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CHAPTER VII
EQUATIONS FOR TRAVELING-WAVE TUBE

SyNopsIS OF CHAPTER

N CHAPTER VI we have expressed the properties of a circuit in terms

of its normal modes of propagation rather than its physical dimensions.

In this chapter we shall use this representation in justifying the circuit

equation of Chapter II and in adding to it a term to take into account the

local fields produced by a-c space charge. Then, a combined circuit and

ballistical equation will be obtained, which will be used in the following
chapters in deducing various properties of traveling-wave tubes.

In doing this, the first thing to observe is that when the propagation con-
stant I' of the impressed current is near the propagation constant I'y of a
particular active mode, the excitation of that mode is great and the excita-
tion varies rapidly as I' is changed, while, for passive modes or for active
modes for which I' is not near to the propagation constant I', , the excita-
tion varies more slowly as I" is changed. It will be assumed that T is nearly
equal to the propagation constant I', of one active mode, is not near to the
propagation constant of any other mode and varies over a small fractional
range only. Then the sum of terms due to all other modes will be regarded
as a constant over the range of I' considered. It will also be assumed that
the phase velocities corresponding to I' and I'; are small compared with
the speed of light. Thus, (6.47) and (6.47a) are replaced by (7.1), where the
first term represents the excitation of the I'' mode and the second term repre-
sents the excitation of passive and “non-synchronous” modes. In another
sense, this second term gives the field produced by the electrons in the ab-
sence of a wave propagating on the circuit, or, the field due to the “space
charge” of the bunched electron stream. Equation (7.1) is the equation for
the distributed circuit of Fig. 7.1. This is like the circuit of Fig. 2.3 save for
the addition of the capacitances C; between the transmission circuit and
the electron beam. We see that, because of the presence of these capaci-
tances, the charge of a bunched electron beam will produce a field in addi-
tion to the field of a wave traveling down the circuit. This circuit is intui-
tively so appealing that it was originally thought of by guess and justified
later.

Equation (7.1), or rather its alternative form, (7.7), which gives the volt-
age in terms of the impressed charge density, can be combined with the
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ballistical equation (2.22), which gives the charge density in terms of the
voltage, to give (7.9), which is an equation for the propagation constant.
The attenuation, the difference between the electron velocity and the phase
velocity of the wave on the circuit in the absence of electrons and the dif-
ference between the propagation constant and that for a wave traveling
with the electron speed are specified by means of the gain parameter C
and the parameters d, b and é. It is then assumed that d, b and § are around
unity or smaller and that C is much smaller than unity. This makes it pos-
sible to neglect certain terms without serious error, and one obtains an
equation (7.13) for &.

In connection with (7.7) and Fig. 7.1, it is important to distinguish be-
tween the circuit vollage V., corresponding to the first term of (7.7), and
the total voltage V" acting on the electrons. These quantities are related
by (7.14). The a-c velocity v and the convection current i are given within
the approximation made (C < 1) by (7.15) and (7.16).

: ITTTTTTTT.

7.1 ApproxIMATE Circulitr EqQuaTtion

From (6.47) we can write for a current J = 7 and a summation over #
modes

Py (E°/B°P)aT's

B = /D0 4+ 80 20 %)

This has a number of poles at I' = T', . We shall be interested in cases
in which I' is very near to a particular one of these, which we shall call
I'y . Thus the term in the expansion involving I, will change rapidly with
small variations in I'. Moreover, even if (E2/8P), and TI'; have very small
real components, I'f — I'? can be almost or completely real for values of T'
which have only small real components. Thus, one term of the expansion,
that involving T';, can go through a wide range of phase angles and magni-
tudes for very small fractional variations in T, fractional variations, as it
turns out, which are of the order of C over the range of interest.

The other modes are either passive modes, for which even in a lossy
circuit (E*/8°P), is almost purely imaginary, and T, almost purely real,

(6.47a)
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or they are active modes which are considerably out of synchronism with
the electron velocity. Unless one of these other active modes has a propaga-
tion constant I', such that | (I; — Ty)/T | is so small as to be of the order
of C, the terms forming the summation will not vary very rapidly over the
range of variation of I' which is of interest.

We will thus write the circuit equation in the approximate form

Uy (EY/pP) 2.
= [,2‘2 - —} i (7.1)
2(ri — ) wCy

Here there has been a simplification of notation. E is the z component
of electric field, as in Chapter II, and is assumed to vary as exp(—TI).
(E2/B*P) is taken to mean the value for the I'y mode. It has been assumed
that 82 is small compared with | ' | and | T2 |, and B has been neglected
in comparison with these quantities.

Further, it has been pointed out that for slightly lossy circuits, (E/B*P)
will have only a small imaginary component, and we will assume as a valid
approximation that (E?/g*P) is purely real. We cannot, however, safely
assume that Iy is purely imaginary, for a small real component of I'y can
affect the value of I'; — I greatly when I' is nearly equal to T’ .

The first term on the right of (7.1) represents fields associated with the
active mode of the circuit, which is nearly in synchronism with the elec-
trons. We can think of these fields as summing up the effect of the elec-
trons on the circuit over a long distance, propagated to the point under
consideration.

The term (—jT?/wC;) in (7.1) sums up the effect of all passive modes
and of any active modes which are far out of synchronism with the elec-
trons. It has been written in this form for a special purpose; the term will
be regarded as constant over the range of I' considered, and C; will be given
a simple physical meaning.

This second term represents the field resulting from the local charge den-
sity, as opposed to that of the circuit wave which travels to the region
from remote points. Let us rewrite (7.1) in terms of voltage and charge
density

av

E=-5 =TV (7.2)

From the continuity equation

i = (jw/T)p (2.18)

jols(BYEP) | 1
V= [ ari-r) * cl] g *3)
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We see that C; has the form of a capacitance per unit length. We can, for
instance, redraw the transmission-line analogue of Fig. 2.3 as shown in Fig.
7.1. Here, the current / is still the line current; but the voltage V acting on
the beam is the line voltage plus the drop across a capacitance of C, farads

per meter.
Consider as an illustration the case of unattenuated waves for which
I‘l = jﬁ]_ (7.5)
I = j8 (7.6)

where 8, and B are real. Then

. [msl(ﬂ/ﬁﬂp) 1
- 6l .1

In (7.7), the first term in the brackets represents the impedance pre-
sented to the beam by the “circuit”; that is, the ladder network of Figs.
2.3 and 7.1. The second term represents the additional impedance due to
the capacitance C;, which stands for the impedance of the nonsynchronous
modes. We note that if 3 < f,, that is, for a wave faster than the natural
phase velocity of the circuit, the two terms on the right are of the same
sign. This must mean that the “circuit” part of the impedance is capacitive.
However, for 8 > 8, , that is, for a wave slower than the natural phase veloc-
ity, the first term is negative and the “circuit” part of the impedance is
inductive. This is easily explained. For small values of 8 the wavelength of
the impressed current is long, so that it flows into and out of the circuit at
widely separated points. Between such points the long section of series
inductance has a higher impedance than the shunt capacitance to ground;
the capacitive effect predominates and the circuit impedance is capacitive.
However, for large values of 8 the current flows into and out of the circuit
at points close together. The short section of series inductance between
such points provides a lower impedance path than does the shunt capaci-
tance to ground; the inductive impedance predominates and the circuit
impedance is inductive. Thus, for fasf waves the circuit appears capacitive
and for slow waves the circuit appears inductive.

Since we have justified the use of the methods of Chapter II within the
limitations of certain assumptions, there is no reason why we should not
proceed to use the same notation in the light of our fuller understanding.
We can now, however, regard 1" not as a potential but merely as a convenient
variable related to the field by (7.2).

From (2.18) and (7.3) we obtain

ITy(EY/gP 4T 7.
V= [z(r‘i -1~ wCJ:I ’ (7.8)
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We use this together with (2.22)

. dLaxV
2Vo(jB. — T)*

We obtain the overall equation

JToB.T [PI\(E""/HP) B ﬂ‘:l (7.9)

(2.22)

T W8 DL AN - T) WG
In terms of the gain parameter C, which was defined in Chapter II,
C' = (E/B*P)(I1o/8V0) (2.43)

we can rewrite (7.8)
, . j2B,T2TCP 48, T2C?
(Jﬂz - I‘) = (I‘i _ I-.z) + mcl(Ez/ﬁEP)
We will be interested in cases in which T and T'; differ from 8. by a small
amount only. Accordingly, we will write

—I = —Jﬂc + Bac (7.11)

(7.10)

The propagation constant T' describes propagation in the presence of
electrons. A positive real value of 6 means an increasing wave. A positive
imaginary part means a wave traveling faster than the electrons.

The propagation constant I'; refers to propagation in the circuit in the
absence of electrons. A positive value of & means the electrons go faster
than the undisturbed wave. A positive value d means that the wave is an
attenuated wave which decreases as it travels.

If we use (7.11) and (7.12) in connection with (7.10) we obtain

_ [1 + C(2s — CNIL + Cb — jd)]

[—b + jd + js + C(jbd — /2 + &*/2 + 8°/2)]

48,101 + C(2j8 — C)IC
wCy( L2/ 8*P)

We will now assume that | 8 | is of the order of unity, that | 4| and | d |
range from zero to unity or a little larger, and that C <<'1. We will then neg-
lect the parentheses multiplied by C, obtaining
R N

(—=b+ jd + jd)

b

(7.13)

5 4QC (7.14)

_ B
Q = Cw/Fp) (7.15)
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The quantity «C; has the dimensions of admittance per unit length,
B. has the dimensions of (length)~! and (E2?/G2P) has the dimensions of
impedance. Thus, ( is a dimensionless parameter (the space-charge param-
eter) which may be thought of as relating to the impedance parameter
(E*/8*P) associated with the synchronous mode the impedance (8./wC)),
attributable to all modes but the synchronous mode.

At this point it is important to remember that there are not only two im-
pedances, but two voltage components as well, Thus, in (7.8), the first
term in the brackets times the current represents the “circuit voltage”,
which we may call V.. The second term in the brackets represents the
voltage due to space charge, the voltage across the capacitances C; . The
two terms in the brackets are in the same ratio as the two terms on the right
of (7.14), which came from them. Thus, we can express the circuit com-
ponent of voltage V. in terms of the total voltage V" acting on the beam either
from (7.8) as

_ j2ri — 1) T,
v, = [1 - L PI(EZ/,BzP):I y (7.16)

or, alternatively, from (7.14) as
Ve=[1 — 4QC(—b + jd + j&)|”'V (7.17)

From Chapter IT we have relations for the electron velocity (2.15) and
electron convection current (2.22). If we make the same approximations
which were made in obtaining (7.14), we have

(Gt C/n)v = ;1 (7.18)

4

(=2V C*/D)i = N (7.19)

We should remember also that the variation of all quantities with 2z
is as

¢ Patfact (7.20)

The relations (7.18)-(7.19) together with (2.36), which tells us that the
characteristic impedance of the circuit changes little in the presence of
electrons if C is small, sum up in terms of the more important parameters
the linear operation of traveling-wave tubes in which C is small. The param-
eters are: the gain parameter C, relative electron velocity parameter &,
circuit attenuation parameter d and space-charge parameter Q. In follow-
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ing chapters, the practical importance of these parameters in the opera-
tion of traveling-wave tubes will be discussed. '

There are other effects not encompassed by these equations. The effect
of transverse electron motions is small in most tubes because of the high
focusing fields employed; it will be discussed in a later chapter. The dif-
ferences between a field theory in which different fields act on different elec-
trons and the theory leading to (7.14)-(7.20), which apply accurately
only when all electrons at a given z-position are acted on by the same field,
will also be discussed.



CHAPTER VIII
THE NATURE OF THE WAVES

Synopsis oF CHAPTER

N THIS CHAPTER we shall discuss the effect of the various parame-

ters on the rate of increase and velocity of propagation of the three

forward waves. Problems involving boundary conditions will be deferred
to later chapters.

The three parameters in which we are interested are those of (7.13),
that is, &, the velocity parameter, d, the attenuation parameter and QC,
the space-charge parameter. The fraction by which the electron velocity is
greater than the phase velocity for the circuit in the absence of electrons
is 8C. The circuit attenuation is 54.6 dC db/wavelength. Q is a factor de-
pending on the circuit impedance and geometry and on the beam diameter.
For a helically conducting sheet of radius ¢ and a hollow beam of radius
a;, Q) can be obtained from Fig. 8.12.

