Traveling-Wave Tubes
By J. R. PIERCE
Copyright, 1950, D. Van Nostrand Company, Inc.

[FOURTH INSTALLMENT)]

CHAPTER XII

POWER OUTPUT

THEORETICAL EVALUATION of the power output of a traveling-
wave tube requires a theory of the non-linear behavior of the tube.
In this book we have dealt with a linearized theory only. No attempt will
be made to develop a non-linear theory. Some results of non-linear theory will
be quoted, and some conclusions drawn from experimental work will be
presented.
- One thing appears clear both from theory and from experiment: the gain
parameter C is very important in determining efficiency. This is perhaps
demonstrated most clearly in some unpublished work of A. T. Nordsieck.
Nordsieck assumed:
(1) The same a-c field acts on all electrons.
(2) The only fields present are those associated with the circuit (“‘neglect
of space charge”).
(3) Field components of harmonic frequency are neglected.
(4) Backward-traveling energy in the circuit is neglected.
(5) A lossless circuit is assumed.
(6) C is small (it always is).
Nordsieck obtained numerical solutions for such cases for several electron
velocities. He found the maximum efficiency to be proportonal to C by a
factor we may call k. Thus, the power output P is

P = kCLV, (12.1)

In Fig. 12.1, the factor k is plotted vs. the velocity parameter &. For an
electron velocity equal to that of the unperturbed wave the fractional
efficiency obtained is 3C; for a faster electron velocity the efficiency rises to
7C. For instance, if C = 025, 3C is 7.5% and 7C is 15%,. For 1,600 volts
15 ma this means 1.8 or 3.6 watts. If, however, C = 0.1, which is attainable,
the indicated efficiency is 309 to 709%,.

Experimental efficiencies often fall very far below such figures, although
some efficiencies which have been attained lie in this range. There are three
apparent reasons for these lower efficiencies. First, small non-uniformities
in wave propagation set up new wave components which abstract energy
from the increasing wave, and which may subtract from the normal output.
Second, when the a-c field varies across the electron flow, not all electrons
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POWER OUTPUT 609

are acted on equally favorably. Third, most tubes have a central lossy sec-
tion followed by a relatively short output section. Such tubes may overload
so severely in the lossy section that a high level in the output section is
never attained. There is not enough length of loss-free circuit to provide
sufficient gain in the output circuit so that the signal can build up to maxi-
mum amplitude from a low level increasing wave. Other tubes with dis-
tributed loss suffer because the loss cuts down the efficiency.

Some power-series non-linear calculations made by L. R. Walker show that
for fast velocities of injection the first non-linear effect should be an expan-
sion, not a compression. Nordsieck’s numerical solutions agree with this.
A power series approach is inadequate in dealing with truly large-signal be-
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Fig. 12.1—The calculated efficiency is expressed as kC, where % is a function of the
velocity parameter b. This curve shows % as given by Nordsieck’s high-level calculations.

havior. In fact, Nordsieck’s work shows that the power-series attack, if
based on an assumption that there is no overtaking of electrons by electrons
emitted later, must fail at levels much below the maximum output.

Further work by Nordsieck indicates that the output may be appreciably
reduced by variation of the a-c field across the beam.

It is unfortunate that Nordsieck’s calculations do not cover a wider range
of conditions. Fortunately, unlikely as it might seem, the linear theory can
tell us a little about what limitation of power we might expect. For instance,
from (7.15) we have
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while from (7.16) we have

RNEATE

We expect non-linear effects to become important when an a-c quantity is
no longer small compared with a d-c quantity. We see that because (1/5C)
is large, | i/Io | will be larger than | o/u0 | .

The important non-linearity is a sort of over-bunching or limit to bunch-
ing. For instance, suppose we were successful in bunching the electron flow
into very short pulses of electrons, as shown in Fig. 12.2 As the pulses ap-
proach zero length, the ratio of the peak value of the fundamental com-
ponent of convection current to the average or d-c current Iy approaches 2.
We may, then, get some hint as to the variation of power output as various
parameters are varied by letting | 7 | = 21, and finding the variation of power
in the circuit for an a-c convection current as we vary various parameters.

BEAM
CURRENT
—

TIME =3

Tig. 12.2—If the electron beam were bunched into pulses short compared with a cycle,
the peak value of the component of fundamental frequency would be twice the d-c cur-
rent Io.

Deductions made in this way cannot be more than educated guesses, but in
the absence of non-linear calculations they are all we have.

From (7.1) we have for the circuil field associated with the active mode
(neglecting the field due to space charge)

2 2 /32

- T;;;(;i/ﬂf;’) (12.4)
This relation is, of course, valid only for an electron convection current ¢
which varies with distance as exp(—T%z). For the power to be large for a
given magnitude of current, E should be large. For a given value of 4, E will
be large if I is very nearly equal to ;. This is natural. If T were equal to
I, the natural propagation constant of the circuit, the contribution to the
field by the current i in every elementary distance would have such phase
as to add in phase with every other contribution. ‘

Actually, Ty and T' cannot be quite equal. We have from (7.10) and (7.11)

—Ty = B(—j — jCb — Cd) (12.5)
—T = B.(—j + jCy1 + Cx) (12.6)
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For a physical circuit the attenuation parameter d must be positive while,
for an increasing wave, x must be positive. We see that we may expect E
to be greatest for a given current when d and x are small, and when y is
nearly equal to the velocity parameter &.

Suppose we use (12.4) in expressing the power

E rr‘ Ti{(E/B'P) .

= - 12.7
F W -1y (127

~ B(EY/P) ~

Here we identify 8 with —jT'y. Further, we use (2.43), (12.5) and (12.6),
and assuming C to be small, neglect terms involving C compared with unity.
We will further let 7 have a value

i =21, (12.8)
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Fig. 12.3—An efficiency parameter k calculated by taking the power as that given by
near theory for an r-f beam current with a peak value twice the d-c beam current.

We obtain
P = kCIV, (12.9)

2
M (e (1210

We will now investigate several cases. Let us consider first the case of a
lossless circuit (¢ = 0) and no space charge (QC = 0) and plot the efficiency
factor & vs. b. The values of x and y are those of Fig. 8.1. Such a plot is
shown in Fig. 12.3.

If we compare the curve of Fig. 12.3 with the correct curve of Nordsieck,
we see that there is a striking qualitative agreement and, indeed, fair quanti-
tative agreement. We might have expected on the one hand that the electron
stream would never become completely bunched (i = 27,) and that, as it
approached complete bunching, behavior would already be non-linear.
This would tend to make (12.10) optimistic. On the other hand, even after 1
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attains its maximum value and starts to fall, power can still be transferred
to the circuit, though the increase of field with distance will no longer be
exponential. This makes it possible that the value of & given by (12.10) will
be exceeded. Actually, the true k calculated by Nordsieck is a little higher
than that given by (12.10).

Let us now consider the effect of loss. Figure 12.4 shows k from (12.10)
vs. d for b = QC = 0. We see that, as might be expected, the efficiency falls
as the loss is increased. C. C. Cutler has shown experimentally through un-
published work that the power actually falls off much more rapidly with d.
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Fig. 12.4—The efficiency parameter & calculated as in Fig. 12.3 but for & = 0 (an elec-
tron velocity equal to the circuit phase velocity) and for various values of the attenuation
parameter d. Experimentally, the efficiency falls off more rapidly as d is increased.

Finally, Fig. 12.5 shows % from (12.10) vs. QC, with d = 0 and b chosen to
make x; a maximum. We see that there is a pronounced rise in efficiency as
the space-charge parameter QC is increased.

J. C. Slater has suggested in Microwave Electronics a way of looking at
energy production essentially based on observing the motions of electrons
while traveling along with the speed of the wave. He suggests that the elec-
trons might eventually be trapped and oscillate in the troughs of the sinu-
soidal field. If so, and if they initially have an average velocity Av greater
than that of the wave, they cannot emerge with a velocity lower than the
velocity of the wave less Av. Such considerations are complicated by the
fact that the phase velocity of the wave in the large-signal region will not
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be the same as its phase velocity in the small-signal region. It is interesting,
however, to see what limiting efficiencies this leads to.
The initial electron velocity for the increasing wave is approximately

e = 2(1 — () (12.11)

where 7, is the phase velocity of the wave in the absence of electrons. The
quantity y, is negative. According to Slater’s reckoning, the final electron
velocity cannot be less than

= vl + yC) (12.12)
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Fig. 12.5—The efficiency parameter k calculated as in Fig. 12.3, for zero loss and for an
electron velocity which makes the gain of the increasing wave greatest, vs the space-
charge parameter QC.

The limiting efficiency n accordingly will be, from considerations of kinetic
energy

g — 13
n = 1'3
4)'|C
=
(1= n0)
If »C « 1, very nearly
n=4yC (12.13)

We see that this also indicates an efficiency proportional to C. In Fig.
12.6 4y, is plotted vs. b for QC = d = 0. We see that this quantity ranges
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from 2 for b = 0 up to 5 for larger values of b. It is surprising how well this
agrees with corresponding values of 3 and 7 from Nordsieck’s work. Moreover
(12.13) predicts an increase in efficiency with increasing QC.

Thus, we may expect the efficiency to vary with C from several points
of view.

It is interesting to consider what happens if at a given frequency we change
the current. By changing the current while holding the voltage constant we
increase both the input power and the efficiency, for C varies as I 3%, Thus,
in changing the current alone we would expect the power to vary as the 4/3
power of I

P13 (12.14)
’ L/
4 //
a | A
5 7
A3
2
1 ]
L
(o]
-2 = 0 1 2

b

Fig. 12.6—According to a suggestion made by Slater, the velocity by which the elec-
trons are slowed down cannot be greater than twice the difference between the electron
velocity and the wave velocity. If we use the velocity difference given by the linear theory,
for zero loss (d = 0) this would make the efficiency parameter k equal to —4y,. Here
—4y, is plotted vs b for QC = 0.

Here space charge has been neglected, and actually power may increase
more rapidly with current than (12.14) indicates.

A variety of other cases can be considered. At a given voltage and cur-
rent, C and the efficiency rise as the helix diameter is made smaller. How-
ever, as the helix diameter is made smaller it may be necessary to decrease
the current, and the optimum gain will come at higher frequencies. For a
given beam diameter, the magnetic focusing field required to overcome
space-charge repulsion is constant if 7,/ V' is held constant, and hence we
might consider increasing the current as the 1/2 power of the voltage, and
thus increasing the power input as the 3/2 power of the voltage. On the other
hand, the magnetic focusing field required to correct initial angular deflec-
tions of electrons increases as the voltage is raised.

There is no theoretical reason why electrons should strike the circuit.
Thus, it is theoretically possible to use a very high beam power in connec-
tion with a very fragile helix. Practically, an appreciable fraction of the
beam current is intercepted by the helix, and this seems unavoidable for wave
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lengths around a centimeter or shorter, for accurate focusing becomes more
difficult as tubes are made physically smaller. Thus, in getting very high
powers at ordinary wavelengths or even moderate powers at shorter wave-
lengths, filter type circuits which provide heat dissipation by thermal con-
duction may be necessary. We have seen that the impedance of such cir-
cuits is lower than that of a helix for the broadband condition (group velocity
equal to phase velocity). However, high impedances and hence large values
of C can be attained at the expense of bandwidth by lowering the group
velocity. This tends to raise the efficiency, as do the high currents which are
allowable because of good heat dissipation. However, lowering group velocity
increases attenuation, and this will tend to reduce efficiency somewhat.

