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A theoretical analysis of the flow of added current carriers in homogeneous
semiconductors is given. The simplifying assumption is made at the outset that
trapping effects may be neglected, and the subsequent treatment is intended
particularly for application to germanium. In a general formulation, differential
equations and boundary-condition relationships in suitable reduced variables and
parameters are derived from fundamental equations which take into account
the phenomena of drift, diffusion, and recombination. This formulation is special-
ized so as to apply to the steady state of constant total current in a single car-
tesian distance coordinate, and properties of solutions which give the electro-
static field and the concentrations and flow densities of the added carriers are
discussed. The ratio of hole to electron concentration at thermal equilibrium
occurs as parameter. General solutions are given analytically in closed form for
the intrinsic semiconductor, for which the ratio is unity, and for some limiting
cases as well, Families of numerically obtained solutions dependent on a parame-
ter proportional to total current are given for s#-type germanium for the ratio
equal to zero. The solutions are utilized in a consideration of simple boundary-
value problems concerning a single plane source in an infinite filament.
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1. INTRODUCTION

N A semiconductor there are current carriers of two types: electrons

in the conduction band, and positive holes in the filled valence band;

and the increase of their concentrations in the volume of the semicon-
560
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ductor over the concentrations which obtain at thermal equilibrium is
fundamental to a number of related phenomena, of which transistor ac-
tion is a familiar instance. In an n-type semiconductor, for example, in
which the carriers are predominantly electrons, the carrier concentrations
are increased by the introduction of holes which, through a process of
space-charge neutralization, produce additional electrons in the same
numbers and concentrations. The bulk conductivity of the semiconductor
is thereby so increased that power gain is obtainable.! Holes can be
introduced by the local application of heat, or by irradiation with light,
X-rays, or high-velocity electrons—in fact, by any agency which trans-
fers electrons from the highest filled band to the conduction band. They
can be introduced also through an emitter, which may be a positively
biased point contact or a positively biased p — » junction?, as exemplified
in the transistor. In this case the emitter introduces holes, which flow
into the volume of the semiconductor?, by the removal of electrons from
the filled band.>- 5 Entirely analogous considerations apply to the intro-
duction of electrons into a p-type semiconductor.®

In their flow in a semiconductor, added electrons and holes are subject
to drift under electrostatic fields and to diffusion in the presence of con-
centration gradients as a consequence of their random thermal motions.
They are subject also to recombination, which results in concentration
gradients in source-free regions even for the steady state in one dimen-
sion, or which augments those which may otherwise be associated with
the time-dependence of the flow, or with its geometry in the steady state.
From fundamental equations which take into account these phenomena of
drift, diffusion, and recombination, for the existence of each of which
there is experii .ental evidence!, general differential equations and
boundary-conditiv. relationships in suitable reduced or dimensionless
variables and parameters may be derived, and solutions which give the
concentrations and flow densities of added carriers obtained for various
cases of physical interest.

This paper presents results of a theoretical analysis, along these lines,
of the flow of electrons and holes in semi-conductors. The treatment is
intended particularly for application to germanium. An initial formulation,

1W. Shockley, G. L. Pearson and J. R. Haynes, B. S. T. J. 28, (3), 344-366 (1949),

2J. Bardeen and W. H. Brattain, Phys. Rev. 74 (2), 230-231 (1948); W. H. Brattain
and J. Bardeen, Plys. Rev. 74 (2) 231-232 (1948).

3 W. Shockley, G. L. Pearson and M. Sparks, Plys. Rev. 76 (1), 180 (1949); W. Shockley,
B, S. T..J. 28 (3), 435-489 (1949).

4E. J. Ryder and W. Shockley, Phys. Rev. 75 (2), 310 (1949); J. N. Shive, Plys. Rev.
75 (4), 689-690 (1949); J. R. Haynes and W. Shockley, Phys. Rev. 75 (4), 691 (1949).

& J. Bardeen and W, H. Brattain, Phys. Rev. 75 (8), 1208-1225 (1949); B. S. T. J. 28
(2), 239-277 (1949).

8W. G. Pfann and J. H. Scaff, Phys. Rev. 76 (3), 459 (1949); R. Bray, Phys. Rev. 76
(3), 458 (1949).
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which retains, wherever convenient, such generality as is instructive per se
or of manifest utility, is specialized so as to apply to the steady state of
constant current in a single cartesian distance coordinate. For the in-
trinsic semiconductor, general analytical solutions are obtainable in
closed form, and such solutions are given, as well as general solutions
obtained numerically for n-type germanium in which the hole concentra-
tion at thermal equilibrium may be neglected compared to the electron
concentration. Solutions for these cases are given explicitly for each of
two recombination laws: recombination according to a mass-action law,
and recombination such that the mean lifetime of the added carriers is
constant. Methods are described for the fitting of boundary conditions,
and the following relatively simple boundary-value problems are con-
sidered: a source at the end of a semi-infinite semi-conductor filament;
and a single source in a doubly-infinite filament.

To indicate the presumed scope and application of the results obtained,
it may suffice to outline briefly the principal assumptions on which they are
based and the approximations employed: The assumption is made at the
outset that trapping effects may be neglected, which provides the im-
portant simplification that the recombination rates of holes and electrons
are equal at all times. One justification for this is the circumstance that
the fairly high hole mobilities found by G. L. Pearson from Hall-effect
and conductivity measurements’ are no larger than those found by J. R.
Haynes from transit times under pulse conditions'. With hole trapping,
holes injected in a pulse would initially fill traps; and if there were subse-
quent relatively slow release of the holes from the traps, an apparent
reduction of mobility would be manifest. It is further assumed that sub-
stantially all donor and acceptor impurities are ionized. With the assump-
tion that the semi-conductor is homogeneous in its bulk, and free from
grain boundaries® or rectifying barriers, the assumption of the electrical
neutrality of the semiconductor, or of the neglect of space charge, is in
general an excellent approximation: Small departures from electrical
neutrality in the volume would vanish rapidly, with time constant equal
to that for the dielectric relaxation of charge, which for germanium
equals 1.5-102 sec per ohm cm of resistivity’ and is in general small
compared with the mean lifetime of added carriers. A uniform local de-
parture from electrical neutrality in germanium of only one per cent in
relative concentration would produce appreciable changes in field in a

7 G. L. Pearson, Phys. Rev. 76 (1), 179-18) (1949).

§G. L. Pearson, Phys. Rev. 76 (3), 439 (1949); W. E. Taylor and H. V. Fan, paper
OAS, and N. H. Odell and H. Y. Fan, paper OA2 of the 1950 Annual Meeting of the
American Physical Society, February 3, 1950.

9 A value of 16.6 for the dielectric constant of germanium is obtained from optical
data of H. B. Briggs: Phys. Rev. 77 (2), 287 (1950).
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mean free path for the carriers, equal to 1.1-10~% cm at room temperature,
which would even preclude the applicability of the fundamental equations
employed. In qualitative terms, the conductivity of the semiconductor is
sufficiently large that the currents which commonly occur are produced
by moderate fields whose maximum gradients are relatively small. Space
charge may persist in the steady state, but then only in surface regions
whose thickness'® in germanium is generally less than about 10~ cm and
whose effects may be dealt with through suitable boundary conditions,
The steady-state solutions, in their qualitative aspects, are illustrative
of the phenomena taken into consideration. In an extrinsic semiconductor,
if the concentrations of added carriers are not too large, the solutions
for moderate and large fields are in general approximately ohmic in their
local behavior. The effect of diffusion is then comparatively small, and
the added carriers largely drift under a field which varies with distance
through the increased conductivity which these recombining carriers
themselves produce. Diffusion effects are incident in addition to this
behavior, and become pronounced for large concentrations or small ap-
plied fields. For example, solutions which specify the concentrations of
added holes as functions of distance, for different total currents or applied
fields in a source-free region, all approach a common solution for large
hole concentrations, regardless of applied field; those for the hole cur-
rent and the electrostatic field behave similarly. This behavior results from
diffusion in conjunction with the increase in conductivity. Another example
is that of the solutions for zero total current: As the result of diffusion in
conjunction with recombination, a flow of added holes can occur along a
semi-conductor filament with no flow of current. It is, of course, accom-
panied by an equal electron flow, so that the hole and electron currents
cancel, and occurs in any open-circuited semi-conductor filament which
adjoins a region in which added holes flow. It can also be realized by suit-
able irradiation of an end of a filament, with no applied field. A closely
related effect is illustrated in the flow of holes injected through a point-
contact emitter into a semi-conductor filament along which a sweeping
field is applied: Some of the holes will flow against the field, an appre-
ciable proportion, unless the current in the filament is sufficiently large.
As a further example, if the mobilities of holes and electrons were equal,
the electrostatic field would be given by Ohm’s law as the total current

10 The (largest) distance over which the increment in electrostatic potential exceeds
kT /e may be expressed in units of the length Ly = (kT'e/8mnic*)?, where n; is the thermal-
equilibrium concentration of electrons (or holes) in the intrinsic semiconductor; see the
paper of reference 3, also W. Schottky and E. Spenke, Wiss. Verdff. Siemens-Werken 18
(3), 1-67 (1939). This distance increases with resistivity, never exceeding the value 1.4
Lg for the intrinsic semiconductor. In high back voltage n-type germanium, it exceeds
about 0.5 Ly, and Ly for germanium is about 7.4-107% cm at room temperature.
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divided by the local increased conductivity. With electrons more mobile
than holes, this ohmic field is modified by a contribution which is directed
away from a hole source and proportional to the magnitude of the con-
centration gradient divided by the local conductivity. This contribution
gives a non-vanishing electrostatic field for zero total current.

The intrinsic semiconductor has, as the result of a conductivity which
is everywhere proportional to the concentration of carriers of either type,
the property that the flow in it is as if the added carriers were actuated
entirely by diffusion, wth only the carriers normally present drifting
under a field equal to the unmodulated applied field. The extrinsic semi-
conductor becomes in effect intrinsic if the concentrations of carriers are
sufficiently increased, by whatever means, the ohmic contribution to the
current density of either electrons or holes then becoming proportional to
the total current density and, in this case, negligible compared with the
contribution due to diffusion. It may, for example, be expected that the
transport velocity of added carriers in an extrinsic semiconductor can be
increased by an increase in the applied field only if the consequent joule
heating does not unduly modify the semiconductor in the intrinsic
direction.

