The Reflection of Diverging Waves by a Gyrostatic Medium
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This paper furnishes the basis for a companion one, which discusses the pos-
sibility of describing material particles as localized oscillatory disturbances in a
mechanical medium. If a medium is to support such disturbances it must reflect
a part of the energy of a diverging spherical wave. It is here shown that this
property is possessed by a medium, such as that proposed by Kelvin, in which
the elastic forces are of gyrostatic origin. This is due to the fact that, for a
small constant angular displacement of an element of this medium, the restoring
torque, instead of being constant, decreases progressively with time.

INTRODUCTION

N A companion paper' it is pointed out that it may be possible to de-
scribe the behavior of material particles as that of moving patterns of
wave motion, provided a medium can be found which is capable of sus-
taining a localized oscillatory disturbance. In most media this is not possible,
for the energy of the disturbance would be propagated away in all directions.
Something special in the way of a medium is therefore called for. It must
be capable of trapping the wave energy released from a central source.
Kelvin proposed a mechanical medium, the equations of which, for small
disturbances, were identical with those of Maxwell for free space. The
medium derived its elasticity from gvrostats. He recognized that, for finite
disturbances, the restoring torque depends on the time as well as the angular
displacement. It is the present purpose to show that this time dependence
imparts to his medium exactly the energy trapping property required.

THE GyrosTATIC ETHER

The concept of an ether with stiffness to rotation originated with Mac-
Cullagh? in 1839, and was further developed by Kelvin? in 1888. MacCullagh
showed that certain optical phenomena associated with reflection could not
be represented by the elastic solid ether of Fresnel, but required for their
mechanical representation a medium in which the potential energy is a func-
tion of what is now called the curl of the displacement. Fitzgerald* remarked
in 1880 that its equations are identical with those of the electromagnetic

1R, V. L. Hartlev, Matter, a Mode of Motion—this issue of the Bell System Technical
Journal.

2 Collected Works of James MacCullagh, Longmans Green & Co., London, 1880, p. 145.

3 Mathematical and Physical Papers of Sir William Thomson, Vol. III, Art. XCIX,
p. 436, and Art. C, p. 466.

4 Phil. Trans. 1880, quoted by Larmor, Ether and Matter, Cambridge Univ. Press,
1900, p. 78.
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theory of optics developed by Maxwell. This conclusmn is confirmed in
later discussion by Gibbs,” Larmor,* and Heaviside.”

Kelvin, apparently unaware of MacCullagh’s work, was led by similar
considerations to the same result. He went farther and devised a physical
model which consisted of a lattice, the points of which were connected by
extensible, massless, rigid rods in such a manner that the structure as a whole
was incompressible and non-rigid. Each of these rods supported a pair of
oppositely rotating gyrostats. By a gyrostat he meant a spinning rotor
mounted in a gimbal so that it is effectively supported at its center of mass
and can have its spin axis rotated by a rotation of the mounting. The
resultant angular momentum of the rotors was the same in all directions.

This model, considered as a continuous medium, exhibits a stiffness to
absolute rotation, the nature of which can be described by comparing it
with the elasticity of a solid. A solid is characterized by a rigidity » such
that small displacements #, v, w are accompanied by a stress tensor, one

component of which is
dv dn
" (a_ + a}) -

For the ether model the corresponding component is

n LA au) 2n
ax  dy ¢

where ¢ is a small angular displacement of the element about the z axis.
More generally a small vector rotation A is accompanied by a vector re-
storing torque per unit volume,

AT = —4nAe. (1)

The quantity 4n therefore represents a stiffness to angular displacement

of the element.

In the appendix it is shown that the lattice of gyrostats, treated as a
continuous medium, exhibits this kind of elasticity. It is also shown that
for infinitesimal displacements, the medium is described by the wave
equations (8a and 6a).