The three forward waves vary with distance as

g#jﬁe(l—uc‘)zeﬂez(!z

g, =2

U

Thus, a positive value of y means a wave which travels faster than the
electrons, and a positive value of x means an increasing wave. The gain in
db per wavelength of the increasing waves is BC, and B is defined by (8.9).

Figure 8.1 shows x and y for the three forward waves for a lossless circuit
(d = 0). The increasing wave is described by a1, 4 . The gain is 2 maximum
when the electron velocity is equal to the velocity of the undisturbed wave,
or, when ¥ = 0. For large positive values of # (electrons much faster than
undisturbed wave), there is no increasing wave. However, there is an in-
creasing wave for all negative values of 4 (all low velocities). For the increas-
ing wave, y: is negative; thus, the increasing wave travels more slowly
than the electrons, even when the electrons travel more slowly than the cirenil
wave in the absence of elecirons. For the range of & for which there is an
increasing wave, there is also an attenuated wave, described by 2 = — x,
and y» = y;. There is also an unattenuated wave described by v3(x; = 0).

For very large positive and negative values of 4, the velocity of two
of the waves approaches the electron velocity (v approaches zero) and the
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velocity of the third wave approaches the velocity of the circuit wave in the
absence of electrons (y approaches minus &). For large negative values of
b, %1, v and x2, y; become the “electron” waves and y; becomes the ‘cir-
cuit” wave. For large values of &, y; and y; become the “electron” waves and
y2 becomes the “circuit” wave. The “circuit” wave is essentially the wave
in the absence of electrons, modified slightly by the presence of a non-syn-
chronous electron stream. The ‘“‘electron waves” represent the motion of
“bunches” along the electron stream, slightly affected by the presence of
the circuit.

Figures 8.2 and 8.3 indicate the effect of loss. Loss decreases the gain of
the increasing wave, adds to the attenuation of the decreasing wave and
adds attenuation to the wave which was unattenuated in the lossless case.
For large positive and negative values of &, the attenuation of the circuit
wave (given by x; for negative values of & and &, for positive values of &)
approaches the attenuation in the absence of electrons.

Figure 8.4 shows B, the gain of the increasing wave in db per wavelength
per unit C. Figure 8.5 shows, for & = 0, how B varies with d. The dashed
line shows a common approximation: that the gain of the increasing wave
is reduced by % of the circuit loss. Figure 8.6 shows how, for & = 0, xy,
%3 and x3 vary with d. We see that, for large values of d, the wave described
by x. has almost the same attenuation as the wave on the circuit in the
absence of electrons.

Figures 8.7-8.9 show x, y for the three waves with no loss (¢ = 0) but
with a-c space charge taken into account (QC # 0). The immediately
striking feature is that there is now a minimum value of b below which
there is no increasing wave.

We further note that, for large negative and positive values of &, v for
the electron waves approaches &2 4/QC. In these ranges of b the electron
waves are dependent on the electron inertia and the field produced by a-c
space charge, and have nothing to do with the active mode of the circuit.

As QC is made larger, the value of & for which the gain of the increasing
wave is a maximum increases. Now, C is proportional to the cube root of
current. Thus, as current is increased, the voltage for maximum gain of the
increasing wave increases. An increase in optimum operating voltage with
an increase in current is observed in some tubes, and this is at least partly
explained by these curves.* There is also some decrease in the maximum
value of x; and hence of B as QC is increased. This is shown more clearly in
Fig. 8.10.

If x and B remained constant when the current is varied, then the gain
per wavelength would rise as C, or, as the 3 power of current. However,

* Other factors include a possible lowering of electron speed because of d-c space
charge, and boundary condition effects.
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we see from Fig. 8.10 that B falls as QC is increased. The gain per wave-
length varies as BC and, because ( is constant for a given tube, it varies as
BQC. In Fig. 8.11, BQC, which is proportional to the gain per wavelength
of the increasing wave, is plotted vs QC, which is proportional to the }
power of current. For very small values of current (small values of QC),
the gain per wavelength is proportional to the 3 power of current. For
larger values of QC, the gain per wavelength becomes proportional to the
1 power of current,

It would be difficult to present curves covering the simultaneous effect
of loss (d) and space charge (QC). As a sort of substitute, Figs. 8.13 and 8.14
show dx;/dd for d = 0 and b chosen to maximize x;, and dx,/8(QC) for
QC = 0 and b = 0. We see from 8.13 that, while for small values of QC
the gain of the increasing wave is reduced by % of the circuit loss, for large
values of QC the gain of the increasing wave is reduced by % of the circuit

loss.

8.1 Errecr oF VarviNG THE ELEcTRON VELOCITY
Consider equation (7.13) in case d = 0 (no attenuation) and Q = 0
(neglect of space-charge). We then have
8 + jb) = —j (8.1)
Here we will remember that
B. = w/uo (8.2)
—I't = —j8.(1 + Cb) = —ju/v (8.3)

Here 7, is the phase velocity of the wave in the absence of electrons, and #,
is the electron speed. We see that

= (1+ Cb)n, (8.4)

Thus, (1 4+ Cb) is the ratio of the electron velocity to the velocity of the
undisturbed wave, that is, the wave in the absence of electrons. Hence, &
is a measure of velocity difference between electrons and undisturbed wave.
For & > 0, the electrons go faster than the undisturbed wave; for & < 0
the electrons go slower than the undisturbed wave. For & = 0 the electrons
have the same speed as the undisturbed wave.

If & = 0, (8.1) becomes

3= —j (8.5)

which we obtained in Chapter IL
In dealing with (8.1), let

= x + j:\'
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The meaning of this will be clear when we remember that, in the pres-
ence of electrons, quantities vary with z as (from (7.10))
g Belrich

_ s puoe ®6)
If v is the phase velocity in the presence of electrons, we have
w/v = (w/uo)(1 — Cy) 8.7)
If Cy < 1, very nearly
v = ue(1 + Cy) (8.8)

In other words, if ¥ > 0, the wave travels faster than the electrons; if
y < 0 the wave travels more slowly than the electrons.

From (8.6) we see that, if > 0, the wave increases as it travels and if
x < 0 the wave decreases as it travels. In Chapter IT we expressed the
gain of the increasing wave as

BCN db
where N is the number of wavelengths. We see that

B = 20(27)(logye)x

B = 54.5x (39

In terms of x and y, (8.1) becomes
@@= +b+2y+1=0 (8.10)
x(x2 — 3yt — 290) = 0 (8.11)

We see that (8.11) yields two kinds of roots: those corresponding to
unattenuated waves, for which ¥ = 0 and those for which

2= 3y*+ 29 (8.12)
If x = 0, from (8.10)
Yo +b) =1
(8.13)
b=—y+1/y

If we assume values of y ranging from perhaps 44 to —4 we can find the
corresponding values of b from (8.13), and plot out y vs b for these unattenu-

ated waves.
For the other waves, we substitute (8.12) into (8.10) and obtain

298 + 8y + 8y + 1 =10 (8.14)
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This equation is a quadratic in b, and, by assigning various values of v,
we can solve for b, We can then obtain x from (8.12).

In this fashion we can construct curves of x and y vs b. Such curves are
shown in Fig. 8.1.

We see that for

b < (3/2)(2)"°
there are two waves for which x ## 0 and one unattenuated wave. The in-
creasing and decreasing waves (v # 0) have equal and opposite values of

x, and since for them y < 1, they travel more slowly than the electrons,
even when the electrons travel more slowly than the undisturbed wave. It can be
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Fig. 8.1—The three waves vary with distance as exp (—j8. + 78.Cy + B.Cx)z. Here
the x’s and ¥’s for the three waves are shown vs the velocity parameter b for no attenua-
tion (d = 0) and no space charge (QC = 0).

shown that the electrons must travel faster than the increasing wave in
order to give energy to it.

For b > (3/2)(2)"", there are 3 unattenuated waves: two travel faster
than the electrons and one more slowly.

For large positive or negative values of b, two waves have nearly the
electron speed (| y | small) and one wave travels with the speed of the un-
disturbed wave. We measure velocity with respect to electron velocity.
Thus, if we assigned a parameter y to describe the velocity of the undis-
turbed wave relative to the electron velocity, it would vary as the 45°
line in Fig. 8.1.

The data expressed in Fig. 8.1 give the variation of gain per wavelength
of the undisturbed wave with electron velocity, and are also useful in fitting
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boundary conditions; for this we need to know the three #’s and the three
y's.

In a tube in which the total gain is large, a change in b of &= 1 about b =
0 can make a change of several db in gain. Such a change means a difference
between phase velocity of the undisturbed wave, 7;, and electron velocity
uy by a fraction approximately 4=C. Hence, the allowable difference between
phase velocity v, of the undisturbed wave, which is a function of frequency,
and electron velocity, which is not, is of the order of C.

8.2 EFFECT OF ATTENUATION

If we say that d # 0 but has some small positive value, we mean that the
circuit is lossy, and in the absence of electrons the voltage decays with
distance as

—B8.Cd
gﬂe

Hence, the loss L in db/wavelength is
L = 20(27)(loge)Cd

(8.15)
L = 54.5Cd db/wavelength

or
d = 01836 (L/C) (8.16)

For instance, for C = .025, d = 1 means a loss of 1.36 db/wavelength.
If we assume d # 0 we obtain the equations

(a2 — )y 4+ 8) + 2ayx+ d) +1=10 (8.17)
(= )+ d) — 2oy + ) = 0 (8.18)

The equations have been solved numerically for d = .5 and d = 1, and the
curves which were obtained are shown in Figs. 8.2 and 8.3. We see that for
a circuit with attenuation there is an increasing wave for all values of b
(electron velocity). The velocity parameters y; and 7, are now distinct for
all values of b.

We see that the maximum value of x; decreases as loss is increased. This
can be brought out more clearly by showing x; vs b on an expanded scale.
It is perhaps more convenient to plot B, the db gain per wavelength per
unit C, vs b, and this has been done for various values of d in Fig. 8.4.

We see that for small values of d the maximum value of x; occurs very
near to b = 0. If we let & = 0 in (8.17) and (8.18) we obtain

y — )+ 2uy(x+d) +1=0 (8.19)
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(a2 — ¥)(x + d) — 25y = 0 (8.20)
We can rewrite (8.20) in the form
1+ d/x 1/2
. 8.21
oo (3 ¥ d/x) (820
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Fig. 8.2—The «'s and 4’s for a circuit with attenuation (d = .5).
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Fig. 8.3—The 2's and ¥’s for a circuit with attenuation (d = 1).

If we substitute this into (8.19) we can solve for x in terms of the parame-

ter d/x
(3 + d/x)lfﬁ 1/3
1+ dfx (8.22)

x = F
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Here we take both upper signs or both lower signs in (8.21) and (8.22).
If we assume d/x << 1 and expand, keeping no powers of d/x higher than
the first, we obtain

z=F (V3/2)( — (1/3(d/x) (8.23)

The plus sign will give x,, which is the x for the increasing wave. Let w0
be the value of x; for d = 0 (no loss).

20 = V/3/2 (8.24)

50
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Fig. 8.4—The gain of the increasing wave is BCN db, where N is the number of wave-
lengths.

Then for small values of d

x = x(1 — (1/3)(d/x0))
(8.25)
X = Xy — 1/3d

This says that, for small losses, the reduction of gain of the increasing wave
from the gain in db for zero loss is § of the circuit attenuation in db. The
reduction of net gain, which will be greater, can be obtained only by match-
ing boundary conditions in the presence of loss (see Chapter IX).

In Fig. 8.5, B = 54.6 x; has been plotted vs d from (8.22). The straight
line is for x;, = /3.

In Fig. 8.6, —x;, 2 and x; have been plotted vs d for a large range in 4.
As the circuit is made very lossy, the waves which for no loss are unattenu-
ated and increasing turn into a pair of waves with equal and opposite small
attenuations. These waves will be essentially disturbances in the electron
stream, or space-charge waves. The original decreasing wave turns into a
wave which has the attenuation of the circuit, and is accompanied by small
disturbances in the electron stream.
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8.3 Space-CHARGE ErFECTS

Suppose that we let d, the attenuation parameter, be zero, but consider
cases in which the space-charge parameter QC is not zero. We then obtain
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Fig. 8.5—For & = 0, that is, for electrons with a velocity equal to the circuit phase
velocity, the gain factor B falls as the attenuation parameter d is increased. For small
values of d, the gain is reduced by % of the circuit loss.
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Fig. 8.6—How the three «'s vary for b = 0 and for large losses.

the equations
(= )b+ ¥) + 2%y +40C0 +y) + 1 =10 (8.26)
2@ — 9% — 2y +5) + QC1 =0 (8.27)

Solutions of this have been found by numerical methods for QC = .25,
5 and 1; these are shown in Figs. 8.7-8.9,
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We see at once that the electron velocity for maximum gain shifts mark-
edly as QC is increased. Hence, the region around & = 0 is not in this case
worthy of a separate investigation.
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Fig. 8.7—The «'s and 4's for the three waves with zero loss (¢ = 0) but with space
charge (QC = .25).
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Fig. 8.8—The «’s and y’s with greater space charge (QC = .5).