It has been suggested that the power can be increased by reducing the
phase velocity of the circuit near the output end of the tube, so that the
electrons which have lost energy do not fall behind the waves. This is a com-
plicated but attractive possibility. It has also been suggested that the elec-
trode which collects electrons be operated at a voltage lower than that of
the helix.

The general picture of what governs and limits power output is fairly
clear as long as C is very small. If attenuation near the output of the tube is
kept small, and the circuit is constructed so as to approximate the require-
ment that nearly the same field acts on all electrons, efficiencies as large as
409, are indicated within the limitations of the present theory. With larger
values of C it is not clear what the power limitation will be.

The usual traveling-wave tube would seem to have a serious competitor
for power applications in the traveling-wave magnetron amplifier, which is
discussed briefly in a later chapter.



CHAPTER XIII
TRANSVERSE MOTION OF ELECTRONS

SynopsiS OF CHAPTER

O FAR WE HAVE taken into account only longitudinal motions of
electrons. This is sufficient if the transverse fields are small compared to
the longitudinal fields (as, near the axis of an axially symmetrical circuit)
or, if a strong magnetic focusing field is used, so that transverse motions are
inhibited. It is possible, however, to obtain traveling-wave gain in a tube in
which the longitudinal field is zero at the mean position of the electron beam.
For a slow wave, the electric field is purely transverse only along a plane.
The transverse field in this plane forces electrons away from the plane and
preferentially throws them into regions of retarding field, where they give up
energy to the circuit. This mechanism is not dissimilar to that in the longi-
tudinal field case, in which the electrons are moved longitudinally from their
unperturbed positions, preferentially into regions of more retarding field.

Whatever may be said about tubes utilizing transverse fields, it is cer-
tainly true that they have been less worked on than longitudinal-field tubes.
In view of this, we shall present only a simple analysis of their operation
along the lines of Chapter II. In this analysis we take cognizance of the fact
that the charge induced in the circuit by a narrow stream of electrons is a
function not only of the charge per unit length of the beam, but of the dis-
tance between the beam and the circuit as well.

The factor of proportionality between distance and induced charge can be
related to the field produced by the circuit. Thus, if the variation of V' in the
x, y plane (normal to the direction of propagation) is expressed by a function
®, as in (13.3), the effective charge pg is expressed by (13.8) and, if y is the
displacement of the beam normal to the z axis, by (13.9) where &’ is the de-
rivative of & with respect to y.

The equations of motion used must include displacements normal to the
2 direction; they are worked out including a constant longitudinal magnetic
focusing field. Finally, a combined equation (13.23) is arrived at. This is
rewritten in terms of dimensionless parameters, neglecting some small terms,

as (13.26)

. 1 o
B=d=mt e
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Here & and b have their usual meanings; « is the ratio between the transverse
and longitudinal field strengths, and f is proportional to the strength of the
magnetic focusing field.

In case of a purely transverse field, a new gain parameter D is defined.
D is the same as C except that the longitudinal a-c field is replaced by the
transverse a-c field. In terms of D, b and & are redefined by (13.36) and
(13.37), and the final equation is (13.38). Figures 13.5-13.10 show how the
a’s and y's vary with & for various values of f (various magnetic fields) and
Fig. 13.11 shows how x; , which is proportional to the gain of the increasing
wave in db per wavelength, decreases as magnetic field is increased. A nu-
merical example shows that, assuming reasonable circuit impedance, a
magnetic field which would provide a considerable focusing action would
still allow a reasonable gain.

The curves of Figs. 13.6-13.10 resemble very much the curves of Figs.
8.7-8.9 of Chapter VIII, which show the effect of space charge in terms of
the parameter QC. This is not unnatural; in one case space charge forces
tend to return electrons which are accelerated longitudinally to their un-
disturbed positions. In the other case, magnetic forces tend to return elec-
trons which are accelerated transversely to their undisturbed positions. In
each case the circuit field acts on an electron stream which can itself sustain
oscillations. In one case, the oscillations are of a plasma type, and the re-
storing force is caused by space charge of the bunched electron stream; in
the other case the electrons can oscillate transversely in the magnetic field
with cyclotron frequency.

Let us, for instance, compare (7.13), which applies to purely longitudinal
displacements with space charge, with (13.38), which applies to purely
transverse fields with a longitudinal magnetic field. For zero loss (d = 0),
(7.13) becomes

1 = (js — b)(@ + 40C)

While
1= (js — b)@E + 7 (13.38)
describes the transverse case. Thus, if we let
40C = f*

the equations are identical.

When there is both a longitudinal and a transverse electric field, the equa-
tion for § is of the fifth degree. Thus, there are five forward waves. For an
electron velocity equal to the circuit phase velocity (b = 0) and for no at-
tenuation, the two new waves are unattenuated.

If there is no magnetic field, the presence of a transverse field component
merely adds to the gain of the increasing wave. If a small magnetic field is
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imposed in the presence of a transverse field component, this gain is some-
what reduced.

13.1 Crrcurr EqQUATION

Consider a tubular electrode connected to ground through a wire, shown
in Fig. 13.1. Suppose we bring a charge Q into the tube from «. A charge Q
will flow to ground through the wire. This is the situation assumed in the
analysis of Chapter IL. In Fig. 2.3 it is assumed that all the lines of force
from the charge in the electron beam terminate on the circuit, so that the
whole charge may be considered as impressed on the circuit.

ELECTRODE

i

Fig. 13.1—When a charge Q approaches a grounded conductor from infinity and in the
end all the lines of force from the charge end on the conductor, a charge Q flows in the
grounding lead.

ELECTRODE
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Fig. 13.2—1If a charge Q approaches a conductor from infinity but in the end only part
of the lines of force from the charge end on the conductor, a charge ®Q flows in the ground-
ing lead, where @ < 1,

Now consider another case, shown in Fig. 13.2, in which a charge Q is
brought from e to the vicinity of a grounded electrode. In this case, not all
of the lines of force from the charge terminate on the electrode, and a charge
®(Q which is smaller than Q flows through the wire to ground.

We can represent the situation of Fig. 13.2 by the circuit shown in Fig.
13.3. Here C; is the capacitance between the charge and the electrode and
() is the capacitance between the charge and ground. We see that the charge
&( which flows to ground when a charge Q is brought to a is

®Q = QC:/(C: + C) (13.1)

Now suppose we take the charge Q away and hold the electrode at a
potential V with respect to ground, as shown in Fig. 13.4. What is the po-
tential V, at a? We see that it is

Vo= [C/(Ci+ GV = 2V (13.2)
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Thus, the same factor @ relates the actual charge to the “effective charge”
acting on the circuit and the actual circuit voltage to the voltage produced
at the location of the charge.

We will not consider in this section the ““space charge” voltage produced
by the charge itself (the voltage at point ¢ in Fig. 13.4).

The circuit voltage V we consider as varying as exp(—T'2) in the direction
of propagation. The voltage in the vicinity of the circuit is given by

Viz,y) = ®V (13.3)

ELECTRODE

c2
IL a Q
I —
lﬁo ~Cl

Fig. 13.3—The situation of Fig. 13.2 results in the same charge flow as if the charge
were put on terminal @ of the circuit shown, which consists of two capacitors of capaci-
tances C; and C;.

A

ELECTRODE

I a
V? it J-Va
= TCI
Fig. 13.4—A voltage V inserted in the ground lead divides across the condensers so

that V, = @V, where & is the same factor which relates the charge flowing in the ground
lead to the charge Q applied at a in Figs. 13.2 and 13.3.

Here x and y refer to coordinates normal to z and & is a function of x and y.
We will choose x and y so

ab/dx = 0 (13.4)

Then
E, = —Vad/ay = —@'V (13.5)
& = 3d/dy (13.6)

In (13.3), ® will vary somewhat with I', but, as we are concerned with a
small range only in I', we will consider ® a function of y only.
From Chapter IT we have

T (- ‘
and
b= :_iI_‘_’a. (2.18)

w
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So that
. _ el
Vo=@ (13.7)
In (13.7), it is assumed that & = 1. If & # 1, we should replace p in (13.7)
by the a-c component of effective charge. The total effective charge pg is

ps = (o + po) (13.8)

The term py is included because ® will vary if the y-position of the charge
varies. To the first order, the a-c component pg of the effective charge is,

pe = ®p + pu®'y (13.9)
pr = ®p — (To/10)®'y (13.9)

Here y is the a-c variation in position along the y coordinate. Thus, if & # 0,
we have instead of (13.7)
o —fehK (@p — (TIo/u)®'y)
N (r* — i) ‘

(13.10)

This is the circuit equation we shall use.

13.2 Barustic EQuAaTIONS

We will assume an unperturbed motion of velocity # in the z direction,
parallel to a uniform magnetic focusing field of strength B. As in Chapter
II, products of a-c quantities will be neglected.

In the x direction, perpendicular to the y and z directions

di/dl = —nBy (13.11)
Assume that £ = Oaty = 0. Then
& = nBy (13.12)
In the y direction we have
dy/dt = n(Bi — E,) : (13.13)
From (13.5) this is
dy/dt = 7(Bi + ®'V) (13.14)
dy/dl = a3/t + (9y/0z)(dz/dl) (13.15)
(@9/dl) = (B — )3 (13.16)
We obtain from (13.16), (13.14) and (13.12)
(j8. — Ty = —uiBay + n®'V/uo (13.17)

ﬁm = T.'B/uﬂ (13.18)
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Here 7B is the cyclotron radian frequency and 8, is a corresponding propa-
gation constant.

Now
Y = ay/at — (dy/az)(dz/al) (13.19)
¥ = u(jBe — T)y (13.20)
From (13.20) and (13.17) we obtain
'V
(13.21)

Y= avil(jg. — I + Bl
It is easily shown that the equation for p can be obtained exactly as in
Chapter II. From (2.22) and (2.18) we have
_ ILTr'ev
7 V(e = T
13.3 ComBINED EqQuaTION
From the circuit equation (13.10) and the ballistical equations (13.21)
and (13.22) we obtain
— B, T, T2 K1, 1 (@'/®)?
el s e ] R
The voltage at the beam is ® times the circuit voltage, so the effective

impedance of the circuit at the beam is & times the circuit impedance.
Thus

(13.22)

1 =

Ca = @2}'\’[0/4170 (1324)

It will be convenient to define a dimensionless parameter f specifying 8.
and hence the magnetic field

= Bn/BL (13.25)
We will also use & and & as defined earlier

=TI = —jB. — jBLD
After the usual approximations, (13.23) yields

-

. 1 o
6 — b = 5 + GESD) (13.26)
a? = (P'/B.2)* (13.27)

It is interesting to consider the quantity (®'/8.8)* for typical fields. For
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instance, in the two-dimensional electrostatic field in which the potential
V is given by

V = Ag P P (13.28)
aV/ay = —B.V (13.29)

and everywhere
a? = (@'/8D) = 1. (13.30)

Relation (13.30) is approximately true far from the axis in an axially sym-

metrical field.
Consider a potential giving a purely transverse field at y = 0

V = Ae ¥ sinh B,y (13.31)
WV 846" cosh Buy. (13.32)

ay

In this case, at y = 0
a? = (@'/BB) = (13.33)
In the case of a purely transverse field we let
I "2 K
a —

= B (13.34)
D' = (Ey/8°P)(1,/8V) (13.35)

In (13.35), E, is the magnitude of the y component of field for a power
flow P, and 8 is the phase constant.
We then redefine 8 and & in terms of D rather than C

=T = —jB. + B.Dd (13.36)

-1y = —jBs — 78.Db (13.37)
and our equation for a purely transverse field becomes

1=(Gé— 8@+ (13.38)

In (13.38), 8 and b are of course not the same as in (13.26) but are defined
by (13.36) and (13.37).

