated by 22\ Hence, when the presence of equally

spaced obstacles calls for zero values of displacement at equally spaced
intervals, the distorted wave should be capable of forming a stable dif-
fraction pattern when the translational velocity of the pattern is such that
the interval between points of zero displacement has the value required by
the spacing of the obstacles.

Thus the wave pattern will conform to this experiment provided, first,
that it is characterized by a particular wave length, and second, that the
factor of proportionality between its energy and frequency is equal to h.
The first requirement implies that the wave pattern when at rest has
practically all of its energy associated with components which are all of the
same frequency, or else are confined to a narrow band near the characteristic
frequency.

At this point let us pause for a short review and discussion. Briefly, we
have replaced the “rigid body”’ of special relativity by an oscillatory motion
of the ether, the envelope of which is analogous with the configuration of the
rigid body. We have found that when in motion this envelope behaves as
does the rigid body, and the time relations conform to those of a moving
clock. These latter may also be interpreted as a multiplying factor which
has the form of a plane wave of the DeBroglie type. In wave mechanics,
this is treated as a wave of a single frequency and of a variable phase veloc-
ity greater than that of light. In the ether theory this wave is interpreted



MATTER, A MODE OF MOTION 363

as one factor in the description of an interference pattern which results from
the superposition of component progressive waves of different frequencies,
each of which travels with velocity ¢. This difference in viewpoint leads to
other differences.

One of these has to do with the possibility of describing accurately both
the position and velocity of a particle, which is ruled out from the wave
mechanics viewpoint. An ether wave pattern, however, may have its posi-
tion accurately described by its envelope, while at the same time the pattern
moves with a definite velocity. The particle velocity may here be regarded
as a group velocity derived from two waves progressing in opposite direc-
tions, but does not depend on the presence of dispersion as does that for
waves in the same direction. It is not to be concluded from this that the
position and velocity can be measured with this accuracy, for we have still
to deal with the disturbing effect of the measurement.

From the ether viewpoint, one of the limitations of wave mechanics is
to be expected, its inability to calculate directly the position of a particle.
The information regarding this position is contained in the expression for
the envelope, while the wave factor depends only on its state of motion. A
calculation based on a solution which involves the wave factor without the
envelope would be expected to be indefinite regarding position. We should
expect, however, that it would give information as to the probability of the
presence of the particle in a given region, since this is derivable from its
state of motion.

Returning to the comparison with experiment, while wave patterns based
on the linear equations have shown close agreement so far, the next experi-
ment upsets the applecart. It has been observed that the motion of one
particle is modified by the presence of other particles in its neighborhood.
So long as the assumed equations are linear, the law of superposition holds,
and every solution is independent of every other one. So any wave pattern,
when once set up, will continue in its state of rest or of uniform motion
indefinitely, and will not be influenced by the presence of other patterns or
of free progressive waves. But these together comprise all other matter and
radiation. Hence, while we have provided for the property of inertia, there is
nothing which tends to alter the state of motion of a body, that is, there
are no forces. In this respect the present linear treatment is similar to the
special theory of relativity. So, in order to represent the interactions between
particles, account must be taken of those between patterns which result
from the non-linearity and time dependence of the ether.

REACTIONS BETWEEN PATTERNS

The general problem of the effect of one pattern on another is even more
intricate than that of the stable state of a single pattern, which it includes,
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and its solution will not be attempted here. Some conclusions may, however,
be drawn. Since the amount of reflected energy generated by an element of
the medium depends on powers of the instantaneous disturbance higher
than the first, the superposition of a second pattern will alter the standing
wave pattern of the first, and vice versa. Also, as pointed out in the com-
panion paper, the propagation of both the main and reflected waves also
depends on higher powers of the instantaneous disturbance there. The result-
ing variations in the propagation will also affect the conditions for a stable
pattern. Neither pattern, then, can satisfy its stability conditions inde-
pendently of the other; but if the combined patterns are to be stable they
must together satisfy a new set of conditions common to both. How much
each is altered by such a union will depend on the degree of coupling be-
tween them, that is, on the amount of energy which must be regarded as
mutual to the two.

The effect of this coupling will be very different, depending on whether
the frequencies of the two patterns are the same or different. When they
are different the non-linear terms give rise to frequencies related to the first
two by the quatum formula. The transfer of energy to these frequencies
may, under favorable conditions, set up a new mode of oscillation the sta-
bility conditions of which are better satisfied than those of the original
frequencies. The new mode might be that of an excited atom. Or the fre-
quency of one or both of the patterns may be changed to that corresponding
to the particle in motion with a particular velocity. In either of these proc-
esses some of the energy may be released as radiation at one of the dif-
ference frequencies.

