Longitudinal Modes of Elastic Waves in Isotropic Cylinders
and Slabs

By A. N. HOLDEN
'Il;::::;:n:ml properties of the longitudinal modes in cylinders and slabs are de-
Wi

with the aid of the close formal analogy between the dispersion equations
for the two cases.

1. InTRODUCTION

HE classical exact treatments of the modes of propagation of elastic

waves in isotropic media having stress-free surfaces but extending
indefinitely in at least one dimension are those of Rayleigh' for semi-
infinite media bounded by one plane, of Lamb® for slabs bounded by two
parallel planes, and of Pochhammer® for solid cylinders. Rayleigh showed
that a wave could be propagated without attenuation parallel to the sur-
face, in which the displacement amplitude of the medium decreased expo-
nentially with distance from the surface, at a velocity independent of fre-
quency and somewhat lower than that of either the plane longitudinal or
plane transverse waves in the infinite medium. Such “Rayleigh surface
waves" have received application in earthquake theory.

For slabs or cylinders the treatments lead to a transcendental secular
equation, establishing a relation (the “geometrical dispersion™) between the
frequency and the phase velocity, which for some time received only asymp-
totic application in justifying simpler approximate treatments. The past
decade, however, has seen a revival of interest in the exact results': 5 stimu-
lated by experimental application of ultrasonic techniques to rods™* and
slabs” by the use of rods and the like as acoustic transmission media, and
perhaps by curiesity as to what qualitative correspondence may exist be-
tween such waves and the more intensively studied electromagnetic waves
in wave guides, That this correspondence might not be close could be antici-
pated by observing that an attempt to build up modes by the superposition
of plane waves in the medium reflected from boundaries would encounter
an essential difference between the two cases: the elastic medium supports
plane waves of two types (longitudinal and transverse) with different veloc-
ities, and reflection from a boundary transforms a wave of either type into
a mixture of both.

On grounds both formal and physical it may be expected that solutions
to the equations of small motion of the medium with a stress-free cylindrical
boundary can be found with any integral number of diametral nodes of the

956
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component of displacement along the rod, as well as for the “torsional”
modes in which there is no displacement along the rod whatever. The clas-
sical results are for no such nodes, the “longitudinal” (or “elongational™)
modes, and for one such node, the “flexural” modes. The secular equation
for modes with any number of such nodes has been exhibited by Hudson ®
For any one of these types of mode, it may be expected that the secular
equation will define a many-branched relation® between frequency and
phase velocity, and that a different number of interior cylindrical nodal
surfaces for the displacement components might be associated with each
branch. Apart from the relatively simple torsional modes, the only branches
whose properties have been intensively studied are the lowest branch of
the longitudinal* and the lowest of the flexural® modes, because they (and
the lowest torsional branch) are the only ones extending to zero frequency,
the others exhibiting “cut-off" frequencies at which their phase velocities
become infinite and below which they are rapidly attenuated as they prog-
ress through the medium.

Three qualitative results of these studies are of especial interest. In the
first place, with increasing frequency the phase velocity in the lowest lon-
gitudinal and flexural branches approaches the wvelocity of the Rayleigh
surface wave, and the disturbance becomes increasingly confined to the
surface of the cylinder. In the second place, the dispersion is not monotonic
as it is in the electromagnetic case: the phase velocity exhibits a minimum
in the lowest longitudinal branch* and a maximum in the lowest flexural
branch® with varying frequency. Finally, in the lowest longitudinal branch
at least, the cylindrical nodes of the displacement components vary not only
in radius but even in number with the frequency.*

The last result suggests that it would be difficult in practice to drive a
cylindrical rod in that pure mode represented by its lowest longitudinal
branch over any extended frequency range, since it is difficult to visualize
a driving mechanism having suitable nodal properties. Longitudinal drivers
which can be readily constructed may be expected to deliver energy to all
longitudinal branches, in proportions varying with frequency. How satis-
factory such a transmission device could be would depend importantly on
how much the phase velocities at any one frequency differed from branch
to branch.

This paper sketches the behavior of the higher longitudinal branches.
That behavior could, of course, be determined exactly; Hudson® has shown
how the calculation of the roots of the secular equations can be facilitated,

* This is true in particular of the flexural type of mode, and in his otherwise excellent
treatment of fAexure Hudson's statement to the contrary must be disregarded. Recent
writings in this field have tended to distinguish as “branches' what in allied problems
are commanly called “modes'",
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and Hueter® has used graphical methods. The alternative adopted here is
a semi-quantitative treatment, assisted by extensive reference to the be-
havior of longitudinal waves in slabs,* for which the secular equation is
simpler and closely analogous. The analogy in the case of flexural modes is
considerably less close and will not be discussed.

The general consequences of the inquiry are that the higher longitudinal
branches have phase velocities which are not necessarily monotonic func-
tions of frequency. With increasing frequency, however, those velocities all
approach that of the plane transverse wave,*® not that of the Rayleigh sur-
face wave (nor that of the plane longitudinal wave, as some investigators
had guessed), a fact reflected perhaps in the experimental observation that
driving a rod transversely usually provides purer transmission than driving it
longitudinally.t Variation of nodal cylinders in location and number with
frequency persists in the higher branches.

2. THE SLAB

The slab extends to infinity in the , = plane and has a thickness 2a in the
g-direction. The displacements of its parts in the x, ¥, s directions are u,
w,. Its material has density p and Lamé elastic constants A and u, so that
its longitudinal wave velocity is v lfiu + A)/p and its transversz wave veloc-
ity is 4/u/p. That u should be positive is a stability requirement of ener-
getics; A will also be taken as positive since no material with negative A is
known.

The equations of small motion are, in vector form,

2
(2u 4 ») grad div (x, v, w) — w curl curl (x, 2, w) = p :_F (n, v, w).