13.4 PureLY TRANSVERSE FIELDS

The case of purely transverse fields is of interest chiefly because, as was
mentioned in Chapter X, it has been suggested that such tubes should have
low noise.
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In terms of x and v as usually defined

b=ax+jy
equation (13.38) becomes
@ =y + ) — 290+ 8] =0 (13.39)
G+OFE -+ +2+1=0 (13.40)
From the x = 0 solution of (13.39) we obtain
x=0 (13.41)
b= ﬁz — . (13.42)

It is found that this solution obtains for large and small values of 4. For
very large and very small values of b, either

y=-=b (13.43)

7

or
y = +£f (13.44)

The wave given by (13.43) is a circuit wave; that given by (13.44) repre-
sents electrons traveling down the tube and oscillating with the cyclotron
frequency in the magnetic field.

In an intermediate range of b, we have from (13.39)

v ==V 48 - (=) (13.45)
and
b= —2y +f*—1/2y. (13.46)

For a given value of f? we can assume values of y and obtain values of 4.
Then, x can be obtained from (13.45). In Figs. 13.5-13.10, x and ¥ are plotted
vs. b for f2 = 0, .5, 1, 4 and 10. It should be noted that x,, the parameter
expressing the rate of increase of the increasing wave, has a maximum at
larger values of & as fis increased (as the magnetic focusing field is increased).
Thus, for higher magnetic focusing fields the electrons must be shot into the
circuit faster to get optimum results than for low fields. In Fig. 13.11, the
maximum positive value of x is plotted vs. f. The plot serves to illustrate the
effect on gain of increasing the magnetic field.
Let us consider an example. Suppose

A=1T75cm
D= .03



624 BELL SYSTEM TECHNICAL JOURNAL

35 o Pra

A,
3.0 ¥

2.5 <

2.0—
UNDISTURBED WAVE \.:

Yy

Y4

-35
S

-4.0
-5 -4 -3 -2 =1 Q i 2 3 4 5

b
Fig. 13.5—The «’s and y’s for the three forward waves when the circuit field is purely
transverse at the thin electron stream, for zero magnetic focusing field (f2 = 0).
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Fig. 13.6—Curves similar to those of Fig. 13.5 for a parameter f? = 1. The parameter
f is proportional to the strength of the magnetic focusing field.
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Fig. 13.9—The #’s and ¥'s for f = 4.0.
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Fig. 13.10—The «'s and ¥’s for /2 = 10.0.
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These values are chosen because there is a longitudinal field tube which
operates at 7.5 cm with a value of C (which corresponds to D) of about .03.
The table below shows the ratio of the maximum value of x; to the maximum
value of x; for no magnetic focusing field.

Magnestic Field in Gauss  f 21/ %10
0 0 1
50 1.17 T
100 2.34 .50

A field of 50 to 100 gauss should be sufficient to give useful focusing action.
Thus, it may be desirable to use magnetic focusing fields in transverse-
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PROPORTIONAL TO MAGNETIC FIELD, f

Fig. 13.11—Here x; , the x for the increasing wave, is plotted vs f, which is proportional
to the strength of the focusing field. The velocity parameter b has been chosen to maxi-
mize x; . The ordinate #, is proportional to gain per wavelength.

field traveling-wave tubes. This will be more especially true in low-voltage
tubes, for which D may be expected to be higher than .03.

13.5 M1xep FiELDS

In tubes designed for use with longitudinal fields, the transverse fields
far off the axis approach in strength the longitudinal fields. The same is true
of transverse field tubes far off the axis. Thus, it is of interest to consider
equation (13.26) for cases in which a is neither very small nor very large,
but rather is of the order of unity.

If the magnetic field is very intense so that f? is large, then the term con-
taining a?, which represents the effect of transverse fields, will be very small
and the tube will behave much as if the transverse fields were absent.
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Consideration of both terms presents considerable difficulty as (13.26)
leads to five waves (5 values of §) instead of three. The writer has attacked
the problem only for the special case of & = 0. In this case we obtain from
(13.26)

1 o
MacColl has shown! that the two “new” waves (waves introduced when
a= 0) are unattenuated and thus unimportant and uninteresting (unless,
as an off-chance, they have some drastic effect in fitting the boundary
conditions).
Proceeding from this information, we will find the change in & as /2 is
increased from zero. From (13.47) we obtain

2 2 2
a5 =j [Qif+ Zoids 4 o ] (13.48)

& (52 +f2)2 (52 _I_fa)z
Now, if f= 0
8= —j(l + o? (13.49)
If we use this in connection with (13.48) we obtain
2
= % g
&b = —zdf (13.50)
Tor an increasing wave
&= (1 + @/82))(3/2 - j/2) (13.51)
Hence, for the increasing wave
ag(—\/g/z - 1/2) 2
dé; = 30+ o df (13.52)

This shows that applying a small magnetic field tends to decrease the gain.
This does not mean, however, that the gain with a longitudinal and trans-
verse field and a magnetic field is less than the gain with the longitudinal
field alone. To see this we assume that not /2 but (#'/3.$)* is small. Differen-
tiating, we obtain

| 2ds 2" 6d6 do’
@ == [_F EGES D f”:| (13.53)
Ifa=0
B =— (13.54)

1], R. Pierce, “Transverse Fields in Traveling-Wave Tubes,” Bell Sysiem Technical
Journal, Vol. 27, pp. 732-746.
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and we obtain

1 & 2
&= ) _ o 13.56
3@+ (13.56)
If we have a very large magnetic field (/2 >> |8 |), then
= Td
dé = Sk do (13.57)

and the change in § is purely reactive. If f = 0 (no magnetic field), from
(13.55)

a5 = g_daf (13.58)

Adding a transverse ficld component increases the magnitude of § without
changing the phase angle.



CHAPTER XIV
FIELD SOLUTIONS

SyNopsis OF CHAPTER

O FAR, it has been assumed that the same a-c field acts on all elec-
trons. This has been very useful in getting results, but we wonder if
we are overlooking anything by this simplification.

The more complicated situation in which the variation of field over the
electron stream is taken into account cannot be investigated with the same
generality we have achieved in the case of “thin” electron streams. The
chief importance we will attach to the work of this chapter is not that of
producing numerical results useful in designing tubes. Rather, the chapter
relates the appropriate field solutions to those we have been using and
exhibits and evaluates features of the “broad beam” case which are not
found in the “thin beam” case.

To this end we shall examine with care the simplest system which can
reasonably be expected to exhibit new features. The writer believes that
this will show qualitatively the general features of most or all “broad
beam” cases.

The case is that of an electron stream of constant current density com-
pletely filling the opening of a double finned circuit structure, as shown in
Fig. 14.1. The susceptance looking into the slots between the fins is a func-
tion of frequency only and not of propagation constant. Thus, at a given
frequency, we can merely replace the slotted circuit members by suscept-
ance sheets relating the magnetic field to the electric field, as shown in
Fig. 14.2. The analysis is carried out with this susceptance as a parameter.
Only the mode of propagation with a symmetrical field pattern is con-
sidered.

First, the case for zero current density is considered. The natural mode
of propagation will have a phase constant 8 such that H/E, for the central
region is the same as H./E, for the finned circuit, The solid curve of Fig.
14.3 shows a quantity proportional to H./E, for the central space vs § =
Bd (d defined by Fig. 14.1), a quantity proportional to 8. The dashed line
P represents H,/E, for a given finned structure. The intersections specify
values of 6 for the natural active modes of propagation to the left and to the
right, and, hence, values of the natural phase constants.

The structure also has passive modes of propagation. If we assume
fields which vary in the z direction as exp (®/d)z, H./E. for the central

630
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opening varies with & as shown in part in Fig. 14.4. A horizontal line repre-
senting a given susceptance of the finned structure will intersect the curve
at an infinite number of points. Each intersection represents a passive
mode which decays at a particular rate in the z direction and varies sinu-
soidally with a particular period in the y direction.

If the effect of the electrons in the central space is included, H./E, for
the central space no longer varies as shown in Fig. 14.3, but as shown in
Fig. 14.5 instead. The curve goes off to 4+ < near a value of  correspond-
ing to a phase velocity near to the electron velocity. The nature of the modes
depends on the susceptance of the finned structure. If this is represented
by P;, there are four unattenuated waves; for P; there are two unattenu-
ated waves and an increasing and a decreasing wave. P, represents a tran-
sitional case.

Not the whole of the curve for the central space is shown on Fig. 14.5.
In Fig. 14.6 we see on an expanded scale part of the region about § = 1,
between the points where the curve goes through 0. The curve goes to 4 «
and repeatedly from — « to - o, crossing the axis an infinite number of
times as 6 approaches unity. For any susceptance of the finned structure,
this leads to an infinite number of unattenuated modes, which are space-
charge waves; for these the amplitude varies sinusoidally with different
periods across the beam. Not all of them have any physical meaning, for
near 8 = 1 the period of cyclic variation across the beam will become small
even compared to the space between electrons.

Returning to Fig. 14.1, we may consider a case in which the central space
between the finned structures is very narrow (d very small). This will have
the effect of pushing the solid curve of Fig. 14.5 up toward the horizontal
axis, so that for a reasonable value of P (say, Py, P; or P; of Fig. 14.5) there
is no intersection. That is, the circuit does not propagate any unattenuated
waves. In this case there are still an increasing and a decreasing wave. The
behavior is like that of a multi-resonator klystron carried to the extreme of
an infinite number of resonators. If we add resonator loss, the behavior of
gain per wavelength with frequency near the resonant frequency of the
slots is as shown in Fig. 14.7.

One purpose of this treatment of a broad electron stream is to compare
its results with those of the previous chapters. There, the treatment con-
sidered two aspects separately: the circuit and the effect of the electrons.

Suppose that at ¥ = d in Fig. 14.1 we evaluate not H. for the finned
structure and for the central space separately, but, rather, the difference
or discontinuity in H, . This can be thought of as giving the driving current
necessary to establish the field E, with a specified phase constant. In Fig,
14.8, v, is proportional to this H, or driving current divided by E,. The
dashed curve y; is the variation of driving current with 6 or 8 which we have
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used in earlier chapters, fitted to the true curve in slope and magnitude at
y = 0. Over the range of 6 of interest in connection with increasing waves,
the fit is good.