It is interesting to plot the maximum value of x; vs. the parameter QC.
This has, in effect, been done in Fig. 8.10, which shows B, the gain in db
per wavelength per unit C, vs. OC.

We can obtain a curve proportional to db per wavelength by plotting
BQC vs. QC. (Q is independent of current.) This has been done in Fig.
8.11. For QC < 0.025, the gain in db per wavelength varies linearly with
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QC. Chu and Rydbeck found that under certain conditions gain varies
approximately as the ¥ power of the current. This would mean a slope of 2
on Fig. 8.11. A § power dashed line is shown in Fig. 8.11; it fits the upper
part of the curve approximately.
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Fig. 8.9—The #’s and #’s with still greater space charge (QC = 1).
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Fig. 8.10—How the gain factor B decreases as QC is increased, for the value of b which
gives a maximum value of x; .

If we examine Figs. 8.7-8.9 we find that for large and small values of &
there are, as in other cases, a circuit wave, for which y is nearly equal to
—b, and two space-charge waves. For these, however, v does not approach
ZEero.

Let us consider equation (7.13). If & is large, the first term on the right
becomes small, and we have approximately

8 = +j20/0C (8.28)
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These waves correspond to the space-charge waves of Hahn and Ramo, and
are quite independent of the circuit impedance, which appears in (8.28)
merely as an arbitrary parameter defining the units in which § is measured.
Equation (8.28) also describes the disturbance we would get if we shorted
out the circuit by some means, as by adding excessive loss.

Practically, we need an estimate of the value of Q for some typical cir-
cuit. In Appendix IV an estimate is made on the following basis: The helix
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Fig. 8.11—The variation of a quantity proportional to the cube of the gain of the in-
creasing wave (ordinate) with a quantity proportional to current (abscissa), For very
small currents, the gain of the increasing wave is proportional to the 3 power of current,
for large currents to the } power of current.

of radius @ is replaced by a conducting cylinder of the same radius, a thin
cylinder of convection current of radius a; and current of 7 exp(—jB2) is
assumed, and the field is calculated and identified with the second term on
the right of (7.1). R. C. Fletcher has obtained a more accurate value of Q
by a rigorous method. His work is reproduced in Appendix VI, and in Fig.
1 of that appendix, Fletcher’s value of Q is compared with the approximate
value of Appendix IV,

In Fig. 8.12, the value Q(8/v)* of Appendix IV is plotted vs. ya for a/a
=9, 8,.7. Fora;/a =1,Q = 0.1In a typical 4,000 mc traveling-wave
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tube, ya = 2.8 and C is about .025. Thus, if we take the effective beam
radius as .5 times the helix radius, Q = 5.6 and QC = .14,

We note from (7.14) that Q is the ratio of a capacitive impedance to
(E2/A2P). In obtaining the curves of Fig. 8.12, the value of (E*/*P) for a
helically conducting sheet was assumed. This is given by (3.8) and (3.9).
If (E?/3*P) is different for the circuit actually used, and it is somewhat
different, even for an actual helix, Q from Fig. 8.12 should be multiplied
by (E2/P) for the helically conducting sheet, from (3.8) and (3.9), and
divided by the value of (E?/8P) for the circuit used.
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Fig. 8.12—Curves for obtaining Q for a helically conducting sheet and a hollow beam.
The radius of the helically conducting sheet is @ and that of the beam is a; .

8.4 DIFFERENTIAL RELATIONS

It would be onerous to construct curves giving é as a function of & for
many values of attenuation and space charge. In some cases, however,
useful information may be obtained by considering the effect of adding a
small amount of attenuation when QC is large, or of seeing the effect of

space charge when QC is small but the attenuation is large. We start with
(7.13)

) 1

TR

(7.13)
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Let us first differentiate (7.13) with respect to 8 and d
—jdd — jdé
(=b+jd+jd)

25 dé = (8.29)
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Fig. 8.13—A curve giving the rate of change of a1 with attenuation parameter d for
d = 0 and for various values of the space-charge parameter QC. For small values of QC
the gain of the increasing wave is reduced by } of the circuit loss; for large values of QC
the gain of the increasing wave is reduced by § of the circuit loss.
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Fig. 8.14—A curve showing the variation of % with QC for QC = 0 and for various
values of the attenuation parameter d.

By using (7.13) we obtain
ds = (__jza_“ - 1)d1 dd (8.30)
(8* + 4QC)*
If we allow d to be small, we can use the values of § of Figs. 8.7-8.9 to plot
the quantity

Re(d8,/dd) = dw,/dd (8.31)



THE NATURE OF THE WAVES 411

vs. QC. In Fig. 8.13, this has been done for & chosen to make ¥, a maximum.
We see that a small loss dd causes more reduction of gain as QC is increased
(more space charge).

Let us now differentiate (7.13) with respect to QC

—j dob

2 = - .32
Bdb = T 44(QC) (8.32)
By using (7.13) with QC = 0 we obtain
_ —4
dé (f—t-j_ﬁ‘*) d(QC) (8.33)

In Fig. 8.14, dx/d(QC) has been plotted vs. d for & = 0.

We see that the reduction of gain for a small amount of space charge
becomes greater, the greater the loss is increased (¢ increased).

Both Fig. 8.13 and Fig. 8.14 indicate that for large values of QC or d the
gain will be overestimated if space charge (QC) and loss (d) are considered
separately.



CHAPTER IX
DISCONTINUITIES

Synopsis OF CHAPTER

E WANT TO KNOW the overall gain of traveling-wave tubes. So

far, we have evaluated only the gain of the increasing wave, and we
must find out how strong an increasing wave is set up when a voltage is
applied to the circuit.

Beyond this, we may wish for some reason to break the circuit up into
several sections having different parameters. For instance, it is desirable
that a traveling-wave tube have more loss in the backward direction than it
has gain in the forward direction. If this is not so, small mismatches will
result either in oscillation or at least in the gain fluctuating violently with
frequency. We have already seen in Chapter VIII the effect of a uniform
loss in reducing the gain of the increasing wave. We need to know also the
overall effect of short sections of loss in order to know how loss may best
be introduced.

Such problems are treated in this chapter by matching boundary con-
ditions at the points of discontinuity. It is assumed that there is no re-
flected wave at the discontinuity. This will be very nearly so, because the
characteristic impedances of the waves differ little over the range of loss
and velocity considered. Thus, the total voltages, a-c convection currents
and the a-c velocities on the two sides of the point of discontinuity are set
equal. ’

For instance, at the beginning of the circuit, where the unmodulated elec-
tron stream enters, the total a-c velocity and the total a-c convection cur-
rent—that is, the sums of the convection currents and the velocities for the
three waves—are set equal to zero, and the sum of the voltages for the three
waves is set equal to the applied voltage.

For the case of no loss (d = 0) and an electron velocity equal to circuit
phase velocity (b6 = 0) we find that the three waves are set up with equal
voltages, each  of the applied voltage. The voltage along the circuit will
then be the sum of the voltages of the three waves, and the way in which
the magnitude of this sum varies with distance along the circuit is shown in
Fig. 9.1. Here CNV measures distance from the beginning of the circuit and
the amplitude relative to the applied voltage is measured in db.

The dashed curve represents the voltage of the increasing wave alone.

412
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For large values of CN corresponding to large gains, the increasing wave
predominates and we can neglect the effect of the other waves. This leads
to the gain expression

G = A+ BCN db

Here BCN is the gain in db of the increasing wave and 4 measures its ini-
tial level with respect to the applied voltage.

In Fig. 9.2, 4 is plotted vs. b for several values of the loss parameter d.
The fact that A4 goes to = for d = 0 as b approaches (3/2) (2)"* does not
imply an infinite gain for, at this value of 4, the gain of the increasing wave
approaches zero and the voltage of the decreasing wave approaches the
negative of that for the increasing wave.

Figure 9.3 shows how A varies with d for & = 0. Figure 9.4 shows how 4
varies with QC for d = 0 and for b chosen to give a maximum value of B
(the greatest gain of the increasing wave).

Suppose that for &8 = QC = 0 the loss parameter is suddenly changed from
zero to some finite value d. Suppose also that the increasing wave is very
large compared with the other waves reaching the discontinuity. We can
then calculate the ratio of the increasing wave just beyond the discon-
tinuity to the increasing wave reaching the discontinuity. The solid line of
Fig. 9.5 shows this ratio expressed in decibels, We see that the voltage of
the increasing wave excited in the lossy section is less than the voltage of
the incident increasing wave.

Now, suppose the waves travel on in the lossy section until the increasing
wave again predominates. If the circuit is then made suddenly lossless, we
find that the increasing wave excited in this lossless section will have a
greater voltage than the increasing wave incident from the lossy section,
as shown by the dashed curve of Fig. 9.5. This increase is almost as great as
the loss in entering the lossy section. Imagine a tube with a long lossless
section, a long lossy section and another long lossless section. We see that
the gain of this tube will be less than that of a lossless tube of the same
total length by about the reduction of the gain of the increasing wave in
lossy section.

Suppose that the electromagnetic energy of the circuit is suddenly ab-
sorbed at a distance beyond the input measured by CN. This might be
done by severing a helix and terminating the ends. The a-c velocity and
convection current will be unaffected in passing the discontinuity, but the
circuit voltage drops to zero. For d = & = QC = 0, Fig. 9.6 shows the
ratio of ¥y, the amplitude of the increasing wave beyond the break, to
V, the amplitude the increasing wave would have had if there were no break.
We see that for CNV greater than about 0.2 the loss due to the break is not
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serious. For CN large (the break far from the input) the loss approaches
3.52 db.

Beyond such a break, the total voltage increases with CN as shown in
Fig. 9.7, and from CN = 0.2 the circuit voltage is very nearly equal to the
voltage of the increasing wave.

Often, for practical reasons loss is introduced over a considerable distance,
sometimes by putting lossy material near to a helix. Suppose we use CN
computed as if for a lossless section of circuit as a measure of length of
the lossy section, and assume that the loss is great enough so that the circuit
voltage (as opposed to that produced by space charge) can be taken as zero.
Such a lossy section acts as a drift space. Suppose that an increasing wave
only reaches this lossy section. The amplitude of the increasing wave ex-
cited beyond the lossy section in db with respect to the amplitude of the in-
creasing wave reaching the lossy section is shown vs. CN, which measures
the length of the lossy section, in Fig. 9.8.

9.1 GENERAL BounDARY CONDITIONS

We have already assumed that C is small, and when this is so the charac-
teristic impedance of the various waves is near to the circuit characteristic
impedance K. We will neglect any reflections caused by differences among
the characteristic impedances of the various waves.

We will consider cases in which the circuit is terminated in the +z direc-
tion, so as to give no backward wave. We will then be concerned with the
3 forward waves, for which 8 has the values 8, , &, §; and the waves repre-
sented by these values of & have voltages Vi, Vi, Vs, electron velocities
v, v, v; and convection currents % , i, 3.

Let V, v, i be the total voltage, velocity and convection current at z = 0.
Then we have

and from (7.15) and (7.16),
V- Vv . -
oy Ve Vs Guc/me (0.2)
01 b2 83
1% V. V.
3% + 8_22 + 3‘5 = (=2VoC¥/Io)i (9.3)

These equations yield, when solved,
Vl = [V —_ (52 + 53)@1![)6‘/1))'&‘ + 5;53(—2V0C2/fn)1]
[(1 — &/8)(1 — 8o/8)]"

We can obtain the corresponding expressions for Vs and Vs simply by inter-

(9.4)
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changing subscripts; to obtain V., for instance, we substitute subscript
2 for 1 and subscript 1 for 2 in (9.4).