Solutions representing longitudinal waves propagated in the = direction can
be of the form

o = LrEII;Hr-l-'TI'I', 0= D:, o - H'FEH-‘H‘:,

where [/ is an odd function, and W an even function, of » alone, w is the
frequency in radians per second, and v = w/c where ¢ is the phase velocity.
Solutions independent of y are chosen here because they provide the simplest

ikr

analogues to the case of the cylinder. Substitution shows that [’ = e,

* T am indebted to Dr. W. Shockley for the suggestion that this behavior might dis-
play a close enough analogy to that of the cylinder to provide insight; the work of Morse

bears out the analogy.
*# The fact i3 noted by Bancroft.
t Private communication from H. J. McSkimin.
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W = Be™ , is a solution (where 4 and B are constants measuring the am-
plitude), if either

3

(i) H:Epp:—}._f and v Ay = kB,
2
or (ii) &% = % — 4 and kdy = —yB,.

When solutions of both types are so superposed as to make [7 odd and W
even
[/ = id, sin bz + 14y sin ke, (1)

]"I'r-.“[llfﬂﬂk|l'_4“g;!m.kzl‘. f!}
]

The normal and tangential stresses on planes perpendicular to x are

(i ar | dw dv |, du
x:_{zﬂ—rl}ﬁ-l_l(ﬂj-'-ﬁ)’ Ip—ﬂ(‘;ﬂ+ij)1

i e
Xe=p (E +EE)

and the requirement that they vanish at x = =a leads to the boundary
conditions

Ayt 4 (2 4 AED) cos kg + 24dapk ks cos kea = 0,
24,19 sin ke + A:ly" — k-:_'j sin kza = 0,

the vanishing of whose eliminant with regard to 4, and 4. is the secular
equation. Although in principle that equation establishes a relation be-
tween v and w, it is more conveniently examined when expressed in terms
of & = b and 8 = kaa, which are quadratically related to w and ¥ by (i)
and (ii). In those terms it becomes

A\ + (2p + A)a®) cos « sin 8 a)
+ 4{p + Aaf(pd — (2p + A)o®) sinacos 3 = O,

The physically interesting quantities can be expressed in terms of « ard
g, with the aid of (i) and (ii). Thus

2 (2u 4+ 2) 2
pu = E‘l{p N (8" — &"), and (4)
'ﬁ"! =l .llﬂ’ - (2p + Ma (5)

e
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Hence, denoting | = §/a, the phaze velocity ¢ = w/y is given by

2 _ w20 + 00 = 1) _

i T
where E iz an “effective stiffness”, a function of the elastic constants
and I

Since § = 0 is a trivial root of equation (3), it can be divided by g, and
the expression on the left then becomes even in both & and § and (3) can be
regarded as an equation in o and 5%, From (4) and (3) it is evident that,
if w and v are both to be real, o and §* must be real and must obey the ine-
qualities

(6)

&>, pff> (Iu+ Ao, (1)

and thus the root § = « can be neglected. The general character of the
desired roots can consequently be exhibited on a plot of §* against &, Evi-
dently on that plot lines of slope unity are lines of constant frequency
{equation 4), and lines radiating from the origin are lines of constant veloc-
ity (equation 6). As will appear later, however, it is more convenient to use
a linear rather than a quadratic plot, real « being measured to the right,
imaginary & to the left, of the vertical axis, and real 8 upward, imaginary
A downward, from the horizontal axis. Here radial lines are still lines of
constant velocity, but lines of constant frequency are no longer simple.

In Fig. 2 such a plot has been sketched for the first few modes of a mate-
rial obeying the Cauchy condition A = g; the properties shown are restricted
to those derived in the following paragraphs, and are lettered in Fig. 1 to
correspond with those paragraphs.

(a) By virtue of (7), the significant portions of the roots lie above and
to the left of the lines §* = of, u3* = (2u + Ao, Setting pf* = (2u + A)o?
in (3) reveals the cut-offs at sin 8 = 0 and at cos @ = 0: in other words at

. o _ 4+ 1y
B = ny', o = Ep_}_ﬁﬂ"lj,ﬂ.ndﬂ.lﬂﬂatﬂ“ p (n+2) T,

ot = (u + %)i =, where # is any integer,

(b) Setting e = 0 in (3), it can be seen that the roots intersect the line
a® = 0 at the points sin § = 0. By calculating the derivative of 5* with re-
spect to of, those points (at which & changes from pure real to pure imaginary)

can be shown not to be multiple points, and the branches to have dj =0

e
% = — Egﬁlij_ M) , independent of branch number and negative for

and
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Fig. 1—Lines and intersections, discussed in the correspondingly lettered paragraphs
of the text, which determine the properties of the first five branches of the longitudinal
modes for a material obeying the Cauchy condition. Two coincident pairs of points are
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Fig. 2=A rough sketch of the branches determined by the properties illustrated in
Fig. 1.
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all materials. At those points the phase velocity is that of a plane longi-
tudinal wave,

(¢) Setting sin § = 0 reduces (3) to af(Ws® — (2u + N)e?) sin a = 0,
and hence in the region of positive 8 and negative o' the roots do not inter-
sect the horizontal lines 3 = wi»* (n # 0). As can be seen from (6) this
confinement implies that the velocity is asymptotic to +/u/p, that of a
plane transverse wave, with increasing frequency. Notice that, in the re-
gion of positive 3 and negative o, § takes the values cos 8 = 0 only where
A 4 (2u + A)a® = 0 and that the roots have zero slope there. At those
points the waves have a phase velocity 4/2 times that of a plane transverse
Wave,

(d) In the region of positive 5 and positive o® the roots exhibit a some-
what more complicated behavior, but confining lines can again be found:
the diagonal lines § = (» + §)r — «. It is the nature of such critical lines
as these which can be better exhibited on the linear than on the quadratic
plot. Alternatively those lines can be written cos & cos § — sina sing = 0
(and thus will be shown to have analogues in the case of the cylinder), and
substitution of this expression into (3) shows that if the roots intersect
these lines they must do so for values of « and g satisfying the relation

4(p + Naf(u® — (2u + Wof) = —(AF + (2u + M) cot’ o

But the inequalities (7) make such values impossible.