The difference between H,/E, for the central space without electrons
(Fig. 14.3) and H./E, for the central space with electrons (Fig. 14.5) can
be taken as representing the driving effect of the electrons. The solid curve
of Fig. 14.9 is proportional to this difference, and hence represents the true
effect of the electrons. The dashed curve is from the ballistical equation
used in previous chapters. This has been fitted by adjusting the space-
charge parameter Q only; the leading term is evaluated directly in terms of
current density, beam width, 3, and variation of field over the beam, which
is assumed to be the same as in the absence of electrons.

Figure 14.10 shows a circuit curve (as, of Fig. 14.8) and an electronic
curve (as, of Fig. 14.10). These curves contain the same information as the
curves (including one of the dashed horizontal lines) of Fig. 14.5, but dif-
ferently distributed. The intersections represent the modes of propagation.

If such curves were the approximate (dashed) curves of Iigs. 14.8 and
14.9, the values of 6 for the modes would be quite accurate for real inter-
sections. It is not clear that “intersections” for complex values of § would be
accurately given unless they were for near misses of the curves. In addition,
the complicated behavior near 8 = 1 (Fig. 14.6) is quite absent from the
approximate electronic curve. Thus, the approximate electronic curve does
not predict the multitude of unattenuated space-charge waves near 6 = 1.
Further, the approximate expressions predict a lower limiting electron
velocity below which there is no gain. This is not true for the exact equations
when the electron flow fills the space between the finned structures com-
pletely

Tt is of some interest to consider complex intersections in the case of
near misses by using curves of simple form (parabolas), as in Fig. 14.11.
Such an analysis shows that high gain is to be expected in the case of curves
such as those of Fig. 14.10, for instance, when the circuit curve is not steep
and when the curvature of the electronic curve is small. In terms of physical
parameters, this means a high impedance circuit and a large current density.

14.1 THE SYSTEM AND THE EQUATIONS

The system examined is a two-dimensional one closely analogous to that
of Fig. 4.4. It is shown in Fig. 14.1. Tt consists of a central space extending
from y = —d to y = +d, and arrays of thin fins separated by slots ex-
tending for a distance # beyond the central opening and short-circuited at
the outer ends. An electron flow of current density Jo amperes/m? fills the
open space. It is assumed that the electrons are constrained by a strong
magnetic field so that they can move in the z direction only.
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We can simplify the picture a little. The open edges of the slots merely
form impedance sheets.

From 4.12 we see that at y = —d
o,
E = _ Jue = cot Bl (14.1)
. .
E: = —jB (14.2)
B = — \/¢/u cot Boh (14.3)

k- sskasia

(L

Fig. 14.1—Electron flow completely fills the open space between two finned structures.
A strong axial magnetic field prevents transverse motions.

Fig. 14.2—In analyzing the structure of Fig. 14.1, the finned members are regarded as
susceptance sheets.

for
Bo/we = 1/ce = A/u/e = 377 ohms (14.4)
Similarly, at y = 44,
H. .
o B (14.5)

We can use B as a parameter rather than /. Thus, we obtain the picture
of Fig. 14.2. This picture is really more general than Fig. 14.1, for it applies
for any transverse-magnetic circuit outside of the beam.
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Inside of the beam the effect of the electrons is to change the effective
dielectric constant in the z direction. Thus, from (2.22) we have for the elec-
tron convection current

_ jLBTV
" T oav (e - Ty 222
Now
E=—Y 1y (14.6)
a9z
so that
i = M (14.7)

©2Vo(jB. — T)*

The appearance of a voltage V in (2.22) and (14.6) does not mean that these
relations are invalid for fast waves. In (2.22) the only meaning which need
be given to V is that defined by (14.6), as it is the electric field as specified
by (14.6) that was assumed to act on the electrons in deriving (2.22).

Let us say that the total a-c current density in the z direction, Js, is

J. = jwe k. (14.8)
This current consists of a displacement current jweFE. and the current 4,
so that

. . J[I.Ba
. = , = Al 4 — .
J jwe E jweE ( | SeaVo(jB. — T‘)2> (14.9)

Hence

o JoBe '
we= (U gy (410

This gives the ratio of the effective dielectric constant in the z direction, to
the actual dielectric constant. We will proceed to put this in a form which
in the long run will prove more convenient.

Let us define a quanity 8

T =8 (14.11)
and a quantity A4
_ Jod’
= SV (14.12)
And quantities 6 and 6,
0, = Bd = (w/uo)d (14.13)

6 = pd (14.14)
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We récognize d as the half-width of the opening filled by electrons. Then

A

a/e =1 — W (14.15)
We can say something about the quantity 4. From purely d-c considera-
tions, the electron flow will cause a fall in d-c potential toward the center
of the beam. Indeed, this is so severe for large currents that it sets a limit
to the current density which can be transmitted. If we take V' and u, as
values at y = ==d (the wall), the maximum value of 4 as defined by (14.12)
is 2/3, and at this maximum value the potential at ¥ = 0is V,/4. This is
inconsistent with the analysis, in which V; and #, are assumed to be con-
stant across the electron flow. Thus, for the current densities for which the
analysis is valid, which are the current densities such as are usually used in

traveling-wave tubes
AK1 (14.16)

In the a-c analysis we will deal here only with the symmetrical type of
wave in which E,(4+y) = E.(—y). The work can easily be extended to
cover cases for which E.(+v) = —E.(—y). We assume

H. = H,sinh yye (14.17)

From Maxwell’s equations

ety = 4x = jgH(sinh yp)e
E = - ‘%Ho(sinh Ay)e P (14.18)
Similarly
juwal, = — a;i’ = — yHy(cosh yy)e
E, = éell H(cosh 'yy)e—’ﬁ' (14.19)
We must also have
. dE, OE,
—jouH, = /% —
Jok ay dz
« 2 ey
— jwuHe ™ sinh vy = Z—:él Hoe ™ cosh vy — i% Hoe * sinh vy
¥ = (/)8 — Bo) (14.20)

Bs = wlue = w¥/c? (14.21)
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Now, from (14.17), (14.19) and (14.20)

. 12y o2 21/
e
But
we = (w/c)(ce) = BoV/e/ (14.23)
Hence
. 12 12 g2 21/
% _ —iVe/ula/e) B(;i:afhﬁ[::)ll/":) (8 — )"y (14.24)
At y = d, (14.5) must apply. From (14.24) we can write
p= /" tan?ﬂi(el/?;ff Sk (14.25)
Here 6 is given by (14.14)
0o = Pod = (w/c)d (14.26)
and P is given by
P = B/Bud\/e/u = B/0\V ¢/ n (14.27)

'Thus, 0, expresses d in radians at free-space wavelength and P is a measure
of the wall reactance, the susceptance rising as B rises.

14.2 WAVES IN THE ABSENCE OF ELECTRONS

In this section we will consider (14.25) in the case in which there are no
electrons and ¢/¢ = 1. In this case (14.25) becomes
tanh (6° — 65)""
P=— _@(__%Wg)_ (14.28)
Suppose we plot the right-hand side of (14.28) vs @ for real values of 6,
corresponding to unattenuated waves. In Fig. 14.3 this has been done for
6o = 1/10. For 8, > =/2 the behavior near the origin is different, but in
cases corresponding to actual traveling wave tubes 6o < /2.

Intersections between a horizontal line at height P and the curve give
values of 6 representing unattenuated waves. We see that for the case
which we have considered, in which 8y < /2 and 6, cot 6, > 1, there are
unattenuated waves if

P > — tan 0o/6, (14.29)

For P = — o (no slot depth and no wall reactance) the system for fp < 7/2
constitutes a wave guide operated below cutoff frequency for the type of
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wave we have considered. If we increase P (| P | decreasing; the inductive
reactance of the walls increasing) this finally results in the propagation of a
wave, There are two intersections, at # = =6, , representing propagation
to the right and propagation to the left. The variation of 6, with P is such
that as P is increased (made less negative) 6, is increased; that is, the greater
is P (the smaller | P [), the more slowly the wave travels.

There is another set of waves for which 8 is imaginary; these represent
passive modes which do not transmit energy but merely decay with distance.
In investigating these modes we will let

6 = i® (14.30)
so that the waves vary with 2z as

P (14.31)

-0.5

Fig. 14.3—The structure of Fig. 14.1 is first analyzed in the absence of an electron
stream. Here a quantity proportional to H./E, at the susceptance sheet is plotted vs
# = Bd, a quantity proportional to the phase constant 8. The solid curve is for the inner
open space; the dashed line is for the susceptance sheet. The two intersections at =8,
correspond to transmission of a forward and a backward wave.

Now (14.28) becomes
P = —tan (3 + 00)'2/(3* + 05)'2 (14.32)

In Fig. 14.4 the right-hand side of (14.28) has been plotted vs ®, again for
g = 1/10.

Here there will be a number of intersections with any horizontal line
representing a particular value of P (a particular value of wall susceptance),
and these will occur at paired values of & which we shall call &, . The
corresponding waves vary with distance as exp (£ ®.2/d).

Suppose we increase P. As P passes the point —(tan 6,)/6,, ®" for
a pair of these passive waves goes to zero; then for P just greater than
—(tan 6,)/6, we have two active unattenuated waves, as may be seen
by comparing Figs. 14.4 and 14.3. '
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14.3 WAVES IN THE PRESENCE OF ELECTRONS

In this section we deal with the equations

_ —(a/o" tanh [(a/e)'"(6" — 6)'"]

@ — ) (14.25)

P

and

Cafe=1- @%-E)_g (14.15)

We consider cases in which the electron velocity is much less than the
velocity of light; hence

8, >> 6 (14.33)

=-1.5
20 -15 -0 -5 ) 5 o 15 =20
@

Fig. 14.4—If a quantity proportional to H./E, at the edge of the central region is
plotted vs & = —j8, this curve is obtained. There are an infinite number of intersections
with a horizontal line representing the susceptance of the finned structure. These corre-
:ﬁond to passive modes, for which the field decays exponentially with distance away from

e point of excitation.

In Fig. 14.5, the right-hand side of (14.25) has been plotted vs. 6 for
8, = 10 6y, corresponding to an electron velocity 1/10 the speed of light.
Values of & = 1/10 and 4 = 1/100 have been chosen merely for conven-
ience.* The curve has not been shown in the region from @ = 9to 6 = 1.1,
where e/e is negative, and this region will be discussed later.

For a larger value of P(| P | small), P; in Fig. 14.5, there are 4 intersec-
tions corresponding to 4 unattenuated waves. The two outer intersections
obviously correspond to the “circuit” waves we would have in the absence
of electrons. The other two intersections near 8 = .9, and 8 = 1.16, we
call electronic or space-charge waves.

* At a beam voltage Vo = 1,000 and for d = 0.1 cm, A = 1/100 means a current density
of about 330 ma/cm?, which is a current density in the range encountered in practice.
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For instance, increasing P to values larger than P; changes 6 for the cir-
cuit waves a great deal but scarcely alters the two “electronic wave” values
of §, near § = 8,(1 &= 0.1). On the other hand, for large values of P the values
of 6 for the electronic waves are approximately

0=0,+ A4 (14.34)

Thus, changing 4 alters these values, but changing A has little effect on the
values of @ for the circuit waves.