9.2 Losstess HeLix, Syncuronous Verocrty, No SpacE CHANGE

Suppose we consider the case in which & = d = Q = 0, so that we have
the values of & obtained in Chapter II

bo=¢ "= 4/3/2 — j1/2
b= P = — \/3/2 — j1/2 (9.5)
8y = et = j

Suppose we inject an unmodulated electron stream into the helix and
apply a voltage V. The obvious thing is to say that,atz = 0,2 = i = 0.
It is not quite clear, however, that v = 0 at z = 0 (the beginning of the
circuit). Whether or not there is a stray field, which will give an initial
velocity modulation, depends on the type of circuit. Two things are true,
however. For the small values of C usually encountered such a velocity
modulation constitutes a small effect. Also, the fields of the first part of
the helix act essentially to velocity modulate the electron stream, and hence
a neglect of any small initial velocity modulation will be about equivalent
to a small displacement of the origin.
If, then, we let » = 7 = 0 and use (9.4) we obtain

Vi= VI(1 — &/6)(1 — &/8)]" (9.6)
V,=V/3 (9.7)

Similarly, we find that
Vo=Vy=V/3 (9.8)

We have used V" to denote the voltage at z = 0. Let 1, be the voltage at z.
We have

Ve= (V{r"s)g_"lﬂ‘z(gi(”'l)ﬂeCZ'H'\.‘/:;"E)ﬂsC" + eiUDBC—(VEIDB x| ety

. _ _ 9.9
Vo= (V/3)e "9 (1 + 2 cosh ((v/3/2)BeCz)e”"®/PPeC%) ©9)
From this we obtain
| Vo/V | = (1/9)[1 + 4 cosh?(\/3/2)8.Cz
(9.10)

+ 4 cos (3/2)B.Cz cosh (\/3/2)8.Cz)

We can express gain in db as 10 logo | V,/V % and, in Fig. 9.1, gain in db
is plotted vs CN, where N is the number of cycles.

We see that initially the voltage does not change with distance. This is
natural, because the electron stream initially has no convection current,
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and hence cannot act on the circuit until it becomes bunched. Finally, of
course, the increasing wave must predominate over the other two, and the
slope of the line must be

B = 473/CN (9.11)
The dashed line represents the increasing wave, which starts at V./V =

1 (—9.54 db) and has the slope specified by (9.11). Thus, if we write for the
increasing wave that gain G is

G = A + BCN db (9.12)
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Fig. 9.1—How the signal level varies along a traveling-wave tube for the special case
of zero loss and space charge and an electron velocity equal to the circuit phase velocity
(solid curve). The dashed curve is the level of the increasing wave alone, which starts
off with 4 of the applied voltage, or at —9.54 db.

This is an asymptotic expression for the total voltage at large values of z,
where | V1| > | Vo], | Vs, and for b = d = Q = 0

A= —954db

B =473
We see that (9.11) is pretty good for CNV > .4, and not too bad for CNV > .2,

(9.13)

9.3 Loss 1N HEL1x

In Chapter VIII, curves were given for &y , 8z, 83 vs. b for QC = 0 and for
d, the loss parameter, equal to 0, 0.5 and 1. From the data from which these
curves were derived one can calculate the initial loss parameter by means
of (9.6)

A4 =20 logm I V]/ V I (9.14)
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Fig. 9.2—When the gain is large we need consider the increasing wave only. Using
this approximation, the gain in dbis 4 4 BCN db. Here A is shown vs the velocity param-
eter b, several values of the attenuation parameter d, for no space charge (QC = 0).
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Fig. 9.3—A4 vs d for b = 0 and QC = 0.

In Fig. 9.2, 4 is plotted vs b for these three values of d.

It is perhaps of some interest to plot 4 vs d for & = 0 (the electron veloc-
ity equal to the phase velocity of the undisturbed wave). Such a plot is
shown in Fig. 9.3.
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9.4, SpaceE CHARGE

We will now consider the case in which QC # 0. We will deal with this
case only for d = 0, and for 4 adjusted for maximum gain per wavelength.

There is a peculiarity about this case in that a certain voltage V' is applied
to the circuit at z = 0, and we want to evaluate the circuit voltage asso-
ciated with the increasing wave, V., in order to know the gain.

Atz = 0,1 = 0. Now, the term which multiplies i to give the space-charge
component of voltage (the second term on the right in (7.11)) is the same
for all three waves and hence at z = 0 the circuit voltage is the total voltage.
Thus, (9.1)-(9.3) hold. However, after ¥, has been obtained from (9.4), with
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Fig. 9.4—A vs QC for d = 0 and b chosen for maximum gain of the increasing wave.

= V,, v = i = 0, then the circuit voltage ¥y must be obtained through
the use of (7.14), and the initial loss parameter is

A =20 logw | Va/V | (9.15)
By using the appropriate values of 8, the same used in plotting Figs. 8.1
and 8.7-8.9, the loss parameter A was obtained from (9.15) and plotted vs
QC in Fig. 94.
9.5 Cuanck IN Loss

We might think it undesirable in introducing loss to make the whole
length of the helix lossy. For instance, we might expect the power output
to be higher if the last part of the helix had low loss. Also, from Figs. 8.2
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and 8.3 we see that the initial loss A becomes higher as d is increased. This
is natural, because the electron stream can act to cause gain only after it is
bunched, and if the initial section of the circuit is lossy, the signal decays
before the stream becomes strongly bunched.

Let us consider a section of a lossless helix which is far enough from the
input so that the increasing wave predominates and the total voltage V' can
be taken as that corresponding to the increasing wave

V=" (9.16)

Then, at this point
(juaC/m)v = Vi/& 9.17)
(=2VC¥1o)i = Vy/61. (9.18)

Here 6, is the value for d = 0 (and, we assume, & = 0). If we substitute the
values from (9.16) in (9.4), and use in (9.4) the values of § corresponding to
b=Q=0,d # 0, and call the value of V; we obtain V;, we obtain the
ratio of the initial amplitude of the increasing wave in the lossy section to
the value of the increasing wave just to the left of the lossy section. Thus,
the loss in the amplitude of the increasing wave in going from a lossless to a
lossy section is 20 logy | V1/V, | . This loss is plotted vs d in Fig. 8.5.

This loss is accounted for by the fact that | 4,/V; | becomes larger as the
loss parameter d is increased. Thus, the convection current injected into
the lossy section is insufficient to go with the voltage, and the volt-
age must fall.

If we go from a lossy section (d # 0,5 = 0) to a lossless section
(d = 0,b = 0) we start with an excess of convection current and | V7|,
the initial amplitude of the increasing wave to the right of the discontinuity
is greater than the amplitude | V| of the increasing wave to the left. In
Fig. 9.5, 20 logs | V1i/V1 | is plotted vs d for this case also.

We see that if we go from a lossless section to a lossy section, and if the
lossy section is long enough so that the increasing wave predominates at
the end of it, and if we go back to a lossless section at the end of it, the net
loss and gain at the discontinuities almost compensate, and even for d = 3
the net discontinuity loss is less than 1 db. This does not consider the ve-
duction of gain of the increasing wave in the lossy section.

9.6 SEVERED HEeLIX

If the loss introduced is distributed over the length of the helix; the gain
will decrease as the loss is increased (Fig. 8.5). If, however, the loss is dis-
tributed over a very short section, we easily see that as the loss is increased
more and more, the gain must approach a constant value. The circuit will
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be in effect severed as far as the electromagnetic wave is concerned, and any
excitation in the output will be due to the a-c velocity and convection current
of the electron stream which crosses the lossy section.

We will first idealize the situation and assume that the helix is severed
and by some means terminated looking in each direction, so that the voltage
falls from a value V to a value 0 in zero distance, while v and 7 remain un-
changed.

We will consider a case in which & = d = Q = 0, and in which a voltage
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Fig. 9.5—Suppose that the circuit loss parameter changes suddenly with distance
from 0 to d or from d to 0. Suppose there is an increasing wave only incident at the point
of change. How large will the increasing wave beyond the point of change be? These
curves tell (b = QC = 0).

V is applied to the helix N wavelengths before the cut. Then, just before
the cut,

V, = (V/3)e ™ gmieh

Ve = (V/3)e "7 g ver (9.19)

Vy = (V/3) 2 e
and

(jueC/m)n = Vi/&y
(—2VoC*/Io)iy = V1/81

etc.

(9.20)
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Whence, just beyond the break which makes V' = 0, V, v and i are
V=20
(juaC/m)v = Vi/6y + Vo/bs + Vi/s (9.21)
(=2VC3/10)i = Vo/61 + Va/85 + V/63

Putting these values in (9.4), we can find V1, the value of the increasing wave
to the right of the break. The ratio of the magnitude of the increasing wave
to the magnitude it would have if it were not for the break is then | Vi/Vi|,
and this ratio is plotted vs CN in Fig. 9.6, where IV is the number of wave-
lengths in the first section.
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Fig. 9.6—Suppose the circuit is severed a distance measured by CN beyond the input,
so that the voltage just beyond the break is zero. The ordinate is the ratio of the ampli-
tude of the increasing wave beyond the break to that it would have had with an unbroken
circuit (b = QC = 0).

We see that there will be least loss in severing the helix for CV equal to
approximately }. From Fig. 9.1, we see that at CNV = § the voltage is just
beginning to rise. In a typical 4,000 megacycle traveling-wave tube, CN is
approximately unity for a 10 inch helix, so the loss should be put at least
2.5” beyond the input. Putting the loss further on changes things little;
asymptotically, | V1/V | approaches %, or 3.52 db loss, for large values of
CN (loss for from input).

It is of some interest to know how the voltage rises to the right of the cut.
It was assumed that the cut was far from the point of excitation, so that
only increasing wave of magnitude V; was present just to the left of the cut.
The initial amplitudes of the three waves, Vi, Vs , V3 to the right of the
cut were computed and the magnitude of their sum plotted vs CN as it
varies with distance to the right of the cut. The resulting curve, expressed
in db with respect to the magnitude of the increasing wave 1"} just to the
left of the cut, is shown in Fig. 9.7. Again, we see that at a distance CN = }
to the right of the cut the increasing wave (dashed straight line)
predominates.
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9.7 SEVERED HELIX WITH DRIFT SPACE

In actually putting concentrated loss in a helix, the loss cannot be con-
centrated in a section of zero length for two reasons. In the first place,
this is physically difficult if not impossible; in the second place it is desirable
that the two halves of the helix be terminated in a reflectionless manner at
the cut, and it is easiest to do this by tapering the loss. For instance, if the
loss is put in by spraying aquadag (graphite in water) on ceramic rods sup-
porting the helix, it is desirable to taper the loss coating at the ends of the
lossy section.

Perhaps the best reasonably simple approximation we can make to such a
lossy section is one in which the section starts far enough from the input
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Fig. 9.7—Suppose that the circuit is severed and an increasing wave only is incident
at the break. How does the signal build up beyond the break? The solid curve shows
(b = QC = 0). 0 db is the level of the incident increasing wave.

so that at the beginning of the lossy section only an increasing wave is
present. In the lossy section CN long we will consider that the loss com-
pletely shorts out the circuit, so that (8.28) holds. Thus, in the lossy section
we will have only two values of 8, which we will call &; and &, .

oy = jk (9.21)
o = —jk (9.22)
k= 24/0C (9.23)

Let V;and Vi be the voltages of the waves corresponding to ér and ér;
at the beginning of the lossy section. Let & , 8, 63 be the values of é to the
left and right of the lossy section. Let V) be the amplitude of the increasing
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wave just to the left of the lossy section. Then, by equating velocities and
convection currents at the start of the lossy section, we obtain

Vi/or = Vi/dr 4+ Vir/our (9.24)
and, from (9.21) and (9.22)
Ve = (—j/BY(Vi — Vi) (9.25)
Similarly
Vi/6i = Vi/61 + Vi on
2 (9.26)
Vs = —(/B)(Vi+ Vi)
So that
Vi = j(Vi/2)(k/8,) (jk/8 + 1) (9.27)
Vi = j(Vi/2)(k/81)(jk/6 — 1) (9.28)
At the output of the lossy section we have the voltages Viand Vi,
Vi= Vi #V g Rmen (9.29)
Vir = Ve 78 g #imked (9.30)

Thus, at the end of the lossy section we have
V="Vi+Vu (9.31)

(GuC/mo = Vi/bs + Virfon
GuC/a = (/s = Vi .-

and similarly
(=2VC¥/1)i = (=1/B) (Vi + Vir) (9.33)
From (9.27) and (9.28) we see that
Vi+ Vir = —(k/8)[+ (k/8)) cos 2rkCN + sin 2zkCN|Vie=2%  (9.34)

V; — V;I = j(k/8)[— (k/61) sin 27kCN 4+ cos 2rkCN| Ve~ v (9.35)
Whence

V = —(k/6)[+(k/8:1) cos 2rkCN + sin 2xkCN]Vie=2¥  (9.36)
(ueC/mv = (1/8)[— (k/8) sin 2rkCN + cos 2xkCN]Vie27¥ (9.37)

(—2VoC¥1o)i = (1/8)[(1/8,) cos 2rkCN + (1/k) sin 2rkCN|Vie= 278 (9,38)

These can be used in connection with (9.4) in obtaining V{ , the value of
V1 just beyond the lossy section; that is, the amplitude of the component of
increasing wave just beyond the lossy section.
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In typical traveling-wave tubes the lossy section usually has a length
such that CN is 1 or less. In Fig. 9.8 the loss in db in going through the lossy
section, 20 logyo | V1/V:1 |, has been plotted vs. CN for QC = 0, .25, .5 for
the range CN = 0 to CN = 5.