(e} This suggests that in that region the roots may oscillate in a some-
what irregular manner about the diagonal lines § = nr — o Indeed it is
immediately evident that they pass through the points cos § = cos a = 0
and sin @ = sin & = 0.

(f) Expressing those lines as sin « cos 8 + cos a sin § = 0, and sub-
stituting into (3), shows that additional intersections may be afforded by
any roots of the quartic equation

3 + (2 4+ MNa®)? — 4(u + Wad(pd® — (2u + Aa’) = 0

which obey the inequalities (7). Discarding the root & 4 § = 0, and dividing
by o, yields the cubic equation

MP — (2u+ 0P+ 2+ N2+ M+ 2+ AP=0 (8§

whose roots are the negatives of the roots of the cubic eguation for the
Rayleigh surface wave velocity. It is well known that the Rayleigh cubic
always yields one and only one significant positive root, and hence equation
(8) can afford at most two additional significant intersections of any root
of the secular equation with the line about which it oscillates. Although it
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is not feasible to exhibit the roots of the Rayleigh cubic explicitly for arbi-
trary g and A, it is of some interest to exhibit its discriminant

D = N + N+ VAN + 0% — 9’ — 104),

and to note that for real positive values of A and u it changes sign only once,
at approximately A/p = 10/9. Hence for A/g > 10/9 two roots of the Ray-
leigh cubic are complex, while for A/u < 10/9 two roots are real and nega-
tive. For a material obeying the Cauchy condition A/u = 1, the roots of
the Rayleigh cubic are —3, —3 £+ 24/3; thus | = 3, 3 4 24/3, both of
which obey the inequalities (7), are relevant to intersections of each branch
of the roots of the secular equation with the line about which it oscillates.

(g) The results of (e) and (f) suggest the value of a similar investigation
in the region of imaginary «. Here (denoting a = i4 and L = /4 where
A is taken positive and real) intersections occur between the branches and
the lines sinh 4 cos 8 — cosh A sin & = 0 when (AL2 — (2p + M) =
4{p 4+ MLGL* + (2u + X)), Clearly this quartic in L has two and only
two positive real roots, one greater and one less than 4/ (2u + A)/A. In the
case A = u, those roots are approximately 9 and 1/3. This information,
taken with that of (c), establishes that the branches are confined in the
region of imaginary « to bands determined by nr < 8 < (n 4 §)7, having
one tangency to the lines § = (n + 4)r; and that at values of A greater
than correspond to the smaller root of [, the branches lie in the bands ur <
B < (n4 r

It is convenient to obtain assurance that in general the branches do not
intersect at any point by noting that the confining lines of paragraphs (c)
and (d) define bands within each of which in general one and only one cut-
off point falls. Pivoting a ruler about the origin of Fig. 1, and recalling the
cut-off conditions, avails, Degenerate cases arise when the elastic constants
satisfy a condition 2u + X = »’u where » is an integer; in those cases some
cut-off points coincide in pairs on some confining lines. Calculation of de-
rivatives at those points shows that the cases are not otherwise exceptional:
the pair of roots forms a continuous curve which is tangent to the cut-off
line at the double cut-off point.

From (6) it follows that the phase velocity will have a maximum or a

minimum with frequency 1ldE'ﬁ:§ g That condition requires
tan‘e = Ehﬂz__':@# + WY (F + (2 + M{h 4+ 3}1.}1:::].

(e + N2 + NPF — o) W — (2n + Na?)
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In the region of positive 8 and & and of the inequalities (7), this is impos-
sible, but when o is negative the condition may be satisfied. If it is satis-
fied in the higher branches, however, it must be satisfied an even number
of times in any branch, so that the branch exhibits as many maxima as
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Fig. 3—The beginnings of the dispersion curves inferred from Figs. 1 and 2. The solid
shaded lines are the curves about which the branches escillate, intersecting them at the
triangles and lying on the shaded side of them elsewhere, and the dashed extensions are
the branches themselves. For increasing = these branches all become asymptotic to the
hase line. The dashed lines at the top are the true cut-off frequencies; the solid “eut-off"
lines are the asympiotes of the shaded curves. The beginning of the lowest branch is
shown at the lower left; it becomes asymptotic to a line below Lhis plot,
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after passing through a shallow minimum.

minima, for clearly the phase velocity is a decreasing function of frequency
near the cut-off, and the velocity can also be shown to approach its asymp-
totic value at high frequencies from above in the higher branches.

In finally displaying the dispersion curves (Fig. 3) it is convenient to use
as reduced variables r, the number of plane transverse wave lengths in



LONGITUDINAL MODES IN CYLINDERS AND SLARS i

€
one slab thickness (which is proportional to the frequency), and o the

0
ratio of the velocity to that of a plane transverse wave. Evidently

a_ fwa 1 w4 N,a s e\ _ e+ N = 1)
T_(E)EF m{ﬂ! «% (f-u) pl— (2u+2) "

where ¢a = v/ u/p.

For completeness, the lowest branch will be briefly sketched: that which
di&)
(e

non-trivial root, —(2 u 4 A)(2e 4+ 3A)/2% and thus the phase velocity at
low frequencies is found to correspond, as would be expected, with that
given by the stifiness (a semi-Young’s modulus, so to speak) of a material
displacement-free in the x-direction but not in the wy-direction, E =
dulp 4+ 2)/(2 ¢ 4 1). Since lines radiating from the origin of the (8%, o)
plot are lines of constant velocity, the dispersion curve for this branch
starts with zero slope. The root curves over, intersecting the line

M + (2u 4+ Ma? = Oat § = I, and intersects the line #* = 0 again at

A* (& = i4) where (2u + A) A cosh 4 = 4(u + X) sinh 4. For large
negative o and &, equation (3) approaches

NP 4 dulp + )P 4+ IN2p + AP — 420 + W + M+ (2e + AP =10,

which after discarding the trivial root I = 1 leaves the Rayleigh cubic. In
the case of this one branch, the phase velocity approaches its asymptotic
value at high frequencies from below, and hence the dispersion curve must
have an odd number of maxima and minima, and in particular at least one
minimum, as was discovered by numerical calculation for the corresponding
branch in the case of the cylinder by Bancroft.’