T i
v —) = 2
x(Z)-md, @
14T
VX 4q 3
Xq= -y (2) (3
5 Collected Works of J. Willard Gibbs, Longmans Green & Co., New York 1928, Vol.

p. 232
5Heav15|de, Electromagnetic Theory, Ernest Benn, Ltd., London, 1893, Vol. I, p. 226.
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where po is the constant density, »n, is a generalized stiffness of the undis-
turbed medium, given by (7a), 7 is the vector velocity, and 7' is the torque

per unit volume. In a plane wave ¢ is normal to the direction of propagation.
7

5 is a tractive force per unit area in the direction of ¢, which acts on a surface

normal to the direction of propagation.

If, however, the amplitude is finite the equations become much more
complicated. For present purposes we need consider only waves for which
there is no component of velocity or torque in the direction of propagation,
and we need consider only plane polarized waves for which the direction of
the velocity is the same at all times and places. Also, as will appear below,
we are concerned with the equations which describe a wave of infinitesimal
amplitude which is superposed on a finite disturbance. This description need
cover only infinitesimal ranges of time and position. It can therefore be
expressed in terms of wave equations in which the constants of the medium
have local instantaneous values which depend on the finite disturbance.

Subject to these restrictions it is shown in the appendix that (2) is to be

replaced by (23a)
T 3 dq
VX(?) —lqpa—t, (4)

where [, is a unit vector in the fixed direction of the velocity, and p is an
instantaneous local density, defined in terms of the finite disturbance by
(20a). And, in place of (3), (22a)

1 [a (T af .
VX = f*'p:-'-'(a:(z)Jrzaj)’ (3)

where I, is a unit vector in the direction of the axis of rotation, p is again
an instantaneous local density, ¢ is an instantaneous local velocity derived
in the usual way from p and an instantaneous local stiffness n, while fis a
function defined by the relation, (13a),

T = _I'F'l'f('pi ”

This function takes account of the fact that when the spin axis of the rotor
is given a constant finite displacement, the restoring torque is not constant
as in (1), but changes with time as the spin axis rotates toward the axis of
displacement, and so reduces the component of the spin which is normal

to the displacement axis and so is effective in producing stiffness. _46%
represents the rate of this change in torque for a fixed angular displacement.

—4;;3'—“5 to be interpreted as the rate of change of torque with angular
¢
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displacement, when the time consumed is infinitesimal, that is when the
angular velocity is infinite. It is therefore an instantaneous local angular
stiffness from which the instantaneous local generalized stiffness 7 is derived
as in (19a).
To simplify these expressions, let the direction of propagation be x and
that of ¢ be y. Then
_ .0 4. aq
v =1 — =k 2
Xq=ig U=tz
so [, is in the direction of z, and represents a clockwise rotation about z.
(5) then becomes the scaler equation

9 _ _ 1 (o(T af
ax [ar (2)—'_263]' ©

T is also in the z direction, so

()2 ( D) - -2 ()

But ¢ is in the y direction, so

a (T d

()= — p 2. 7

dx (2) Y @
These, then, are the desired equations of motion, for the type of wave
under consideration.

THE GENERATION OF REFLECTED WAVES

Tn this section we shall show that when a finite wave is propagated in
this medium each element of the medium becomes the source of auxiliary
waves which propagate in both directions from the source.

To do this we shall make use of the argument by which Riemann? showed
that this does not occur for sound waves in an ideal gas. This will first be
restated in more modern language. We consider a plane wave propagating
along the x axis. We picture the finite pressure p and the longitudinal
velocity % at a point in the medium as having been built up by the successive
superposition of waves of infinitesimal amplitude, each propagating relative
to the medium in its condition at the time of its superposition. If the first
increment is propagating in the positive direction,

du = d—p,
pc

7 Lamb, Hydrodynamics, Sixth Edition, p. 481. Rayleigh, Theory of Sound, Second
Edition, Vol. II. p. 38.
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where the characteristic resistance is pc. Here