Now, the larger the P the slower the circuit wave travels; and, hence, for
large values of P the electrons travel faster than the circuit wave. Our
narrow-beam analysis also indicated two circuit waves and two unatten-
uated electronic waves for cases in which the electron speed is much larger
than the speed of the increasing wave, It also showed, however, that, as
the difference between the electron speed and the speed of the unperturbed

h o iy sl

_2 |
2 1 ° 4 1

Fig. 14.5—When electrons are present in the open space of the circuit of Fig. 14.1, the
curves of Fig. 14.3 are modified as shown here. The nature of the waves depends on the
relative magnitude of the susceptance of the finned structure, which is represented by
the dashed horizontal lines. For P,, there are four unattenuated waves, for Ps, two
unattenuated waves and an increasing wave and a decreasing wave. Line P; represents a
transition between the two cases.

wave was made less, a pair of waves appeared, one increasing and one
decreasing. This is also the case in the broad beam case.

In Fig. 14.5, when P is given the value indicated by P, an “electronic”
wave and a “circuit” wave coalesce; this corresponds to y; and y. running
together at b = (3/2)(2)”3 in Fig. 8.1. For a somewhat smaller value of P,
such as Py, there will be a pair of complex values of 6 corresponding to an
increasing wave and a decreasing wave. We may expect the rate of increase
at first to rise and then to fall as P is gradually decreased from the value Ps ,
corresponding to the rise and fall of ¥, as b is decreased from (3/2)(2)""* in

Fig. 8.1,
It is interesting to know whether or not these increasing waves persist
down to P = — » (no inductance in the walls). When P = — o, the

only way (14.25) can be satisfied is by
coth ((er/€)12(62 — 63)/5) = 0 (14.35)
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This will occur only if

(«/a”%a‘—-aa”*==j(nr.+ g)

. (14.36)
(er/€) (6 — 05) = —(mr + %r)
Let
6 =u + jw (14.37)
From (14.37), (14.36) and (14.15)
[1 - m] ((u + jw)* — 65) = —(n'.rr + ’2’)2 (14.38)
If we separate the real and imaginary parts, we obtain
(4 — D@ — w)? — (4 + (e — w* — 65?)
-\ (14.39)
— 4Auw? (O, — u) = [0 — u)* + w?] (mr + 5)

w(u[(6, — u) 4+ ') — A[(0 — )t — '] + (@, — W) — w' — 6)) =
(14.40)

The right-hand side of (14.39) is always positive. Because a.lways A<1,
the first term on the left of (14.39) is always negative if W > (@ + Eu)
which will be true for slow rates of increase. Thus, for very small values
of w, (14.39) cannot be satisfied. Thus, it seems that there are no waves
such as we are looking for, that is, slow waves (# < c). It appears that
the increasing waves must disappear or be greatly modified when P ap-
proaches — .

So far we have considered only four of the waves which exist in the
presence of electrons. A whole series of unattenuated electron waves exist

in the range

0, — VA <0 <8, +4

In this range (e/€)'/* is imaginary, and it is convenient to rewrite (14.25)
as

(—e/e)" tan [(—a/e)" (6" — 60)™]
@~ 0"
The chief variation in this expression over the range considered is that due
to variation in (—e/€)V/% For all practical purposes we may write
P
(—er/0)" tan [(—a/e)"0% — 09"") (1442
0 — 00)" '

P = (14.41)

P=
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Near § = 6,, the tangent varies with infinite rapidity, making an infinite
number of crossings of the axis.

In Fig. 14.6, the right-hand side of (14.41) has been plotted for a part of
the range 6 = 0.90 6, to & = 1.10 6, . The waves corresponding to the inter-
sections of the rapidly fluctuating curve with a horizontal line representing
P are unattenuated space-charge waves. The nearer 8 is to 6,, the larger
(—e/e) is. The amplitude of the electric field varies with y as

cosh (j(—e/e)"*(8° — B3)'"*y) = cos ((—e/€)*(8* — Bo)"'%y) (14.45)

20

-20
0.90 0.95 1.00 1.05 110
]

Fig. 14.6—The curve for the central region is not shown completely in Fig. 14.5. A part
of the detail around @ = 1, which means a phase velocity equal to the electron velocity, is
shown in Fig. 14.6. The curve crosses the axis, and any other horizontal line, an infinite
number of times (only some of the branches are shown). Thus, there is a large number of
unattenuated “space charge” waves. For these, the amplitude varies sinusoidally in the y
direction. Some of these have no physical reality, because the wavelength in the y direction
is short compared with the space between electrons.

For small values of | § — 6, | the field fluctuates very rapidly in the y direc-
tion, passing through many cycles between y = 0 and y = d. For very
small values of |8 — 6,] the solution does not correspond to any actual
physical problem: spreads in velocity in any electron stream, and ultimately
the discrete nature of electron flow, preclude the variations indicated by
(14.45).

The writer cannot state definitely that there are not increasing waves for
which the real part of 6 lies between 8, — /A and 6, +\/;I, but he sees
no reason to believe that there are.

There are, however, other waves which exhibit both attenuation and
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propagation. The roots of (14.32) are modified by the introduction of the
electrons. To show this effect, let &, be a solution of (14.32), and j(@. + 4)
be a solution of (14.25). The waves considered will thus vary with distance
as

e[(‘I‘,;—‘-ﬁ)fd]: (14.43)

We see that we must have

(/" @ + 60)"* cot (@} + 60)

1/2

| (14.44)
= (@ + 8)" + 69)"" oot [(e/9)"*(@n + 8)" + 6)""]
12 A Ve
=(1 - — =% 4.
(e1/€) (1 6 = o, F 6)2> (14.15a)
As A < 1, it seems safe to neglect & in (14.15a) and to expand, writing
(a/)*=1—«a (14.46)
A Al(6: — ®%) + 2704
- N 14.47
7200, — o) 200% + @%)° (a0

If | 8 | € &, , we may also write
&, 8
(@ + 0" + 0" = G gmin + (@ + 007 (1448)
We thus obtain, if we neglect products of 6 and «

"in 6
(1 — a) cot (@} + 60)"* = [1 + mz] cot (@5 + )"

55 (14.49)
- (m, — az) csct (@3. + 93)”2
Solving this for 6, we obtain
5 = _(CI"‘:. + o) [cos (@ + 65)"* + csc (@7 + 93)”2} «  (14.50)
@, cos (&% + 03)" — csc (@5 + 60" '
(8 — ®%) .20,
§ = | —=— " e
[cpn(ef + %) ARACES cbi)z]

(14.51)

_ [csc2 (@ + 60)"* + cos (7 + 33)1’2] AGs + @)™
csc (@5 + 65)"" — cos (@} + 60)" 2
As the waves vary with distance as exp [(& ®. + 6)z/d], this means that all

modified waves travel in the —z direction, and very fast, for the imaginary
part of §, which is inversely proportional to the phase velocity, will be small.
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These backward-traveling waves cannot give gain in the +z direction, and
could give gain in the —z direction only under conditions similar to those
discussed in Chapter XI.

144 A SpeciaL TYPE oF SOLUTION

Consider (14.25) in a case in which

By K 8, (14.52)
9, < 1 (14.53)
In this case in the range
0<06—+/A and 6>6,+\/4 (14.54)
we can replace the hyperbolic tangent by its argument, giving
P=—(a/d = ﬁ ~1 (14.55)
This can be solved for 8, giving
6 =06 FAA/(P + 1) (14.56)
If
P < -1

Then 6 will be complex and there will be a pair of waves, one increasing and
one decreasing. We note that, under these circumstances, there is no cir-
cuit wave, either with or without electrons.

What we have is in essence an electron stream passing through a series
of inductively detuned resonators, as in a multi-resonator klystron. Thus,
the structure is in essence a distributed multi-resonator klystron, with loss-
less resonators. If the resonators have loss, we can let

P = (—jG + B)/0:\/¢/n (14.57)
where G is the resonant conductance of the slots. In this case, (14.56) be-
comes

= 1/2
0 =0, + ( __ A0Ve/u ) (14.58)
—jG + (B + 00V e/p)

Near resonance we can assume G is a constant and that B varies linearly
with frequency. Accordingly, we can show the form of the gain of the in-
creasing wave by plotting vs. frequency the quantity g

g = Im(—j + w/wo) 1 (14.59)
In Fig. 14.7, g is plotted vs. w/w, .
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Thus, if we wish we may write (14.70) in the form

_tanh ] _

P, = 5

p (14.72)

where
P, = (1/0)[(e)/ €)' tanh [(e/€)'/* & —tanh 6] (14.73)

The quantities on the right of (14.72) refer to the circuit in the absence of
electrons; if there are no electrons P, = 0 and (14.72) yields the circuit

0.1
¢
gl"\ -
f”
~-Ya
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o]
d
'’
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-0
2. 25 3.0
6

Fig. 14.8—Suppose we compare the circuit admittance for the structure of Fig. 14.1
with that used in earlier calculations. Here the solid curve is proportional to the difference
of the H.'s for the finned structure and for the central space (the impressed current) di-
vided by E, . The dashed curve is the simple expression (6.1) used earlier fitted in mag-
nitude and slope.

waves. Thus, P, may be regarded as the equivalent of an added current ¢
at the wall, such that

},%-,‘ = 0\¢/uP. (14.74)
Now, the root giving the increasing wave, the one we are most interested
in, occurs a little way from the pole, where (/€)' may be reasonably
large if 0 is large. It would seem that one of the best comparisons which
could be made would be that between the approximate analysis and a very
broad beam case, for which § is very large. In this case, we may take ap-

proximately, away from ¢ = 6,
tanh [(e/€)'/2 8] = tanh 6 = 1 (14.75)
P, = (1/0)[(a/e)'* — 1

P, = (1/6) [(1 - ﬁ)m - 1] (14.76)
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Let us expand in terms of the quantity 4/(8, — 6)% assuming this to be
small compared with unity. We obtain

A A
P = et (1477
The theory of Chapter VII is developed by assuming that all electrons
are acted on by the same a-c field. When this is not so, it is applied approxi-
mately by using an “effective current’” or “effective field” as in Chapter
IV; either of these concepts leads to the same averaging over the electron
flow. An effective current can be obtained by averaging over the flow the
current density times the square of the field, evaluated in the absence of
electrons, and dividing by the square of the field at the reference position.
This is equivalent to the method used in evaluating the effective field in
Chapter III.
In the device of IMig. 14.2, if we take as a reference position y = =+d,
the effective current 7, per unit depth

Jo F cosh® (yy) dy
Jo

[ = (14.78)
L cosh? yd
I, = (Jd/2) ( m“ﬁi""i + sech® w) (14.79)

This is the effective current associated with the half of the How from y =
0 to y = d. Here v is the value for no electrons. For § < 8, vy = 8. For
large values of 6, then

Iy = Jod/26 (14.80)
Now, the corresponding a-c convection current per unit depth will be:

Iﬂﬁs

P= T avE — By —

Here E is the total field acting on the electrons in the z-direction. From
(7.1) we see that we assumed this to be the field due to the circuit (the first
term in the brackets) plus a quantity which we can write

Eq =72 (14.82)

Accordingly
E=EFL + E, (14.83)
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and we can write 7
. . LB j8* )
= —j——" _|\E +— 14.84
! ] QVO(.Ba - 3)2 (E + wC; ' ( )
;= 7106, dE;
T 2Vo[K — (8, — 6)Y]
Here K is a parameter specifying the value of 8%/wC;. As (14.85) need
hold over only a rather small range of 3, and C is not independent of 8,
we will regard K as a constant.
The parameter P, corresponding to (14.85) is
p. = I, d(8,/60)
O 2Ve/u Vo

Now, from (14.80), for large values of @
Iﬂ d(ge/aﬂ) _ JO dz(ﬂs/eo)

(14.85)

(K — (8, — 0)*]* (14.86)

—_— = = 14.87
24/ ¢/u Vo 44/ ¢/ 8V, ( )
As
Vie/u = E/\/F‘_E = €C,
6./90 = G/Mn,
and
_ Jod’
P (14.12)
A
Fe = 20K = (5. — o)1 (14.88)
Let us now expand (14.88) assuming K to be very small
A K
R s AR ] e
If we let
K=4A4/4 (14.90)

we see that these first two terms agree with the expansion of the broad-
beam expression, (14.77). The leading term was not adjusted; the space-
charge parameter K was, since there is no other way of evaluating the
parameter in this case.