The complicated behavior of the displacements in the higher branches is
sufficiently illustrated by a brief consideration of their nodes: the values of
x at which the displacement is entirely along or entirely across the slab.
From (1) and the boundary conditions, the z-dependence U of the displace-
ment component perpendicular to the slab will be given by

originates at @ = # = (. A calculation of at that point yields only one

KU = 08 + (2u + Ma) sin ﬂsin"f

(1a)
+ 2(uf" = (2u + Na')sin a alng-:
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or by

KUl = 2{p 4+ A)af cos ﬂgj_“_E
ia
(1b)
— (A8 + (26 + A)a®) cos a sin %

where K, = (\® + (2u + Ma')K sin 8, Kz = 2(x + MaSK cos 8, at all
points {(a, #) satisfying (3). Similarly from (2) and the boundary conditions,
the x-dependence W of the displacement component along the slab will be
given by

_K;H" = (08 4 (2 + Na) sinﬂcm%— 2(u + A)af sin o n:{:s.'ﬂTx (2a)
or by

KW = 2(uf’ — (2u + Aa’) msﬁcns?

(2b)
x

+ (A8 + (2x + Ma®) cos o cos %—,

. Y o e T Y
Ko = fovale + ) L G F N

Examine now, for example, a material for which A = u, in the branch
whose cut-off is at @ = 2w, @ = 2x/+/3. It can be verified at once that the
nodes of the two components at some of the values of (e, 8) discussed ear-

lier are described by the following table (in which { = cos r?j:) :

K sin 8, Ky = Ziorya(p + A)K cos 8.

a a Values of zfa for podes of I Valoes of x/s for nodes of ¥

2x )23 Ir 0, #+ two values given by +1, &1
2/+/3 sin dwrfa+/§ =
| cos 2% /+/3 sin 2rxfa
Ar Ir 0, &1, = one value given by | £ two values given by
14 - 8 =0 e =2t =7=10
x /2 S5¥/2 |0, %= two values given by 221* 4 | £1, =+ one value given by
11/ = 2 =i} 15 =11=10
i Ax 0, 44, =¥, 1 no nisdes
Twif23+3 | Tefl | 0, £, zz. =) d:l. 4+, =8 1
. ir 0, 4, &35, +1 +4, £, =¥

It is to be noted in general that the nodal variations become less extreme
at high frequencies, since for all branches except the lowest U/ and W tend
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P
a
the value wr where # iz the branch number in order of increasing cut-off
frequency, with # = 0 ascribed to the lowest branch. Thus the feeling, de-
rived from more familiar cases of wave motion, that the order in which
the branches arrange themselves should be correlated with the number of
nodes they display retaing an asymptotic validity here, in respect of each
displacement component.

Nodes of absolute displacement will occur only at special frequencies.

to become proportional to sinﬂ;x and cos — respectively, and § approaches

With the notation o' == E-HT?, g = Et, the conditions for their occurrence can
be written i ’
(W™ — (2u 4+ A)a™) sin §' cos ' + (u + Ma'd' cos §' sina’ = 0,
TS ) R B
sin 2a sin 28" a'
taken together with (3).

P, g<B o<aq
[

J. Tue CYLINDER

Procedures analogous to those of the preceding section, and presented by
Love®, lead to Pochhammer's secular equation, which in the present
notation® is

(AP 4 (2 + M) T ole) J1(8)
+ 4u + NaBld® — (2u + Ma®)J1(a)Jo(5) (9)
+ 20p + M2 + Male® — F)T1(a)1(8) = 0,

where (4), (3) and (6) still hold, with @ signifying the radius of the rod, The
analogy between (3) and the first two terms of (9) is striking. Again the
roots @ = 0 and 8 = a can be neglected, and the equation when divided
by A becomes even in « and 3, and a plot of # against « becomes appro-
priate, with the restrictions (7) as to regions of significance. The following
paragraphs are lettered to correspond with their analogues of the preceding
section.

(a) Setting g = (2 » + A)a® in (9) reveals the cut-offs at J,(3) = 0
and at (2 4 Meafila) = 2uf(a).

(b) Setting &« = 0 in (9), it can be seen that the roots intersect the line

* In comparing this trentment with that of Hudson®, interpret his symhbals

e L T 2u -,
d . g 2=
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o = 0 at the points J1(3) = 0, traversing them with %Eﬂ% = w.
[k 4

or half that of their analogues. Again it is only at those points that the

phase velocity has the value A (2u 4+ A)/p

(c) Setting J1(8) = O reduces (9) to aB(w?® — (2x 4+ Ma®)Ji(a) = 0, and

hence the roots are confined between the horizontal lines J,(8) = 0 in the
region of positive 8* and negative o, and the velocity is asymptotic to
v/ p/p with increasing frequency. They meet the line A8* 4+ (2u 4 Ma® = 0
at the points 8Js(8) — J1(8) = 0, or in other words at the maxima and
minima of J,(8),* where again the phase velocity is +/2u/p

{d) In the case of the cylinder confining lines®™* are

; Mg — o) ] — L@@ =
[J;(ﬂ] + ol s 0@ | ) — A@ne) = o,

since substitution shows that intersection of (9) with these lines would re-
quire
4 + Naf(uf’ — (2 + W)
(A8 + (2e + A)a')?

- | 7ta Mg — a') .,]’
s [J": )+ F+ G e M )

which cannot be satisfied by permitted values of o and 8.
(¢) This sugpests that in that region the roots may oscillate about the
lines

TQTUE) + 18 [Jltal +

J )

ME — a’)
2B + (2u + N

.r]{aj:| = 0.

