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The theory of the relation between the current-voltage characteristic of a
metal-point contact to n-type germanium and the concentration of holes in the
vicinity of the contact is discussed. It is supposed that the hole concentration has
been changed from the value corresponding to thermal equilibrium by hole in-
jection from a neighboring contact (as in the transistor), by absorption of light
or by application of a magnetic field (Suhl effect). The method of calculation
is based on treating separately the characteristics of the barrier layer of the con-
tact and the flow of holes in the body of the germanium. A linear relation be-
tween the low-voltage conductance of the contact and the hole concentration is
derived and compared with data of Pearson and Suhl. Under conditions of no
current flow the contact floats at a potential which bears a simple relation,
previously found empirically, with the conductance. When a large reverse
voltage is applied the current flow is linearly related to the hole concentration,
as has been shown empirically by Haynes. The intrinsic current multiplication
factor, a, of the contact can be derived from a knowledge of this relation.

I. INTRODUCTION

N DISCUSSIONS of the theory of rectification at metal-semiconductor
contacts, it is usually assumed that only one type of current carrier
is involved: conduction electrons in n-type material or holes in p-type
material.! In the case of metal-point contacts to high-purity n-type
germanium, such as is used in transistors and high-back-voltage varistors,
it is necessary to consider flow by both electrons and holes. A large part
" of the current in the direction of easy flow (metal point positive) con-
sists of holes which flow into the n-type germanium and increase the
conductivity of the material in the vicinity of the contact.>* The con-
ductivity is increased not only by the presence of the added holes but
also by the additional conduction electrons which flow in to balance the
positive space charge of the holes. There is a small concentration of holes
normally present in the germanium under equilibrium conditions with no
1 For a discussion of the nature of current flow in semi-conductors see the “Editorial
Note' in Bell Sys. Tech. Jour. 28, 335 (1949).

2 J. Bardeen and W. H. Brattain, Bell Sys. Tech. Jour. 28, 239 (1949).
W, Shockley, G. L. Pearson and J. R. Haynes, Bell Sys. Tech. Jour. 28, 344 (1949).
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current flow, When the contact is biased in the reverse (negative) direc-
tion, these holes tend to flow toward the contact and contribute to the
current. The hole current is increased if the concentration of holes inthe
germanium is enhanced by injection from a neighboring contact or by
creation of electron-hole pairs by light absorption.

Much has been learned about the effect of an added hole concentration
on the current voltage characteristics of contacts from studies with
germanium filaments. Part of this work is summarized in a recent article
of W. Shockley, G. L. Pearson and J. R. Haynes.® These authors have
investigated the way the low-voltage conductance of a point contact to a
filament of n-type germanium varies with the concentration of holes in
the filament and have shown that there is a linear relation between con-
ductance and hole concentration. They have shown that the current to a
contact biased with a large voltage in the reverse direction varies linearly
with hole concentration. Suhl and Shockley* have shown that by applying
a large transverse magnetic field along with a large current flow holes
may be swept to one side of the filament. Changes in hole concentration
produced in this way are detected by measuring changes in the con-
ductance of a point contact.

Shockley® has suggested that the floating potential measured by a con-
tact made to a semiconductor in which the concentration of carriers is
not in thermal equilibrium may depend on the nature of the contact and
differ from the potential in the interior. Pearson® has investigated this
effect for point contacts on germanium filaments, and has shown that the
floating potential is related to the conductance of the contact. This effect
provides an explanation for anomalous values of floating potentials meas-
ured by Shockley® and by W. H. Brattain.® They found that potentials
measured on a germanium surface in the vicinity of an emitter point
biased in the forward direction may be considerably higher than expected
from the conductivity of the material.

The purpose of the present paper is to develop the theory of these rela-
tions. We are particularly interested in effects produced by changes in
hole concentration in #-type germanium resulting from hole injection or
photoelectric effects. The equations developed also apply to injected
electrons in p-type semiconductors with appropriate changes in signs of
carriers and bias voltages. The methods of analysis used are similar to
those which have been employed by Brattain and the author in a dis-
cussion of the forward current in germanium point contacts?,

4H, Suhl and W. Shockley, Phys. Rev. 74, 232 (1948).

§ W. Shockley, Bell Sys. Tech. Jour. 28, 435 (1949), p. 468,
§ Unpublished.
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The problem may be divided into—_two parts, which can be treated
separately:

(a) The first deals with the current-voltage characteristics of the space
charge region of the rectifying contact. The current flowing across the
contact is expressed as the sum of the current which would flow if the
hole concentration in the interior were normal and the current which
results from the added hole concentration.

(b) The second is concerned with the current flow in the semiconductor
outside the space charge region. In general, both diffusion and conduction
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Fig. 1.—Model and notation used for calculation of current flow in low-voltage case.

are important in determining the flow of carriers, although, depending on
conditions, one may be much more important than the other. In case the
applied voltage and current flow are small, holes in an n-type semi-
conductor move mainly by diffusion. This situation applies to the prob-
lems discussed in the first part of the memorandum. In Section IV we
discuss the opposite limiting case of large voltages in which the electron
current flowing is so large that the hole current is determined by the
electric field and diffusion is unimportant.

The model which is used to investigate the low-voltage case is illus-
trated in Fig. 1. For purposes of mathematical convenience, the contact
is represented as a hemisphere extending into the germanium. Recom-
bination, both at the surface of the semiconductor and in the interior, is



472 BELL SYSTEM TECHNICAL JOURNAL

assumed to be negligible so that the lines of current flow are radial. The
spherical symmetry of the resulting problem simplifies the mathematics.
A calculation is given in an Appendix for a model in which the contact is
a circular disk and recombination takes place at the surface. The latter
does not give results which are significantly different from the simplified
model.