In Fig. 14.9, the value of 8P, as obtained, actually, from (14.73) rather
than (14.76), is plotted as a solid line and the value corresponding to the
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earlier theory, from (14.86) with K adjusted according to (14.88), is plotted
as a dashed line, for
4 =001

6, =8

We see that (14.88), which involves the approximations made in our earlier
calculations concerning traveling-wave tubes, is a remarkably good fit to the
broad-beam expression derived from field theory up very close to the points
(8. — 6) = A, which are the boundaries between real and imaginary argu-
ments of the hyperbolic tangent and correspond to the points where the
ordinate is zero in Fig. 14.5.

0

\\ ///
,,7

\ ]
4

-0.2

=06

-0.8

=1.0
7.5 7.6 7.7 7.8

o) semp—

8.0 EX 8.2 8.3 8.4 85
8
Fig. 14.9—These curves compare an exact electronic susceptance for the broad beam
case (solid curve) with the approximate expression used earlier (dashed curve). In the
a{:pmximntc expression, the “effective current” was evaluated, not fitted; the space-
charge parameter was chosen to give a fit.

™

Over the range in which the argument of the hyperbolic tangent in the
correct expression is imaginary, the approximate expression of course ex-
hibits none of the complex behavior characteristics of the correct expression
and illustrated by Fig. 14.6. From (14.88) we see that the multiple excursions
of the true curve from — = to 4 % are replaced in the approximate curve by
a single dip down toward 0 and back up again. R. C. Fletcher has used a
method similar to that explained above in computing the effective helix
impedance and the effective space-charge parameter () for a solid beam inside
of a helically conducting sheet. His work, which is valuable in calculating
the gain of traveling-wave tubes, is reproduced in Appendix VI.

14.5¢ The Complex Roots

The propagation constants represent intersections of a circuit curve such
as that shown in Fig. 14.8 and an electronic curve such as that shown in Fig.
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14.9. The propagation constants obtained in Chapters II and VIIT represent
such intersections of approximate circuit and electronic curves, such as the
dotted lines of Fig. 14.8 and 14.9. Propagation constants obtained by field
solutions represent intersections of the more nearly exact circuit and elec-
tronic curves such as the solid curves of Figs. 14.8 and 14.9.

If we plot a circuit curve giving

(1/60 /e/ ) G/SE:)

as given by (14.65) (the right-hand side of 14.75) and an electronic curve
giving

(1/80 V'e/u) G/jE.) = P.

0.4 ,
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Fig. 14.10—The curves of Fig. 14.5 may be replaced by those of Fig. 14.6. Here the
curve which is concave upward represents the circuit susceptance and the other curve
represents the electronic susceptance (as in Fig. 14.9).

as given by (14.73) (the left-hand side of (14.72)), the plot, which is shown
in Fig. 14.10, contains the same information as the plot of Fig. 14.5 for which
8o, 0, and A are the same. In Fig. 14.10, however, one curve represents the
circuit without electrons and the other represents the added effect of the
electrons.

We have seen that the approximate expressions of Chapter VII fit the
broad-beam curves well for real propagation constants (real values of 0)
(Fig. 14.8 and 14.9). Hence, we expect that complex roots corresponding to
the increasing waves which are obtained using the approximate expressions
will be quite accurate when the circuit curve is not too far from the electronic
curve for real values of 0; that is, when the parameters (electron velocity,
for instance) do not differ too much from those values for which the circuit
curve is tangent to the electronic curve.

Unfortunately, the behavior of a function for values of the variables far
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from those represented by its intersection with the real plane may be very
sensitive to the shape of the intersection with the real plane. Thus, we would
scarcely be justified by the good fit of the approximations represented in
Figs. 14.8 and 14.9 in assuming that the complex roots obtained using the
approximations will be good except when they correspond to a near approach
of the electronic and circuit curves, as in Fig. 14.10.

In fact, using the approximate curves, we find that the increasing wave
vanishes for electron velocities less than a certain lower limiting velocity.
This corresponds to cutting by the circuit curve of the dip down from + =
of the approximate electronic curve (the dip is not shown in Fig. 14.9).
This is not characteristic of the true solution. An analysis shows, however,

1.5
1.0
/—'_—-_'—-—._
os ///
=06y
(o]
-1.0 -0.5 0 0.5 1.0
p

Fig. 14.11—Complex roots are obtained when curves such as those of Fig. 14.10 do not
have the number of intersections required (by the degree of the equation) for real values
of the abscissa and ordinate. In this figure, two parabolas narrowly miss intersect ng.
Suppose these represent circuit and electronic susceptance curves. We find that the gain
of the increasing wave will increase with the square root of the separation at the abscissa
of equal slopes, and inversely as the square root of the difference in second derivatives.

that there will be a limiting electron velocity below which there is no in-
creasing wave if there is a charge-free region between the electron flow and
the circuit.

14.6 SoMeE REMarks ABour CoMPLEX RooTs

If we examine our generalized circuit expression (14.60) we see that the
circuit impedance parameter (E?/8°P) is inversely proportional to the slope
of the circuit curve at the point where it crosses the horizontal axis. Thus,
low-impedance circuits cut the axis steeply and high-impedance circuits cut
the axis at a small slope.

We cannot go directly from this information to an evaluation of gain in
terms of impedance; the best course in this respect is to use the methods of
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Chapter VIII. We can, however, show a relation between gain and the
properties of the circuit and electronic curves for cases in which the curves
almost touch (an electron velocity just a little lower than that for which gain
appears). Suppose the curves nearly touch at @ = 6., as indicated in Fig.
14.11. Let

§=0.+p (14.91)

Let us represent the curves for small values of p by the first three terms of a
Taylor’s series. Let the ordinate y of the circuit curve be given by

y=a+ bhp + ap? (14.92)
and let the ordinate of the electronic curve be given by
y = a3+ bp + ap? (14.93)

Then, at the intersection

(0 —e)pr+ (br— bo)p+ (@ — @) =0

— by — b . (Gl—'ﬂe)_ (bl—bs)’
p= WD = I = a) T ia = ap (1499

If we choose 6, as the point at which the slopes are the same
bh—b=0 (14.95)

ey [ — ay)
S VA P (14.96)

and we see that the imaginary part of p increases with the square root of the
separation, and at a rate inversely proportional to the difference in second
derivatives. This is exemplified by the behavior of ¥; and z for b a little small
than (3/2)(2)'/? in Fig. 8.1.

Now, referring to Fig. 14.10, we see that a circuit curve which cuts the
axis at a shallow angle (a high-impedance circuit curve) will approach or be
tangent to the electronic curve at a point where the second derivative is
small, while a steep (low impedance) circuit curve will approach the elec-
tronic curve at a point where the second derivative is high. This fits in with
the idea that a high impedance should give a high gain and a low impedance
should give a low gain.



CHAPTER XV
MAGNETRON AMPLIFIER

Synopsis OF CHAPTER

HE HIGH EFFICIENCY of the magnetron oscillator is attributed to

motion of the electrons toward the anode (toward a region of higher
d-c potential) at high r-f levels. Thus, an electron’s loss of energy to the r-f
field is made up, not by a slowing-down of its motion in the direction of wave
propagation, but by abstraction of energy from the d-c field.!

Warnecke and Guenard? have published pictures of magnetron amplifiers
and Brossart and Doehler have discussed the theory of such devices.”

No attempt will be made here to analyze the large-signal behavior of a
magnetron amplifier or even to treat the small-signal theory extensively.
However, as the device is very closely related to conventional traveling-
wave tubes, it seems of some interest to illustrate its operation by a simple
small-signal analysis.

The case analyzed is indicated in Fig. 15.1. A narrow beam of electrons
flows in the 4z direction, constituting a current I, . There is a magnetic
field of strength B normal to the plane of the paper (in the x direction), and
a d-c electric field in the y direction. The beam flows near to a circuit which
propagates a slow wave. Fig. 15.3, which shows a finned structure opposed
to a conducting plane and held positive with respect to it, gives an idea of
a physical realization of such a device. The electron stream could come from
a cathode held at some potential intermediate between that of the finned
structure and that of the plane. In any event, in the analysis the electrons
are assumed to have such an initial d-c velocity and direction as to make
them travel in a straight line, the magnetic and electric forces just cancelling.

The circuit equation developed in Chapter XTIT in connection with trans-
verse motions of electrons is used. Together with an appropriate ballistical
equation, this leads to a fifth degree equation for T",

1 For an understanding of the high-level behavior of magnetrons the reader is referred to:

J. B. Fisk, H. D. Hagstrum and P. L. Hartman, “The Magnetron as a Generator of
Centimeter Waves,” Bell System Technical Journal, Vol. XXV, April 1946.

“Microwave Magnetrons” edited by George B. Collins, McGraw-Hill, 1948,

2 R, Warnecke and P. Guenard, “Sur L'Aide Que Peuvent Apporter en Television Quel-
ques Recentes Conceptions Concernant Les Tubes Electroniques Pour Ultra-Hautes
Frequences,” Annales de Radioelectricile, Vol. III, pp. 259-280, October 1948,

37, Brossart and O. Doehler, “Sur les Proprietes des Tubes a Champ Magnetique Con-

stant: les Tubes a Propagation D'Onde a Champ Magnetique,” Annales de Radioelectricite,
Vol. ITT, pp. 328-338, October 1948.

653
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The nature of this equation indicates that gain may be possible in two
ranges of parameters. One is that in which the electron velocity is near to
or equal to (as, (15.25)) the circuit phase velocity. In this case there is gain
provided that the transverse component of a-c electric field is not zero, and
provided that it is related to the longitudinal component as it is for the
circuit of Fig. 15.3. It seems likely that this corresponds most nearly to usual
magnetron operation.

The other interesting range of parameters is that near

Ba/Br =1 — Bu/By (15.31)

Here 8, refers to the electrons, B, to the circuit and 8. is the cyclotron fre-

quency divided by the electron velocity. When (15.31) holds, there is gain

whenever the parameter a, which specifies the ratio of the transverse to the

longitudinal fields, is not +-1. For the circuit of Fig. 15.3, « approaccs +1

near the fins if the separation between the fins and the plane is great enough

in terms of the wavelength. However, o can be made negative near the fins
Io

CIITTTTTITITTITT 31
— — >

Fig. 15.1—In a magnetron amplifier a narrow electron stream travels in crossed electric
and magnetic fields close to a wave transmission circuit.

if the potential of the fins is made negative compared with that of the plane,
and the electrons are made to move in the opposite direction.