In fact, in view of the equivalence Ji(x) = Jy(zx) — i Jy(x), those lines

can be geen to have points in common with the roots of the secular equation
at Jila) = 0, J1(8) = 0, and at

Jig =0, nla) + M — o)

a(AF + (2u + Ma')

(f) Substituting the expression for the lines of (e} into (%) shows that
again additional intersections may be afforded by suitable roots of the
cubic equation (8).

* The analogy to the corresponding intersections for the slab at the maxima and
minima of sin @ is noted by Lamb, ref. 2, p. 122, fooinote,

% There are h’rmitﬂ? many such families of lines but none carries the analogy with the
slab to the point of being independent of the elastic constants. The families used in (d)
and (¢) serve the present purpose as simply as any.

Ji(a) = 0.
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(g) In the region & = 44, the analogous lines are given by

AE 4+ A%
AME — (2u + W) A%)

with which intersections occur for the same values of 3/4 as in the slab.

These results permit visualization of a counterpart to Fig. 1 for the cylin-
drical case. In it the critical lines radiating from the origin are the same.
The horizontal lines, instead of being evenly spaced by =/2, are spaced as
the zeros, maxima, and minima of J4(8). The vertical lines, again no longer
evenly spaced, are replaced alternately by straight vertical lines Jy(a) = 0

2(p + Ma '
W+ (2 + N Ji(a) which
lie between their straight companions and approach Ji(a) = 0 as g be-
comes large. Finally the confining lines, and the lines about which the
branches oscillate, become the curves defined in (d) and (&), which can be
seen to follow a course not dissimilar to the diagonal course of their prede-
cessors, passing through the intersections of the new horizontals and
verticals.,

Again the branches do not intersect, except for pair-wise coincidence of
cut-offs on one or another of the lines (d) when the elastic constants obey
special relations. Thus the dispersion curves to which Hudson* assigns
certain of Shear and Focke's data cannot be taken (and indeed Hudson
does not suggest that they must be taken) as corresponding to higher
branches of the longitudinal modes, since the former curves intersect one
another, and the latter cannot unless anisotropy modifies their behavior
qualitatively. The assignments could represent modes other than longitu-
dinal. The more recent results of Hueter® show essentially the behavior of
Fig. 3.

In view of the closeness of the analogy thus revealed, it may be taken as
probable that qualitative correspondence will obtain quite generally be-
tween the longitudinal modes of the slab and those of the cylinder.

iy (iA)TA(B) + N(B) [J:{i.-!} — ;,r;(-m}} = 0,

and by the curved “vertical” lines Jo(a) =
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Frequency Dependence of Elastic Constants and Losses
in Nickel

By R. M. BOZORTH, W. P. MASON and H. J. McSKIMIN

The elastic constants of nickel crystals, and their variation with magnetic feld
(AE effect), have been measured by a 10-megacycle ultrasonic pulsing method.
The constants of three erystals agree well with one another when the crystals are
magnetically saturated, but vary with domain distribution when demagnetized.
The maximum AE effect observed is much less (3%) than has been ohserved al
lower frequencies (2007%). By measuring the AE effect and the decrement of poly-
crystalline rods at bow frequencies, it iz shown that the small effect observed al
10 megacycles is due to a relaxation in the domain wall metion due o micro-
eddy-current damping.
rom the initial slope of the decrement-frequency curve, and also from the
frequency of maximum decrement, the size of the uvnraﬁf:dmnun is found to be
about 00 mm. Actual domains in single nickel erystals have been observed
optically by Williams, who finds domain widths of 0.02 to 0.2 mm.
HE three elastic constants of nickel have been determined in several
single crystals by measuring the velocity of pulses of elastic waves of
frequency 10 me/s and duration 0.001 sec. The method has been described
by McSkimin' and the preliminary results on nickel have already been re-
ported briefly.®

It iz well known that Young’s modulus, £, increases with magnetization,
and changes in E (the “AFE effect’”) by 15 to 30 per cent have been observed
at room temperature and changes by greater amounts at higher tempera-
tures.? It was surprising to find then, in our own experiments at 10 me, that
the greatest change was only about 3 per cent. It then occurred to us that,
at such a high frequency, relaxation of the domain wall motion by micro-
eddy-current damping might be expected. This led to the investigation of
the frequency dependence of AE and of the logarithmic decrement, §, in
polycrystalline nickel, and the results aobtained support the theory afil g'lx'e
information about domain size, as descnbed below. Caleulations® based on
the equations of domain wall motion give results which agree with the ex-
periments,

A number of experiments® have already established the existence of micro-
eddy-current losses in magnetic materials subjected to elastic vibrations.
These losses have their origin in the local stress-induced changes of mag-
netization of the domains of which magnetic materials are composed. The
change in magnetization of one domain will give rise to eddy-currents around
it and in it, and the consequent loss in energy depends on the frequency f
and the resistivity K, and on the size and shape of the region in which the

change in magnetization occurs. These losses are in addition to the macro-
970



ELASTIC CONSTANTS AND LOSSES IN NICKEL 071

eddy-current losses, due to the relatively uniform changes in magnetization
of a magnetized specimen that occur during a change in stress.
Calculations of the logarithmic decrement, 8 , attributable to micro-
eddy-currents, have been made by Becker and Déring® and by one of the
writers.! According to these calculations when the material is composed of
plate-like domains of thickness [, in which magnetization changes by bound-
ary displacement, the decrement for nickel, which has its directions of easy
magnetization parallel to [111] directions, is given by the relation

Y A S i
S T [fu-ru-I-SEH] 1+ f2/f3 (1)

xR
T
I, is the saturation magnetization, E, is the saturated value of Young's
modulus, g, is the initial permeability, R the electrical resistivity, A the
saturation magnetostriction along the [111)] direction, and e, , ¢ and ey
the three elastic constants of nickel which are evaluated in this paper. For
low frequencies the initial slope of the decrement vs frequency curve is

§ _ ME,ui F;ﬁu[ Seu ]’ )
[ SwRI% en — e + dcu

where fu, the relaxation frequency for domain wall motion is fo =

As the frequency ig increased the decrement rises to a maximum and then
declines asymptotically to zero. Both the initial slop= of the § vs f curve and
the frequency at which the maximum occurs are measures of the domain size,
The initial slope has already been used to evaluate the size of the domains
in 68 Permalloy.® It is shown in the present work that the maximum occurs
in polycrystalline nickel at a frequency consistent with the dimensions of
domains observed by Williams and Walker® in single crystals of nickel.