> d

¢ = —E

dp

He assumes adiabatic expansion, so that p and ¢ are functions of p only. If
a second incremental wave of pressure dp, also traveling in the positive
direction, be added, its velocity increment, being relative to the medium,
will add to that already present. Its value will be related to dp through a
new characteristic resistance corresponding to the modified density result-

ing from the previous increment. Hence the velocity # resulting from a
large number of such waves will be

o pc

where w is the quantity represented by w in Lamb’s version. If, then, all
of the wave propagation is in the positive direction

U = w.
Similarly, if an incremental wave is traveling in the negative direction,
die = —=
and the condition for all the propagation to be in that direction is
= —w,

Obviously, then, if # has some other value than one of these it results from
the addition of increments some of which propagate in each direction.
Riemann deduces from the aerodynamic equations that

(-;i 4+ (4 + ¢ %) (w+u) =0, (8)
(56; + (. —¢) %) (w—u) =0, )

That is, the value of w + w is propagated in the positive direction with a
velocity of ¢ + # and that of w — w, in the negative direction with a velocity
¢ — u. If, over a finite range of x, a disturbance be set up such that neither
of these quantities is zero, it must be made up of incremental waves in both
directions. However, as w + u propagates positively it will be accompanied
atany instant by a value of w — # which has been propagated from the other
direction. But, since the value of this was initially finite over a limited dis-
tance only, when all of this finite range is passed, w — » will be zero, « will
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be equal to w and all of the wave will be traveling positively. A similar
argument applies at the negative side of the wave. Thus the initial disturb-
ance breaks up into two parts which travel in opposite directions without
reflection. More generally, these considerations hold for any medium in
which the stress is a function of the strain only.

For the ether model, since we have assumed the displacements are normal
to the direction of propagation, the velocity of wave propagation relative to
the medium is the same as that relative to the axes.

* If now, following Riemann, we let

do = L d (Z) , (10)

pc 2

so that now

e}

then from (7) and (6)

dq _ _
ot dx '
at dx pc dt '’

Adding and subtracting gives

ad a __ 29f
(6!«-*—655) w+ ¢ = T
g 9 _ _ 29
(= em) -0 - - 2d

which are to be compared with (8) and (9). Hence when -g{ is not zero the

values of w + ¢ and w — g are not propagated without change.
To show that reflection occurs, consider a disturbance at a point x at

time ¢, characterized by ¢ and w. At x and ! + Af, w + ¢ will differ from the

d 29
value it had at x — ¢Al, f,orw + ¢ — ry (w + q)cAt, by — ; ;{At. The

increment at x in time Af is

3 2 af
wt Ag= — — t — 2% A
Aw + Ag " (w + g)cA oc a1 l,
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and
ad 6]’
Aw — Ag = — (w — m———
2 ¢= (w — q)e
From which
aq 2 of
= t— 22 N
A axA pc dt
dw
Ag = —c— AL
i dx
o af . .
Hence the velocity is the same as when 3 18 zer0 but w is changed by
2 of
-~ B—At But the only way in which w can change with g constant is
p

by adding waves of equal amplitude propagating in opposite directions, so
that their contributions to w are equal and those to g are equal and opposite.
59/

8 At or a time rate of change

From (10) thisinvolves an increment of g of —

of —2 g—‘!f This agrees with (6), from which it is evident that the presence of

af alters % from what it would otherwise be by —l z—{ But, since g is
-, Ax . 1
unchanged, the velocities at x + -A?x and x — ?l are increased by @ 3{

and % g—{ Ax. The firstis the velocity associated with an auxiliary wave which
p

propagates in the positive direction of x, and the second that of one which
propagates in the negative direction, that is a reflected wave. Hence the

of

. 1 . . . .
medium generates a reflected wave of — 3 PeT unit length in the direction
pe
of propagation.