If, however, the frequencies of the two patterns are identical, no new
frequencies will result from their superposition. If the combined pattern is
to persist there must be a stable mode for the combination, the frequency
of which is identical with that of the separate patterns. This is hardly to be
expected. Also the oscillations of the second pattern, being of the same
frequency as those of the first, would have a much greater disturbing effect
on its conditions for stability. It would appear, then, that if it were possible
to bring two patterns of identical frequency into superposition, they would
mutually disintegrate. This does not mean that two particles of the same
type cannot exist in the same neighborhood. If they have different velocities,
for example, their frequencies will be different. The similarity of these
considerations to Pauli’s exclusion principle is obvious.

If the second pattern has much greater energy than the first, as it will if
it represents a much heavier particle, its stability conditions may be little
affected by the presence of the first. The behavior of the first, an electron,
may then be discussed on the assumption that it exists in a medium, the
properties of which vary with position in accordance with the fixed pattern
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of the second particle, the nucleus. Since the stability conditions for the
electron pattern particle are most strongly influenced by the effective con-
stants of the medium near its center, we would expect its energy and fre-
quency to be controlled largely by that part of the nuclear pattern which is
near its center. Let us assume that, through some external agency, the
center of the electron pattern is transferred from one position of rest to
another which is differently placed relative to the nucleus. Owing to the
different effect of the nuclear pattern on the effective constants of the
medium as viewed by the electron pattern, the stable energy of the latter
would be different at the second position. This change in rest energy with
position may be interpreted as a measure of the change in a field of static
potential associated with the massive nucleus. The similarity between this
relationship and that which exists between the electron and the nuclear
potential in wave mechanics is obvious.

In speaking of a change in the effective constants of the medium, we refer
to an average value taken over a number of cycles and wave lengths of the
oscillations which make up the second pattern, or nucleus. Calculations
based on this concept should not therefore be expected to give valid results
when the time intervals involved in the averages are comparable to the

h . .
period gt of the second particle at rest, or the distances are comparable to
o

/
the corresponding wave length e of the pattern. For a proton this period
1]

is 4.38 X 107* seconds and the wave length is 1.31 X 107" ¢ms. If, then,
an electron is to be subject to the kind of nuclear potential field just de-
scribed, the linear dimensions of that part of it which is controlled by the
potential field of the proton must be at least of the order of 107" cm. This is
consistent with Gamow’s® observation that “It seems, in fact, that a length
of the order of magnitude of 107" centimeters plays a fundamental role in
the problem of elementary particles, popping out wherever we try to esti-
mate their physical dimensions.”

The variations in the medium due to the nucleus might be treated in
terms of their effect on the progressive wave components, the interference
of which gives rise to the wave pattern of the electron. The component waves
as so influenced should combine to form an interference pattern which
represents the behavior of the electron in the field of the nucleus. It is also
possible that a technique may be found for treating their effect on that
factor of the electron wave which is similar to the DeBroglie wave. This
should be more nearly like the techniques now used in wave mechanics.

If two particles are brought so close together that the central cores of
their patterns overlap, the departure from linearity becomes so great that

8 G. Gamow, Physics Today, 2, p. 17, Jan., 1949,
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a procedure which may be successful at intermediate separations becomes
inadequate. Relativistic mechanics breaks down and Lorentz invariance
may lose its significance. This is in agreement with the experimental result
that, in some nuclear reactions, the energy balance, as calculated from
the relativistic relations, is not satisfied. Also the difficulty which has been
encountered in calculating nuclear phenomena by the techniques of wave
mechanics suggests that the extremely non-linear condition is approached
for the separation of the particles within a nucleus. This viewpoint suggests
that an understanding of the nucleus might make possible an experimental
determination of velocity relative to the ether.

The reactions between wave patterns of appreciable amplitude may also
be viewed from a somewhat different angle. We may think of the various
wave patterns as being the analogs of the various modes of motion of, say,
an elastic plate. For very small amplitudes they have negligible effect on
one another. For larger amplitudes, where Hooke’s law does not hold, the
force may be represented as a power series of the displacement. The first
power term represents the linear stiffness. If the frequencies of two modes
which are in oscillation are w; and w., the higher power terms represent
forces of frequencies mw, 4 nw» where m and » are integers or zero. These
forces set all the modes into forced oscillation at the frequencies of the
various forces, in amounts which depend on the impedance of the particular
mode for the particular frequency. When the frequency of the force coin-
cides with the resonant frequency of one of the natural modes, the forced
oscillations may be large. Thus the variation in stiffness with displacement
provides a coupling whereby energy may be transferred from one or more
modes, that is wave patterns, to other modes. But in this transfer the energy
always appears associated with a new frequency which is related to those of
the modes from which it came in accorance with the familiar formula of
quantum theory.