General solutions for the steady state in one dimension are obtainable
analytically in closed form for a number of important special cases. Aside
from that for which diffusion is neglected, they include the general cases
for no recombination, for the intrinsic semiconductor, and for zero total
current, and the limiting cases of small and of large concentrations of
added carriers. W. Shockley has made use of small-concentration theory
in an analysis of  — » junctions®. J. Bardeen and W. H. Brattain have
given solutions for the steady-state hole flow in three dimensions, neg-
lecting recombination, in the neighborhood of a point-contact emitter.5 1!
Transient solutions are obtainable analytically for the intrinsic semi-
conductor for constant mean lifetime, and for the extrinsic semiconductor
if the concentrations of added carriers are sufficiently small that the
change in conductivity is negligible. For concentrations unrestricted in
magnitude, Conyers Herring has described a general method for graphical
or numerical construction of transient solutions in one dimension from a
first-order partial differential equation appropriate to the case for which
diffusion is neglected in the extrinsic semi-conductor, and has given some
solutions so obtained, with estimates of the effect of diffusion. Reference
might be made to his paper' also for discussion of various physical con-

3 loc. cit.

6 Joc. cit.

11 See the paper of J. Bardeen in this issue.

12 Conyers Herring, B. S. T. J. 28 (3), 401-427 (1949).
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siderations and of certain interesting transient effects. Steady-state alter-
nating-current theory for relatively small total hole concentrations in the
n-type semiconductor has been used to describe the action of the filamen-
tary transistor'® for which diffusion may in general be neglected.!

The steady-state solutions in one dimension apply to single-crystal semi-
conductor filaments, and for critical comparisons between theory and
experiment, the ideal one-dimensional geometry should be simulated as
closely as possible. Experimental estimates of hole concentrations and
flows are frequently obtained from measurements of potentials and con-
ductances of point contacts along a filament!. These estimates require a
knowledge of the dependence of the current-voltage characteristicsof
point contacts on hole concentration. Theory for this dependence has been
presented by J. Bardeen'!, and the determination of hole concentrations by
means of the solutions here given should provide an essential adjunct to
this point contact theory for its comparison with experiment.

2. GENERAL TORMULATION
2.1 Oulline

The formulation of the general problem is initiated by writing the
fundamental equations for the time-dependent flow of holes and elec-
trons in a source-free region of a homogeneous semiconductor under the
assumption that there is no trapping. Conditions for their validity are
discussed. Neglecting changes in the concentrations of ionized donors and
acceptors, the fundamental equations are expressed in reduced or dimen-
sionless form by suitable transformations of the dependent and independ-
ent variables, They are simplified so that the general problem is formu-
lated by means of second-order partial differential equations in two de-
pendent variables, one for concentration and the other for electrostatic
potential; corresponding equations are derived for the intrinsic semi-
conductor. Various properties of the equations are adduced. For the flow
in one dimension, a differential equation in the hole concentration is
given for the n-type semiconductor, accompanied by expressions for the
electrostatic field and hole flow density, as well as by some boundary-
condition relationships involving specification of the latter. The equations
for this case are found to depend on three parameters: the ratio of elec-
tron to hole mobility; a reduced concentration of holes at thermal equilib-
rium; and a parameter which fixes the total current density.

The recombination of holes and electrons is specified by means of a

oc. cit.

1 Joc. cit.

13W, Shockley, G. L. Pearson, M. Sparks, and W. H. Brattain, Phys. Rev. 76 (3),
459 (1949).
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suitable function of the concentration of the added carrier, whose form is
specified for two recombination laws: recombination according to a mass-
action law, and recombination characterized by constant mean lifetime.
Tt is shown that essentially the same reduced equations apply to the case
for which recombination is neglected.

Second-order differential equations in the hole concentration for the
n-type semiconductor with the thermal-equilibrium value of the hole
concentration assumed negligible compared to the electron concentration,
and for the intrinsic semiconductor, are then written for the steady state
of constant current in one dimension. These are converted into first-
order equations which have, as dependent variable a reduced concentra-
tion gradient G, and as independent variable a reduced concentration of
added holes, AP. Boundary conditions are expressed as relationships
between these variables. Properties of the general solutions and of the
boundary conditions are accordingly examined in the (AP, G)-plane. Itis
found that there are two intersecting solutions through the (AP, G)-
origin, which is a saddle-point of the differential equation, and that these
are the solutions for field directed respectively towards and away from
sources in semi-infinite regions which have sources only to one side. They
are called field-opposing and field-aiding solutions, and possess two degrees
of freedom. Solutions which do not intersect at the origin are asymptotic
to these, possess three degrees of freedom, and are called solutions of the
composite type. This is the general type, and applies to a finite region in
distance at both ends of which boundary conditions are specified. The
region may, for example, be one between a source and either another
source, a sink, a non-rectifying electrode, or a surface upon which re-
combination takes place. While the analysis of composite cases is straight-
forward, the present treatment is confined to the simpler cases of field
opposing and field aiding, the latter being the one most generally appli-
cable to experiments in hole injection. Also, where the differential equations
involved are linear, solutions for composite cases can be written as linear
combinations of field-aiding and field-opposing solutions.

From the properties of the curves in the (AP, G)-plane is determined the
qualitative behavior of the hole concentration at a hole source at the
end of a semi-infinite filament as the total current is indefinitely in-
creased.

2.2 Fundamental equations for the flow of electrons and holes

The equations for the flow in three dimensions of electrons and holes
in a homogeneous semiconductor contain, as principal dependent vari-
ables, the hole and electron concentrations, p and n, the flow densities
J, and J, , and the electrostatic field, E, or potential, V. With no trapping,
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the equations may be written in a symmetrical form, so that they are

applicable to either an n-type, a p-type, or an intrinsic semiconductor,
as follows:

K .
f = - [P/Tp — gl — div J,

an

7= (/70 — gl — div Ja

1 kT kT
I, = - L = up |:PE s grad P] = —upp grad [V + ?]05 P:|
(1) J. = —: I, = . [—HE — k?Tgrad u:|

= —u,ngrad [—V + E; log n]

divE = Jfgf [(p — po) — (0 — mo) + (DY — Df) — (47 — 47)]

E= —grad V.

In the first two equations, which are the continuity equations for holes
and electrons written for a region free from external sources, gy is a con-
stant which represents the thermal rate of generation of hole-electron
pairs per unit volume; for cases in which hole-electron pairs are produced
also by penetrating radiation, appropriate source terms in the form of
identical functions of the space and time coordinates can be included on
the right in the respective equations. The mean lifetimes of holes and
electrons, 7, and 7, , are in general considered tobe concentration-de-
pendent and, since trapping is neglected, the quantities /7, and n/7,
are equal, being the rate at which holes and electrons recombine. Evalu-
ated for the normal semiconductor, or the semiconductor at thermal
equilibrium with no injected carriers, they equal g .

The equations for J, and J. , which are vectors whose magnitudes equal,
respectively, the numbers of holes and of electrons which traverse unit
area in unit time, are diffusion equations of M. von Smoluchowski,
written for hole flow and for electron flow™. Of the type frequently em-
ployed, after C. Wagner, in theories of rectification, each expresses the
dependence of the flow density on the electrostatic field and on the con-
centration gradient, the diffusion constant for holes or electrons having
been expressed in terms of the mobility, p, or u,, in accordance with the

4 S. Chandrasekhar, Rev. Mod. Phys. 15, 1-80 (1943).
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well-known relationship of A. Einstein’, In them, e denotes the magnitude
of the electronic charge; T is temperature in degrees absolute; and % is
Boltzmann’s constant. With transport velocity defined as flow density
divided by concentration, the product of the mobility and the quantity in
square brackets in the expression for J, or J, on the extreme right gives
the corresponding velocity potential, which is thus proportional to the
sum of an electrostatic potential and a diffusion potential.

The next to last equation is Poisson’s equation, which relates the di-
vergence of the field to the net electrostatic charge. Here € is the dielectric
constant; po and 7, are the concentrations of holes and electrons at
thermal equilibrium, in the normal semiconductor. The concentrations of
ionized donor and acceptor impurities at thermal equilibrium are repre-
sented by Dy and Ay , while D and A~ are dependent variables which
denote the respective concentrations in general of ionized donors and
acceptors in the semiconductor with added carriers. As shown in the
Appendix, variations in D% and 4~ may be neglected if the impurity
centers are substantially all ionized in the normal semiconductor, despite
the effect large concentrations of added carriers may have on the equilib-
rial®,

The expression of the electrostatic field as the gradient of a potential
according to the last equation is consistent with the circumstance that
the effects of magnetic fields, with none applied, are in general quite
negligible.

Subtracting the first continuity equation from the second, it is found
that

%) div (J, — T) = =2 (p — m,

ot
since, with no trapping, p/r, equals #/r, . Neglecting changes in the con-
centrations of ionized donors and acceptors, this equation and Poisson’s
equation give

3) JF_J":J_I;L’E; Ip+1n=1”g§:

where J and I are solenoidal vector point functions, in general time-
dependent. The latter is the total current density, and the term which
follows it in (3) gives the displacement current density.

15 A, Finstein, Annalen der Physik 17, 549-560 (1905); Miiller-Pouillet, Lekrbuch. der
Physik, Braunschweig, 1933, IV (3), 316-319.

16 It has been found from measurements of the temperature dependence of the con-
ductivity and Hall coefficient that the energy of thermal ionization of the donors in #-
type germanium of relatively high purity is only about 102V, whence most of the donors
;(ma i?nized at room temperature: G. L. Pearson and W, Shockley, Piys. Rev. 71 (2), 142

1947).
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It may be well to point out that the validity of the diffusion equations
depends on two assumptions, which, while hardly restrictive in general
for homogeneous semiconductors, indicate the nature of the generaliza-
tions which might otherwise be necessary. The first assumption is that
there are no appreciable time changes in the dependent variables in the
relaxation time for the conductivity, or the time of the elementary fluctua-
tions. This is tantamount to the requirement that the carriers undergo
many collisions in the time intervals of interest. The second assumption is
that the changes in the carriers’ electrostatic potential energy over
distances equal to the mean free path are small compared with the aver-
age thermal energy. In accordance with this assumption, very large fields
in the electrically neutral semiconductor for which the carriers are not
substantially in thermal equilibrium with the lattice are ruled out. The
neglect of space charge then in general validates the two assumptions, if
the resistivity is not too small, since the neglect of changes in the de-
pendent variables which occur in the dielectric relaxation time obviates
their change in the relaxation time for conductivity; and the neglect in
the steady state of appreciable variations in electrostatic potential, and
thus in the other dependent variables, in the distance!® L; , obviates their
variation in a mean free path. The dielectric relaxation time for ger-
manium, 1.5-107'* sec per ohm cm of resistivity, in high back voltage
material exceeds the relaxation time for conductivity, which is about
1.0-102 sec; and in semi-conductors in which the mobilities and the
conductivity are smaller than the comparatively large values for ger-
manium, the dielectric relaxation time may be appreciably larger than the
relaxation time for conductivity. Similarly, L for germanium is about 7
times the mean free path, and this ratio, which is essentially inversely
proportional to the square root of the product of mobility and intrinsic
conductivity, may be appreciably larger for other semiconductors.