We see that, for low space charge, increasing the length of a drift space
increases the loss. For higher space charge it may either increase or decrease
the loss. It is not clear that the periodic behavior characteristic of the curves
for QC = 0.5 and 1, for instance, will obtain for a drift space with tapered
loss at each end. The calculations may also be considerably in error for
broad electron beams (va large). The electric field pattern in the helix differs
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Fig. 9.8—Suppose that we break the circuit and insert a drift tube of length measured
by CN in terms of the traveling-wave tube C and J. Assume an increasing wave only
before the drift tube. The increasing wave beyond the drift tube will have a level with
respect to the incident increasing wave as shown by the ordinate. Here d = 0 and b is
chosen to maximize x .

from that in the drift space. In the case of broad electron beams this may
result in the excitation in the drift space of several different space charge
waves having different field patterns and different propagation constants.

" A suggestion has been made that the introduction of loss itself has a bad
effect. The only thing that affects the electrons is an electric field. Unpub-
lished measurements made by Cutler mode by moving a probe along a helix
indicate that in typical short high-loss sections the electric field of the
helix is essentially zero. Hence, except for a short distance at the ends,
such lossy sections should act simply as drift spaces.

9.8 OVERALL BEHAVIOR OF TUBES

The material of Chapters VIII and IX is useful in designing traveling-
wave tubes. Prediction of the performance of a given tube over a wide range
of voltage and current is quite a different matter. For instance, in order to
predict gain for voltage or current ranges for which the gain is small, the
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three waves must be taken into account. As current is varied, the loss param-
eter d varies, and this means different a’s and y's must be computed for
different currents. Finally, at high currents, the space-charge parameter Q
must be taken into account. In all, a computation of tube behavior under a
variety of conditions is an extensive job.

Fortunately, for useful tubes operating as intended, the gain is high.
When this is so, the gain can be calculated quite accurately by asymptotic
relations. Such an overall calculation of the gain of a helix-type tube with
distributed loss is summarized in Appendix VII.



CHAPTER X
NOISE FIGURE

SyNopsis OF CHAPTER

ECAUSE THERE IS no treatment of the behavior at high frequencies
of an electron flow with a Maxwellian distribution of velocities, one
might think there could be no very satisfactory calculation of the noise figure
of traveling-wave tubes. Various approximate calculations can be made,
and two of these will be discussed here. Experience indicates that the second
and more elaborate of these is fairly well founded. In each case, an approxi-
mation is made in which the actual multi-velocity electron current is re-
placed by a current of electrons having a single velocity at a given point but
having a mean square fluctuation of velocity or current equal to a mean
square fluctuation characteristic of the multi-velocity flow.

In one sort of calculation, it is assumed that the noise is due to a current
fluctuation equal to that of shot noise (equation (10.1)) in the current enter-
ing the circuit. For zero loss, an electron velocity equal to the phase velocity
of the circuit and no space charge, this leads to an expression for noise figure
(10.5), which contains a term proportional to beam voltage Vy times the
gain parameter C. One can, if he wishes, add a space-charge noise reduction
factor multiplying the term 80 VC. This approach indicates that the voltage
and the gain per wavelength should be reduced in order to improve the noise
figure.

In another approach, equations applying to single-valued-velocity flow
between parallel planes are assumed to apply from the cathode to the cir-
cuit, and the fluctuations in the actual multi-velocity stream are repre-
sented by fluctuations in current and velocity at the cathode surface. It is
found that for space-charge-limited emission the current fluctuation has no
effect, and so all the noise can be expressed in terms of fluctuations in the
velocity of emission of electrons.

For a special case, that of a gun with an anode at circuit potential Vo,
a cathode-anode transit angle ¢, , and an anode-circuit transit angle 6, , an
expression for noise figure (10.28) is obtained. This expression can be re-
written in terms of a parameter L which is a function of P

F=1+4 @)@—-n)(T/T)(1/C)L

P = (9]_ - Gz)C
426
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Formally, F can be minimized by choosing the proper value of P. In Fig.
10.3, the minimum value of L, L, , is plotted vs. the velocity parameter &
for zero loss and zero space charge (d = QC = 0). The corresponding value
of P, P, ,is also shown.

P is a function of the cathode-anode transit angle 8; , which cannot be
varied without changing the current density and hence C, and of anode-
circuit transit angle 8, , which can be given any value. Thus, P can be made
very small if one wishes, but it cannot be made indefinitely large, and it is
not clear that P can always be made equal to P, . On the other hand, these
expressions have been worked out for a rather limited case: an anode po-
tential equal to circuit potential, and no a-c space charge. It is possible
that an optimization with respect to gun anode potential and space charge
parameter QC would predict even lower noise figures, and perhaps at attain-
able values of the parameters.

In an actual tube there are, of course, sources of noise which have been
neglected. Experimental work indicates that partition noise is very im-
portant and must be taken into account.

10.1 Smor NOISE IN THE INJECTED CURRENT

A stream of electrons emitted from a temperature-limited cathode has a
mean square fluctuation in convection current 73

2 = 2el By (10.1)

Here e is the charge on an electron, 7, is the average or d-c current and B it
the bandwidth in which the frequencies of the current components whose
mean square value is 72 lie. Suppose this fluctuation in the heam current of
a traveling-wave tube were the sole cause of an increasing wave
(V = v = 0). Then, from (9.4) the mean square value of that increasing
wave,, VV_E{_,, would be

Vi, = (8eBVACY /L) | &8s ' | (1 — &/8)(1 — 8&/8) [ (10.2)

Now, suppose we have an additional noise source: thermal noise voltage
applied to the circuit. If the helix is matched to a source of temperature T,
the thermal noise power P; drawn from the source is

P, = kTB (10.3)
Here £ is Boltzman’s constant, T is temperature in degrees Kelvin and, as
before, B is bandwidth in cycles. If K is the longitudinal impedance of the
circuit the mean square noise voltage V% associated with the circuit will be

Vi = kTBK, (10.4)



428 BELL SYSTEM TECHNICAL JOURNAL

and the component of increasing wave excited by this voltage, V—'{'g, will be,
from (9.4),

Vi = kTBE. | (1 — 8/8)(1 — 6:/81) | = (10.5)

The noise figure of an amplifier is defined as the ratio of the total noise
output power to the noise output power attributable to thermal noise at the
input alone. We will regard the mean-square value of the initial voltage ¥
of the increasing wave as a measure of noise output. This will be substantially
true if the signal becomes large prior to the introduction of further noise.
For example, it will be substantially true in a tube with a severed helix if
the helix is cut at a point where the increasing wave has grown large com-
pared with the original fluctuations in the electron stream which set it up.

Under these circumstances, the noise figure ¥ will be given by

F= (Vi + i/ (VD)
F =1+ (e/kT)8VEIC'/T\Ky) | 625 |2 (10.3)
Now we have from Chapter II that
C' = LK/4V,s
whence
F =14 2eVo/kT)C | 655 | (10.4)

The standard reference temperature is 290°K. Let us assume b = d =
QC = 0. For this case we have found |8, | = | 83| = 1. Thus, for these as-
sumptions we find

F =1+ 80V,C (10.5)

A typical value of Vo is 1,600 volts; a typical value of C is .025. For these
values

F = 3,01

In db this is a noise of 35 db.

This is not far from the noise figure of traveling-wave tubes when the
cathode temperature is lowered so as to give temperature-limited emission.
The noise figure of traveling-wave tubes in which the cathode is at normal op-
erating temperature and is active, so that emission is limited by space-charge,
can be considerably lower. In endeavoring to calculate the noise figure for
space-charge-limited electron flow from the cathode we must proceed in a
somewhat different manner.
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10.2 THE DI1opE EQUATIONS

Llewellyn and Peterson’ have published a set of equations governing the
behavior of parallel plane diodes with a single-valued electron velocity.
They sum up the behavior of such a diode in terms of nine coefficients A *-I*,
in the following equations

Vy— Vo= A*T+ B* g + C*ua (10.6)
gp = D*I + E* go + I*2, (10.7)
w=G*I+ H* q + I*0, (10.8)
|« VOLTAGE DIFFERENCE
(Vb-Va)
CURRENT DENSITY |
].D+I |
!
INPUT CONVECTION | OUTPUT CONVECTION
CURRENT DENSITY | CURRENT DENSITY
Ip+qs 1 Ip+Qp
P E— \ 1 ——
-— —_— :
i
I
[}
-+ —— :
INPUT VELOCITY | OUTPUT VELOCITY
Ua+Va i Up +Vp
— : —
+ —— T
| |
a b

Fig. 10.1—Parallel electron flow between two planes a and & normal to the flow, show-
ing the currents, velocities and voltages.

‘These equations and the values of the various coefficients in terms of cur-
rent, electron velocity and transit angle are given in Appendix V. The diode
structure to which they apply is indicated in Fig. 10.1. Electrons enter nor-
mal to the left plane and pass out at the right plane. The various quantities
involved are transit angle between the two planes and:

I
I

qﬂ
qs
Uqg
Uy
Ta
T

d-c current density to left

a-c current density to left

a-c convection current density to left at input plane a
a-c convection current density to left at output plane &
d-c velocity to right at plane a

d-c velocity to right at plane &

a-c velocity to right at plane a

a-c velocity to right at plane &

Vu-Va a-c potential difference between plane & and plane a

1F. B. Llewellyn and L. C. Peterson, “Vacuum Tube Networks,” Proc. I.R.E., Vol.
32, pp- 144-166, March, 1944.
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We will notice that I and the ¢’s are current densities and that, contrary
to the convention we have used, they are taken as positive to the left. Thus,
if the area is o, we would write the output convection current; as

1= —oq

where g is the convection current density used in (10.6)-(10.8).

Peterson has used (10.6)-(10.8) in calculating noise figure by replacing
the actual multi-velocity flow from the cathode by a single-velocity flow
with the same mean square fluctuation in velocity, namely,?

v = (4 — x)n (RT./1,)B (10.9)

Here T. is the cathode temperature in degrees Kelvin and I is the cathode
current.

Whatever the justification for such a procedure, Rack® has shown that it
gives a satisfactory result at low frequencies, and unpublished work by
Cutler and Quate indicates surprisingly good quantitative agreement under
conditions of long transit angle at 4,000 mc.

We must remember, however, that the available values of the coeffi-
cients of (10.6)-(10.8) are for a broad electron beam in which there are
a-c fields in the z direction only. Now, the electron beam in the gun of a
traveling-wave tube is ordinarily rather narrow. While the a-c fields may
be substantially in the z-direction near the cathode, this is certainly not
true throughout the whole cathode-anode space. Thus, the coefficients
used in (10.6)-(10.8) are certainly somewhat in error when applied to
traveling-wave tube guns.

Various plausible efforts can be made to amend this situation, as, by
saying that the latter part of the beam in the gun acts as a drift region in
which the electron velocities are not changed by space-charge fields. How-
ever, when one starts such patching, he does not know where to stop. In
the light of available knowledge, it seems best to use the coefficients as they
stand for the cathode-anode region of the gun.

Let us then consider the electron gun of the traveling-wave tube to form
a space-charge limited diode which is short-circuited at high frequencies.

If we assume complete space charge (space-charge limited emission)
and take the electron velocity at the cathode to be zero, we find that the
quantities multiplying ¢, in (10.6)-(10.8) are zero.

B* = E* = [* = 0* (10.10)

2 L. C. Peterson, “Space-Charge and Transit-Time Effects on Signal and Noise in Mi-
crowave Tetrodes,” Proc. I.R.E., Vol. 35, pp. 1264-1272, November, 1947,

3 A. J. Rack, “Effect of Space Charge and Transit Time on the Shot Noise in Diodes,”
Bell System Technical Journal, Vol. 17, pp. 592-619, October, 1938,
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Accordingly, the magnitude of the noise convection current at the cathode
does not matter. If we assume that the gun is a short-circuited diode as far
as r-f goes

Ve— Va=0 (10.11)
Then from (10.6), (10.10) and (10.11) we obtain
C*
I = — =0 (10.12)
2.0 T

A, e
@
S 1.0
* x
[S1E
* |
olw o
L v \
G*Cc*
7"7l|_ 1% A¥
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(e} \T 21T ar air 51T err

=]

Tig. 10.2—Some expressions useful in noise calculations, showing how they approach
unity at large transit angles.