Figure 1(a) applies to the case in which the hole concentration deep in
the interior has its normal or thermal equilibrium value, po. The sub-
script zero is used to denote values which pertain to this situation. Of a
voltage Vp applied to the contact, a part V, occurs across the space-
charge barrier layer of the contact and a part V; occurs in the body of
the semiconductor. Thus V» represents the voltage of the contact and V;
the voltage in the semiconductor just outside the barrier layer, both
measured relative to a point deep in the interior. It should be noted that
Vp does not include the normal potential drop which occurs across the
barrier layer under equilibrium conditions with no voltage applied. In
the examples with which we shall deal in the present memorandum, the
spreading resistance is small compared with the contact resistance, so
that V; is small compared with Vp. Obviously,

VP = Ve + Vl'- (1)

When a current is flowing to the contact the hole concentration, p,
measured just outside of the barrier layer, differs from the concentration
deep in the interior, g. It is the concentration gradient resulting from
the difference between gy and po which produces a flow of holes from the
interior to the contact. In the forward direction, pu is larger than po;
in the reverse direction, pg is less than p,.

The total current, Iy(V.),flowing across the contact includes both elec-
tron and hole currents. It will not be necessary to distinguish between
these two contributions to the normal current flow across the barrier
layer in the subsequent analysis.

Figure 1(b) applies to the case in which the hole concentration deep in
the interior has been increased to py + p. by adding a concentration g,
to the normal concentration, $,. The concentration just outside the barrier
layer is increased to prw + pse. In addition to the normal current, Ie(V.),
flowing across the contact, there is an additional current of holes resulting
from the added hole concentration, p,,, at the barrier.

The magnitude of this added hole current is determined in the follow-
ing way. It is assumed that all holes which enter the barrier region are
drawn into the contact by the field existing there. The number of holes
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entering the barrier region per second is given by the following expres-
sion from kinetic theory:

prvad /4, 2)

where v, is the average thermal velocity, 2(2kT/mm)'?, of a hole and 4
is the contact area. This expression gives the average number of particles
which cross an area 4 from one side per second in a gas with concentra-
tion ps. It follows that the current due to the added holes is:

I;uu = —EPEm?'aA/‘l- (3)

Since, by convention, a current flowing into the semiconductor ispositive,
a current of holes flowing from the interior to the contact is negative.

The diffusion current resulting from the added holes depends on the
difference between p,, and p,. We shall show in Section IIT that when p,
is small compared with the normal electron concentration,

Ipa = zwrka}Ip(Pba - pﬂ)’ (4)

where r, is the radial distance to the outer boundary of the barrier layer
and u, is the hole mobility. The value of ps, is found by equating (4)
and (3), i.e., the added current flowing from the interior to the barrier
layer and the current flowing across the barrier layer. This gives

Pra/pa = a/(1 + a), (5)

where a, defined by
a = 4(kT/ery)py/va, (6)

is the ratio of the velocity acquired by a hole in a field 4£7/er, to thermal
velocity. This ratio is generally a small number so that the ¢ in the de-
nominator of (3) can be neglected in comparison with unity. Equation
(3) then becomes:

[mu = _eapat'c:‘{/'l' = _PﬂkT-uPA»‘/rb' (7)

If p. is not assumed small, a’ similar procedure may be used but the
expressions for I,, in terms of p, are more complicated than (4) and (7)

It is possible that the added hole current, 7,,, will affect the contact in
such a way as to change the normal current flowing. If there is such a
change, one might expect it to be proportional to /.. as long as I,, is
sufficiently small. The total current flow may then be expressed in terms
of an “intrinsic &” for the contact as follows:

I = Io(Vt) — [pa(pﬂ)~ (8)
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There is no good theoretical reason to expect that a is different from unity
for small current flow in normal contacts unless trapping is important.

Equation (8) is used as the basis for the analysis of the low-voltage
data. One important consequence of the equation is that if p, is different
from zero, there is a voltage drop across the barrier layer even though
no net current flows to the point. The presence of the added holes in the
interior produces a floating potential on the point. The magnitude of this
floating potential, V., is obtained by setting I = 0 in Eq. (8) and find-
ing the value of V. which solves the equation. This potential can be
observed on a voltmeter and is analogous to a_-photovoltage.

Associated with the floating potential is a change in conductance of
the contact. The conductance near I = 0, given by

G = (dI/dV‘)V:E'V:f = (dIU/dVG)Vc=V¢;r )

is just the conductance for normal hole concentration in the interior at an
applied voltage equal to V.. In setting the conductance equal to the
derivative of I with respect to V,, we have neglected the difference,
Vi, between V,, the voltage drop across the barrier, and Vg, the total
drop from the contact to the interior. This corresponds to neglecting the
spreading resistance in comparison with the barrier resistance.

Equation (8) may be used to relate the floating potential with change
of conductance of the contact. The appropriate equations, together with
applications to data of Pearson and of Brattain, are given in Section IL.
In Section III we derive Eq. (4) which relates the added hole current
with the added hole concentration in the interior. This relation is used
to show that the point conductance G varies linearly with the added hole
concentration, p,. The theoretical expression for conductance is compared
with data of Pearson and of Suhl.

In section IV we discuss the dependence of the current-voltage char-
acteristic at large reverse voltages on hole concentration. Under these
conditions it is the electric field rather than diffusion which produces the
hole current in the body of the germanium. The electron and hole currents
are then in the ratio of the electron to hole conductivity. With introduc-
tion of an “intrinsic a” for the contact, a simple relation is derived for the
dependence of current on hole concentration for fixed voltage on the
point. This relation is used to determine « for several point contacts from
some data of J. R. Haynes.