If, on the other hand, it should be desired to consider space-charge
effects in germanium, the diffusion equations may be of rather marginal
applicability, and the use of their appropriate generalization indicated,
since with L; equal to 7 mean free paths, appreciable space-charge varia-
tion of potential, corresponding to a field which is not small compared
with the free-path thermal-energy equivalent of about 3500 volt cm™,
may occur in at least one of the free paths. For example, diode theory,
rather than diffusion theory, provides the better approximation for the
characteristics of germanium point-contact rectifiers, and is particularly
applicable to those from low resistivity material for which the potential
variation is largely confined to one mean free path or less".

10 Joc, cit.

4 Joc, cit.
7 H, C. Torrey and C. A. Whitmer, “Crystal Rectifiers,” New York, 1948, Sec. 4.3.
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Neglecting space charge, Poisson’s equation becomes simply the con-
dition of electrical neutrality:

4) (p — po) — (n — m) =0,

assuming substantially complete ionization of donors and acceptors.
Similarly, equations (3) become

(5) J:J_Jﬂ:]; Ip+In=I-

With electrical neutrality, the two continuity equations merge into one:
Since derivatives of p equal the corresponding ones of »,

div ], = — [p/rs — &l = 5F
(6)
=div], = — /7. —gl — g—:—l

The neutrality condition in conjunction with the two equations obtained
by substituting for J, and J, from the diffusion equationsin (6) thuspro-
vide three equations for the determination of p, n, and E or V.

It is instructive to rewrite equations (6) in accordance with

div], =s - grad p
= div J, = s - grad =,

[T fop )y |¥cd SO |-k JOp
s_[ dx /6x]1+|: ay /ay]]-l—[ dz /6z:|k'

where i, j, and k are unit vectors in the directions of the respective axes.
The velocity s, which is given as well by the expression for electrons an-
alogous to that written for holes, may be defined alternatively as follows:
Suppose, for definiteness, that the second-order system of equations (€Y)
and (6) have been solved, so that the concentrations and flow densities
are known in terms of the cartesian coordinates x, v, and z, and the time .
The x-component of s is then the partial derivative with respect to p of
the x-component of J, in which « has been replaced by the proper func-
tion of p, ¥, z, and #, and similarly for the other components. Thus, with
s a known function, $ or » may be considered to satisfy the first-order
partial differential equation obtained by substituting from (7) in (6), from
which it is evident that s is the velocity with which concentration transi-
ents ‘are propagated'. This velocity, which is here called the differential

18 The identification of s as this propagation velocity follows the example of C. Herring,
in whose method for solving the transient constant-current problem in one dimension
the velocity depends in a known manner on concentration only, through the neglect of
diffusion, so that the general solution of the differential eguation in which thus neither
independent variable x nor ¢ occurs explicitly may be obtained; cf. reference 12, pp. 412 fi.
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transport velocity and loosely referred to as the transport velocity of
added carriers, of course differs in general from the transport velocity
proper, defined as the ratio of flow density to concentration; its general
definition, which is applicable to the steady state, has been introduced to
facilitate later interpretations.

2.3 Reduclion of the fundamental equations io dimensionless form
2.31 The general case

In order to obtain solutions in forms which exhibit such generality as
they may possess, the fundamental equations are to advantage written
in terms of dimensionless dependent and independent variables which are
the original variables measured in suitable units. Through formal con-
sideration of the equations (1), in conjunction with (3) or with (4) and (6),
these units can be so chosen that the system of reduced equations will
exhibit independent parameters on which it may be considered to depend.
The best choice of suitable units is by no means unique; those choices
which have been made are natural ones, in that they have been found to
result in greater formal simplicity and ease of interpretation in the theory
than others which may be equally valid in principle.

The choice for an n-type semiconductor consists in definitions of di-
mensionless variables and parameters as follows:

X=u/Ly, V=y/Lly,Z=23/Ly;L,= [M‘T}ﬂ] - [DPT]%

U=t/

P=p/(no— po); Po = po/(no — po) = gt/ (o — po)

N = n/(ng — po); No = /(129 — po)

®) | €= V1= EJ/E = pE/ID,/7]'; o = aEo ; Eo = kT/eL,

C,=L/I
C.=—-L/I,
F=E/E

W = V/EL, = eV/kT
0=1/n.

The rectangular cartesian space coordinates are v, v, and z. The quantity
7 is the mean lifetime of holes for concentrations of added holes small
compared with the thermal-equilibrium electron concentration, 7 ; and
oo is the conductivity of the normal semiconductor. The hole mobility,



572 BELL SYSTEM TECHNICAL JOURNAL

originally p, , is denoted by p for simplicity. If & is the ratio of electron to
hole mobility, @4 is given in general by

(9) oo = wpe(bng + po) = Mo bue(ng — po), My=1 + b-é— 1 Po,

the symbol M, being introduced for brevity. If po << m0 , M, is unity
and oy equals buen, . '

The independent dimensionless distance variables are X, ¥V and Z,
where the distance unit, L, , is a diffusion length for a hole for the mean
lifetime, 7, the diffusion constant for holes being D, . This mean lifetime
is the unit for the independent dimensionless time variable, /. The hole
and electron concentrations are measured in units of the excess in concen-
tration of electrons over holes'®, 1, — $o, the reduced variables being P
and N, respectively. The reduced total current C is total current density
measured in units of the current density I which flows in the semicon-
ductor with no added carriers under the characteristic field Eo , which is
a field such that a carrier would expend the energy 7 in drifting with it
through the distance L,. A more illuminating alternative description is
that C is the ratio of the average drift velocity of holes under the applied
or asymptotic field, Eq, to the hole diffusion velocity (D,/r)% The field
E, is that which produces the current density I in the semiconductor
with no added carriers. The corresponding reduced hole and electron flow
densities are C, and C, . The electrostatic field measured in units of E
is denoted by F, and W is the corresponding reduced electrostatic poten-
tial. The lifetime ratio ( is a function of P which characterizes the re-
combination process. While it appears from experiment that the recom-
bination rate for holes depends on both physical and chemical properties
of the semiconductor, in a particular semiconductor at given temperature
it may be considered to depend on hole concentration alone.

Representative values for germanium of units in terms of which the
dimensionless quantities are defined are as follows: The mean lifetime 7
may be of the order of 10~° sec. With a mobility for holes” of 1700 cm?
volt— sec™! in germanium single crystals at 300 deg abs, the length L,
is then about 2-10~% cm; the characteristic field, Eq, 1.2 volt cm™; and
the current density I, 0.12 ampere cm~ for a resistivity of 10 ohm cm.

With these definitions?, the fundamental equations for a region free
from external sources, neglecting changes in the concentrations of ionized

7loc. cit.

19 The excess in concentration of electrons over holes is of course equal to that of
ionized donors over ionized acceptors,

20 The definitions given appear hest if there is a region in which P — Py is small, with
Py £ 0. Modified definitions of the reduced flow densities, in which the conductivity
oo is replaced by the conductivity bue(n— po) due to the excess electrons alone, result in
equations obtainable formally by setting Mo equal to unity.
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donors and acceptors and neglecting space charge®, are given in reduced
form as follows:

(—g—f} = —[bM,divC, + PO — Py
0N _ My div C, + PO — Py
1

(10) {C» = b]}/.f[, [FP — grad P] = — Ejfn P grad [V + log Pl
Cn=ﬁﬂ—EV_gMAj=—G%NgML4V+bgM
(P—P)—(N=N)=P—N+1=

F = —grad W,
and the reduced form of equations (5) is
(11) C, — C.=C.

These reduced equations may be simplified and two differential equa-
tions in the dependent variables P and W written as follows:

—b MydivC, = div P grad [W + log Pl = [PQ — PJ] + g—g
(12)

L divC =0, Cc grad | B b T 1]og_ ,

where Z is the conductivity ¢ in reduced form:

ia’_bN-l-P 1 b-l—l
(13) e A Mu[ b+ }

An alternative formulation, due to R. C. Prim, which is obtained by evalu-
ating div [C, &= & C,l, consists of the two equations,

w“ bT div (1 + 2P) grad W = i + i div grad W —(1 + 2P)]

2Tt may be desirable to take space charge into account in cases involving high fre-
quencies or high resistivities. Poisson’s equation and equations (3) are in reduced form,
P—-—N+1=bMIdivFandC, — C,=C - T BTFJ‘” where I' = ¢/4raor.
The term containing I" may often be omitted from one of these equations, depending on
the nature of the particular case considered.
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in which the use of (1 4+ 2P) as dependent variable may be desirable.
This variable is equal to the concentration of carriers of both kinds di-
vided by the excess of electron concentration over hole concentration,
which is a constant.

The expression in the equations which specifies the recombination
rate may be written more simply. Since the lifetime ratio @ is unity for
P =P,

(15) PQ — Py = (P—Po)R,

where R, which will be called the recombination function, depends on P
and also equals unity for P = Py . The lifetime ratio and the recombina-
tion function which, of course, differ in general, both equal unity for the
case of constant mean lifetime. Recombination of holes and electrons at a
rate proportional to the product of their concentrations, called mass-action
recombination, and recombination characterized by a constant mean life-
time for holes are frequently of interest. For a combination of independent
mechanisms of both types, it is easily seen that

[Q =1/rp,=1+a(p—pd/no=14 a(P— Py)/(1+ Po),
a=71/1,,0<a¢ <1

[R 1 + a?/?l(] =1 + G])/(l + Pa),

where 7, is the mean lifetime for small concentrations associated with
mass-action recombination alone, so that @ = 0 for constant mean life-
time, and ¢ = 1 for mass-action recombination. If both recombination
mechanisms are operative, that of mass-action recombination will, of
course, determine the mean lifetime where the concentration of added
carriers is sufficiently large.

Recent experiments have shown that the mean lifetime for holes in
n-type germanium can be increased materially, to at least 100 micro-
seconds, by minimizing surface recombination through decreases in sur-
face-to-volume ratios.! On the other hand, comparatively short mean
lifetimes, of the order of one microsecond, occur in p-type germanium
produced, for example, from n-type by nucleon bombardment. It should be
possible to determine in various cases which recombination law would
provide the better approximation by use of the technique of H. Suhl and
W. Shockley of hole injection in the presence of a magnetic field® or by
the photoelectric technique of F. S. Goucher®.