Accordingly, from (10.7) and (10.8) we obtain

K ok

O = (1 - ?*j*) F*va (10.13)
¥k

w — (1 _ %;) o, (10.14)

In Fig. 10.2, |1 — D*C*/F*4*| and |1 — G*C*/I*4* | are plotted
vs 0, the transit angle. We see that for transit angles greater than about
3r these quantities differ negligibly from unity, and we may write

gp = F*u, (10.15)
v = I*u, (10.16)
More specifically, we find
—A
g = laloPre " (10.17)
Uy

= —1€ (10.18)
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Here 3, is 7 times the transit angle in radians from cathode to anode. For
7, we use a velocity fluctuation with the mean-square value given by (10.9).

Suppose now that there is a constant-potential drift space following the
diode anode, of length 8,/ in radians. If we apply (10.6)-(10.8) and assume
that the space-charge is small and the transit angle long, we find that gy,
the value of g, at the end of this drift space, is given in terms of g, and 1, ,
the values at the beginning of this drift space, by

g5 = (ga + (To/us)Buve)e ™ (10.19)

The case of 1;, the velocity at the end of this drift space, is a little dif-
ferent. The first term on the right of (10.8) can be shown to be negligible
for long transit angles and small space charge. The last term on the right
represents the purely kinematic bunching. For the assumption of small
space charge the middle term gives not zero but a first approximation of a
space-charge effect, assuming that all the space-charge field acts longitu-
dinally. Thus, this middle term gives an overestimate of the effect of space-
charge in a narrow, high-velocity beam. If we include both terms, we ob-
tain

v = H;q; + ¢ Py (10.20)

Here the term on the right is the purely kinematic term.*

Now, the current from the gun is assumed to go into the drift space,
so that g; is gy from (10.17) and v, is v, from (10.18). The d-¢ velocity at
the gun anode and throughout the drift space are both given by . If
we make these substitutions in (10.19) and (10.20) we obtain

gb = (Lo/u)(By — Bo)e PPy, (10.21)
7= — (22‘ - 1) e D g, (10.22)

The term 26;/B: in (10.22) is the “space-charge” term. We will in the fol-
lowing analysis omit this, making the same sort of error we do in neglecting
space charge in the traveling-wave section of the tube. If space charge in
the drift space is to be taken into account, it is much better to proceed as
in 9.7.

From the drift-space the current goes into the helix. It is now necessary
to change to the notation we have used in connection with the traveling-
wave tube. The chief difference is that we have taken currents as positive
to the right, but allowed 7, to be the d-c current to the left. If ¢ and v are

* The first term has been written as shown because it is easiest to use the small space-

charge value of H* for the drift region (#%) in connection with the space-charge limited
value of F* for the cathode-anode region rather than in connection with (10.17).
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our a-c convection current and velocity at the beginning of the helix, and
I, and #, the d-c beam current and velocity, and ¢ the area of the beam,

. !
1= —ady
vT= 1T
(10.23)
Iu = 01[1
Uy = U
In addition, we will use transit angles 8, and 8s in place of 8; and 3.
B = jb
(10.24)
Bz = b2
We then obtain from (10.21) and (10.22)
g = —jlo/u)(6r — B)e 1, (10.25)
v = —¢ 1My, (10.26)

10.3 OVvERALL NoIsE FIGURE

We are now in a position to use (9.4) in obtaining the overall noise figure.
We have already assumed that the space-charge is small in the drift space
between the gun anode and the helix (QC = 0). If we continue to assume
this in connection with (9.4), the only voltage is the helix voltage and for
the noise caused by the velocity fluctuation at the cathode, va, V' = 0 at
the beginning of the helix. Thus, the mean square initial noise voltage of
the increasing wave, VZ,, will be, from (10.21), (10.22), (9.4) and (10.9),

VL = (204 — mET.CBV/I)| 8556, — 6:)C + (B2 + 85) |2

(10.27)

|(1 — 8o/6)(1 — 83/81) ‘_-

As before, we have, from the thermal noise input to the helix
Vi = ETBK (1 — 8/6)(1 — 89/8) [ (10.5)

and the noise figure becomes

F=1+Vi/Vi
F=1+ /2@ — m)(T/T)(1/C)| 6:85(6: — 0.)C + (82 + 83) [* (10.28)
Here use has been made of the fact that

C = Kd/4V,
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Let us investigate this for the case b = d = 0 (we have already assumed

QC = 0). In this case

= V/3/2 — j1/2

by = i
and we obtain
F =14 (1/2)(4 = =)(T/T)(1/C)| (P/2 —~/3/2)
— j(\V3P/2 — 1/2) |
P= (6 — 6)C (10.30)

(10.29)

For a given gun transit-angle 8, the parameter P can be given values
ranging from 6,C to large negative values by increasing the drift angle
0, between the gun anode and the beginning of the helix.

We see that

F =1+ (/0@ — n)(T/T)A/C)Y(P* — V3P + 1) (10.31)
The minimum value of (P* — 4/3P + 1) occurs when
P =4/3/2 (10.32)

if the product of the gun transit angle and C is large enough this can be
attained. The corresponding value of (P? — V'3 3P + 1) is 1, and the cor-
« responding noise figure is

F=14 1/ — «/4)(T./T)Y(1/C) (10.33)
A typical value for 7% is 1020°K, and for a reference temperature of 290°K,
T./T =35
A typical value of C is .025. For these values
F=17

or a noise figure of 12 db.
Let us consider cases for no attenuation or space-charge but for other
electron velocities. In this case we write, as before

= %2+ jye
6y = x3 + jya
Let us write, for convenience,

L= |85 + 6+ 8 |2 (10.34)
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Then we find that
L = [(xaxs)* + (paya)* + (xaya)* + (eaye)?] P2
+ 2[xg(yi + aF) + 2las + 3P (10.35)
+ (4 x)* 4 G2+ )
This has a minimum value for P = Py

—[as(ad + 93 + @l + )]
(xax5)® + (eye)® + (2235)° + (w332)*

We note that, as we are not dealing with the increasing wave, x» and x3

P, = (10.36)

2
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10 | S
0.8 =~

0.6 =

~,
~
0.4 >
‘ /_‘—Sk:-
A
\

oz =
B

P

0.1 s

0.08 [+
0,06 : - - = " >
b

Fig. 10.3—According to the theory presented, the overall noise figure of a tube with a
lossless helix and no space charge is proportional to L. Here we have a minimum value
of L, , minimized with respect to P, which is dependent on gun transit angle, and also
the corresponding value of P, P . According to this curve, the optimum noise figure
should be lowest for low electron velocities (low values of &). It may, however, be impos-

sible to make P equal to P, .

must be either negative or zero, and hence P, is always positive. For no
space-charge and no attenuation, x5 is zero for all values of b and

— T

Tyt om

From (10.36) and (10.35), the minimum value of L, L., is
Lm = (o 4 )"+ (4 32"

_ los(ys + x3) + mlad + 93] (10.38)
(xz03)2 + (v293)% + (v2%)* + (x5 y2)?

When x; = 0, as in (10.37)

P, (10.37)

2 2
Lm = 4 + 3} + 2y + 22, (10.39)
X2 + Vo
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In Fig. 10.3, P,, and L, are plotted vs b for no attenuation (d = 0). We
see that P,, becomes very small as b approaches (3/2)2"°, the value at which
the increasing wave disappears.

If space charge is to be taken into account, it should be taken into account
both in the drift space between anode and helix and in the helix itself. In
the helix we can express the effect of space-charge by means of the parameter
QC and boundary conditions can be fitted as in Chapter IX. The drift
space can be dealt with as in Section 9.7 of Chapter IX. The inclusion of
the effect of space-charge by this means will of course considerably com-
plicate the analysis, especially if & # 0.

While working with Field at Stanford, Dr. C. F. Quate extended the
theory presented here to include the effect of all three waves in the case of
low gain, and to include the effect of a fractional component of beam cur-
rent having pure shot noise, which might arise through failure of space-
charge reduction of noise toward the edge of the cathode. His extended
theory agreed to an encouraging extent with his experimental results.
Subsequent unpublished work carried out at these Laboratories by Cutler
and Quate indicates a surprisingly good agreement between calculations
of this sort and observed noise current, and emphasizes the importance of
properly including both partition noise and space charge in predicting noise
figure,

10.4 OrHErR NoI1SE CONSIDERATIONS

Space-charge reduction of noise is a cooperative phenomenon of the whole
electron beam. If some electrons are eliminated, as by a grid, additional
“partition” noise is introduced. Peterson shows how to take this into
account.?

An electron may be ineffective in a traveling-wave tube not only by being
lost but by entering the circuit near the axis where the r-f field is weak
rather than near the edge where the r-f field is high. Partition noise arises
because sidewise components of thermal velocity cause a fluctuation in the
amount of current striking a grid or other intercepting circuit. If such side-
wise components of velocity appreciably alter electron position in the helix,
a noise analogous to partition noise may arise even if no electrons actually
strike the helix. Such a noise will also occur if the “counteracting pulses”
of low-charge density which are assumed to smooth out the electron flow
are broad transverse to the beam.

These considerations lead to some maxims in connection with low-noise
traveling-wave tubes: (1) do not allow electrons to be intercepted by various
electrodes (2) if practical, make sure that Io(8r) is reasonably constant over
the beam, and/or (3) provide a very strong magnetic focusing field, so that
electrons cannot move appreciably transversely.



NOISE FIGURE 437

10.5 NoisE IN TRANSVERSE-FIELD TUBES

Traveling-wave tubes can be made in which there is no longitudinal field
component at the nominal beam position. One can argue that, if a narrow,
well-collimated beam is used in such a tube, the noise current in the beam
can induce little noise signal in the circuit (none at all for a beam of zero
thickness with no sidewise motion). Thus, the idea of using a transverse-
field tube as a low-noise tube is attractive. So far, no experimental results
on such tubes have been announced.

A brief analysis of transverse-field tubes is given in Chapter XIII.



CHAPTER XI
BACKWARD WAVES

E NOTED IN CHAPTER 1V that, in filter-type circuits, there is an

infinite number of spatial harmonics which travel in both directions.
Usually, in a tube which is designed to make use of a given forward com-
ponent the velocity of other forward components is enough different from
that of the component chosen to avoid any appreciable interaction with the
electron stream. It may well be, however, that a backward-traveling com-
ponent has almost the same speed as a forward-traveling component.

Suppose, for instance, that a tube is designed to make use of a given
forward-traveling component of a forward wave. Suppose that there is a
forward-traveling component of a backward wave, and this forward-travel-
ing component is also near synchronism with the electrons. Does this mean
that under these circumstances hoth the backward-traveling and the for-
ward-traveling waves will be amplified?

The question is essentially that of the interaction of an electron stream
with a circuit in which the phase velocity is in step with the electrons but
the group velocity and the energy flow are in a direction contrary to that of
electron motion.

We can most easily evaluate such a situation by considering a distributed
circuit for which this is true. Such a circuit is shown in Fig. 11.1. Here the
series reactance X per unit length is negative as compared with the more
usual circuit of Fig. 11.2. In the circuit of Fig. 11.2, the phase shift is 0°
per section at zero frequency and assumes positive values as the frequency
is increased. In the circuit of Fig. 11.1 the phase shift is —180° per section
at a lower cutoff frequency and approaches 0° per section as the frequency
approaches infinity.

Suppose we consider the equations of Chapter IL. In (2.9) we chose the
sign of X in such a manner as to make the series reactance positive, as in
Fig. 11.2, rather than negative, as in Fig. 11.1. All the other equations apply
equally well to either circuit. Thus, for the circuit of Fig. 11.1, we have, in-
stead of (2.10),

+TIT

m (11.1)

V=

The sign is changed in the circuit equation relating the convection current
and the voltage. Similarly, we can modify the equations of Chapter VII,

438
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(7.9) and (7.12), by changing the sign of the left-hand side. From Chapter
VIII, the equation for a lossless circuit with no space charge is

56 + jb) = —j (8.1)
The corresponding modification is to change the sign preceding &, giving
806+ gb) = +5 (11.2)

A

JITTTT.

Fig. 11.1 Fig. 11.2
Fig. 11.1—A circuit with a negative phase velocity. The electrons can be in synchron-
ism with the field only if they travel in a direction opposite to that of electromagnetic
energy flow.