II. FLoATING PoTENTIAL OF PoiNT CONTACT

In order to get analytic expressions for the floating potential and ad-
mittance, it is necessary to make some assumption about the normal cur-
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rent-voltage characteristic, fo(V,). It is found empirically’ that as long
as V. is not too large (a few tenths of a volt for a point contact on #-
type germanium), it is a good approximation to take:

To (V) = I, (exp(BeV./kT) — 1), (10)

where I, is a constant for a given contact. Except for the factor 8, this
is of the form to be expected from the diode theory of rectification. The
empirical value of 8 is usually less than the theoretical value of unity
in actual contacts.

If (10) 1s inserted into (8), the following equation is obtained for the
current when there is an added concentration of carriers, p., in the in-
terior:

I =1, (exp(BeV./kT) — 1) — alpa (11)

Setting I = 0 and solving the resulting equation for the floating po-
tential, V, = V,;, we find:

Ver = (kT/e) log [1 + a(Zpa/ o). (12)

The floating potential may be simply related to the conductance cor-
responding to small current flow. Using Eqgs. (9) and (11), we find:

G = (dI/dV.)y —v., = (Bel./kT) exp (BeV./kT). (13)
Since the normal low-voltage conductance is just
Gy = Pel,/kT, (14)
we have
G = Gyexp (BeV./kT). (15)

By using (12), G can be expressed in terms of p,. This relation is given
and compared with experiment in Section IIT. Equation (15) may be
solved for the floating potential:

Ver = (kT/eB) log (G/Go). (16)

Tt should be noted that (16) does not involve p, directly. Thus it is pos-
sible to determine V., from a measurement of the change in conductance
without direct knowledge of the added hole concentration. It holds for
large as well as small p,.

The logarithmic relation (16) between floating potential and conduc-
tance has been demonstrated by an experiment of Pearson. Theexperi-

7See H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers”, McGraw-Hill Company,
New York, N. Y., (1949), p. 372-377.
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mental arrangement is illustrated in Fig. 2. Holes are injected into a
germanium filament by an emitter point and the circuit is closed by
allowing the current to flow to the large electrode at the left end. The
right end of the filament is left floating. Some of the injected holes diffuse

FLOATING POTENTIAL, Vpr,
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Fig. 2.—Schematic diagram of experiment of G. L. Pearson to investigate relation be-
tween floating potential and impedance of point contact.
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Fig. 3.—The relationship of admittance ratio to potential, measured at a point on a
germanium filament into which holes are emitted, with no current flow, from G. L. Pear-
son’s data of September 21, 1948,

down the filament and increase the local concentration in the neighbor-
hood of the probe point. This concentration can be varied by changing
the emitter current and also by changing the distance between emitter
and probe. Both the floating potential and the conductance between the
probe point and the large electrode on the right end were measured.
Under the conditions of this experiment, the potential drop in the in-
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terior of the floating end of the filament is small. The small drop which
does exist results from the difference in mobility between electrons and
holes. Almost all of the potential difference between the probe and the
right end is the floating potential, V., across the barrier layer of the
probe point.

Pearson’s data are plotted in Iig. 3. The data can be fitted by an equa-
tion of the form (16) with 3 = 0.5.

The difference in potential between a floating point contact and the
interior which exists under non-equilibrium conditions explains anoma-
lously high values of probe potential which were sometimes observed by
Shockley and by Brattain in the vicinity of an emitter point operating in
the forward direction. As an example of a case in which the effect is

TaBLE I

Measurements of probe potential, Vyy, at a contact on an etched germanium surface
.005 cm from a second contact carrying a current /. The conductance of the probe point
is Gp. The voltage drop across the probe contact, Vps — Vi, at zero current is calculated
from Vyy — Vi = 2.5(kT/e) log (G/Go). Data from W. H. Brattain.
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| ‘ | 1 Vg — Vi = |
I Pl , -' i
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large, some data of Brattain are given in Table I for the experimental
arrangement of Fig. 4. Two point contacts were placed about .005 cm
apart on the upper face of a germanium block. The surface was ground
and etched in the usual way. A large-area, low-resistance contact was
placed on the base. The potential, Vp, of one point, used as a probe,
was measured as a function of the current flowing in the second point. In
this case, the potential on the probe point is produced in part by the
Vs term and in part by a potential, V;, in the interior which comes from
the IR drop of the current flowing from the emitter point to the base
electrode. Reasonable values are obtained for V; from measurements of
Ve if a correction for V; is properly made.

The first column of Table I gives the current and the second column
the probe potential, Vg, measured relative to the base. The third column
gives values of Vp/I. In the reverse direction (negative currents) V /I
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is approximately constant at a little less than 100. Values of Ve/I in the
forward direction are much larger, starting at 300 for 7 = 0.1 ma and
decreasing to 94 at I = 2 ma. If anything, one would expect a decrease
rather than an increase in Vp/I in the forward direction as injection of
holes lowers the resistivity of the germanium in the vicinity of the point.
We shall show that V/I actually does decrease and that the anomalously
high values of V¢/I in the forward direction result from the drop, V.,

FLOATING POTENTIAL, Vpg,
AND CONDUCTANCE, Y,
HOLES INJECTED MEASURED
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Fig. 4.—Schematic diagram of experiment of W. H. Brattain for measuring floating
potential and admittance at point near emitter.

across the barrier layer between the contact point and the body of the
germanium. Thus,

Vi= Ve — Ve (17

Values of V., can be estimated from the change in conductance corre-
sponding to small currents in the probe point. The conductance increases
with increasing forward emitter current. Values of V., calculated from

Ver = 2.5 (kT/e) log (Go/Go), (18)

are given in column 6. The value 2.5, chosen empirically to give reason-
able values of V,, is not far from the value 2.0 required to fit Pearson’s
data in Fig. 1. Values of V; obtained from Eq. (17) are given in column 7.
The ratios V;/I given in column 8 are reasonable. The decrease in V,/I
with increasing forward current is caused by a decrease in the resistivity
of the germanium resulting from hole injection.