(16)

loc. cit.
22 {, Suhl and W. Shockley, Phys. Rev. 75 (10), 1617-1618; 76 (1), 180 (1949).
2 F. S. Goucher, paper I i1 of the QOak Ridge Meeting of the American Physical So-

ciety, March 18, 1950; Phys. Rev. 78 (6), 816 (1950).
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It appears that solutions neglecting recombination furnish useful ap-
proximations for some applications. If recombination is neglected, by
assuming that the mean lifetime is infinite, the definitions (8) of the di-
mensionless quantities no longer have meaning, but essentially the same
differential equations and corresponding boundary-condition equations can
still be used. The reduced equations become essentially homogeneous in
7 for 7 large, and it suffices to suppress the recombination terms, PQ —
Py, retaining formally the definitions of the dimensionless quantities in
which now 7, and thus L, and £, or I, no longer have physical significance.
One of these unitary quantities may be chosen arbitrarily. It might be
noted that if Poisson’s equation is retained the length unit is advantage-
ously chosen as L;, which gives a dielectric relaxation time for the time
unit.

In one cartesian dimension, with total current a function of time only,
W may be eliminated by means of the equation for C in (12) and, upon
substituting for it in any of the three remaining equations in (12) and
(14), a differential equation for P results which depends on &, Py, andC
as parameters. Dropping vector notation, this equation is

oP
ﬁ] .
b+ 1 P  b—1[aPT P
o [0 )] T et
LN b i 2
[1 + b—Jg IP]
—(P — P)R

Similarly, from (10),
.
Mmcp — (1 +27) 2L
ax
Cp=

an[l + ’iblp]
b—14P
b 9X

1+l%lp

(18) )
M,C —

The expressions for /' and C), possess some interesting features. That for
the reduced field, F, is composed of two terms, the first of which expresses
Ohm’s law, since C is reduced total current density and the denominator
is proportional to the local conductivity. The second term is a contribu-
tion which is directed away from a hole source, since & is greater than
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unity, or since electrons are more mobile than holes. If b were equal to
unity, the field would be independent of the concentration gradient. The
second term thus represents a departure from Ohm’s law which is due to
diffusion and which is associated with the presence of current carriers of
differing mobilities. It gives a non-vanishing electrostatic field for the
case of zero total current. The two terms in the expression for C, are
likewise ohmic and diffusion terms, but here the diffusion term would be
present even if the hole and electron mobilities were equal.

Boundary-condition relationships might be illustrated by some ex-
amples for this one-dimensional case. If it be specified that for U > 0 a
fraction f of the total current to the right of a source at the X-origin,
say, be carried by holes, then, from (18),

P _ b+ @+ DP| . P ]
1) 5= M 115 [f b+ G+ 0P|

X=40 U>0.

The solution in an X-region to the right of the origin may be determined
by this condition and an additional one. The simplest is that for the flow
in the semi-infinite region, namely P = P, for X = . This relationship
holds for some finite X for an idealized non-rectifying electrode there.
For the region between the source and a surface at X = X, on which
there is recombination characterized by a hole transport velocity s,
which is also the differential transport velocity for s constant, it is clear
that C = 0, so that, for X = X,

1 (142p P _ 1
Mob+ (b+ DPAX ~ bM,
S =s/IDy/7), s =Ti/p.

Consistently with these examples, boundary conditions may in general be

SP;

b

(20) Cp =

. . P }
expressed as relationships between P, S_X’ and the parameter C, for given

values of X,

A simple transformation of dimensionless quantities serves to extend all
of the analytical results which have been given for the n-type semi-
conductor to the p-type semiconductor: Consider the substitutional
transformation which consists in replacing the original dimensional quan-
tities for holes by the corresponding ones for electrons, and vice versa,
and in replacing the electrostatic field by its negative. The original set of
fundamental equations (1) is invariant under this substitution, which
defines an equivalent transformation from the dimensionless quantities of
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equations (8) to the desired new set, in which the ratio & of electron to
hole mobility is replaced by its reciprocal.

2,32 The inlrinsic semiconductor.

For the intrinsic semiconductor, in which po = #,, the reduced concen-
trations given in (8) are inapplicable. As po approaches #,, these reduced
concentrations increase indefinitely, and the equations which those given
for the n-type semiconductor approach in the limit are homogeneous in
the concentration unit. These limiting equations therefore apply to the
intrinsic semiconductor in terms of a concentration unit which may be
chosen arbitrarily. The quantity n, will be chosen as this unit. Thus,
redefining the reduced concentration variables as

(21) P=p/m, N = n/ng; P =N,

from equations (12) and (14) any two of the equations in the dependent
variables P and W given by

—(b+ 1divC, = 5% div P grad W
ow R
= mdlv grad P = [PQ — 1] + ik
(22) .
— o I) rd ] .
C, b i grad [V + log Pl;
divC =0 C= —P rad[n' _b= 1y, P:|
- ] g b + 1 g ’

and including the right-hand member which is common at least once, char-
acterize the intrinsic semiconductor®.

It is noteworthy that one of these equations contains only P as de-
pendent variable, IV being absent; and this equation indicates that the
spatial distribution of carrier concentration is not subject to drift under
the field, but only to a diffusion mechanism with diffusion constant
2D,D,/(D, + D,), where D, = D, is the diffusion constant for elec-
trons.?s This result is readily accounted for as being due to a conductiv-
ity in the intrinsic case which is everywhere proportional to the concen-
tration of carriers of either type, so that £ = P. The expression for C

2 These equations for the intrinsic case were first derived quite unambiguously as
those for the special case of the parameter po/n, equal to unity in the general equations
written in terms of the concentration unit #,. This unit is, however, less advantageous
than (1, — p,) which, in obviating much of the formal dependence on po, makes for
greater generality. . . . . .

2 The equations for the intrinsic case might be written in somewhat simpler form by

redefining the length unit in terms of 2D,D,/(Dy + Dy) as a diffusion constant instead of
D, , but their relationship to those of the general case would then be less evident.
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in (22) owes its special form simply to this circumstance, while that for
C, applies also to the general case, and the differential equation in P is a
consequence of the equations in P and W from div C and div C,. Or,
in more detailed terms, since the ohmic contribution to C, must be pro-
portional to C, div C, contains only the contribution due to diffusion.
This is evident from the relationship obtained from (22),

1 2b

from which it follows also that, despite the dependence of the local field
on concentration gradient, the ohmic contribution to the hole flow density
is the flow density of holes normally present in the intrinsic semiconduc-
tor under the unmodulated applied field.

The equations which have been given for one-dimensional flow in the
n-type semiconductor can readily be transformed, in the manner indi-
cated, into the corresponding equations for the intrinsic semiconductor.

2.4 Differential equations in one dimension for the sleady state of conslant
current and properties of their solulions

The steady state of constant current in one dimension will be con-
sidered explicitly for two limiting cases: the n-type semiconductor with
Py = 0, and the intrinsic semiconductor. These serve to illustrate and
delimit the qualitative features of the general case. Furthermore, the case
P, = 0 frequently applies as a good approximation®, as does the intrinsic
case, which is of particular interest not only in itself but also because the
extrinsic semiconductor exhibits intrinsic behavior for large concentra-
tions, and because moderate increases in temperature above room tem-
perature, such as joule heating may produce, suffice to bring high back
voltage germanium into the intrinsic range of conductivity”. The tem-
perature dependence of P, and of other reduced quantities is evaluated
for germanium in the Appendix. '

The ordinary differential equations in the reduced hole concentration,
P, for the steady state in one dimension, which result from equations
(17) and (22) by equating the time derivatives to zero are as follows:

dpP b—l[dP:r [ b+1:|
2 C—— — " |= Pl1+2T°p
&P dX b |dX 4 b R

axz
[1+2P][1+b-z|:1})] 1+ 2P

(24)

% In n-type germanium of resistivity about 5 ohm cm, for example, the electron con-
centration exceeds the equilibrium hole concentration by a factor of about 70.

% Germanium which is substantially intrinsic at room temperature has been produced:
RS. Ng.SHall, paper I5 of the Oak Ridge Meeting of the American Physical Society, March
18, 1950.
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for the n-type semiconductor with £y = 0, and
&P _ b + 1

e (P — 1R

for the intrinsic semiconductor, with R given as (1 + aP) by (16); P has
the same meaning in both equations, the concentration unit being #q
for each case. With time variations excluded in this way, the parameter C
is a constant and the differential equations apply to the steady state of
constant current.

Since the equations involve only the single independent variable X
which does not appear explicitly, their orders may be reduced by one, in
accordance with a well-known transformation, which consists in intro-
ducing P as a new independent variable, and

dP

(26) G = Y

d
is equivalent to G5, the dif-

as new dependent variable: Noting that —— P

dX
ferential equations become

c-t=1, [1—|—b+!i|R
@7) tff% T 5 o 2[;](;
‘ i+ ‘9P]|: bglp]

for the n-type semiconductor, and

G b+ 1(P — 1R

(28) P G

for the intrinsic semiconductor. These are differential equations of the
first order.

The solutions sought in the semi-infinite region, X > 0, are those for
which G = 0 for AP = 0, that is, those which pass through the (AP, G) —
origin, where AP, which denotes P—P, equals P for the n-type semi-
conductor and P—1 for the intrinsic semiconductor. This condition is that
the concentration gradient vanish with the concentration of added holes,
as it must for X infinite. It will be shown that the differential equations
possess singular points at the (AP, G)-origin, and the physical interpretation
of the solutions through these singular points will be examined. For this
purpose, consider equation (27) for the n-type semiconductor which, in
the neighborhood of the origin, assumes the approximate form,

(29) G G

P
wr=p-“Te
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since R is close to unity for P small, whence

C N C | —
—_— = — = — 2
(30) = p =3 CEVCEHA
Similarly, for the intrinsic semiconductor, for P—1 small,
B b+ 1
1) d(P—l) P—-lﬂi/‘/ '

There are thus, in each case, two solutions through the (AP, G)-origin,
one with a positive derivative and the other with a negative derivative.
Consider now the doubly-infinite region with a source at X = 0. Then,
for X > 0, the negative derivatives apply, since the concentration gra-
dient G is negative. Similarly, for X < 0, the positive derivatives apply.
Now, the value of the current parameter C will be substantially the same
in both regions, since it has been assumed that AP is small. For C posi-
tive, equation (30) for the n-type semiconductor indicates that the
magnitude of dG/dP for X < 0 exceeds that for X > 0, and the situation
is reversed if the sign of C is changed. That is, the magnitude of the
concentration gradient increases more slowly with concentration for
field directed away from a source than for field directed towards a source,
which is otherwise plausible, For the intrinsic semiconductor, on the
other hand, equation (31) shows that corresponding magnitudes of the
concentration gradient are equal and entirely independent of C, a result
which the differential equation (28) establishes in general.