Tig. 11.2—A circuit with a positive phase velocity.

2,5

N

0.5

-5 -4 -3 -2 =1 o] b 1 2 3 4 5

Fig. 11.3—Suppose we have a tube with a circuit such as that of Fig. 11.1, in which
the circuit energy is really flowing in the opposite direction from the electron motion.
Here, for QC = d = 0, we have the ratio of the magnitude of the voltage V; a distance
= from the point of injection of electrons to the magnitude of the voltage V at the point
of injection of electrons. V: is really the input voltage, and there will be gain at values of
b for which | V./V| < 1.

In (11.2), b and & have the usual meaning in terms of electron velocity and
propagation constant.
Now consider the equation

56 — jk) = j (11.3)

Equations (11.2) and (8.1) apply to different systems. We have solutions
of (8.1) and we want solutions of (11.2). We see that a solution of (11.2)
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is a solution of (11.3) for £ = —b. We see that a solution of (11.3) is the con-
jugate of a solution of (8.1) if we put & in (8.1) equal to & in (11.3). Thus, a
solution of (11.2) is the conjugate of a solution of (8.1) in which & in (8.1)
is made the negative of the value of & for which it is desired to solve (11.2).

We can use the solutions of Fig. 8.1 in connection with the circuit of
Fig. 11.1 in the following way: wherever in Fig. 8.1 we see b, we write in
instead —b, and wherever we see v,, y» or y; we write in instead —y;,
=¥z 0 —%y3.

Thus, for synchronous velocity, we have

6 = \/3/2 +J%
b= —V3/2+ 1%
§3= —_7

We can determine what will happen in a physical case only by fitting
boundary conditions so that at z = 0 the electron stream, as it must, enters
unmodulated.

Let us, for convenience, write ® for the quantity gCz

BCz = @ (11.4)
We will have for the total voltage V. at z in terms of the voltage V atz = 0
Ve= Ve ™([(1 — 6/6)(1 — 65/8)] "¢ /™1™
+ (1 — a/o)(1 — &/6)] e T (11.5)
+ [0 — 8/8)(1 — 6o/85)] e "*3e®)

We must remember that in using values from an unaltered Fig. 8.1 we use
in the &’s and as the ¥’s the negative of the y’s shown in the figure (the sign
of the #’s is unchanged), and for a given value of & we enter Fig. 8.1 at —b.

In Fig. 11.3, | V./V | has been plotted vs b for & = 2. We see that, for
several values of &, | V.| (the input voltage) is less than | V| (the output
voltage) and hence there can be “backward” gain.

We note that as ® is made very large, the wave which increases with
increasing @ will eventually predominate, and | V, | will be greater than
| V' |. “Backward gain” occurs not through a “growing wave” but rather
through a sort of interference between wave components, as exhibited in
Fig. 11.3.

Fig. 11.3 is for a lossless circuit; the presence of circuit attenuation would
alter the situation somewhat.



APPENDIX IV
EVALUATION OF SPACE—CHARGE PARAMETER ¢

Consider the system consisting of a conducting cylinder of radius ¢ and
an internal cylinder of current of radius @, with a current

ie™'e 7, (1)

Let subscript 1 refer to inside and 2 to outside. We will assume magnetic
fields of the form

Hp = AL(yr) (2)
Hg = BI(yr) + CKi(yr) ' (3)
From Maxwell’s equations we have,
(% (rH,) = juerE. + rJ. 4)
Now
a
e (zI(=)) = slo(z) (5)
a . .
Eeh@)z—mm) (6)
3
Hence
Eq = 2 ALyr) - (7
we
—JY -
En = To;— (BTD(TV) - CKU(’Y?’)) (8)
at r = a, Ex =
- I O(Yﬂ)
C =58 - 9
Ko(va) ©)

atr = a1, Ea = Ea

AIO(’Yal) =B (Ln('yal) - fn(&(;)) Ko('th))

_ _ Tilya) Ko(yar)
4=F (1 Ko(va) L,(m))
441

(10)




442 BELL SYSTEM TECHNICAL JOURNAL

In going across boundary, we integrate (4) over the infinitesimal radial

distance which the current is assumed to occupy

rdH, = rJdr
2arJdr = i
rjdr = i;
Thus
dH, = 2:;, = 2;10—] = (Hp — Hp)a,
Iy(ya) _ ( . IO(’YG)KU(’YGH)):’
B [11(701) + Ko(va) Kilya)) — I(yal) (1 Kolya)o(yas)
i Io(va) . Io(va) Ko(va) :[ﬁl
B= K Dotya) Rolvay) ;
Ira [K.;(ya) ilyan) + Ko(ya) To(va) vy

i Kalya) [Kl('yal) n KO(TGI}:[_I
2ray Ln(va) I (vay) LLi(vay) Iy(vay)

atr =aq

_ _ (- i\ Ko(ya) Io(vay)
m =i = () (31) T s

Ko(va) To(ya) Ii(va,) Iy(var)

(1 _ Tlya) KD(TU«I)) I:I\H(Tm) KU('YG'I):]_I

Now
1 _ Ve _ 3T

WEe B[) ,Bu

Hence

BV = E, = j ;— Ii(ya1)G(va, ya)i
[i]

v = (‘;Lﬂ) (g) In(va1)Glya, var)q

Kolya) Ko(w)J
In(‘ydl) ID(?\(I)

In obtaining this form, use was made of the fact that

G(ya, ya) = 60 [

KMMﬂ+m@Mg=é

(11)

(13)

(14)

(15)
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Now
B
S 1
CETFP) )
where (E2/8P) is the value of this quantity at 7 = a; . In order to evaluate

(Q we note that

_ g _ =7 (48) .
V= cu(‘{JI wC1 l
v=£ i
(20)
B _V_ ( )( )Iu(val)G(w, yau)
LOC[ (3

;%1 = ( )( ) IQ(‘YL’M)G(’YG, 'Yal)

On the axis, (E2/*P) has a value (£2/3°P)o
4
com- Q@0 o
(E°/B°P)o ) \3 F(a) (21)

At a radius &

(/8P) = (g—) (%) F(ya) yan) (22)

Hence
G(ya, va1) (23)

Ov/B)" = ~F(ya)




APPENDIX V
DIODE EQUATIONS
FROM LLEWELLYN AND PETERSON

These apply to electrons injected into a space between two planes ¢ and
b normal to the x direction. Plan 4 is in the 4 direction from plane a.
Current density 7 and convection current g are positive in the —x direction.
The d-c velocities #, , %, and the a-c velocities 7, , 7y are in the +x direction.
T is the transit time. The notation in this appendix should not be con-
fused with that used in other parts of this book. It was felt that it would
be confusing to change the notation in Llewellyn’s and Peterson’s' well-
known equations.

TapLE I
ELEcTrRONICS EQUATIONS

Numerics Employed:
n = 1075;z =177 X 10° ¢ = 1/(36r X 10") 7 = 2 x 10®
€

Direct-Current Equations:

Potential-velocity: Vo = (1/2)«* . (1)
Space-charge-factor definition: { = 3(1 — To/T)
Distance: x = (1 — §{/3)(sa + 2.)7T/2 (2)
Current density: (n/e)fp = (1. + 2)27/7? J
Space-charge ratio: Ip/l. = (9/4)(1 — ¢/3)? (3)
Limiting-current density:

7= 233 (VVi + VVw)* @

108 x

Alternating-Current Equations:
Symbols employed:

B=1id 0=l i=+/—1

1F. B. Llewellyn and L. C. Peterson “Vacuum Tube Networks,” Proc. I.R.E., vol. 32.
pp. 144-166, March, 1944.
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s B g
P=1-—c¢ e =3 3+§
_1_repg-E B8
O=1-c " =8-5%% " mu

3 4 6
S=2—2e_3»—,8—,63”‘“é—§+B__E+i

General equations for alternating current
¢ = alternating conduction-current density
v = alternating velocity

Vb - Vu = -;1*1 + B*q:: + C*vu

0y = D* + E*Qtz + F*y, (5)
v = G* + H*qa + I*w)
TasrLe II

VALUES OF ALTERNATING-CURRENT COEFFICIENTS

1 1 A TP s
A* = 5 o + 75 E* = - ly — (e + w)le
_ 8y 2128 o €2 (ot ) gos
[ 3(1 63)} i
2 2
= 1T P = 80) —mp 6= — "1 Ly - go)
€ 3 € 8% up
+ ((ua + ub)P] - uaP + ;(“u + ub)Pl
e 1 P *__ﬂTQ(“a_*'ub)
C*"_Hzf(ua‘f‘“b)a._; H* = ;?T
(tta + us) P e’
=2 — — 1 -9 —
D £ w B ( ) B
I* = ) (e — E(tta + w)e?
Up
Complete space-charge, { = 1.
1 T 65
A* = ;(n!‘l + ) jl(-3(1 + 3—3)

17°
P (2P — BQ)

*
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2 P
C* = — Z (us + m) —
vl g
(#a + ) P
D¥=2>=_
(’llb) ﬁ2
B = M h
Uy
e _€ 2 (watm) 5
=T w

¢ = —fﬁ—f(zP— 80)

H*=0
I*= —¢*
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EVALUATION OF IMPEDANCE AND Q FOR
THIN AND SOLID BEAMS!

Let us first consider a thin beam whose breadth is small enough so that
the field acting on the electrons is essentially constant. The normal mode
solutions obtained in Chapters VI and VII apply only to this case. The more
practical situation of a thick beam will be considered later. The normal mode
method consists of simultaneously solving two equations, one relating the
r-f field produced on the circuit by an impressed r-f current from the electron
stream and the other relating r-f current produced in the electron stream by
an impressed r-f field from the circuit.

We have the circuit equation

WK 2jQKT?] .
£- - [p R T g
and the electronic equation

P Gho - TR

The solution of these two equations gives I' in terms of I'y, K, and @, which
must be evaluated separately for the particular circuit being considered.
The field solution is obtained by solving the field equations in various
regions and appropriately matching at the boundaries. For a hollow beam of
electrons of radius & traveling in the z direction inside a helix of radius ¢ and

@

pitch angle ¢, the matching consists of finding the admittances (_E) inside

and outside the beam and setting the difference equal to the admittance of
the beam. Thus the admittance just outside the beam for an idealized helix
will be?

Eo 7y Lo(yb) + 8Ko(vd)’

1 This appendix is taken from R. C. Fletcher, “Helix Parameters in Traveling-Wave
Tube Theory,” Proc. I.R.E., Vol. 38, pp. 413-417 (1930).

2L. J. Chu and ]J. D. Jackson, “Field Theory of Traveling-Wave Tubes,” I.R.E.,
Proc., Vol. 36, pp. 853-863, July, 1948,

0. E. H. Rydbeck, “Theory of the Traveling-Wave Tube,” Ericsson Technics, No. 46
pp. 3-18, 1948,

I‘[; =

3

47
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where

5 1 ((@_‘_Cy%t_‘l’) Il(’Yﬂ)Kl(TG) - Iu(’Ya)KD('Ya'))r

~ Ki(va)
Bo = wiue,
and
¥ = — T — 8.

(The I’s and K’s are modified Bessel functions). The admittance inside the
beam is

_ H,o jwe I (~vd) (4)

Boundary conditions require that E, = E,; = E.and H. — H.i = 2%
m

Combining the boundary conditions, we see that
1 4
Vo — V="~ — 5
’ Y 2rb E.’ ®
where the ratio of ‘% is given by (2). Thus the field method gives two equa-

tions which are equivalent to the circuit and electronic equations of the
normal mode method.