In another case, in which no such anomaly was observed in the for-
ward direction, it was found that V, calculated from the change in
conductance, was small compared with V.

There have as yet been no measurements which permit a comparison
of the values of 8 required to correlate probe potential and conductance
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with values of 8 obtained directly from the current-voltage characteristic
of the probe. Such a :comparison would provide a valuable test of the
theory.

III. Low VortaGE CONDUCTANCE OF PoINT CONTACTS

In this section we calculate the hole current flowing in the body of the
germanium from diffusion and find an expression relating change of con-
ductance with added hole concentration. The results shall be applied to
data of Pearson and of Suhl. We need to derive Eq. (4) which gives the
hole current in terms of the added hole concentrations, ppq, measured just
outside the barrier layer, and p., measured deep in the interior.

The model which is used for the calculation is illustrated in Fig. 1.
The diffusion equation for hole flow is to be solved subject to the bound-
ary conditions that p = p, just outside the barrier layer and p = p; at
large distances from the contact in the interior. It is assumed that the
total current flow is zero or small.

We shall first derive the more general equations® which include flow
by the electric field as well as by diffusion in order to show the conditions
under which the electric field can be neglected. In the body of the semi-
conductor, conditions of electric neutrality require that the electron con-
centration, », be given by:

where N, the net concentration of fixed charge, is the difference between
the concentrations of donor and acceptor ions. We shall assume that
N, is constant so that

grad n = grad p. (20)

The general equations for electron and hole current densities, 7, and 1,
are:

in = pn (enF + ET grad n) (21)
in = wp (epF — kT grad p), (22)

where F is the electric field strength. By using (19) and (20), and setting
M = Bu, we can express i, in the form:

Iy = b,u_,, (C(.‘\"j + P) F 4 kT grad P). (23)
The magnitude of F* for zero net current, ‘
1= 1, + i, = 0, (24)

8 A discussion of the equations of flow is given in the article by W. van Roosbroeck in
this issue of the Bell System Technical Journal.
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can be obtained by adding (22) and (23) and equating the result to zero.
This gives:
el b—1
AL S — Y ) 25
A Y ey L (23)
The field vanishes for b = 1, corresponding to equal mobilities for holes
and electrons. For b greater than unity and for equal concentration
gradients of holes and electrons, the diffusion current of electrons is
larger than that of holes. The field is such as to equate these currents by
increasing the flow of holes and decreasing the flow of electrons.
If (25) is substituted into (22), the following equation is obtained for
1p:
: ; ®—1)p ]
= —kT 1 : 26
K e [N;b TR VI R =
If recombination is neglected, the hole current is conserved and
div i, = 0. (27)

Using this relation, an equation of the Laplace type can be obtained for
p which may be integrated subject to the appropriate boundary condi-
tions. This derivation is given in Appendix B. The results do not differ
significantly from those obtained below for p assumed small.

Rather than continue with the general case, we shall at this point
assume that p < N, so that the first term in the parenthesis of Eq.
(26) is negligible in comparison with unity. This amounts to setting F =
0 in Eq. (3) and assuming that the holes move entirely by diffusion.
This is a very good approximation in most cases of practical interest and
is valid for small 7 as well as for 1 = 0. We then have

» = —kTy, grad p. (28)
The condition div i, = 0 gives Laplace’s equation for p:
Vip = 0. (29)

Equation (29) is to be solved subject to the appropriate boundary
conditions. For the model illustrated in Fig. 1 we can assume that p
depends only on the radial distance r and that

p= pratr = n, (30)
p=piatr = o, (31)

The solution of (29) which satisfies (31) is:
p = pit+ (Ly/2xkTyr), (32)
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in which I, is the total hole current. The boundary condition (30) gives
the relation between I, and py:

Py = pi + (I,/2xkTuyre). (33)

Since the equations are linear, an equation of the form (33) applies to
the hole current due to the added holes as well as to the entire hole
current. For the former we have:

Pra = pa+ (Im/z'ﬂ'kTﬂ-prb); (34)

which is equivalent to Eq. (4).

In the derivation of Eq. (34) we have neglected recombination at the
surface as well as in the interior. In the Appendix we give a solution for a
contact in the form of a circular disk and assume that recombination
takes place at the surface. The hole concentration then satisfies Laplace’s
equation subject to more complicated boundary conditions at the surface.
The results are not significantly different from those of the simplified
model.?

Equation (34), or rather its equivalent, Eq. (4), was used in the deriva-
tion of Eq. (12) for the floating potential, V.,. If this value for V.,
is inserted into Eq. (15), an equation relating the conductance directly
with the added hole concentration is obtained:

G = Gy + (we*avaABpo/4kT). (35)
This expression may be simplified by substituting for a from Eq. (6):
G = Go + afBuzedpa/n. (36)
By using the expression for the normal conductivity:
oy = bugeny, (37)
the conductance can be given in the form:
G = Gy + (aBood /bry)(pa/m). (38)

If o9 is in practical units (mhos/cm), G is in mhos.
We shall compare (38), which gives a linear variation between G and p,,
with experimental data of Pearson' and of Suhl. The arrangement used

®In the applications, these equations are applied to situations in which the contact is
on a germanium filament and there is a flow of current along the length of the filament in
addition to the flow to the contact. A question may arise as to whether it is justified to
neglect the filament current when discussing flow to the contact. There is no difficulty
as long as pa./ng is small compared with unity because the equations are then linear and
the solution giving the flow to the contact can be superimposed on the solution giving the
flow along the length of the filament. The neglect of the filament current cannot be rigor-
ously justified in case pa/n0 is large, as is assumed in the calculations of Appendix B, It is
not believed, however, that the exact treatment would yield results which are significantly
different.