It thus appears that a differential equation for the steady state possesses
two solutions through the (AP, G)-origin, and that one of the solutions
corresponds to the case of field directed towards a source, the other to the
case of field directed away from a source. Field directed towards a source
is called field opposing, while field directed away from a source is called
field aiding, the latter being the one commonly dealt with in hole-injec-
tion experiments. It should be noted that the cases of field opposing or
field aiding can be realized in a given X-region only if it adjoins a semi-
infinite region free from sources and sinks. In the region between two
sources, neither of these cases applies. L. A. MacColl has shown, through a
more detailed consideration of the singularity at the (AP, G)-origin, that
the two solutions through this point are the only ones through it. The
origin is thus a saddle-point of the differential equation, and there exist
families of nonintersecting solutions in the (AP, G)-plane for which the
solutions which intersect at the origin are asymptotes. A solution for an
X-region between two sources, for example, is a member of such a family,
as is in general any solution determined by boundary conditions at the
ends of a finite region in X. Such a solution will be called a solution for a
composite case; it approaches asymptotically both a field-opposing and a
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field-aiding solution, which is consistent with the qualitative geometry
associated with a saddle-point, and with the fact that, in the X-region, a

SOLUTION CURVES
stope=1 [V‘CE+4+C) ===—=BOUNDARY CONDITION CURVES

HOLE CURRENT
~C FOR C LARGE ZERO CURRENT, (+-= TOTAL CURRENT)
~ =0

__.'—‘- <f<0
______ - ——————
.-.-.-—--"‘"--

--COMPOSITE CASES

REDUCED CONCENTRATION GRADIENT, G

C ----_—_—
Pt £ o+t
fZprl __7™
__--—-'"---._,//
" b+1 T
G=-"3 ('F 'D+1)C

stope=-+{ycZra-c)

\r\,——'g FOR C LARGE

REDUCED HOLE CONCENTRATION, P

Tig. 1.—Diagrammatic representation in the (P, G)-plane of solutions and boundary
conditions for the steady-state one-dimensional flow of holes in an n-type semiconductor.

total current directed away from one source is necessarily directed to-
wards the other. This behavior is illustrated diagramatically for the »-
type semiconductor in Fig. 1, which shows, in the (P, G)-plane, solution
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curves as well as boundary-condition curves for a source, for a given
positive value of C. Those for the intrinsic semiconductor differ only in
that the solution curves in the (P—1, G)-plane do not depend on C, all
being given by the ones for zero total current density, and the corre-
sponding boundary-condition curves are straight lines.

Once a solution, G(P), for field opposing, field aiding, or a composite
case, specifying G as a function of P has been obtained, the dependence of
P on X is determined by evaluating

(32) X=L:é%%

in accordance with the definition of G, equation (26). For the general com-
posite case, G(P) is that one of the family of solutions for the given C such
that the integral between values of P determined by the intersections with
the boundary-condition relationships provides the correct interval in X.
If P®is determined by the condition that for X = 0, a fraction f of the
total current is carried by holes, then, from (19), P?®is the point on the
solution curve which satisfies either

_b+(b+1)P"[f P ]c

0 —1 — —
(33) G = 1+ 2pP° b+ (b + 1P

for the n-type semiconductor, or

(34) G°=—(i;—1)2[—ﬂ1ﬁ]c

for the intrinsic semiconductor, G° being the corresponding value of G.
From the manner of derivation of the boundary conditions (33) and
(34), it is evident that they are perfectly general, holding in particular
for the cases of field opposing and field aiding, and whatever be the sign
of C. The concentration gradient G° may be seen to have the correct sign
for these cases if it is taken into account that f, defined as C,/C or I,/I,
may assume any positive or negative value, being positive for field aiding,
and negative for field opposing, for which the hole flow is opposite to the
applied field. For f negative, the quantities in brackets in equations (33)
and (34) are negative. The general principle that the sign of the con-
centration gradient G is such as to be consistent with the flow of holes
from a source requires also that the quantities in brackets be positive
for field aiding, or whenever f is positive. For the intrinsic semiconductor,
this requires that f for field aiding never be less than 1/(d 4 1). This is
clearly a consistent requirement which holds in all generality since, for
zero concentration of added holes, or for the normal semiconductor, G°
vanishes and the ratio of hole current to total current equals 1/(6 + 1).
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In the case of the n-type semiconductor, f is not restricted in this way.
Consider, for this case, hole injection into the end of a semi-infinite
filament, to which the field-aiding solutions apply. As the total current is
increased indefinitely, the tangent to the solution in the (P, G)-plane at
the origin approaches the P-axis, as does the solution itself, and it is
evident from the boundary-condition curves of Fig. 1 that if f is less than
1/(b + 1) the hole concentration P° at the source approaches as a limit
the indicated abscissa of intersection of the appropriate boundary-
condition curve with the P-axis, or the value for which the quantity in
brackets vanishes. It is similarly evident that P° increases indefinitely
with total current in either semiconductor if f is greater than or equal
to 1/(b + 1). This is a result otherwise to be expected from the qualitative
consideration that an extrinsic semiconductor becomes increasingly
intrinsic in its behavior as the concentration of injected carriers is in-
creased.

Figure 1 serves also to facilitate a count of the number of degrees of
freedom which the steady-state solutions possess: Corresponding to values
of the concentration and concentration gradient at a point in a semi-
conductor filament in which added carriers flow, there is a point (P, G)
in the half-plane, P > 0, of the figure. If the total current density is speci-
fied in addition, the value of C and the solution through the point (P, G)
are determined. This solution applies in general to a composite case,
which therefore possesses three degrees of freedom. That is to say, at a
point in a filament, any given magnitudes of both concentration and con-
centration gradient can be realized for a preassigned total current density
by a suitable disposition of sources to the right and left. The cases of
field opposing or field aiding, however, possess only two degrees of freedom,
since the given concentration and gradient determine the total current
density and the solution, which must pass through the origin; and which
of the two cases applies depends on whether the point (P, G) lies to the
left or to the right of the curves, shown in the figure, for the zero-current
solution. Thus, in a filament with a single source of holes, for example, the
concentration, concentration gradient, total current density, and any
functions of these, such as hole flow density and electrostatic field, are
all quantities the specification of any two of which at a point completely
determines the solution for a source-free X-region which includes the
point.

3. SOLUTIONS FOR THE STEADY STATE

For a given value of the current parameter C, solutions for the steady
state of constant current in a single cartesian distance coordinate, specify-
ing G in terms of the relative hole concentration P, and P, the reduced hole
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flow density C,, and the reduced electrostatic field F, in terms of reduced
distance X are found in general by numerical means, which include nu-
merical integration and the evaluation of appropriate series expansions.

General solutions which have been evaluated numerically for n-type
germanium for a number of values of the current parameter are given in
the figures. In the limiting cases of P small and P large, analytical ap-
proximations for the extrinsic semiconductor are readily obtained, that
for P large being derived from an analytical solution for C equal to zero,
or zero current. If the steady-state problem for the extrinsic semicon-
ductor is simplified by neglecting either recombination or diffusion, solu-
tions are obtainable which, like the zero-current one, are expressible in
closed form.

For the intrinsic semiconductor, the general problem considered in this
section is solved quite simply by analytical means. The solution provides,
as physical considerations indicate it should, the same analytical approxi-
mation for large P as does the zero-current solution for the extrinsic case.
It may be well to consider first the intrinsic semiconductor which, aside
from the extrinsic semiconductor for the case of zero current, appears to
constitute the only analytically solvable steady-state case in one dimension
which has physical generality according to the present approach.

3.1 The inlrinsic semiconductor
Integrating the differential equation (28), it is found that

(35) G = ’ii_} f (P — 1)RdP,

with R given as 1 + aP by (16), for an arbitrary combination of the two
recombination mechanisms, assumed independent. Thus

b—|—1(

(36) G = P — [(1 +a) + 2 a(P - 1)]

for the cases of field opposing or field aiding, for whichG = 0 for P—1 =
0; for a composite case, a suitable constant is included on the right-hand
side. Excluding composite cases, the root may be taken in (36) and @
replaced by its definition, which gives

d(P—1)=:E|:b+1*

@7 = a ] P — 1] [(1 + o)+ 2a(p - 1)]i

and if the X-origin is selected more or less arbitrarily as the point at
which P is infinite, then (37) gives

@ o= MO e[0Ty
2a 8%
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provided ¢ = 0; for mass-action recombination ¢ = 1. For @ = 0 or for
constant mean lifetime, (37) gives an exponential dependenceof P—1on X:

(39) P—1= (P —1exp [i [;%J]s X],

where P, is the relative hole concentration for X = 0. Linear combina-
tions of the two solutions in (39) give solutions for composite cases, since
the differential equation from which (39) was derived is linear in P. A
similar result does not hold if there is mass-action recombination present,
and the more general procedure above referred to must then be followed.

A characteristic feature of these solutions for the intrinsic semicon-
ductor is their independence of the current parameter C, this parameter
occurring only through a boundary condition, such as the one given in
equation (34) of Section 2.4. They are symmetrical in shape about a
source, the dependence of the concentration on the magnitude of the
distance from the source being the same for field opposing as for field
aiding, which follows quite simply from the symmetrical forms of the
solutions, and the condition that the concentration is everywhere con-
tinuous.

Equations (22) and (23) of Section 2.32 provide the hole flow density
and the electrostatic field for this case. With G given for mass-action
recombination or for constant mean lifetime by the appropriate special
case of equat’on (36), and using the positive sign for an X-region to the
left of sources and the negative sign for an X-region to the right,

1 20
(c,, 4116~ i %19]
(40) 4

1 b—1
F —|C - —— .
l P [ b+ 1 G:I
The electrostatic potential, V, is readily expressed in terms of P: From

’ . eL,dV e dV e dV
(41) F=—4rax = " wrax = " Cap

and (40), it is found that

e dV b—11 1
(42) k_fd—P”b+1f"Ctﬁ”
whence
eV _ b — N f b—1 3 j‘dX
(43) 7 5 Lgpr — ¢ = irileP ¢ |5,
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with the integral to be evaluated for the particular case it is desired to
consider.

3.2 The extrinsic semiconductor: n-lype germanium

The evaluation of steady-state solutions for the extrinsic semiconductor
involves, as a first step, the determination of G as a function of P from
the differential equation (27), which is accomplished by numerical inte-
gration and by the use of series expansions. These variables are subse-
quently found in terms of X in the manner described in Sectione2.4. The
series expansions, which are Maclaurin’s series in P, and series in powers
of the current parameter, C, with coefficients functions of P, are given
explicitly for the n-type semiconductor in the Appendix; they readily
furnish the corresponding series for the p-type semiconductor by means
of the transformation discussed at the end of Section 2.31. The Mac-
laurin’s series in P are useful for starting the solutions at the (P, G)-
origin. As P increases, these series converge increasingly slowly, and it
becomes necessary to extend the solutions by other means. For the larger
values of C, however, the numerical integration for the important case of
field aiding becomes increasingly difficult, and it is advantageous to use
the appropriate series in the current parameter, which converges the more
rapidly the larger is C. The first term alone in this series for field aiding
gives in closed form the solution for the case in which diffusion is neg-
lected; and the existence of the series itself was, in fact, originally sug-
gested by the form of the solution for this case®. Series of this type are
given also for field opposing, and it seems probable that such series are
obtainable for composite cases as well, though this has not been investi-
gated.