In either range of parameters, the gain of the increasing wave in db per
wavelength is proportional to the square root of the current rather than
to the cube root of the current. This means a lower gain than for an ordinary
traveling-wave tube with the same circuit and current.

Increasing and decreasing waves with a negative phase velocity are pos-
sible when the magnetic field is great enough.

15.1 Circurr EQuaTiON
The circuit equation will be the same as that used in Chapter XIII, that is,

— —ij1 K(‘i’p — (Io/uu)qa’y)

vV T2 = T9) (13.10)
It will be assumed that the voltage is given by
& = (4¢ ™ + Be'™) (15.1)

so that
'V = —jV(de ™ — Be'™) (15.2)



MAGNETRON AMPLIFIER 655

Atanyy — position we can write
'V = —jTadV (15.3)

A ™ — B

“ = AT T Bot (a54)

If I' is purely imaginary, « is purely real, and as I' will have only a small real
component, & will be considered as a real number. We see that « can range
from 4 = to — . For instance, consider a circuit consisting of opposed two-
dimensional slotted members as shown in Fig. 15.2. For a field with a cosh
distribution in the y direction, « is positive above the axis, zero on the axis
and negative below the axis. For a field having a sinh distribution in the y

[+ (- ‘|||

i 44 y
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/

A d e d2 a4

|LAAAA 1417

Fig. 15.2—1If the circuit is as shown, the ratio between longitudinal and transverse field
will be different in sign above and below the axis. This can have an important effect on th
operation of the amplifier.

direction, « is infimte on the axis, positive above the axis and negative below
the axis.
We find then, that, (13.10) becomes

—jwl @K {p + ja(In/No)P}')

V=
rr =13

(15.5)

15.2 Bavruistic EQUATIONS

The d-c electric field in the y direction will be taken as —E, . Thus

§=ﬂp%+ﬂgg~3@+mﬂ (15.6)

In order to maintain a rectilinear unperturbed path
Eu = Bllu (15.7)
so that (15.6) becomes

dy _ a(@V) _ nB°



656 BELL SYSTEM TECHNICAL JOURNAL

Following the usual procedure, we obtain

—mla®V — 9B

(78 — T)
We have also
dz bV .
Fi 1 ox + 9By
, —nI'®V + 9By
= —— s
uﬂ(JIBu - P)

From (15.9) and (15.10) we obtain

—nI'®V[(j8. — T) + jobml
o[ (jB. — T)* + Bal

where
B = wm/to
wm = 7B
Here wn is the cyclotron radian frequency.
As before, we have

_ I'poz
up(jBs — T')

whence

p = DnI@VIGB, — T) + jafnl
(78 — T)(j8. — T)* + Bal

We can also solve (15.9) and (15.10) for y

. —mI'®V([a(jBs — T') + jBml
YT wlGe, — T + B
Now, to the first order

.9y ay

Y= Tt dz
_ y

Y= (B — T)

and from (15.16) and (15.17)

_ '—j‘ﬂI"f'V[a(jﬁ, - P) +j,3.,.]
Y = W8, — DI(B. — T + 62

(15.9)

(15.10)

(15.11)

(15.12)
(15.13)

(15.14)

(15.15)

(15.16)

(15.17)

(15.18)
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If we use (15.15) and (15.18) in connection with (15.5) we obtain
=78 I I*[(jB — T) + 2jla/(1 + a®)|Bn]H*

Mo (78 — D)[(Be — T)° + B3] S
B = (ii_;"?,;l’ﬂ'. (15.20)
Now let
—Ii= —jB (15.21)
—T = —ji(l + p) (15.22)
If we assume
p <1 (15.23)
and neglect p in sums in comparison with unity, we obtain
p(Be/B1 — 1 — p)(Be/Br — 1 — 9)* — (Bu/B1)’]
Lef@sm—1 -9+ e O

We are particularly interested in conditions which lead to an imaginary
value of p which is as large as possible. We will obtain such large values of p
when one of the factors multiplying # on the left-hand side of (15.24) is
small. There are two possibilities. One is that the first factor is small. We
explore this by assuming

Be/Br— 1 =0 (15.25)

_ﬁ_m — / 203, o 2
? (P ﬁl) . 2)( P aF 2)&)”’ (15.26)

If p is very small, we can write approximately

2!'3m _ o Eﬂﬂz
Bt (14 o) (15.27)

p = Zjla/(1 + o)]"*(B1/Bn) 2 H

We see that p goes to zero if @ = 0 and is real if « is negative. If we con-
sider what this means circuit-wise, we see that there will be gain with the
d-c voltage applied between a circuit and a conducting plane as shown in
Fig. 15.3.

Another possible condition in the neighborhood of which p is relatively
large is

-t =

Bo/Br — 1 = =& Bu/B (15.28)
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In this case

p(£Bn/B1 — P)(F2(Bu/B)P + 1)

(1 - ﬁl)[(iﬁm/ﬁl -9+ g _2:"";)3]32. (15.29)

As p is small, we write approximately

2 _ 1(1:|:a) B
P = :l:l) (15.30)

We see that we obtain an imaginary value of p only for the — sign in (15.28)
that is, if

Bo/Bi =1 — Bu/Bi (15.31)

I .|}

. S /)

l||+

Fig. 15.3—The usual arrangement is to have the finned structure positive and opposed
to a conducting plane.

In this case
p = i3l — @)/ + a)'"1(8./8n)" H. (15.32)

In this case we obtain gain for any value of a smaller than unity. We note
that @ = 1 is the value a assumes far from the axis in a two-dimensional
system of the sort illustrated in Fig. 15.2, for either a coshor a sinh distribu-
tion in the 49 direction.

The assumption of —I' = —jBi(1 + p) in (15.22) will give forward (+2)
traveling-waves only. In order to investigate backward traveling-waves, we
must assume

—T = +j8i(1l + p) (15.33)

where again p is considered a small number. If we use this in (15.19), we
obtain

B 2_@2:}
"( +1+P)[(ﬁ +1+P) R

. 208 (15.34)
___.ls_ QOm 2
= 26[(ﬁ+1+’”)+(1+a2)51]ﬂ'
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As before we look for solutions for p where the terms multiplying p on the
left are small. The only vanishing consistent with positive values of 8, and
B is obtained for

Byt 4bn
B, +1 +,81 . (15.35)

Under this condition (15.34) yields for p

1 (1+a) B.)”’ o
20+ @)
Thus we can obtain backward-increasing backward-traveling waves for all
values of a except « = —1. For the situation shown in Fig. 15.3, with a
backward wave, « is always negative, approaching —1 at large distances
from the plane electrode, so that the gain is identical with that given by
(15.32).

We note that (15.27), (15.32) and (15.36) show that p is proportional to
the product of current times impedance divided by voltage to the § power,
while, in the case of the usual traveling-wave tube, this small quantity
occurs to the 4 power. The 4 power of a small quantity is larger than the
4 power; and, hence for a given circuit impedance, current and voltage, the
gain of the magnetron amplifier will be somewhat less than the gain of a
conventional traveling-wave tube,

P =% (15.36)



CHAPTER XVI
DOUBLE-STREAM AMPLIFIERS

Synopsis oF CHAPTER

N TRAVELING-WAVE TUBES, it is desirable to have the electrons
flow very close to the metal circuit elements, where the radio-frequency
field of the circuit is strong, in order to obtain satisfactory amplification.
It is, however, difficult to confine the electron flow close to metal circuit
elements without an interception of electrons, which entails both loss of
efficiency and heating of the circuit elements. This latter may be extremely
objectionable at very short wavelengths for which circuit elements are small
and fragile.

In the double-stream amplifier the gain is not obtained through the inter-
action of electrons with the field of electromagnetic resonators, helices or
other circuits. Instead, an electron flow consisting of two streams of elec-
trons having different average velocities is used. When the currents or charge
densities of the two streams are sufficient, the streams interact so as to give
an increasing wave.!:?-%4 Electromagnetic circuits may be used to impress
a signal on the electron flow, or to produce an electromagnetic output by
means of the amplified signal present in the electron flow. The amplification,
however, takes place in the electron flow itself, and is the result of what
may be termed an electromechanical interaction.®

While small magnetic fields are necessarily present because of the motions
of the electrons, these do not play an important part in the amplification.
The important factors in the interaction are the electric field, which stores
energy and acts on the electrons, and the electrons themselves. The charge of
the electrons produces the electric field; the mass of the electrons, and their
kinetic energy, serve much as do inductance and magnetic stored energy in
electromagnetic propagation,

1]. R. Pierce and W. B. Hebenstreit, “A New Type of High-Frequency Amplifier,”
B.S.T.J., Vol. 28, pp. 33=51, January 1949.

2 A. V. Hollenberg, “Experimental Observation of Amplification by Interaction be-
tween Two Electron Streams,” B.S.T.J., Vol. 28, pp. 52-58, January 1949.

3 A, V. Haeff, “The Electron-Wave Tube—A Novel Method of Generation and Ampli-
fication of Microwave Energy,” Proc. IRE, Vol. 37, pp. 4-10, January 1949.

4L. S. Nergaard, “Analysis of a Simple Model of a Two-Beam Growing-Wave Tube,”
R.C.A. Review, Vol. 9, pp. 585-601, December 1948.

§ Some similar electromechanical waves are described in papers by J. R. Pierce, “Pos-
sible Fluctuations in Electron Streams Due to Ions,” Jour. App. Phys., Vol. 19, pp. 231-
236, March 1948, and “Increasing Space-Charge Waves,” Jour. App. Phys., Vol. 20
pp. 1060-1066, Nov. 1949.
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By this sort of interaction, a traveling wave which increases as it travels,
Le., a traveling wave of negative attenuation, may be produced. To start
such a wave, the electron flow may be made to pass through a resonator or a
short length of helix excited by the input signal. Once initiated, the wave
grows exponentially in amplitude until the electron flow is terminated or
until non-linearities limit the amplitude. An amplified output can be ob-
tained by allowing the electron flow to act on a resonantor, helix or other
output circuit at a point far enough removed from the input circuit to give
the desired gain.

In general, for a given geometry there is a limiting value of current below
which there is no increasing wave. For completely intermingled electron
streams, the gain rises toward an asymptotic limit as the current is increased
beyond this value. The ordinate of Fig. 16.3 is proportional to gain and the
abscissa to current.

When the electron streams are separated, the gain first rises and then falls
as the current is increased. This effect, and also the magnitude of the in-
creasing wave set up by velocity modulating the electron streams, have been
discussed in the literature.®

Double-stream amplifiers have several advantages. Because the electrons
interact with one another, the electron flow need not pass extremely close to
complicated circuit elements. This is particularly advantageous at very
short wavelengths, Further, if we make the distance of electron flow between
the input and output circuits long enough, amplification can be obtained
even though the input and output circuits have very low impedance or poor
coupling to the electron flow. Even though the region of amplification is
long, there is no need to maintain a close synchronism between an electron
velocity and a circuit wave velocity, as there is in the usual traveling-
wave tube.