The theory of such energy transformations with change of frequency has
been worked out in considerable detail for vacuum tube and other variable
resistance modulators, and the results show little in common with the quan-
tum theory beyond the relations connecting the frequencies. When, however,
the variation is not in a resistance but in a stiffness, as occurs in the ether
case, the situation is quite different. This problem has been explored both
theoretically’ and experimentally.' Tt is found that an oscillation of one
frequency in one mode may provide the energy to support sustained oscil-
lations of two other lower frequencies in two other dissipative modes. For
this to occur the frequencies involved must be related through the quantum
formula. Also the amplitude of the generating oscillation must exceed a

*R. V. L. Hartley, Bell Sys. Tech. Jour., 15, 424, 1936.
10 L, W. Hussey and L. R, Wrathall, Bell Sys. Tech. Jour., 15, 441, 1936.
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threshold value which depends on the frequencies, the impedance involved,
and the constant of non-linearity. The transformed energy divides itself
between the generated modes in the ratio of their frequencies. In a non-
dissipative system, the frequencies of possible combinations of sustained
oscillations are determined by the energy of the system. Here also they are
connected by the quantum formula.

The particle wave pattern discussed above would approximate very
closely to such a non-dissipative non-linear system. We should therefore
expect its frequency to be related to its energy through the constants of the
ether. In the more complex wave patterns associated with more than one
particle, it is unlikely that the pattern representing, say, an electron could
maintain its identity as part of some arbitrarily chosen pattern, the magni-
tudes of which are not commensurable with its own. This suggests that the
stable states of the complex pattern would be confined to a sequence of
discreet patterns which are related to one another through some property of
the electron. These possible non-dissipative combinations of energy and fre-
quency would represent the stable quantum states of the atom. The radia-
tion process would then be similar to that referred to above in which energy
from a source of higher frequency distributes itself between two lower fre-
quencies in the ratio of the frequencies. The energy in the pattern of an
excited atom would serve as the source. One of the two lower frequencies
would be that of a pattern corresponding to a lower energy state to which
the transition occurs. The other would be that of the radiating wave which
carries off the energy lost in the transition.

A SuGGESTED NEW PARTICLE

We saw above that the observed variation of the energy of a particle
with its velocity calls for a mechanism in which the energy varies directly
as the frequency. The fact that a system, in which the stiffness varies with
the displacement, is characterized by this relation suggests that the energy
of a particle pattern depends mainly on variations in the stiffness of the
ether. However, the non-linearities of the ether equations cannot all be
interpretated as variable stiffnesses. The non-linearity which appears in (1)
when the displacements are finite is equivalent to a variable inertia. It is
in order, therefore, to inquire into the properties of a pattern in which the
energy is determined by this kind of non-linearity. The variable inductance
of an iron-core coil constitutes such a variable inertia. Theoretical and ex-
perimental studies of circuits involving these coils have shown that they
behave very much as do systems having variable stiffness, with one im-
portant exception. The energy distributes itself in the inverse ratio of the
frequencies.

If, then, we assume that the energy of a moving pattern is determined by
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a mechanism which conforms to this relation, it follows from (7) that its

energy will vary as % Expanding in the usual manner we then have

W = mp® — FmV? + -+

This says that a particle represented by such a wave pattern would have
a positive rest mass and a negative inertial mass. Its momentum is directed
oppositely to its velocity, and energy must be taken from it to set it in
motion and given to it to stop it. Such a particle, when bouncing back and
forth between two rigid walls or rotating about two centers of force, would
exert a force tending to draw them together, instead of the usual repulsion.
Tt is interesting to speculate that if, in an atomic nucleus, the positive charges
which are passed back and forth between other nuclear particles were
associated with particles of this type their motion would exert a binding
force on the other particles.

CONCLUSION

It appears, then, that the ether model is capable of sustaining wave
patterns the behavior of which is qualitatively in agreement with the
results of experiment. In order to establish fully the sufficiency of classical
mechanics for the physical description of natural phenomena, it will be
necessary to work out the complicated quantitative relations whereby the
constants of the ether may be deduced from experimental measurements.
However, until a serious attempt to do this has failed for some reason other
than sheer mathematical complexity, the insufficiency of classical mechanics
can scarcely be argued.

In conclusion, I wish to acknowledge the contributions of those of my
colleagues who, through discussions over the years, have helped in develop-
ing the concepts which have been put together in the above picture.