Solutions were evaluated numerically for n-type germanium, by the
means described, using the value 1.5 for the mobility ratio®, b. For the
case of mass-action recombination, solutions for values of the current
parameter, C, up to 50, specifying | G | in terms of P, are given in Fig.2,
both for field opposing and field aiding. These solutions in the (7, G)-
plane are given to permit the fitting of boundary conditions at a hole
source, according to a method described in Section 4. Solutions specifying
P in terms of X for field aiding are given in Fig. 3, with the X-origin
chosen more or less arbitrarily at P = 100. The corresponding solutions
for the reduced hole flow density, C, , and the reduced field, F, are given

3 The solution for this case was communicated by Conyers Herring and is given in his
paper of reference 12.

2 The hole mobility and the value 1.5 for the mobility ratio were determined by G. L.
Pearson from the temperature dependence of the conductivity and Hall coefficient in
p-type germanium. J. R. Haynes has recently obtained, from driit-velocity measurements,
the same hole mobility, but the larger value 2.1 for the ratio of electron mobility in n-type

germanium to hole mobility in p-type: Paper L2 of the Chicago Meeting of the American
Physical Society, November 26, 1949.
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Fig. 2.—The dependence of the reduced concentration gradient on reduced concentra-
tion for the steady-state one-dimensional flow of holes with mass-action recombination in
n-type germanium.

respectively in Fig. 4 and in Fig. 5. In accordance with equations (10),
(18), and (26), the solutions for C, and F are found from

S 1, . CP—(1+2PG
(44) ¢, =g op—a = G X,
and
c-’%c
45) F=
1+—+—P
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The electrostatic potential may be evaluated from F in a manner similar
to that followed in the preceding section.

3.3 Detailed properties of the solutions

The general solutions given in the figures illustrate certain properties
which can be established through the analytical approximations obtain-
able for small and for large values of the relative concentration of added
holes. The principal qualitative properties evident from the figures are:
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Fig. 3—The dependence of the reduced concentration on reduced distance for the
steady-state one-dimensional flow of holes with mass-action recombination in n-type
germanium.

The relative hole concentration, P, and the reduced hole current, C,,
depend exponentially on distance for small concentrations; and for large
concentrations all solutions for a given dependent variable run together,
independently of the value of the current parameter, and give compara-
tively rapid variations of hole concentration and current with distance®".
The property that a common solution independent of total current or

% These rapid variations would account for the observation of J. R. Haynes that
estimates, for a given emitter current, of hole concentrations or currents in a filament at
a point contact removed from the emitter, with no additional applied field, are largely
independent of changes in f. for the emitter.
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applied field obtains for large P results from diffusion in conjunction with
the increase of conductivity. As may be expected, the solutions for the
case of constant mean lifetime also have this property, the recombination
law merely affecting the form of the common solution.

In Fig. 6 are shown curves for P, C, , and F for the case of constant mean
lifetime in #-type germanium, evaluated for C equal to 16.3. These curves
are intended to illustrate the qualitative differences between the solutions
for this case and those for mass-action recombination, which are manifest
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Fig. 4—The dependence of the reduced hole flow density on reduced distance for the
steady-state one-dimensional flow of holes with mass-action recombination in n-type
germanium.

primarily at the larger concentrations. The dashed curves in the figure
give the corresponding solutions for the case of mass-action recombina-
tion; and the X-origins for the two cases have been so chosen that cor-
responding curves, which exhibit essentially the same dependence on X
for small P, coincide in the limit of small P. As the figure shows, constant
mean lifetime gives an exponential dependence of P on X for large P,
while mass-action recombination gives larger concentration gradients,
with an increase of P to indefinitely large values in the neighborhood of a
vertical asymptote.
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germanium.

3.31 The behavior for small concenlrations

The exponential dependence of P and C, on distance for P small is
given for the n-type semiconductor by the analytical approximations,

P = Poexp [ 3=V +4 - ClA]

(46) -
C, = - lev/Trd+ClP,

where P, is a suitable constant. If C is positive, the plus sign holds for
field aiding® and the minus sign for field opposing. These approximate

a1 Tt is evident from the curves for C, in Fig. 4 that the exponential extrapolation back
to the emitter location of estimates of hole concentrations or currents at a point contact
on a germanium filament lead to values of f. for the emitter which are too small. Using
moderately large injected currents and no additional applied fields, J. R. Haynes once
obtained in this way an apparent f. of about 0.2. From the figure, this is the apparent Je
to be expected for moderate and large values of C for the true f, equal to unity.
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solutions, which hold for any recombination law, are obtained quite
simply, by integration, from G in terms of P to the first term of the Mac-
laurin’s expansion, given in the Appendix. It might be noted that for this
approximation the electrostatic field is equal to the applied field, so that
F equals C.
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Fig. 6.—The dependence of the reduced hole concentration, hole flow density, and
electrostatic field on reduced distance for steady-state one-dimensional hole flow in n-type
germanium, for the cases of constant mean lifetime and mass-action recombination.

Since P is small, the transport velocity of holes is equal to their differ-
ential transport velocity*?. Writing the equation for C, in dimensional
form, the transport velocity is found to equal

(47) s = 3£V (uE)? + 4D,/7 + pEd,
with the plus sign for field aiding and the minus sign for field opposing,
if the applied field, E,, is positive. This result is consistent with the

% In accordance with equations (7), (8), and (10), the differential transport velocity
for the steady state in one dimension may be found from the general formula,

bMdC,/dP = — (P — Po)R/G.

Tts equalling the transport velocity proper for P small appears to result from the property
of non-composite cases that the dependent variables, for a given C, are all functions of P
which do not depend on any quantity determined by the boundary values, a property
which composite cases, with their additional degree of {reedom, do not possess.
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equation for P, which may be written as
(48) P = P, exp (—x/s7).

For a large aiding field, s reduces to the velocity of drift under this
field while, for a large opposing field, the magnitude of s is ap?roximateiy
D,/uE,r. For zero field, s equals the diffusion velocity (D,/7)", which is a
diffusion distance for a mean lifetime divided by the mean lifetime. This
diffusion velocity can be specified in terms of its field equivalent, or the
field which gives an equal drift velocity, and for germanium it is found that
the equivalent field is about 8 volt cm™ for r equal to one microsecond
and about 2.5 volt cm™ for r equal to 10 microseconds.

For small concentrations of added holes in the intrinsic semiconductor,
or (P—1) << 1, equations (38) and (40) give the approximate solutions,

H
{P —1=@ -1 exp|::!: [W} X]

(®9) | 1 2% 1
& =53¢ 119~
the X-origin being selected arbitrarily at the point at which the relative
concentration is P° according to the approximation. It is evident from the
- equation for C, that, for (P—1) small, the transport velocity is the drift
velocity under the applied field, which is the velocity of the holes norm-
ally present in the semiconductor. The differential transport velocity, ob-
tainable by differentiating the equation for C, with respect to P and

using the differential equation (28), or by writing the exponent in the
equation for (P —1) in the form given in (48), is, on the other hand, given by

2b i DP é_ 1 ZDPDn :
6o« =[gaurn) (2] - irenen /7]

and is a diffusion velocity. This holds for holes added in any concentra-
tion if @ = 0, or for constant mean lifetime, since the first of equations
(49) is then the general solution given in (39).

The nature of the flow for small concentrations of added carriers in the
general case, which depends on the parameter Py, is illustrated qualita-
tively by the n-type and intrinsic cases considered, for which Py is re-
spectively zero and infinite. Solutions for the general case are easily
evaluated analytically from the linear differential equation which results
from (17) if P—Py << } 4+ Py. It can be shown from the field-aiding
steady-state solution that the ratio of the differential transport velocity
to the velocity, proportional to C, of drift under the applied field is for
C? >> (14 2Py)M, equal to the quantity 1/M,. This result is consistent
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with those already derived: For large applied aiding fields, the differential
transport velocity changes from the drift velocity, for Py equal to zero
and M, unity, to the diffusion velocity given in (50) as Py and M, in-
crease indefinitely.

3.32 The zero-current solutions and the behavior for large concentralions

The solutions for the intrinsic semiconductor for the current parameter
equal to zero are, of course, the same as the general ones given in Section
3.1, since the current parameter does not occur in the differential equa-
tion. For the n-type semiconductor, the differential equation (27) be-
comes an equation of the Bernouilli type for C equal to zero, and may be
solved by quadratures. It is then linear in G%, and gives, for field aiding or
field opposing,

140+ p]
2 b P P(1 4+ P)1 + aP)
(51) G =2 T 7P A 1+b+1 dP,

expressing the recombination function R according to equation (16) for a
combination of the two recombination mechanisms. Writing, for brevity,

b

B b+ 1

(52)

MEI—{—E#P,

and evaluating the integral in (51), the following result is obtained:

R

SBOE = 1)+ (1—48)(M — 1) — (1 = 28) log M]

(33)
+ a3 (M — 1) + §(1 — 28)(M* — 1)

+ (1 =68+ 66%) (M — 1) — (1 — B)(1 — 28) log M]:|-

For P large, this solution gives the approximations,

(54) G-:I:I:b;)l:'P

for constant mean lifetime, with ¢ = 0, and

(55) G =+ [ﬂ(ﬁs‘;—l)] P
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if there is mass-action recombination present, so that @ # 0. The depend-
ence of P on X for these approximations is readily obtained by integrating
the differential equations which result from writing in place of G, its
definition, dP/dX; constant mean lifetime gives an exponential depend-
ence. An examination of (54) and (55) in conjunction with the general
differential equation (27) shows that, for P large, the dominant term in the
differential equation is independent of C. It follows that solutions for all
values of C approach a common solution for P large, which is given by
(54) or (55). The solutions run together appreciably for P sufficiently
large that P and M are substantially proportional, that is, for P large
compared with &/(b + 1), which is of order unity. It is to be expected
that the approximations (54) and (55) should apply equally well to the
intrinsic semiconductor, and this expectation is easily verified by evalu-
ating the integral in equation (35) for the intrinsic semiconductor, for 7
large, for the two recombination cases here considered.

4. SOLUTIONS OF SIMPLE BOUNDARY-VALUE PROBLEMS FOR A SINGLE
SOURCE

Among the boundary-value problems whose solutions are useful in
the interpretation of data from experiments in hole injection are the
following: the semi-infinite filament for field aiding, with holes injected at
the end, which constitutes a relatively simple case; and the doubly-
infinite filament with a single plane source, with which this section will be
primarily concerned.