16.1 StmpLE THEORY OF DOUBLE-STREAM AMPLIFIERS

For simplicity we will assume that the flow consists of coincident streams
of electrons of d-c velocities #; and . in the z direction. It will be assumed
that there is no electron motion normal to the z direction. M.K.S. units will
be used.

It turns out to be convenient to express variation in the z direction as

exp —jBz
rather than as
exp —I'z

°J. R. Pierce, “Double-Stream Amplifiers,” Proc. I.R.E., Vol. 37, pp. 980-985, Sept.
1949,
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as we have done previously. This merely means letting
I =8 (t6 1)
The following nomenclature will be used

J1,J2 d-c current densities
#; , ua d-c velocities
pu , pz d-c charge densities

po1 = =T, pp = —Jo/1a

p1, p2  a-c charge densities
v, a-c velocities
Vi, V. d-c voltages with respect to the cathodes
|4 a-c potential
B = w/ur,fr = w/ 1y
From (2.22) and (2.18) we obtain
nJs 52 4
= 16.2
P = G — By 162
and
_ BV
u3(Ba ~ B)*

It will be convenient to call the fractional velocity separation b, so that

(16.3)

2wy — )

b=,
v 10 (16.4)
1t will also be convenient to define a sort of mean velocity 1,
_ 2uyu,
o = e (16.5)

We may also let V¢ be the potential drop specifying a velocity o, so that
uy = 2V, (16.6)

1t is further convenient to define a phase constant based on 1,

Ba = (16.7)

w

U

We see from (16.4), (16.5) and (16.6) that
B = B.(1 — b/2) (16.8)

Ba = B.1 + b/2) (16.9)



DOUBLE-STREAM AMPLIFIERS 663

We shall treat only a special case, that in which
LB _ o

3= 3= 3.
Uy U9 Uy

(16.10)

Here J, is a sort of mean current which, together with 1, , specifies the ratios
Jy/u} and J./us, which appear in (4) and (3).

In terms of these new quantities, the expression for the total a-c charge
density p is, from (16.2) and (16.3) and (16.6)

JofB
Z‘Hu Vu

p=p+p=

1 1 (16.11)

EEmMECHEIg

Equation (16.11) is a ballistic equation telling what charge density p is
produced when the flow is bunched by a voltage V. To solve our problem,
that is, to solve for the phase constant 3, we must associate (16.11) with a
circuil equation which tells us what voltage V' the charge density produces.
We assume that the electron flow takes place in a tube too narrow to propa-
gate a wave of the frequency considered. Further, we assume that the wave
velocity is much smaller than the velocity of light. Under these circumstances
the circuit problem is essentially an electrostatic problem. The a-c voltage
will be of the same sign as, and in phase with the a-c charge density p. In
other words the “circuit effect” is purely capacitive,

Let us assume at first that the electron stream is very narrow compared
with the tube through which it flows, so that ¥V may be assumed to be con-
stant over its cross section. We can easily obtain the relation between V
and p in two extreme cases. If the wavelength in the stream is very short
(8 large), so that transverse a-c fields are negligible, then, from Poisson’s
equation, we have

v
p= —€—3
dz? (16.12)
p= eV
If, on the other hand, the wavelength is long compared with the tube radius
(3 small) so that the fields are chiefly transverse, the lines of force running
from the beam outward to the surrounding tube, we may write

p=CV (16.13)

Here C is a constant expressing the capacitance per unit length between the
region occupied by the electron flow and the tube wall.
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We see from (16.12) and (16.13) that, if we plot p/V vs. 8/8, for real values
of B, p/V will be constant for small values of 8 and will rise as §* for large
values of 8, approximately as shown in Fig. 16.1.

Now, we have assumed that the charge is produced by the action of the
voltage, according to the ballistical equation (16.11). This relation is plotted
in Fig. 2, for a relatively large value of Jo/usVo (curve 1) and for a smaller
value of Jo/u Vo (curve 2). There are poles at 8/8, = 1 = g, and a minimum
between the poles. The height of the minimum increases as Jo/#oVs is in-
creased.

A circuit curve similar to that of Fig. 16.1 is also plotted on Fig. 16.2.
We see that for the small-current case (curve 2) there are four intersections,
giving four real values of 8 and hence four unattenuated waves. However, for

QU>

B —

Fig. 16.1—Circuit curves, in which the ordinate is proportional to the ratio of the charge
per unit length to the voltage which it produces. Curve 1 is for an infinitely broad beam;
curve 2 is for a narrow beam in a narrow tube. Curve 3 is the sum of 1 and 2, and approxi-
mates an actual curve.

the larger current (curve 1) there are only two intersections and hence two
unattenuated waves. The two additional values of B satisfying both the
circuit equation and the ballistical equation are complex conjugates, and
represent waves traveling at the same speed, but with equal positive nega-
tive attenuations.

Thus we deduce that, as the current densities in the electron streams are
raised, a wave with negative attenuation appears for current densities above
a certain critical value.

We can learn a little more about these waves by assuming an approximate
expression for the circuit curve of Fig. 1. Let us merely assume that over
the range of interest (near 8/8, = 1) we can use

p = oV (16.14)
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Here o® is a factor greater than unity, which merely expresses the fact that
the charge density corresponding to a given voltage is somewhat greater
than if there were field in the z direction only for which equation (16.12) is
valid. Combining (16.14) with (16.11) we obtain

(.(1 _g)—ﬁ)2+(,(1+§)_3)==ﬁwz (16.15)
|
|

Q>

—
T — —— — ]

L | 1 1 L
0 01 02 03 04 05 06 07 08 09

B/Bo

Fig. 16.2—This shows a circuit curve, 3, and two electronic curves which give the
sum of the charge densities of the two streams divided by the voltage which bunches them.
With curve 2, there will be four unattenuated waves. With curve 1, which is fora higher
current density than curve 2, there are two unattenuated waves, an increasing wave and
a decreasing wave.

where
Jo

. A—
L 2&2653240 Vo.

(16.16)

In solving (16.15) it is most convenient to represent 3 in terms of 3, and
a new variable /

g = Bl + k) (16.17)
Thus, (16.15) becomes
1 1

1
B\2 + b)2 = (16.18)
(h - 5) (h + 3
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Solving for %, we obtain

<)) 41 )/ ] oo

The positive sign inside of the brackets always gives a real value of &
and hence unattenuated waves. The negative sign inside the brackets gives
unattenuated waves for small values of U/b. However, when

(%)2 >3 (16.20)

30

\
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~

DB GAIN/WAVELENGTH/UNIT D
™

™~

[

F(w/wy)

o L r 1l ) 1l L L1l
1 2 4 6 810 20 40 60 80100 200 400 600 1000

(W/wWy)? = (U/uy)?
Fig. 16.3—The abscissa is proportional to d-c current. As the current is increased, the
gain in db per wavelength approaches 27.3b, where b is the fractional separation in ve-

locity. If the two electron streams are separated physically, the gain is lower and first rises
and then falls as the current is increased.

there are two waves with a phase constant 8. and with equal and opposite
attenuation constants.

Suppose we let U be the minimum value of U for which there is gain.
From (16.20)

Uy = 0%/8 (16.21)

From (16.19) we have, for the increasing wave,

) U U 2 U 2 1/2
h = 3b [_\/E—lu 2 (E) +1- (ff:,) - 1] . (16.22)
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The gain in db/wavelength is
db/wavelength = 20(27r)logwe|h|
= 546 | 1| (16.23)

We see that, by means of (16.22) and (16.23), we can plot db/wavelength
per unit b vs. (U/Ux)% This is plotted in Fig. 16.3. Because U? is propor-
tional to current, the variable (UU/U)? is the ratio of the actual current to
the current which will just give an increasing wave. If we know this ratio,
we can obtain the gain in db/wavelength by multiplying the corresponding
ordinate from Fig. 16.3 by &.

We see that, as the current is increased, the gain per wavelength at first
rises rapidly and then rises more slowly, approaching a value 27.3b db/wave-
length for very large values of (U/U )%

We now have some idea of the variation of gain per wavelength with
velocity separation b and with current (U/U )% A more complete theory
requires the evaluation of the lower limiting current for gain (or of Uj) in
terms of physical dimensions and an investigation of the boundary conditions
to show how strong an increasing wave is set up by a given input signal.!: ¢

16.2 FurTHER CONSIDERATIONS

There are a number of points to be brought out concerning double-stream
amplifiers. Analysis shows® that any physical separation of the electron
streams has a very serious effect in reducing gain. Thus, it is desirable to
intermingle the streams thoroughly if possible.

If the electron streams have a fractional velocity spread due to space
charge which is comparable with the deliberately imposed spread b, we may
expect a reduction in gain.

Haeff® describes a single-stream tube and attributes its gain to the space-
charge spread in velocities. In his analysis of this tube he divides the beam
into a high and a low velocity portion, and assigns the mean velocity to
each. This is not a valid approximation,

Analysis indicates that a multiply-peaked distribution of current with
velocity is necessary for the existent increasing waves, and gain in a “single
stream” of electrons is still something of a mystery.



CHAPTER XVII
CONCLUSION

LTHOUGH THIS BOOK contains some descriptive material con-

cerning high-level behavior, it is primarily a treatment of the linearized

or low-level behavior of traveling-wave tubes and of some related devices.

In the case of traveling-wave tubes with longitudinal motion of electrons

only, the treatment is fairly extended. In the discussions of transverse fields,

magnetron amplifiers and double-stream amplifiers, it amounts to little
more than an introduction.

One problem to which the material presented lends itself is the calcula-
tion of gain of longitudinal-field traveling-wave tubes. To this end, a sum-
mary of gain calculation is included as Appendix VIL

Further design information can be worked out as, for instance, exact gain
curves at low gain with lumped or distributed loss, perhaps taking the space-
charge parameter QC into account, or, a more extended analysis concerning
noise figure.

The material in the book may be regarded from another point of view as
an introduction, through the treatment of what are really very simple cases,
to the high-frequency electronics of electron streams. That is, the reader may
use the book merely to learn how to tackle new problems. There are many
of these.

One serious problem is that of extending the non-linear theory of the
traveling-wave tube. For one thing, it would be desirable to include the
effects of loss and space charge. Certainly, a matter worthy of careful in-
vestigation is the possibility of increasing efficiency by the use of a circuit
in which the phase velocity decreases near the output end. Nordsieck’s work
can be a guide in such endeavors.

_ Even linear theory excluding the effects of thermal velocities could profit-
ably be extended, especially to disclose the comparative behavior of narrow
electron beams and of broad beams, both those confined by a magnetic field,
in which transverse d-c velocities are negligible and in which space charge
causes a lowering of axia! velocity toward the center of the beam, and also
those in which transverse a-c velocities are allowed, especially the Brillouin-
type flow, in which the d-c axial velocity is constant across the beam, but
electrons have an angular velocity proportional to radius.

Further problems include the extension of the theory of magnetron ampli-
fiers and of double-stream amplifiers to a scope comparable with that of the

668
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theory of conventional traveling-wave tubes. The question of velocity dis-
tribution across the beam is particularly important in double-stream ampli-
fiers, whose very operation depends on such a distribution, and it is important
that the properties of various kinds of distribution be investigated.

Finally, there is no reason to suspect that the simple tubes described do
not have undiscovered relatives of considerable value. Perhaps diligent work
will uncover them.
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