THE REFLECTION OF A PROGRESSIVE DIVERGING WAVE

So far attention has been confined to a single point. If a continuous dis-
turbance is being propagated, it is important to know how the waves reflected
at different points combine, for it is conceivable that they may interfere
destructively. From the standpoint of the application to be made of these
results in a companion paper, the case of most interest is that in which energy
is propagated outward from a central generator as a sinusoidal wave of
finite amplitude, beginning at time zero. Near the center, the wave of dis-
placement will include radial as well as tangential components. As the radius
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increases the radial components become relatively negligible. We shall
confine our attention to this outer region, where, in the absence of reflection,
the propagation differs from that of a plane wave only in that the amplitude
varies inversely as the radius. We shall neglect the effect of any reflections
on the outgoing wave, and calculate the resultant reflected wave at a radius
r1 as a function of the time and so of the radial distance r the wave front
has traveled.

If the outgoing wave were of infinitesimal amplitude, its velocity gq
could be represented by

o = :—DQO sin (w! — kr), (11)

for values of r < ¢f, and by zero for r > cf, where (o is the amplitude at
some reference radius ry . The sine function is chosen to avoid the necessity
of an infinite acceleration at the wave front, as would be required by a
cosine function. When the amplitude is finite this wave suffers distortion

due to the fact that k which is equal to %’ varies slightly with the variations

in the instantaneous value of ¢. However, these will be small and, since
fluctuations in velocity alone do not cause reflection, we shall neglect them.
The procedure is to make use of go to calculate the reflected wave incre-
ment generated in a length Ar’ at a radius »/, calculate the amplitude and
phase of this at a fixed point r; <#', and at r, integrate the waves received
there for values of 7’ from r, to the farthest point from which reflected waves
can reach r; at the time ¢ under consideration.

To find the reflected wave generated in a length Ar’ at »/, we have from
above that its velocity

1 9f
A = = = Ar'.
9 pct 9t 4

From (21a), (19a) and (17a)

where 1o and ¢ are constants of the medium given by (7a) and (15a). From
(18a)

a
EJ; = —any f @ dt,
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12
qg: _ {IF]lp fqodt
dr’ 2
1—a fqodt
which reduces to
dq’ _ gf
oy = T @ di,

if we neglect second powers of the variables compared with unity.
To the same accuracy, from (14a)

1 39'0
a a7
From (11)
6q|'; = r"?o l:k cos (wt — kr') + _]; sin (wf — k"):l :
ar r r

Here k is 27 over the wavelength so, if as we have assumed 7, , and therefore
also #', is large compared with the wavelength, we may neglect the second
term. Then

m Q° sin (wt — kr’),

fgpdt =T QO, cos (wt — kr'),

2cwr
/ 3
% = ’_'8i (’%}25) Sil‘l2 (w! — k') cos (wi _ kr’),
w
T T8e (roCQo) [cos (wt — kr') + cos 3(wt — kr)).
W

This, when multiplied by Ar’, gives the value at 7" of the wave, generated
in the interval Ar’, which propagates in the negative direction of 7. This is
made up of components of frequency w and 3w. We are primarily interested,
from the stand-point of reflection, in that of frequency w, so we shall confine
our attention to this component, with the understanding that the other
can be treated in exactly the same fashion. As the fundamental component

’
propagates inward to 7 it increases in amplitude in the ratio :— and suffers
1
a phase lag of k(r' — ry). If we cal] the resultant of all the reflected waves at
, q1 , then the contribution to 1 of the wave generated at 7’ is
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’ a anu 8 1
A = —— | —=) — cos (wt + kry — 2kr")Ar'.
8w\ ¢ i’

This is to be integrated from r; to the farthest point from which a reflected
wave has reached », at the instant ¢ under consideration. This point is at
L(r1 + ct). So

3 ad(riten)
= — i Q[’) f -L cos (wt + kry — 2k¢') dr'.
Srl w c T I 4 2

Here the integrand is a function of 7 and ¢ and the upper limit of integration
is also a function of /. We therefore make use of the relation®

b b
%[ f, 0) dx = f ((—%f(x, a)) dx + (5, @) (;ii — f(a,a) j_z.