10 See reference 3, p. 356 and Fig. 6.
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by Pearson is shown in Fig. 5. Two probe points were placed about
.009 cm apart near one end of a germanium filament. The concentration

POTENTIAL DIFFERENCE AND
CONDUCTANCE MEASURED

HOLES INJECTED
-+

e

Fig. 5.—Experimental arrangement used by G. L. Pearson to investigate relation be-
tween admittance and hole concentration in germanium filament.
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Fig. 6.—The relationship between point admittance and relative hole concentration,
for a germanium filament from G. L. Pearson’s data of September 28, 1948.

of holes was varied by current from an emitter point near the opposite
end of the filament. There was an additional current flowing between
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electrodes at the two ends so that the field pulling the holes along the
filament could be varied. The concentration of holes was determined from
the change in resistivity of that segment of the filament between the two
probes. Measurements of admittance were made by passing a small current
between the two probes connected in series. The area of the filament is
about 1.6 X 10~ cm? and the normal resistance between the probes
about 1800 ohms. The normal conductivity is thus

g0 = .009/(1800 X 1.6 X 10~%) = 0.03 (ohm cm)-L (39)

As shown in Fig. 6, Pearson finds a linear relation between G and p..
The line best fitting Pearson’s data is

G = Go+ (8 X 107) (pa/m0) (mhos). (40)

The theoretical value of the coefficient may be obtained from Eq. (38).
Taking

a=1, B =05, o0 = 0.03
b=120,4=10"%cm%r =5 X 10~ cm, (41)
we get
aBasd /b ry = 15 X 10~% mhos. (42)

Pearson’s data, represented by (40), apply to the conductance cf two
point contacts in series, and the conductance of each one may be about
twice that given by (40). Thus the theoretical value is in good agreement
with the observed. There is no indication that « differs from unity at low
voltage. ‘

Suhl varied the concentration of holes in the vicinity of probe points by
application of a transverse magnetic field as well as by injection from an
emitter point. The experiment is illustrated in Fig. 7. He used a filament
with a cross-section of about .025 X .025 cm. Four probe points were
placed along the length of the filament at intervals of about .04 cm. A
total current of 4 ma flowed in the filament.

In one experiment, none of this current was injected, so that the con-
centration of holes was normal in the absence of the magnetic field.
Measurements were made of the floating potentials and of the conduct-
ances of the probe points. Then a transverse magnetic field was applied
and the conductances measured again. We are interested here only in the
case of a large field (30,000 gauss) in such a direction as to sweep the
holes to the opposite side of the filament. Suhl believes that under these
conditions the concentration of holes near the probe points is practically
zero. The difference between the conductances with and without the field
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then gives the contribution to the conductance from the normal concen-
tration of holes. ‘

In a second experiment 1 ma of the current of 4 ma flowing in the fila-
ment was injected from an emitter point near one end of the filament.
From the probe potentials, estimates have been made of the change in

PROBE POINTS
. 1

=1

L q—-Ib=4ma

(3) NO MAGNETIC FIELD, NORMAL HOLE CONCENTRATION

AN ‘:ﬁ&&)’&:

R
v

<«—TIp=4ma

(b) MAGNETIC FIELD SWEEPS HOLES TO OPPOSITE SIDE
OF FILAMENT

=T

(c) HOLES INJECTED BY EMITTER

4—Ib= 4ama

Fig. 7.—Schematic diagram of experiment of H. Suhl to investigate relation between
hole concentration and impedance of point contacts.

resistivity and thus of the added hole concentration at the different probe
points. Changes in hole concentration from injection have been correlated
with changes in admittance of the probe points.

The filament with dimensions .025 X .025 X 0.4 cm has a resistance of
4,600 ohms. The normal resistivity, po, is then about 7.2 ohm cm. Since
the concentration of electrons corresponding to 1.0 ohm cm is about
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1.8 X 10, the concentration corresponding to a resistivity of 7.2 ohm cm
istl:
no = 1.8 X 1015/7.2 = 2.5 X 10/cm?, (43)

The product of the equilibrium concentrations of electrons and holes is
about 4 X 10% in germanium at room temperature'>. Thus, for this sample

po= 4 X 10%/2.5 X 104 = 1.5 X 10"2/cm?. (44)

If there is an added concentration of holes, p,, resulting from injection,
the added conductivity is:

oo = (14 D) epppa = 8.4 X 10716 p, . (45)
The:resistivity is changed to:
p = pooo/ (Fa + 06) ~ po (1 — apo), (46)

the approximate expression holding if the relative change is small. The
resistance per unit length of Hlament is:

R= 115X 10* (1 — cupy). (47)

The change in voltage gradient, dV/dx = RI, resulting from hole injec-
tion is, for a current of 4 X 10-% amps,

A(dV/dx) = d(AV)/dx = —46pyog . (48)

Suhl measured the change in probe potential, AV, which resulted when 1
ma of the total current of 4 ma was injected from the emitter instead of
having the entire 4 ma flowing between the ends of the filament. His
values of AV for the four probe points are given in Table IT. We have
made a plot of these as a function of position and have estimated the
gradients at each of the four probe positions. Using these values we have
calculated o, from Eq. (48) and the corresponding injected hole concen-
tration from Eq. (43). These are given in the last column of the table.