ErasTic CoNsTANTS AND Damping I8 SiNGLE CRYSTALS

The nickel crystals used here were grown by slow cooling of the melt in a
molybdenum wound resistance furnace, by a method previously described.”
They were cut with major surfaces parallel to (110) planes and were placed
between two fused quartz rods as shown in Fig. 1. Measurements of the
elastic constants were made as described in detail by McSkimin,! by meas-
uring the velocity of propagation of 10 me pulses. In order to obtain a num-
ber of rellections in the crystal, films of polystyrene approximately 1 wave-
length thick are placed between the rods and the nickel crystal, This has the
effect of lowering the impedances next to the nickel to small values and
hence nearly perfect reflections at the two surfaces are obtained, The fre-
quency is varied until successive reflections occur in phase, and the velocity
is then calculated from the frequency and the dimensions of the crystal.
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Fig. 1—Experimental arrangement for determining the clastic constants and AE
effect in =ingle nickel crystals.
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« A slight correction has been made for this value,

The velocities for one demagnetized crystal' were found to have the values
shown by Table T. These values of velocity, and a density of 8.90 for the
single crystal, give values for the demagnetized elastic constants of

tpp = 15[]‘1. fjg = lﬁl], Ly = 1.185 {3}

all in 10" dynes/cm?®.

To obtain the AE effect, the whole unit was placed between the jaws of a
large electromagnet. Since the crystal was about 2.5 centimeters in l:'lia.l_:n—
eter but only 0.472 cm thick, saturation could be obtained more mnf‘l:.r
along the long directions of the crystal. Figure 2 shows the changes in
velocity of propagation along the [110] direction, caused by magnetization
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along [001], for the shear mode with particle motion along [110]. Fields of
about 10,000 were attainable but a maximum field of about 6000 was usu-
ally used. The velocity increases by 2.6 per cent at the saturated value.
On decreasing the field to zero the velocity drops below the original value

£.8 1 E T
B 4 N I
! | E _
2.0 —
H 1l [oa1]
eIl [17a]
18 v [110]
3 W= 2.28 105
= L2
2= ;
0.8 —

.

o

1 i
|

=0.4

o] 1000 2000 3000 4000 5000 &000
MAGHETIC FIELD STREMGH H, IN OERSTEDS

Fig. 2—Change in velocity in percent from demagnetized value as a function of the
magnetizing ficld for a shear wave in a (110) section when the particle velocity e is
along the [110] direction and the field H along the [0M] direction.

for the demagnetized state, but it has practically the initial value when the
crystal is again demagnetized. The lower value of velocity for the return
curve indicates that the free energy is lower for some arrangement of the
elementary domains other than the demagnetized state.

Figure 3 shows the attenuation in decibels per trip as a function of mag-
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netization. The loss drops from about 7 db to 1 db as the crystal becomes
magnetized. The low value is the remanent loss caused by the energy
lost to the terminations, so that one can say that the losses due to micro-
eddy-current and micro-hysteresis are 6 db per trip or 12.7 db per centimeter
for this mode of motion. The () of the crystal can be shown to be equal to

T -

ImEmR
i
= F.] - ]
= i
- WL
"
i \ |
@ 3 : - - |
g \ |
[m] ! B Y I
l f
-] -
|
N |
l o g -
uﬂ 400 8o | 200 1600 2000

MAGHETIC FIELD STRENGTH,H,IN OERSTEDS

: :El;ig. .?!—Luss per trip (0,472 em) as a function of magnetizing field for shear wave
of Fig. 2.

the phase shift in radians divided by twice the attenuation in nepers per
cm, or

il 2xf/v
¢ 2 (db per cm)/8.68 “

and our results give () = 94, corresponding to a decrement of »/Q = 0.033.
Figure 4 shows a measurement of the same mode when the feld is applied
along the [110] direction. The velocity approaches a slightly different
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limit on account of the “morphic” effect discussed in another paper® If
we average the two values the effective elastic constant for saturation be-
comes

e — g1z = 0,954 X 10" dynes/cm?. (3]

Measurements for the field along the thickness did not produce saturation
an:l are not shown.
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Fig. 4—Change in velocity in percent from demagnetized value as a function of the
magnetizing field for a shear wave in a (110) section when the particle velocity is along
the [110] direction and the field along the [170] direction.

Figures 5 and 6 show similar measurements for the other shear mode
(Shear 2 of Table I) for two directions of the magnetic field. Averaging
the two limiting values, the constant ¢y at saturation bacomes

cae = 1.22 X 10" dynes/cm? (6)

The (2 and decrement for this case become approximately 110 and 0,028,
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Figures 7 and 8 show measurements for the longitudinal mode. Variations
of about 0.6 per cent in the velocity are obtained, and the saturated elastic
constants, (} and decrement are i

e + ele + 2ciy = 655 X 102, Q= 390, &= 0008 (7)

T T T T T
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Fig. 5—Change in velocity in percent from demagnetized values as a function of the
magnetizing field for a shear wave in a (110) section when the particle velocity is along
ihe [001] direction and the feld along the (001] direction.