Consider first the semi-infinite filament, and suppose that it starts at the
X-origin and extends over positive X, so that the current parameter is
positive for field aiding. If two quantities are specified, namely the current
parameter and the fraction f. of the current carried by holes at the origin
or injection point, then the solution of the boundary-value problem is
completely determined. It is merely necessary to select the general field-
aiding solution for P or C, in terms of X, for the particular value of the
current parameter, and then to determine the X-origin, corresponding to
the source, which is simply the X at which the ratio f of C, to C equals f. .

Use in the boundary-condition equations (33) and (34) of the approxi-
mate expressions given in (54) and (55) for G in terms of P, for large P,
permits the complete analytical determination of the dependence of P°
on total current as this current is indefinitely increased. It was shown in
Section 2.4 that, if f. is less than 1/(b + 1) for the n-type semiconductor,
P? approaches as a limit the value for which G° vanishes according to the
boundary-condition equation (33); in all other cases for the n-type semi-
conductor, or if f. exceeds 1/(b + 1) for the intrinsic semiconductor, P°
increases indefinitely with C. For f, > 1/(b + 1), it is readily seen that
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P? is proportional in the limit to C for constant mean lifetime, and to C?
for mass-action recombination; and, for f. = 1/(b 4 1) in the case of the
n-type semiconductor, P? increases as C! for constant mean lifetime, and
as C! for mass-action recombination.

Consider now . the doubly-infinite semiconductor filament with a
source at the origin, and suppose that the total injected current at the
source is C., in reduced form, with a fraction f. of this current carried
by holes. Denote by C— and by C* the reduced total currents for X < 0
and for X > 0, respectively. Since the injection of holes requires that C,
be positive, at least one of C~ and C* must be positive, since total current
is conserved. Let f~ and f* denote, respectively, the ratio of the hole
current at the origin to the left, C7,, to the total current C—, and the
ratio of the hole current at the origin to the right, C}, to the total current,
Ct . It might be noted that, for a flow of holes to the left, say, against
the field, C— and C* are positive and f~ is negative, and that, if C~ is
(plus) zero, f~ is (negatively) infinite, corresponding to the flow of holes
under zero applied field. Now, general boundary-condition equations of
the form of (33) or (34) hold with the sign conventions here employed,
as indicated in Section 2.4. One may be written for the flow to the left,
another for the flow to the right, making use of the condition that the
relative concentration P is everywhere continuous; G exhibits a discon-
tinuity of the first kind at the source, with a change in sign. Writing G~
for the limiting value of the reduced concentration gradient as the origin
is approached from the left, and G* the limiting value as the origin is
approached from the right, the boundary-condition equations are, for
the n-type semiconductor,

__b+(b+1)P°[__ P :I-
(56 ¢ = 1+ 2P0 / b+(b+1)P°C
G+=_”+(”+1)P°[f+— P ]C+
14 2P b+ (b + )P~
For the intrinsic semiconductor, they are
e+~ 1 -
¢ = 20 [ b+ 1] ¢
&7 b+ 1)* 1
— _wvT i + _ +
¢ = 2b [f b+ 1] ¢

There are, in addition, an equation which expresses the conservation of hole
flow, and one which expresses the conservation of total current, as follows:

[f“c* —f~C = f.C.

58
9 ct—-Cc"=cC.
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The solution of the problem is determined by f. and the three parameters
which specify the total currents: With these four quantities known, then,
from equations (56) or (57) in conjunction with (58) and the known
general solutions in the (AP, G)-plane which apply to the left and to the
right of the origin, all of the quantities P°, G~, G, f~ and f* can be found
and the problem completely solved.

The technique of obtaining the solution depends on a simple funda-
mental result which may be expressed as follows:

For fixed f. and C., consider the sum of the magnitudes of the con-
centration gradients at a single common source from which holes flow
into a number of similar filaments in parallel, for any consistent distribu-
tion among the filaments of total currents, some of which may be pro-
duced by opposing fields. This sum is equal to the magnitude of the con-
centration gradient at the source if the entire flow, under the appropriate
aiding field, were confined to a single filament.

The total magnitude of the concentration gradient, in this sense, is an
invariant for fixed f. and C. . Specifically, for the n-type semiconductor,
it follows from equations (56) and (58) that

e b+(b—}—1)P"[ _ P’ ]
(59 G -6 =~ L+ 2P fe b+ (b + 1)P Ce.
Similarly, for the intrinsic semiconductor,
N G & 1)2[ _ 1 J
(60) Gt -G = T E C..

The left-hand sides of these equations are the negative of the sum of the
magnitudes of the reduced concentration gradients, since G~ is always
positive and G* always negative, and their right-hand sides are similar
in form to those of equations (56) and (57), with the quantities f. and C.,
characteristic of the source, replacing f~ and C—, or f+ and C*.

The particular utility of these equations arises from their independence
of the unknowns f~ and f*. By means of equation (59) for the n-type
semiconductor the evaluation of the five unknown quantities can now be
effected as follows: With the current parameters known, the solutions in
the (P, G)-plane to the left and right of the X-origin are determined;
either both solutions are for field aiding, or else one is for field aiding and
the other for field opposing. From them, the sum of the magnitudes of
the reduced concentration gradients can be found as a function of P.
It is also given, for the origin, as a function of the unknown P°, by
equation (59). The values of the sum for the origin and of P° are ac-
cordingly found as those which satisfy both relationships. The value of
P thus found determines both G~ and G* from the respective solutions
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in the (P, G)-plane, and f~ and f+ may be obtained by solving for them in
equations (56).

- For the intrinsic semiconductor, this method can be applied analytic-
ally, and the solution so obtained serves at the same time as an approxi-
mation for large relative hole concentrations in the n-type semiconductor,
for which the method is otherwise essentially graphical or numerical in
the general case. Making use of the symmetry of the solutions for the
intrinsic semiconductor about a source, it follows from (57) and (38)
that

G = —G = — ®+DTﬁ——L]Q

1) 4b b+ 1
e+ 1 s B+ -1
T b W+JC T D b+1}:
whence '
- 1 1 1 c.
e ‘z[f'“bT 1]5
(62)

f+= 1 l: 1 :|Ce
b-l—l b1

It is easily verified that this result holds approximately for large relative
concentrations in the n-type semiconductor. Three simple special cases
of (62) might be considered: The first is

Fe—m=—m
fm=r=/.

This is the rather trivial case of symmetrical flows from a source which
supplies all currents. A second special case is that for which C~ and C+
are both positive, say, and such that there is no hole flow to the left
against the field. It is readily found that, for this case,

- b+1 1 - b+1
ST P P

- 2 1
= 0‘ + = - = < -
=% = i FUGFD
Here, the drift from the left under the applied field of holes normally
present in the intrinsic semiconductor just cancels the diffusion from the
source to the left.* A third special case is that in which the total current

(63)

(64)

# Using the numencally obtained soluuons the validity of (64) as an approximation
for large concentrations in n-type germanium may be seen as follows: For f. equal to
unity and C,, ¢~ and C* equal to 2, 1.5, and 3.5 respectively, P? is about 0.6 and
the fraction of injected holes which flows against the field is nearly one-half; doubling
these current densities increases P° to 1.45 and decreases the fraction to about one-fourth
and the fraction is less than about one-tenth if the current densities are increased so that
C* exceeds 15
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to the left of the source is zero, the left-hand side of the filament being
open-circuited. For this case, equations (62) are better written in the form
obtained by multiplying through by C~ or C*, and the special case in
question is then found to be given by

cC =0 ct =C.

65 { _ 1 .1 1
Cs [ b—l—l:IC C”:i[‘ b+1:|c"

according to which, if f, is equal to unity, the magnitude of the hole flow
to the left into the open-circuit end is /(b + 2) times that into the circuit
end, to the right; or a fraction 5/2(b + 1) of the holes flows to the left,
and a fraction (b + 2)/2(6 + 1) to the right. Thus, for germanium, the
hole flow into the open-circuit end is 0.43 as large as that into the circuit
end, a fraction 0.30 flowing to the left, and 0.70 to the right. It might be
observed that the fractions of the injected holes which flow to the left
and right are, in this case, proportional to the total currents C~ and C*
of the preceding case, for which there is zero hole flow to the left.

Another general limiting case for the #-type semiconductor is that for
Py small, so that the exponential approximations of Section 3.31 apply.
The restriction on the magnitude of P is P < < j. This restriction obtains
if C, is sufficiently small that C~ and C* do not dlﬂ'er appreciably. Equa-
tion (59) then gives

(66) Gr— G = —bfC..

Writing C for C~ and C+, equations (30) and (46) result in

- {G‘ =3i/C+ 4+ C] PP =bCh
G"= -V +4-C] P =003,

whence, solving for Gt — G~ and comparing with equation (66),

(68) P = bf.C/A/C* + 4.

In accordance with (67), then,

@) {C; = —i[t - c/v/CTF 4] f.C.
Ch = i1+ Cc/A/CF14]fC..

These are the reduced hole flows to the left and right of the source.
While it has been assumed that C. is small compared with C, no re-
striction has been placed on C itself. For C small compared with unity,
the equations indicate that the hole flows to the left and right are the
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same in magnitude, while for C large compared with unity,

1
Co~—=/C
(70) ’ c

tmjcce-

Thus, according to this approximation, C should exceed about 10 if no
more than one per cent of the holes are to flow against the field. From
(75) in the Appendix, a value of 10 for C corresponds to a current density
of about 1.2 amp cm™ in germanium of 10 ohm cm resistivity, with =
equal to 10 psec. This current density is moderately large among those
which have been employed in experiments with germanium filaments.

Experimentally, the ideal one-dimensional geometry postulated in the
present treatment of the problem of the single source in an infinite fila-
ment cannot easily be realized, hole injection generally being accomplished
through a point contact or a side arm on one side of the actual filament.
If suitable averages are employed, non-uniformity in P at the injection
cross-section does not, however, vitiate the approximate results for AP
large and AP small, since their applicability depends largely on the validity
over the injection cross-section of the approximation assumed.
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- 5. APPENDIX

5.1 The concenirations of ionized donors and acceplors

While the donor and acceptor concentrations need not, of course, be
considered for the intrinsic semiconductor, for the extrinsic semicon-
ductor the fundamental equations, as they have been written, are in
principle incomplete: Two additional equations in the variables D+ and
A~ are required. One of the required equations is trivial, since changes in
the concentration of ionized centers which are compensated by those
which determine the conductivity type of the extrinsic semiconductor
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can certainly be neglected. For an n-type semiconductor, for example, the
term (4~ — Ay) in Poisson’s equation may be suppressed. This procedure
is strictly consistent with the neglect of po and g , but undoubtedly holds
to an even better approximation. If D is the total donor concentration in
the n-type semiconductor, the concentration of ionized donors may be
considered to satisfy the equation,

+
(71) a% = H(D — D*) — KD"n,
which applies to the homogeneous semiconductor, with H and K con-
stants which characterize, respectively, the rate of ionization of unionized
donors, and the rate of recombination of an ionized donor with an electron.
If, as a result of a small thermal ionization energy, most of the donors are
ionized, so that KD/H << 1, the change in ionized-donor concentration
for the steady state is given by (71) as

(72) DY — Di ~ — T (n — na),

which is small compared with the corresponding change in electron con-
centration. In other cases, the use of the general expression obtainable
from (71) for the steady-state concentration of ionized donors in terms of
the electron concentration, or the expression for the other limiting case of
relatively few ionized donors, might provide a more precise description
provided the conditions under which solutions are sought do not involve
unduly rapid changes with time.