Suhl’s measurements of conductances, G, of the probe points are given
in Table III. Also given are differences, AG, from the normal values with
no magnetic field and no injection and also these differences multiplied by
m/pa . Values of p, for the case of hole injection were obtained from
Table II. Values of AG(ny/pa) are to be compared with the theoretical
value,

AG(1no/ pa) = aBoeA/cry , (49)

1 These values are based on taking p, = 3500 cm?/volt sec and g, = 1700 cm?/volt

sec, as measured by J. R. Haynes. They correspond to room temperature (295°K).

12 This value is obtained from an intrinsic resistivity of about 60 ochm cm for Ge at
room temperature and the mobility values in reference 11.
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from Eq. (38). Takinga = 1,8 = 0.5,00 = 0.14,0 = 1.5, 4 = 107 and
ry = 5 X 1074, we get

G(my/pa) ~ 100 micromhos. (50)

This value is of the same order as the values obtained from Suhl’s data
listed in Table III. There is a large scatter in the latter and the values are

TasrLE II
Calculation of hole concentrations from probe potential measurements. A ¥ measures
potential difference resulting from hole injection of 1 ma when total current is kept at 4
ma; data from H. Suhl

Relative | dAV |
Point No. Position | AV (volts) dx poag oa (mhos) pa (cm™3)
{cm) (volts/cm)
#6 0 —.04 —0.6 .013 .0018 2.2 X 102
#5 .044 —.073 —1.10 .024 .0033 4.0
#4 .084 —-.13 —1.8 .039 | .0054 6.5
#3 .12 —.21 -=2.5 .055 L0077 9.0
TasLE III

Changes in conductance resulting from iafp]ication of magnetic field and from hole
injection. Units are micromhos. Data from H. Suhl.

No Field With—30,000 gauss field ‘ With hole injection
Point o | "
G G aG AG = G AG AG =
%6 17.2 16.4 ~0.8 130 22.5 7.8 880
%5 6.55 4,35 ~2.2 365 7.0 0.45 28
K4 3.7 3.2 -0.5 80 5.1 1.4 54
%3 13.0 0.2 ~3.8 630 19 6 165

tiot congistent. It has been suggested that the abnormal values may result
from local sources of holes.

IV. Hort Frow ror A Correcror witH LArRGE REVERsE Vortaok

Haynes has shown that there is a linear relation between the current
to a collector point operated in the reverse direction and the concentra-
tion of holes in the interior of a germanium filament. Under the conditions
of his experiment, the current flowing to the collector point is small com-
pared with the total current flowing down the filament, so that the col-
lector current does not alter the concentrations very much. Holes are
injected into the filament by an emitter point placed near one end, and
the concentration is determined from the change in resistance of the
filament in the neighborhood of the collector point.
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Haynes’ measurements may be fitted by an empirical equation of the
following form:

I = Lfl + vpa/m)l, (51)

in which Iy is the normal collector current flow for a given collector volt-
age, I is the collector current flowing for the same collector voltage when
the hole concentration is increased by pq, and nq is the normal electron
concentration. Values of Iy and v for four different formed phosphor-
bronze collector points are given in Table IV. The collector bias is —20
volts in each case. It can be seen that the variations in v are much less
than those in ;. It will be shown below that v is related to the intrinsic
a of the point contact.

COLLECTOR
EMITTER Vg =-20 VOLTS

—lI= =i
lrem ICO\TF

RRBEEIIELILLY
GRS
5 ,oo.o,o,o::: S5

=L

<— I, SWEEPING CURRENT

Fig. 8.—Experimental arrangement used by J. R. Haynes to determine relation be-
tween hole concentration and current to collector point biased with large voltage in re-
verse direction.

In Haynes’ experiment, holes are attracted to the collector by the field
produced by the electron current and diffusion plays a minor role. In
contrast to the preceding examples, the terms involving the field F¥ in
Eqgs. (21) and (22) are large and the diffusion terms represented by the
concentration gradients are small. It follows from (21) and (22) that the
ratio of electron to hole current density is then:

in/ip = bn/p, (52)
which is equal to the ratio of the electron and hole contributions to the
conductivity. If # and p do not vary with position, the ratio is the same

everywhere and equal to the ratio of total electron and hole currents,
I,and I,:

/I, = in/ip = bu/p. (53)
The currents I, and [, can also be related to the intrinsic @ for the con-
tact by use of an equation of the form:

I = I+ al, (54)
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in which I, is the electron current for zero hole current. The electron
current is:

In=Iw+ (@ — 1)I,. (53)
Thus we have

In _ Tno + (a - I)Ip _ bn _ b(.’V,« + P)

=P = = 56
I, I, P o

This equation may be solved for I, to give:
I, = pLo/(bN; + (@ — 1 — b)p). 57)

The term (@ — 1 — b)p is generally small compared with N, and may
be neglected. We thus have approximately for /N, small and N, =2 ny,

I'=TIn+al, = Il + (ap/bm)]. (58)
When expressed in terms of the normal current,
Io = Tnoll + (apo/bno)l, (59)
the equation for I is of the form (51):

I =101+ (apa/br)l. (60)
From a comparison of (51) and (60) it can be seen that: '
v =a/bora = by. (61)

Values of a determined from empirical values of ¥ for the four point
contacts of Haynes are given in Table IV. The values are of a reasonable
order of magnitude for formed collector points.