Putting ¢ for a, ' for x we have

’ 3 (ry+ct)
dgy _ a (7199) [[ % sin (wf + kri — 2kr") — 2 1 :I

dt 8n\ ¢ " r w (n+ c)?

which, upon integration becomes,

7 3
dd_qfl - s% ('L‘%‘) (71 si(wt + kr) — 2k[Si(wt — kry) — Si(2kn)]
24 1 1

- sin (wt + krl) — [Cz(wt + k?’l) - CE(Zkrl)]

- cos (wl + kr) — 67(;12_16_—“)2) .

Since q; is zero when ¢ is ! , its value at f will be found by integrating from
¢

2tcrt,so

c

R L) Y G S
g1 = EW(;(T) ( cos (wt — kry) + - 2kr,

{
. I:wf Si(wt + kry) sin (wl + k) dtf + Si(2kr)
rife

i
- [cos (wi + kr)) — cos 2kr] — cuf Cilwt 4 kry) cos (wt + kry) dt

ri/

+ Ci(2kry) [sin(wt + kr)) — sin 2krd]) .

which reduces to

8 Byerly, Integral Calculus, second edition p. 99.
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’ r 8 2

o= _Sr%o (UTQD) (cos (wt — kry) — " _: = + 2kry
- [=[Si(wt + kr) — Si(2kr)] cos (wt + kry)
- [Ci'(wt + kfl) - CI(Zkfl)] sin (wt + k?’])

+ SiQQwt 4 2kry) — Si(4kr,)]) .

The first term represents the value at r; of an outwardly moving wave in
phase quadrature with the main wave. The second is a transient, the value
of which is equal and opposite to that of the first term at the instant that
the main wave passes 7, . The first two terms in the inner bracket are waves
which propagate inward and so are to be regarded as reflections of the
main wave. The last two terms represent a velocity which is zero when the
main wave passes r;, and subsequently oscillates about and approaches

1_2r — Si(4kr,). Physically it appears to result from the particular form chosen

for the main wave, which starts abruptly as a sine wave. The time integral
of the impressed force, and so the applied momentum, has a component in
one direction. Presumably if the main wave built up gradually these terms
would be absent.

Returning to the reflected waves, their amplitudes are zero when the
main wave passes r; , after which they become finite. Si(x) and Ci(x) os-

cillate about and approach g and zero respectively as x approaches infinity.
Hence, as ¢ increases indefinitely, the amplitudes of the reflected waves
approach g — Si(2kr)) and Ci(2kr,). For the assumed large values of 2kr,
these quantities are small compared with unity. When multiplied by 2kr,
their variation is very slow. Hence the amplitudes vary roughly as s

and approach zero as the main wave at 7, approaches an ideal plane one.

However, the significant fact is not that the reflected waves are small
but that they are of finite magnitude. Because of this the main wave will
not behave exactly as we assumed above, but will decrease slightly more
rapidly with increasing radius. This should increase the reflection slightly,
for the existence of the reflected wave is dependent on the decrease in am-
plitude with distance when the radius of curvature is finite.

To describe exactly what happens when the generator begins sending out
waves from a central point would be hopelessly complicated, but we may
form a general picture. In the early stages where the curvature is consider-
able, the reflected waves would be quite large and the main wave would be
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correspondingly attenuated. The arrival of the reflected waves at the gen-
erator adds a reactive component to the impedance of the medium, as seen
from the generator, which reduces the power delivered to the medium.
Meanwhile energy is being stored as standing waves in the medium and
the rate of flow of energy in the wavefront is decreasing. The energy in
successive shells of equal radial thickness decreases with increasing r, in-
stead of being uniform as it would be in the absence of reflection. In the
limit it approaches zero, but as the rate of decrease depends on the curva-
ture, the rate of approach also approaches zero. As the rate at which energy
is stored and that at which it is carried outward at the wavefront both
approach zero, the resistance which the medium offers to the generator
approaches zero, and its impedance approaches a pure reactance.