5.2 The carrier concenirations al thermal equilibrium

The ratio of the thermal-equilibrium values of the hole and electron
concentrations may be evaluated for n#-type germanium from®
8700\ _ .
T

= N

np = 3-10327% ex (-—-
13) P P

no—p =N~ Ny = I/b,uepu = 2.40'1015/1.')0,
where the electron concentration excess #, corresponds to complete ioniza-
tion of the donors, and is approximately 7, at the highest temperature at
which P, is still negligible, which may be taken as room temperature®.
The resistivity po is that which determines 7, . Thus, ‘

(74) Po = 3 WIF dm/m) —1),

2 Joc. cit.
5 loc. cit.
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with #; , the toncentration of holes or electrons in intrinsic germanium at
T deg abs, given in (73). It may be estimated that temperature rises of
less than 100 deg C will make 10 ohm c¢m #-type germanium substantially
intrinsic in its behavior.

The range of values of the parameter C for which the numerical solu-
tions are given corresponds, for example, to current densities up to the
order of 10 amp cm™ in germanium filaments of about 10 ohm cm re-
sistivity, for the mean lifetime 7 about 10 psec; for this mean lifetime, the
distance unit L, is approximately 210~ cm. Current densities correspond-
ing to the larger values of C will ordinarily produce appreciable joule
heating in filaments some 10~* cm? in area of cross-section, cemented to a
backing, with temperature rises of the order of 100 deg C.

The effect of joule heating on L, and C may be evaluated from

(7s)

where 7 is expressed in sec, f in amp cm™, and p is the normal resistivity
in ohm cm of the germanium at 7 deg abs. These are obtained from the
definitions (8), taking the hole mobility in the thermal scattering range
to be proportional to T}, with the value 1700 cm? volt™! sec™! at 300 deg
abs.”

5.3 Series solutions for the extrinsic semiconductor in the steady stale

Maclaurin’s series for G in the relative concentration P are of the form
(76) G = alP + dﬂl)g + 6'3133 + PR

for the cases of field opposing and field aiding, the solutions passing
through the (P, G)-origin. Substituting the series (76) for G in the differ-
ential equation (27) for the n-type semiconductor in the steady state, it
is found, in accordance with (30), that

(77) a =3 [C++C+ 4,

the sign of C being taken before the radical for field opposing, the other
sign for field aiding. The other coefficients are given in terms of a; and

7loc. cit.
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also the b, C, and the constant, @, of the recombination function:

-'}af—-l:flb—i-—l—ka]

4= C —3a

(78) 2a§+“b+lalaa+2b+1af—bkl[b———l_l-{-h—l
o = b ‘b b b J
¢ C — dm

The series in the current parameter are series in ascending powers of the
reciprocal of C. Writing, for convenience,

(79) vy = 1/C,

the differential equation (27) may be put in the form,

7[1+2P][1+11J;'—1 ]GG
(80) 2
+v'§l%1c”—c—vp[1+b+¥ ]R=0,_

using the prime to denote differentiation with respect to P. Consider
expansions of the form,

(81) . G = 2 47,

1=Ja
in which the 4’s are functions of P to be determined. Substituting in the
differential equation, there results

> [[1 + 2P [1 + “{% P] A AL+ l’%l A,-A,,.} it

J=jo m=Jo

0 2
- ZAH"—P[1+I’%‘1P} Ry = 0.

J=jo

(82)

Since the expansions are to hold for arbitrary values of v, the 4’s must,
for the cases of field opposing and field aiding, for which the solutions
pass through the (P, G)-origin, vanish identically for P equal to zero,
and be determined by equating to zero the coeflicients of given powers of
v in (82). It can, without loss of generality, be assumed that the coefficient
of the leading term in the expansion, 4;,, is not identically zero. Then,
from (82), it is found that there is no expansion for jo = 0, that is, no
expansion starting with a term independent of . Formal expansions can be
obtained, however, for j, = — 1 and for j, = + 1. These may be identified,
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respectively, with the solutions for field opposing and field aiding, as will
be seen.

Forjo, = —1, or field opposing, (82) leads to differential equations of the
first order for the determination of the 4’s. The condition that these func-
tions vanish identically for # = 0 suppresses all A’s of even order. The
first term of the expansion is found by solving

-1 _
b [1+2P]|:1+l“|l:1p] [1+2P][1+b*1,:”1 ]
whence

P

(84)' A—l = i—_l_—'ﬁ.

The second term is found from

1 A,

’ b""'
@) Al+ el [Ea=ard P
1+ 2m1] 1+ 23 ]

whence, with R equal to unity and (1 + P), respectively,

( b+ 1
Plt + ] [1 A ]
4, = 1 2P for constant mean lifetime
®) 3 2 b+ 1
4, = PI:I + EP + EPJ[I + b P] for mass-action
L e 1+ 2P recombination.

For the third term, making use of (84), (85) and (86),
( b—1 As
A +

b [1+2P1[1+’$ ]

_ b+ 1 | for constant mean
= "[1+Pl[1 T PJ Jifetime

87) J b—1 A

LT 2P][1 + I#P]

2 .
{‘—' -1+ Pl[l + %P + %PE:“} 4+ 0 ‘: IP:I for mass-action

recombination

As +
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whence

B 4b+1 S5b4+3 .. b+1_4 b+ 1
P[“r 25 P+ 3b P+ 2 P][H'TP]

Aa =
s 14 2P

for constant

mean lifetime
33b+6P+7Ob+27 736 + 43

125 185 24b

386 4 30 .4 20+ 2 5 b+ 1
t—3m T 9bP][1+ b ]

14 2P

for mass-action recombination.

(88)

- Pl:l + P P

As

For jo = 41, or field aiding, the A’s are determined somewhatmore
simply, recursive relationships obtaining. The results are:

(89) Ay = —P[l + "iblp:r R,

and
(=11 + 2P]:1 n Z%EP]AIA; n I%Ai
As=[1+ 213]:1 + ’L‘l’b_lp] (44l + Zb;blAlAa
Ar=11+2P] 1 + ”—;F—‘P] [Asdd) + Aa4i)

(90) < -1

b 1
+ 2 T[A1A5 + §A§]

.......................................................

The identification of the series in the parameter y as series for field
opposing and field aiding is accomplished by evaluating them for small
P and then comparing them with the first terms of the corresponding
Maclaurin’s series in P, expanded in powers of v. Further agreement is
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obtained by comparing the first terms of the series in vy with the func-
tions of P which result from evaluating the Maclaurin’s series for v
small.

5.4 Symbols for Quantities

i

ll

i

I

Il

Il

ll

ll

i

r/7, , constant in recombination function.

coefficients in the Maclaurin’s expansion of G in powers of P; jan
integer.

coefficients in the expansion of & in powers of v; j an integer.

concentration of ionized acceptors.

thermal-equilibrium concentration of ionized acceptors.

ratio of electron mobility to hole mobility.

I/I,, reduced total current density.

reduced emitter current.

reduced total current to the origin from the left.

reduced total current from the origin to the right.

—1I,/1,, reduced electron flow density.

1,/1,, reduced hole flow density.

I/C.

¢/4rer, reduced time for the dielectric relaxation of charge.

total donor concentration.

concentration of ionized donors.

thermal-equilibrium concentration of ionized donors.

kTu,/e, diffusion constant for electrons.

kTuy/e, diffusion constant for holes,

magnitude of the electronic charge.

electrostatic field.

applied or asymptotic field.

kT/eL, , characteristic field.

dielectric constant.

fraction of total current carried by holes.

fraction of total current carried by holes at an emitter.

fraction of total current carried by holes at a source, to the left.

fraction of total current carried by holes at a source, to the right.

E/E, , reduced electrostatic field.

thermal rate of generation of hole-electron pairs, per unit volume.

dP/dX, reduced concentration gradient. )

value of G for X = 0.

limiting value of G at a source, approached from the left.

limiting value of G at a source, approached from the right.

probability of thermal ionization of an unionized donor, per unit
time.
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total current density.
current density of electrons.
oE, , characteristic current.
current density of holes.

%I , total carrier flow density.
—% 1., electron flow density.

% I, , hole flow density.

Boltzmann’s constant.

probability per unit time of electron capture by an ionized donor,
per unit electmn concentration,

(kTE/S'ereE) , characteristic length associated with space charge
in the steady state.

(RTut/ e)!, diffusion length for holes for time r.

1+b+1
1+ —il:ng.

up = mobility for holes.

mobility for electrons.

concentration of electrons.

thermal-equilibrium concentration of electrons (or holes) in the
intrinsic semiconductor.

thermal-equilibrium concentration of electrons.

= saturation concentration excess of electrons, corresponding to com-

L 1

I

fom

plete ionization of donors.

n/(no— po), reduced electron concentration for an n-type semi-
conductor.

concentration of holes.

thermal-equilibrium concentration of holes.

#/ (no— po), reduced hole concentration for an #-type semiconductor.

(p— po)/ (ng— po), reduced concentration of added holes.

po/ (mg— po), reduced hole concentration at thermal equilibrium.

value of P for X = 0.

7/7p , lifetime ratio.

general recombination function, equal to 1 + aP/ (1 + Py for
mass-action and constant-mean-lifetime mechanisms combined.

volume resistivity in ohm cm.

differential transport velocity.

s/(D,/7)}, reduced differential transport velocity.
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conductivity of semiconductor.

normal conductivity of semiconductor, with no added carriers.

o/o0 = M/M, , reduced conductivity of semiconductor.

time variable.

temperature in degrees absolute.

mean lifetime for holes for small added concentrations, in an z-
type or in an intrinsic semiconductor.

mean lifetime for electrons (concentration-dependent).

mean lifetime for holes (concentration-dependent).

mean lifetime for holes, for small added concentrations in an #n-
type semiconductor, due to mass-action recombination alone.

/T = reduced time variable.

eV /kT, reduced electrostatic potential.

distance variable.

x/L,, reduced distance variable.

electrostatic potential.