An estimate of the importance of diffusion can be obtained by compar-
ing the hole current in Haynes’ experiments with the hole current which
would exist if the electron current were zero, so that holes move by diffu-
sion alone. Equations (28) to (33) apply to the latter case. In addition to
(33) we need an equation which expresses the hole current flowing into
the contact in terms of the hole concentration, ps, at the contact. If the
reverse bias is large, no holes will flow out and the entire hole current is
that from semiconductor to metal as given by an equation similar to (3):

I, = —eprrd/4. (62)

Substituting this value for I, into equation (33) we get an equation which
may be solved for s, to give:

Py = api(1 + a) =2 ap;, (63)
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with a given by Eq. (6). Using (63) for ps, we get:
I, = kTwpd/re = (kTaod/ebry)(pi/mo). (64)

With kT/e = .025 volts, ¢ = bmeus = 0.2 (ohm cm)!, A = 1078 cm?
and 74 = 5 X 10~* cm, we get for the diffusion current:

I, = (5 X 107%(pi/n) amps. (65)

Comparing (65) with (57) we see that diffusion of holes will not be im-
portant if
I >> 5 X 1078 amps. (66)

This condition is satisfied in Haynes’ experiments.

In the case of point contacts formed to have a high reverse resistance
as diodes, Iy may be of the order of 1077 to 10~% amps at room tempera-
ture. Diffusion of holes will then play a role, and the hole current will

TasLE 1V
Relation between hole concentration and collector current from data of J. R. Haynes.
Data represented by
I = Il + (vpa/ma))

where I is current flowing to collector point biased at —20 volts and p,/#, is ratio of added
hole concentration to the normal electron concentration.

Probe Paint h a = 21y
0 0.94 4.6
2 0.33 4.4
3 0.51 6.9
4 \ 1.20 4.6

be larger than indicated by Eq. (33). As discussed in reference (4) there
is still a question as to the importance of holes in the saturation current
observed by Benzer in diodes with high reverse resistance. Experiments
similar to those of Haynes would be valuable to determine the influence
of hole concentration on reverse current.
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APPENDIX A
Di1rrusioN oF HOLES WITH SURFACE RECOMBINATION

In the calculation of the diffusion of holes given in Section III of the
text it was assumed that no recombination of electrons and holes oc-
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curred. In the present calculation it is assumed that recombination occurs
at the surface, but not in the volume. This is a good approximation for a
point contact on germanium. It is further assumed that the hole concen-
tration is sufficiently small so that Laplace’s equation (29) may be used.
The model which we shall use is illustrated in Fig. 9. The contact is in
the form of a circular disk of radius p on the surface of the semiconductor.
Cylindrical coordinates, 7, 6, z, are used, with the origin at the center of
the disk and the positive direction of the z-axis running into the semi-
conductor. We calculate the flow due to the added holes, and shall use
the symbol p without subscript to denote the added hole concentration.

Fig. 9.—Coordinates used for calculation of hole flow to contact area in form of circu-
‘ar disk.

With recombination at the surface, it is necessary to have a gradient in
the interior which brings the holes to the surface.
It is assumed that the rate of recombination at the surface is:

sp = holes/cm?, (1A)

where the factor s has the dimensions of a velocity and p is evaluated at
the surface z = 0. According to measurements of Suhl and Shockley, s is
about 1500 cm/sec for a germanium surface treated with the ordinary
etch. The current flowing to the surface is:

(upkT/€)(0p/02) .m0 holes/cm?. (2A)

The boundary condition for p at the surface z = 0 outside of the contact
area is obtained by equating (1A) and (2A). This gives:

ap/az = Apatz =0,r>p (34)
where

N = se/ #kas (4A)
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has the dimensions of a length. For s = 1500 cm/sec and p, = 1700
cm?/volt sec, corresponding to germanium at room temperature, \ is
about 35 cm™.

The boundary condition on the disk is similar to (3A) except that s is
replaced by v4/4 (cf. Eq. (3)). Thus for r < p,

apfaz =Np z=0,7r <p, (5A)
where
Ao = vae/dukT. (6A)

Evaluated for germanium at room temperature, A, is about 6 X 10%
In order to have a dependent variable which vanishes at infinity, we
replace p by:

Yy = pa— P+ Mz (74)

so that p — p, for z = 0 as r — . The variable y satisfies Laplace’s
equation subject to the boundary conditions:

dy/dz = Ay z2=0,r>p (8A)
3y/0s =N(y —pa)2=0,r<p (9A)
y=10 r,z— o, (10A)

An exact solution of the problem is difficult. We shall obtain an approxi-
mate solution which satisfies (8A) but not (9A) and which applies when

M K 1K hp. (11A)

"This approximation is valid for a germanium point contact, since, for p ~
1073 ¢m,

Ap ~ 035, hp ~ 60. (12A)

We shall first discuss the limiting case for which A — 0 and A, — =.
The former implies neglect of surface recombination and the latter

y=paforz=0,r <p (13A)

The problem is the same as that of finding the potential due to a conduct-
ing circular disk. The solution of this problem, which is well known, is:

y = (2pa/m) f ) 2 o a1 (14A)
0

The current flowing to the disk is obtained from integrating:

i, = kTF:p(ay/az)) (ISA)
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over the area of the disk. This gives:
Ipe = —4ppokTuy,. (16A)

The analogous expression for a hemispherical contact area of radius
75, obtained from (7), is:

Ipe = —2arypk Ty, (17A)

If a comparison is made on the basis of equal radii, (17A) is larger than
(16A) by a factor of w/2. On the more reasonable basis of equal contact
areas, (16A) is larger than (17A) by a factor of 4/x.