Combining the elastic constants, the saturated elastic constants are evalu-
ated:
eh = 253, cls= 158, ol = 122, (8)

all in 10% dynes/cm?.
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It is obvious from the measurements of Figs. 4 to 8 that the changes in
the elastic constants with magnetization are much smaller at the high fie-
quencies (10 mc) than they are at the lower frequencies of 10 to 50 kilo-

1.4 | |
.2 - i| s e -
1.0 .
HIl [17Ta]
ell [oo1]
0.8 Vil [ o]
j 1  Vgp=3.65%10% N
0.8
s | f
=
| =]
“oa

C1Hh

4] 10040 2000 A000 4000 5000 6000
MAGHETIC FIELD STREMGTH,H,IN CERSTEDS

Fig. 6—Change in velocity in percent from demagnetized value as a function of the
magneLizing fcld for a shear wave in a {110) section when the particle velocity is along the

[001] direction and the field along the [110] direction,

cycles where changes of 15 to 30 per cent have been observed in polycrystal-
line material? A rough comparison of the low-frequency values with the 10
megacycle values can be obtained if we convert the observed changes in the
¢'s to the equivalent change in E. This can be done if we use the method
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Fig. 7—Change in velocity in percent from demagnetized value as a function of the
field for a longitudinal wave in a (110) section when the particle velocity is

magnelizing
along the [110] direction and the field along the [001] direction.

developed by one of the writers® for obtaining the elastic constants of a
polycrystalline rod from the cubic elastic constants. In this case the Lamé

elastic constants are given by the formulas

4
}i+2#='%{?11+§fu+§fu:
'3 9)
. — 2
I3 §£"+T'
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Fig. 8—Change in velocity in percent from demagnetized walue as a function of the
magnetizing field for a longitudinal wave in a {110} section when the particle velocity is
along the [110] direction and the ficld along the [110] direction.

Since in terms of the Lamé elastic constants, the value of Young's modulus

3+ 2
E“'“(Hp)

one finds that the difference between the saturated and demagnetized value

15

of Young's modulus divided by the demagnetized value is

(10}
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AE _E, — E, _ 2381 — 2312
Ey E, 1312

which is much smaller than that given by low frequency measurements.

To check our results, and be sure that the crystals were free from imper-
fections and strains, two other crystals were prepared and carefully an-
nealed at 1100°C. The values found for the changes in elastic constants were
considerably less for these crystals. The ('s of the crystal were also higher.
Table IT shows the measured values and the equivalent AE/E values. The
table shows also the measurements for the demagnetized crystal of two
Japanese workers'®!! and the equivalent AE/E assuming that the saturated
elastic constants are the same as those found for the other three crystals.
Since these vary by only £0.5 per cent among themselves, this appears to
be a good approximation.

= 003 = 3% (11)

Tante I1
Evastic CowsTanTts (0 100 pywes/cu”) anp AE-Errect ¢ SivcLE CrysTALs OF NICKEL
tically Sa tized
Crvotal Magnetically Saturated Diemagne B/
471 L1481 L1 1 [35] ("8
1 2,53 1.38 1.22 2.50 1.60 1.1B5 | 0.03
2 2.52¢4 | 1.538 | 1.23 2.52 1.54 1.22% | 0.0017
3 2,523 | 1.566 | 1.23 2,817 | 1.574 | 1.226 | Q.0046
Yamamoto!t 2.4 1.58 1.02 | 0.16
Hondla and 2.52 1.51 .04 | 0.11
Shirakawa™

- —

The lower values of AE/E for the second and third crystals are probably
due to larger domain sizes, caused by the longer anneal.

DAMPING AND AE-ErrecT 1v PoLycRYSTALLINE Rops

To test the theory of micro-eddy-current shielding (see Introduction),
the velocity and attenuation of elastic vibrations in well-annealed poly-
crystalline nickel rods were measured over the frequency range of 5 kilo-
cycles to 150 kilocycles. In ‘the method of measurement,” shown by Fig.
9, two matched piezoelectric crystals of resonance frequency corresponding
to integral hali wavelengths along the rod, are attached to the ends of the
rod. Phase-amplitude balance was obtained by critical adjustment of fre-
quency and output of the calibrated attenuator. The corresponding level
was then compared with that obtained when the two crystals were cemented
directly together. With little error, the velocity of propagation is given by

n--%]", n=123--- (12
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The attenuation 4 (and hence the Q of the rod) was obtained by solving
the equation

(r = cosh AlneM,
QMg

in which r is the ratio of ovtput with crystals together to output with

specimen attached, ls is the length of rod, M, the mass of either crystal,

M the mass of the rod, and ). the {J of the crystal as determined by reso-

nance response method.

For this equation to apply accurately, the terminating impedance pre-
sented to the rod by the crystals at resonance must be small compared to
the characteristic impedance of the rod, and the ) of the rod should be > 10.
This method may be used even when the total loss in the rod is so high that
well defined resonances no longer exist. At the lower frequencies, however,

-l BUFFER o
INPUT ol =3 Ry
7 AMPLIFIER DETECTOR
CRYSTAL CRYSTAL

DRIVER RECEIVER J_

sinh Al = (13)

AT TEHUATOR

Fig. 9—Experimental arrangement for measuring the AE effect and associated loss in
a polycrystalline rod at low frequencies.

a useful check may be made by the resonance response method of determin-
ing ( which involves determining the frequency separation Af for two fre-
quencies 3 db from the maximum response frequency, and using the formula

fhu.f
Q= af (14)
Correction for the mass and dissipation of the piezoelectric crystals must of
course be made. Both methods have been found to agree within about 1097
~the probable error to be expected.

The Appendix lists formulae to be used when the resonance frequency of
the crystal driver differs from the frequency at which phase balance is ob-
tained. This condition of necessity occurred when the rods were subjected
to a magnetic field, which caused an increase in the velocity of propagation.

Figure 10 shows a typical measurement of change in frequency and
change in decrement with magnetizing field excited in a solenoid surround-
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ing the nickel rod. Saturation is not quite obtained so that the AF effect
measured is slightly lower than the true value, but for relative frequency
comparisons this is not important.