The total energy stored in the medium depends on how the over-all at-
tenuation of the main wave is related to its amplitude. If there were no
attenuation, the impedance would remain a pure resistance, the energy in
successive shells would all be the same, and the total energy would increase
linearly with 7, and so with the time, and approach infinity. If the attenua-
tion were independent of r, the total energy would approach a finite value.
The present case is intermediate between these, the attenuation being finite
but approaching zero with increasing r. If we assume it to vary as some
power of the amplitude of the velocity, then W. R. Bennett has shown that
if this power is less than the first the total energy approaches a finite value.
If it is equal to the first, the energy approaches infinity as log , and if it is
greater than this, the power approaches infinity more rapidly. Until more is
known as to the actual variation of amplitude with distance, nothing
definite can be said about the limit of the total energy.

APPENDIX: EQUATIONS OF THE KELVIN ETHER

We are concerned with the wave properties of the model for wavelengths
long enough compared with the lattice constant so that it may be regarded
as a continuous medium. Its density is equal to the average mass of the
gyrostats per unit volume. Its elastic properties are to be derived from the
resultant of the responses of the individual gyrostats.

We shall therefore begin by considering the behavior of a single element,
which is shown schematically in Fig. 1. Here the outer ring of the gimbal,
which is rigidly connected with the lattice, lies in the x y plane. The axis
about which the inner ring rotates is in the x direction, and the spin axis C
of the rotor is in the z direction. We wish to examine the effect of a small
angular displacement ¢ of the lattice, that is, of the outer ring. If it is about
x or z, it will, because of the frictionless bearings, make no change in the
rotor. If it is about y it will produce an equal displacement of the spin axis
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Fig. 1—Diagram of a gyrostat, showing its axes of rotation.

C about y. To study its effect we make use of Euler’s equations for a rotating
rigid body.?

A i (B — Qwswy = L,
dws .

.B —_— (( - A)w;;wl = M,
dt

o dos _ (A4 — B)wyw: = N,
dt

where w; , ws and w; are the angular velocities about three principal axes of
inertia, fixed in the rotor, the moments of inertia about which are 4, B
and C, and L, M, and N are the accompanying torques about the three axes.
They are also at any instant the values of the torques about that set of
axes, fixed in space, which, at the instant, coincide with the axes 1, 2, 3,
which are fixed relative to the body. We let the 3 axis coincide with the
spin axis C. We choose as the 1 and 2 axes, lines in the rotor which, at the
instant, are in the x and y directions respectively. Since the moments of

9 Jeans, Theoretical Mechanics, Ginn and Co.. p. 308.
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inertia about these are equal, 4 and B are equal. By virtue of the frictionless
bearings the external torques Z and N about 1 and 3 are zero.
Introducing these relations we have

A 9:% + (€ — Awrws = 0, (1a)
den .
A 7l — (C —_ A)wlwa = M, (23-)
dws
C == 0. (3a)

From (3a) the velocity of spin ws remains constant. The torque M about y
is then to be found from (1a) and (2a). For very small displacements,

wy = @.

Putting this in (1a) and integrating from zero to ¢, assuming ¢ to be zero
att = 0, gives

_ -4
W = A - W3 Q.
(2a) then becomes
. C — 4)
4+ C Ao o w
2 2
This represents an angular inertia A and stiffness EAL)NS The system
will therefore resonate at a frequency E:HM If the frequencies in-

volved in the variation of ¢ are small compared with this, the inertia torque
will be negligible, and the system will behave as a stiffness. If the displace-
ments about A associated with w; are very small the restoring torque M
will act substantially about the y axis. That is, the lattice will encounter a
stiffness to rotation.