An approximate solution which includes surface recombination can be
obtained as follows. A solution of Laplace’s equation which satisfies
(8A) -and (10A) is:

_ gﬂfn - sin pt
y="1 & “Trt) P Ad" (18A)

That (18A) satisfies (8A) may be verified by direct substitution:
I:—Q + )\y] = 2_)'_nf Jo{rt) sin pt dt = 0 for r > p,  (19A)
a9z =0 ™ Jo

= Qyw/m)(* — )17 for r < p. (20A)

Expression (18A) satisfies (9A) approximately if A, is large. Using
(20A) and neglecting A in comparison with A, we have:

y = pa— Qy/mA)(p* — )7 for z=0,7r <p.  (21A)

Except for r almost equal to p, the second term on the right of (21A) is
very small. Tt is not possible to obtain an explicit expression for y for
¥ <p. Forz=0,r=p,

290 [ Jolol) sin pt , ;
y == L T dt = y F(\p). (224)

The integral, F(Ap), can be evaluated from a more general integral in

Watson’s Bessel Functions, p. 433. We have:

py = 2 [ Jsinzds o 5 + sin k To(R).  (22B)
T Jo x+ k

The factor multiplying o is unity for Ap = 0, and decreases as Ap increases.
Since y is approximately equal to p., we have, approximately,

yo = pa/F(Np). (23A)
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The value of v can also be found for r = 0. Forz = 0, r = 0, we have:

_ 2w [sinptdl _ 2y _
[ e, aw

The integral can be expressed in terms of integral sine and cosine func-
tions:

G(k) = _2[ sin v dv _ Z[—cosk(Si k- I) + sin & Ci k:|. (25A)
o

T r+ A T 2

If & is not too large, G(k) is nearly equal to F(k), so that v is approximately
constant over the area of the disk.

The total current flowing from the contact is found from integrating
kTp, (dy/dz) over the disk:

P [ dat]olrt) sin pt
—kTuyy f L dtd 26
Hp Yo o [+ A r (26A)

° pfl(pl) sin pl dt.
L+ A
The integral can be evaluated with use of the general integral of Watson,
to give:

1

It

— 4k T, vo { (274)

Tpa = —4pkTupyo H(Np), (28A)
where
m) = [ DS s k@) 4 sin k Vi) @98)
Using (23A) for w, we have:
Tpa = —4pkTu,palH(No)/F(Np)). (30A)

Except for the factor H(\p)/F(X\p), this expression for the current is
identical with (16A). This factor, which gives the effect of recombination
on the current, is plotted in Fig. 10. Recombination gives an increase in
current flow, but the effect is small for the normal rate of surface recom-
bination, which corresponds to £ = Ap ~ .035.

APPENDIX B
CarcuLaTioN oF Hore Frow ror ArBITRARY HOLE CONCENTRATION

In the text it was assumed that the concentration of holes was suffi-
ciently small so that the first term in the brackets of Eq. (26) could be
neglected in comparison with unity, yielding Egs. (28) and (29). We give
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here the general integration of Egs. (26) and (27) for p arbitrarily large.
Equation (26) may be written in the form:
i, = —grad ¢, (1B)

where

_ Bp b6 — DN b + 1)p
v = Flup [b o Bl ) (1 + 5w, )] (8)

Equation (27) then becomes:
vy = 0. (3B)

The radial solution of this equation corresponding to a total current I,
is:

¥ =y, + I,/2xr. (4B)
1.6
~17/2[Ji (k) cos k + Yy (K)SIN k] L~
1.5 PLOT OF R(k) = =
Jo (k) cos k + Yo (K) SIN k
T - ///
= 1.3 ]
X L~
— /
x 1.2 P
//
1.4 ——
1.0 -'_'__---—I-’— Lol | ' ! I
0.01 0.02 0.04 0.06 0.1 0.2 0.4 0.6 1.0 2 4 b

K=—> .
Fig. 10.—Correction factor for surface recombination.

The constants I, and ¢, are determined from the boundary conditions
(30) and (31) of the text corresponding to r = r, and r = . These con-
ditions give:

3 [ 26p;  2(6 — 1N, (6 + Dp:
Y = kTu st log (1 + -W)] (5B)

I, = 2ary (P(r) — V),

[26(pp — ps) b6 — N, BN, + (b + 1)p,.] (6B)
b+ 1 6+ 1)? bNy + (b + Dpil

This equation is the appropriate generalization of Eq. (33) of the text.
Since the equations are no longer linear, they do not apply strictly to the
added hole concentration. However, if the normal hole concentration, #y, is
small, gy will be negligible in comparison with ps, and p, when the equa-

log

21!‘1’5

[
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tions are not linear. Accordingly, to a close approximation, we may take
for the added hole current:
I,a = 201, [zmb(Pb“ —p) W =1 0N+ (bt DP&“] (7B)

,,,,,, —log —/————————
b1 b+ D2 PN+ (0 F D
which is the generalization of Eq. (34) of the text.
The value of pu, and thus of 7,, may then be found by equating this
expression with that of Eq. (3) for J,,.. This procedure yields the trans-
cendental equation:

(26— p) b — DN, BN+ (b + 1)%]
pre = [ R R R e e T R

where @ is again defined by Eq. (6) of the text. This equation must be
solved in general by numerical methods for a particular case. The equa-
tion simplifies for p, either large or small compared with N, . The latter
case is treated in the text. The opposite limiting case of large hole con-
centrations is treated below.

For p, large compared with V;, the logarithm may be neglected, so
that

an = —2(!5(?&,1 - }bu)/(b + 1) | (QB)

Tf, as in the text, it is assumed that a is small in comparison with unity,
there results:

Pba = ZabPa/(b + 1)7 (10B)
and, using (3):
Ipe = _{21)/(5 + 1)]PakTﬂpA/rb . (11B)

This differs from (7) by a factor 25/(b + 1). The equation corresponding to
(8) will have this additional factor, and also the expression for the con-
ductance, G, which, for large hole concentrations is:

G = Gy + [28/(b + D](aBood/brs) (pa/na), (12B)

in place of (38) of the text. Equation (16) which relates floating potential
and conductance is general, and applies for arbitrary hole concentration.