A6.1 NorMAL MoDE PARAMETERS FOR THIN BEAM

The constants appearing in eq. {1) can be evaluated by equating the cir-
cuit equation (1) to the circuit equation (5). Thusif ¥. = Vo — ¥,
T2 K 2jQKT? 1
“rt—-rs B 2@V’

(6)

The constants can be obtained by expanding each side of eq. (6) in terms of
the zero and pole occurring in the vicinity of 'y . Thus if o and v, are the
zero and pole of V., respectively,

aY, —
Ve~ — ('Yp - 70)( ) (uo)’ (7)
Y Sr=v\Y — Y»
and the two sides of eq. (6) will be equivalent if
s = —vi — Bs, 8)

2N —1/2
%Q - (1 + %) ;2—7"—"*2, 9)
e 0
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1 3 3;2(61,6)
K B *jrb‘yn(l * ) Y 1’=’YD (10)

~o and v, can be obtained from egs. (3) and (4) through the implicit equations
9 In("Yu G)Ku("y’u a)

and

(ﬁa cot ‘I')E = ('Yuaf) m, (11)

ID('Ypb) _ 1
K(v,0)  Kilvs

o(v50) n(’Y a) 2 (12)

. [(ﬁiﬁioat—q}) Lypa)Ki(ypa) — Iu(vpa)Ko(vpa):l,

and 1/K is found to be
L 1/5_ (1 + @)Wﬂ Iy(voa) I:Il('Yﬂa) _ Tilna)
K [0 vi) Ti(vobd) Ko(voa) LIs(vea)  Ii(voa) 13)

Ki(voa)  Kilyoa) _i]
Ki(voa) Ko(‘YoG} Yoa]

The equations for yo and K are the same as those given by Appendix IT,
evaluated by solving the field equations for the helix without electrons pres-

ent. The evaluation of v, , and thus Q, represents a new contribution. Values
2

—1/2
of Q'Y"(I + '60) are plotted in Fig. A6.1 asa function of yoa for various
ratios of d/a. (It should be noted that for most practical applications the
—y
factor _.(1 + '60) is very close to unity, so that the ordinate is prac-

tically the value of Q itself.)

Appendix TV gives a method for estimating Q based on the solution of
the field equations for a conductor replacing the helix and considering the
2KQI®

€

resultant field to be —
lines of Fig. A6.1.

i. This estimate of Q is plotted as the dashed

A6.2 Tuick Beam CASE

For an electron beam which entirely fills the space out to the radius b,
the electronic equations of both the normal mode method and the field
method are altered in such a way as to considerably complicate the solution.
Tn order to find a solution for this case some simplifying assumptions must
be made. A convenient type of assumption is to replace the thick beam by
an “equivalent” thin beam, for which the solutions have already been
worked out.
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Two beams will be equivalent if the value of %i’i is the same outside the
z

beams, since the matching to the circuit depends only on this admittance.
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Fig. A6.1—Passive mode parameter () for a hollow beam of electrons of radius b inside
a helix of radius ¢ and natural propagation constant v, . The solid line was obtained by
equating the circuit equation of the normal mode method, which defines (, with a cor-
responding circuit equation found from the field theory method. The dashed line was
obtained in Appendix IV from a solution of the field equations for a conductor replacing
the helix.

The problem, then, of making a thin beam the equivalent of a thick beam
is the problem of arranging the position and current of a thin beam to give
the same admittance at the radius & of the thick beam. This is of course
impossible for all values of v. Tt is desirable therefore that the admittances



APPENDIX VI 451

be the same close to the complex values of 4 which will eventually solve
the equations.

The solution of the field equations for the solid beam yields the value for
Yy

'z

at the radius b as

H, _ jwe nly(nyb)

E 5 Tonyd)’ (14)

where

w=14+ —

F‘ )GGID 1
Bs 4/2 2wt Vo (jBa — T)E" (15)

Thus the electronic equation for the solid beam which must be solved simul-
taneously with the circuit equation (given above by either the normal mode
approximation or the field solution) must be

v He o dueb [nh(mrb) B 11(76)]
‘ ' Io(nyd)  Io(vD)

E,

Complex roots for v will be expected in the vicinity of real values of v
av. dI o
dy = dy

v, it is found that the two curves become tangent close to the value of v for
which # = 0, using typical operating conditions (Fig. A6.2). Our procedure
for choosing a hollow beam equivalent of the solid beam, then, will be to

(16)

. By plotting ¥, and ¥, vs. real values of

dy, Ca .
equate the values of ¥, and ™ at n = 0. This will give us two equations

from which to solve for the electron beam diameter and d-c¢ current for the
equivalent hollow beam.
If the hollow beam is placed at the radius sb with a current of //y, the

value of %’ at the radius b gives the value for V,q as

oo H'p - t 2 Ig(s"fb)
Ve = (E)b Vi = —jweb 5 (1 n) IZeD)

(oo o[ted B

Equating this with eq. (16) at # = 0 yields the equation

1_ 100 Ko(s8) | Ky(6)
=370 [ 05+ e ) e

(17)

—
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Fig. A6.2—Electronic admittance ¥, of a solid electron beam of radius & and circuit
admittance Y. of a helix of radius a plotted vs. real values of the propagation constant
v in the vicinity of where %‘ - 371’: where complex solutions for v are expected, for two
typical sets of operating conditions. Plotted on the same graph is the electron admit-
tance ¥ . for two equivalent hollow electron beams: the dashed curve (Fletcher) is matched
to ¥, at n = 0, while the dot-dashed curve (Pierce, Appendix IV) is matched at n = 1
(off the graph).
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where § = v.b and v, is the value of v at n = 0; i.e. for v. > 8o

pBh g, 19
= At 1/.30 1/5 202V, & (19

In the vicinity of #» = 0, n varies very rapidly with v, and hence matching

- dy
(2:) is practically the same as matching ;— With this approximation
Y

eqs. (16) and (17) can be differentiated with respect to » and set equal at

1.0
0.9
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Fig. A6.3—Parameters of the hollow electron beam which is matched to the solid
electron beam of radius b and current Iy at ¥ = v, =~ 8., where n = 0. sb is the radius
and I, is the current of the equivalent hollow beam.

n = 0 to yield the second relation

1
: (20)

= ]0(5)10(59) [KO(SB) 4+ Kl(ﬂ):r

Io( 6) II(BY
Equations (18) and (20) can then be solved to give the implicit equation
for s as
Ko(s6) Ki(6)
- 21
I(s6)  L(6) T 1(6) (@)

and the simpler equation for ¢

(22)
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s and ¢ are plotted as a function of 6 in Fig. A6.3. The value of ¥.z using
these values of s and ¢ is compared in Fig. A6.2 with ¥, in the vicinity of
where V. is almost tangent to ¥, for two typical sets of operating conditions.
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Fig. A0.4—Passive mode parameter Q, for a solid beam of electrons of radius b inside
a helix of radius @ and natural propagation constant 7o, obtained from the equivalent
hollow beam parameters of Fig. 3 taken at v, = . All the normal mode solutions which
have been found®: @ for a hollow beam will be approximately valid for a solid beam if Q
is replaced by Q, and K is replaced by K, (Fig. 5).

It is of course possible to pick other criteria for determining an “equiva-
lent” hollow beam. In Chapter X1V, in essence, ¥, and V., were expanded
in terms of (1 — #?) and the coefficients of the first two terms were equated.
This has been done for the cylindrical beams, and the values of s and 7 found
by this method determine values of ¥,y shown in Fig. A6.2. The greater



APPENDIX VI 455

departure from the true curve of ¥, would indicate that this approximation
is not as good as that described above.
It is now possible to find the values of Q, and K, appropriate to the solid
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Fig. A6.5—Circuit impedance K, for a solid beam of electrons of radius b inside a helix
of radius a and natural propagation constant vy, obtained from the equiva%e]nt hollow
2), (@

beam parameters of Fig. 3 taken at v, = v,. K, should replace K = 387 in order

P
for the normal mode solutions for a hollow beam to be applicable to a solid beam.

beam. Thusif Q ('yn a, é) and A (7(. a, g ) are the values for the hollow beam
a
calculated from eqs. (9), (12) and (13),

b,
O’ = (.) ('YO a, s ;) ) (23)
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and
. b
K, = tK (’Yna, § a) f (24)

The ¢ is placed in front of K in eq. (24) because ¢/y and K appear in the
thin beam solutions only in the combination (/K. Using (K instead of K
allows us to use Io, the actual value of the current in the solid beam in the
2\ —1/2
solutions instead of (I, , the equivalent current. Values of Qs ;—" (1 + ﬁ"u?)
Yo

9

Yo~
values of b/a and for values of ¢ and s taken at v, = o . All the solutions
obtained for the hollow beam will be valid for the solid beam if Q; and K,

are substituted for  and K.

2\ +4-3/2
and K, %" . (1 + ‘3_°) are plotted vs. yoa in Figs. A6.4 and A6.5 for different
0
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HOW TO CALCULATE THE GAIN OF A
TRAVELING-WAVE TUBE
The gain calculation presented here neglects the effect at the output of
all waves except the increasing wave. Thus, it can be expected to be ac-

curate only for tubes with a considerable net gain. The gain is expressed
in db as

G = A + BCN (1)

Here A represents an initial loss in setting up the increasing wave and BCN
represents the gain of the increasing wave.

We will modify (1) to take into account approximately the effect of the
cold loss of L db in reducing the gain of the increasing wave by writing

G = A + [BCN — al] (2)

Here « is the fraction of the cold loss which should be subtracted from the
gain of the increasing wave. This expression should hold even for moderately
non-uniform loss (see Fig. 9.5).

Thus, what we need to know to calculate the gain are the quantities

A, B,C,N,a L

A7.1 Corp Loss L pB

The best way to get the cold loss L is to measure it. One must be sure that
the loss measured is the loss of a wave traveling in the circuit and not loss
at the input and output couplings.

A7.2 LENGTH OF CIrcUIT IN WAVELENGTHS, V

We can arrive at this in several ways. The ratio of the speed of light ¢ to
the speed of an electron #, is
< 505 3)
1) B ‘\/-V_o
where V) is the accelerating voltage, Thus, if £ is the length of the circuit and
M is the free-space wavelength and A, is the wavelength along the axis of
457
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the helix
A=A 4)
¢
£ {c
N=2==XZ 5
AN Yo )
Also, if £, is the total length of wire in the helix, approximately
y="e (6)

by
A7.3 THE GAIN PARAMETER C

The gain parameter can be expressed

Ez Ty 1/3 KI, 1/3
a—ps—vo) =(m) @)

Here K is the helix impedance properly defined. I, is the beam current in
amperes and V), is the beam voltage.

C =

A7.4 HELix IMPEDANCE K

2\ 3/2
In Fig. 5 of Appendix VI, K ('%0) (1 + ('%9) ) is plotted vs. vyea for
0

0
values of b/a. K, is the effective value of K for a solid beam of radius &, and

a is the radius of the helix. 7y is to be identified with ¥ for present purposes,

and is given by
= 2_7'_[1 B (ﬁ)2:|11‘1 (8)
Ao A

where ), is given in terms of A by (4). We see that in most cases (for voltages
up to several thousand)

(No/N)? K 1 9)

and we may usually use as a valid approximation

27
Yo = E (10)
and
2ra
Yoa = iw (11)

As B = 2w/, this approximation gives

2 2
R
Yo A
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()

Thus, we may take K, as the ordinate of I'ig. 5 multiplied by ¢/up , from
(3), for instance.

The true impedance may be somewhat less than the impedance for a
helically conducting sheet. If the ratio of the circuit impedance to that of a
helically conducting sheet is known (see Sections 3 and 4.1 of Chapter ITI,
and Fig. 3.13, for instance), the value of K, from Fig. 5 can be multiplied
by this ratio.

and we may assume

A75 THE SPACE-CHARGE PARAMETER ()

2\ —1/2
The ordinate of Fig. 4 of Appendix VI shows (), g—o (1 + (@) ) vs.
e 'YD
va for several values of b/a. Here (). is the effective value of Q for a solid

beam of radius &. As before, for beam voltages of a few thousand or lower,

we may take
2y —1/2
()"
Yo

Be =— (13)

The quantity 8. is just

and from (8) we see that for low beam voltages we can take
Be == 0
so that the ordinate in Fig. 4 can usually be taken as simply Q.
A7.6 THE INCREASING WAVE PARAMETER B
In Fig. 8.10, B is plotted vs. QC. C can be obtained by means of Sections

3 and 4, and Q by means of Section 5. Hence we can obtain B.

A7.7 THE GAIN REDUCTION PARAMETER o

From (2) we see that we should subtract from the gain of the increasing
wave in db « times the cold loss L in db. In Fig. 8.13 a quantity dx,/dd,
which we can identity as «, is plotted vs. QC.
A7.8 THE Loss PARAMETER d

The loss parameter d can be expressed in terms of the cold loss, L in db,
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the length of the circuit in wavelengths, V, and C

L ’2.3L)< 1
‘7 (_26' 27NC

L
= (. il
d = 0.0183 NC

A7.9 T InrriaL Loss .l

(14)

(15)

The quantity 4 of (2) is plotted vs. d in Fig. 9.3. This plot assumes
QC = 0, and may be somewhat in error. Perhaps Iig. 9.4 can be used in
estimating a correction; it looks as if the initial loss should be less with
QC # 0 even whend # 0. Inany event, an error in /| means only a few db,
and is likely to make less error in the computed gain than does an error in

B, for instance.