Since the large number of gyrostats in an element of the model are oriented
in all directions, an angular displacement of the lattice about y will gen-
erally not be about the B axis for each gyrostat. If it makes an angle & with
this axis, then only the component ¢ cos e of the angular displacement will
be transmitted to the rotor. The resulting torque will then be .S cos a, where

_ (€ = 4w

S 4

It will be directed about B and so will not be parallel to the applied dis-
placement. However, if a second gyrostat has the position which the first
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would have if it were rotated about y through m, its torque along vy is the
same as that of the first, and that normal to it is equal and opposite. Hence,
if the gyrostats are properly oriented, the resultant torque will be parallel
to the displacement and the medium will be isotropic. The y component of
the opposing torque will be Si cos® @. Thus if the B axes are uniformly dis-
tributed in space the total torque will be one third what it would be if they
were all parallel to the axis of the applied displacement. Hence if there are

N gyrostats per unit volume the vector restoring torque 7 per unit volume
will be

= N (C — A)w)
7= 4% A e 4
3 Y @ (4a)
The next step is to derive the wave equations for a medium having this
stiffness to rotation. If the vector velocity § is very small,

- 9@
v = 2=
X q e (5a)
where ¢ is a vector angular displacement of an element of the medium at
the point under consideration. 2¢ plays a role analagous with that of the
dilatation in compressional waves. Then, from (4a) and (5a),

_ 19 (T
VXg= _%5(5)’ (6a)

where the generalized stiffness of the undisturbed medium,

we= Co A (7a)

To get the companion equation, we interpret the torque exerted by an
element in terms of the forces it exerts on the surfaces of neighboring ele-
ments. Let the x axis Fig. 2 be in the direction of the torque TAx? which is
exerted by the medium within the small cube. This very small torque can
be resolved into the sum of two couples, one consisting of an upward force
F,Ax* on the right face and an equal downward force on the left one, and
the other of a leftward force F.Ax* on the upper surface and a rightward one
on the lower one. But, if there is not to be a shearing stress, F, and F. must

T . . .
be equal, and each equal to 3 Thus a torque per unit volume T is equivalent

’

to a set of tangential surface forces per unit area of = each.

Now consider the force exerted on an element by its neighbors, through
the adjoining surfaces. To take the simplest case, let 7 in Fig. 2 be every-
where in the x direction and independent of z but varying with v, Then
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the forces exerted on the upper and lower surfaces are equal and opposite.
That downward on the right face exceeds that upward on the left by

3 (L Ax”) Ay, so the force in the z direction is _9 (L As*. By ex-
ay \2 ay \2
tending the argument to three dimensions it is easily shown that the total
z
I
Fyax2
4
FzaX2
Az =AX
|
I | Ay=aX
| /)—— —_ -y
,*/ ——r— Fzax2
7 X
< FYLZ

Fig. 2—Diagram showing the forces exerted by an element of the medium through
its surfaces.

force isV X (g) Ax3, If py is the density of the medium this force must equal
dg
poAAa? - S0
TN dj
vV X (E) = o a )
which, since ¢ is small, reduces to

T 8q
vV X (2) =P (8a)

From this and (6a) the velocity of propagation is (no/, po)'* and the char-
acteristic resistance is (pono)'’". In a plane wave the displacement is normal
to the direction of propagation. The stress is a tractive force per unit area

g acting in a surface normal to the direction of propagation. It is in the

direction of the velocity and in phase with it.
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However, we are also interested in the case where the amplitudes are
not negligible. We shall confine our attention to those cases where, as in
plane or spherical waves at a distance from the source, the velocity is nor-
mal to the direction of propagation and the variations in the plane of the
wave front are negligible. (5a) then becomes much more complicated.

V X ¢ is, however, still a function of Z—T , say 2F, (3—":") Then, for small varia-

tions of %? in the neighborhood of a particular value, we may write

V X § = 2F: (Z—‘f) "3‘;’ (92)

where Fy ( af) is a function of the particular value of -E . This relation is

to take the place of (5a). Similarly, if

o (3) - )

then, in place of (8a), we are to use, for small variations,

v X (’?) = I (a?) azq (102)

When we come to the transition from (5a) to (6a), however, the situation
is somewhat different. To see how this comes about, we go back to the
hehavior of the single gyrostat of Fig. 1. It was assumed above that the B
axis coincided with the y axis. However, when the displacement of the
rotor about A is finite, this is no longer exactly true. The situation is then
as shown in Fig. 3. A rotation ¢ of the lattice about y displaces A in the x 2
plane by ¢. The accompanying rotation of the rotor about 4 causes B to
make an angle 6 with v, which is independent of ¢. Then

d
wr = d—fcosﬂ

From (1a)
C — A

- de
w = — i w;;fﬁcosﬂdt.

0 = fwld[,

_Cc-—4 do
- — w,ff = €08 o dt di, (11a)

Also
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which determines 6 as a function of ¢ and ¢. From (2a), neglecting the first
term as above,

M = Sfdiacosﬂdt,
di
and the restoring torque about y, or
- de
Ty = —Scosé i 6 dt. (12a)

This, together with (11a), determines 7, as a function of ¢ and ¢, instead of
¢ alone as it is for infinitesimal displacements.

/

e

z
c

Fig. 3—Diagram showing the displacement of the axes of a gyrostat.

We assumed here that, in the rest position of the rotor, its B axis coin-
cides with that of the applied displacement ¢. When this is not the case, the
relations are more complicated, but they should be qualitatively the same.
Hence, for an element of the medium, the torque per unit volume should
be a function of ¢ and # similar to 77, , which reduces to — 4o ¢ for very small
displacements. Since the restoring torque is in the direction of ¢ we may
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write
T = —lAfle, 1) (13a)

where 1, is a unit vector in the direction of the axis of rotation.

The derivation of the wave equation is much simpler if we consider only
the case of present interest where the direction of the rotation is everywhere
the same so that I, is constant. Then (9a) can be written as

s _ Lo (%) 2
VXq=1,2F, (ax) e (14a)
and (13a) as
T = —4(p, 0.

2
constant position so we are interested in the total time derivatives of T as
given by (12a). To get the desired relation we need to express 7" explicitly
in terms of ¢ and ¢, that is, we must evaluate ¢. Since the variables are
small, we neglect their products of higher order than the third. Then

1 2
cos =1 — éa[frpdt],

_ (C - 4 m) . (152)

T = —4n Cosﬁf%cosﬂdt,

) T . L.
We wish now to replace g_.-;_p by%t (—) . These partial derivatives refer to a

where
Putting

in accordance with (12a) and substituting for cos 8 gives

T = —4n l:qo — ap [f wﬂ]!Jr ﬂfqrf (ftpdt)df]-
T [(1 = o[ va])% o [ oa]

When ¢ is constant the first term is zero, so the second term can be inter-
preted as the partial derivative of T with respect to {. Physically this de-
scribes the change in torque for a fixed displacement which results from the

Then
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fact that, as the axis of the rotor rotates toward that of the applied torque,
the component of the spin which is normal to the axis of displacement pro-

gressively diminishes. To interpret the first term, we let %‘f increase in-
definitely. The second term then becomes negligible, and when we divide
through by ‘:;—“:, the left side becomes g But the time increment which

accompanies a finite increment of ¢ is now infinitesimal, and so this may be
called the partial with respect to ¢, with ¢ constant.
We have then

ir of do | of
o (Eo e &) (16a)

where

% = 10 (1 —a I:fgadt]n), (17a)

clf = —Gﬂo¢2f @ dt. (18a)

Substituting for g—‘f from (16a) in (14a),

i= 1,0 (2 (1) ;¥
VX §q= Zpg(at(z)—i-za).

de
We may interpretg—{o as an instantaneous stiffness to rotation and define
an instantaneous local generalized stiffness by the relation
of
v= 3 (19)

Similarly from (10a) we may define an instantaneous density by the relation
p=Fi. (202)

Then we may speak of an instantaneous velocity ¢ given by

d=1 (21a)
P
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and an instantaneous characteristic resistance pc. Then

i— L (2(L o
VXae= l¢p69(61(2)+233)'

(10a) becomes

T\ _ aq
Vx(i)'—lq»ﬂa:

389

(22a)

(23a)

where [, is a unit vector in the fixed direction of the velocity. These are the
equations of motion which apply to a very small disturbance superposed

on a finite disturbance.