The first rod measured was 0.320 cm in diameter and 10.16 cm long and
was annealed at 1100°C. Five frequencies ranging from 22.5 kilocycles were

o144
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Fig. 10—Typical change in velocity and decrement of a polycrystalline rod as a func-
tion of the magnetizing field.
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Fig. 11—Fractional change in Young's modulus, and the decrement, plotted as a fune-
tion of frequency for rod No. 1.

used and the ratio of the change in Young's modulus to the value of Young's
modulus for the demagnetized rod is shown plotted in Fig. 11. This figure
shows also the decrement § = =/(. Tt is obvious that the decrement even-
tually decreases as the frequency rises, and this is contrary to the simple
theory of the micro-eddy-current effect,” which indicates that the decrement
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chould increase linearly with the frequency. The indicated maximum for this
rod is below 120 kilocycles.

In order to obtain the first part of the decrement vs frequency curve, a
rod of 46.05 cm length and 0.637 cm diameter was next used, This rod was
annealed at 1050°C and presumably has a smaller average domain size than
the first one, so that the important variations occur in a more favorable
frequency range.

The changes in elastic constant and the decrement for this rod are shown
by Fig. 12 for frequencies from 5 kilocycles to 96 kilocycles. At the lower
frequencies the decrement increases in proportion to the frequency in
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Fig. 12—Fractional change in Young's modulus, and the decrement, plotted as a
function of frequency for rod No, 2.
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agreement with the simple theory. By extending this curve down to zero
irequency it is seen that a micro-hysteresis effect (which is independent of
the frequency) gives an initial decrement of about 0.010. The decrement
rises to an indicated maximum at somewhat more than 100 kilocycles and
the change in elastic constant with saturation decreases with [requency.

The data on these two rods taken together indicate that there is a fre-
quency of maximum decrement and for frequencies above and below this
the decrement is smaller. The AE change in the elastic constant decreases
as the frequency increases and for very high Irequencies the AE effect be-
comes very small. As shown by the discussion in the next section, the fre-
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quency of the maximum value of & and the initial slope of the dzcrement
frequency curve are connected with definite domain sizes which can be
calculated approximately and compared with magnetic domain powder
patterns.

IscussioN

Our determinations of the elastic comsfanis may be discussed in relation to
the values obtained by others. The results reported by Honda and Shira-
kawa' and Yamamoto" were unknown to us and unavailable at the time of
our preliminary communication. The data of the Japanese, converted from
s-constants to ¢-constants by the relations:

— su + fn

- l:j + Sufie — EE:I

e =i (15)
= Ii‘l + Sufiz — 11:;

Gy = '!.llu'rl.u

are included with our data in Table IT.

As our experiments show, the 10 me pulses that we used are so rapid that
micro-eddy-currents largely prevent the stress-induced changes in mag-
netization from penetrating the domains. Therefore the constants deter-
mined by this method are those for material almost saturated. The values
at saturation are independent of the initial domain distribution, and of the
ease with which the magnetization in the separate domains can be changed
by stress, consequently they are the more fundamental elastic constants of
the material. The variety of values for unmagnetized nickel is made evident
from the scatter in the ratios of AE/E that have been reported.? The varia-
tion in the values of the e-constants recently published is thus not surprising.
The values at saturation of the three crystals examined by us are in sub-
stantial agreement, as shown in Table IT. They cannot be compared directly
with the results of the Japanese workers because the latter reported data
for unmagnetized crystals only and then E is sensitive to heat treatment
and domain configuration,

As mentioned in the introduction, the damping of elastic vibrations by
micro-eddy-currents is proportional to the frequency at low frequencies
{(Eq. 1) and it rises with frequency to a maximum and then declines toward
zero. The frequency at which the maximum occurs has been calculated!
by using the equation of domain wall motion and evaluating the constants
from the initial permeability and the power loss caused by domain wall
motion. The maximum value of § comes at the same value as that calculated
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for eddy current losses in sheets having the same thickness as the domain,
namely

Pugfa/R = 0,13 (16)

! being the thickness of the sheet, po the initial permeability, and R the
resistivity of the material (all in c.g.s. units).

As noted below, the domain sizes calculated from the initial slope of the

§vs f curve of Fig. 12, and from the frequency at which the maximum decre-
 ment occurs, are respectively 0.035 mm and 0.045 mm (for plates). These
values agree quite well. The decrement curve is broader than would be cal-
culated from equation (1) for a single domain size. This agrees with the
optical measurements of domain size by Williams,* which are shown by
Fig. 13. This indicates domain sizes from 0.01 to 0.2 mm.

The maxzimum wvalue for the decrement calculated from equation (1),
using the measured values, iz 0.35 compared to the observed value of 0.11.
Part of this is due to the broadening of the peak caused by a distribution
of domain sizes, but part may also be due to the deviation of the actual
domain shape from a sheet which has been assumed in making the cal-
culations.

The calculations of domain size are made in more detail as follows:

According to Diring? the change in Young's modulus for nickel contain-

ing only small internal strains is related to the initial permeability, ps,
as follows:

AE . :'l:ll. (o — I}E.,|: Stae ]‘ (18)

E, Swl; e — 62+ dou

provided the averaging over all crystallites is carried out with constant
strain. (If constant stress is assumed, the fraction in brackets, equal to
1.76, is omitted.) For nickel Ay is 25 ¥ 1079, 1, is 484, and the ¢'s are the
elastic constants given in Table I. This equation holds for low frequencies
at which the shielding in single domains is negligibly small. When the re-
laxation effect of domain wall motion is considered! equation (18) has to be
multiplied by the factor

/(1 + f*/fs) (19)
The data of Fig. 12 give the values:

Ey= 1.83 % 10%, E,= 222 ¥ 10% d}rnm,fcm*,%ﬁ =0.21 (20}

for low frequencies. Using these in the above equation, the calculated value
of o is 320, A direct measurement® of w, has heen made for this rod and
found to be 340, in good agreement with that deduced from the AE effect.

* Measurements were made independently by Miss M. Goerlz and Mr, P, P, Ciofli
in order to check this unusually high value.
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Since the permeability is much higher than can be accounted for by
domain rotation it is obvious that domain boundary motion is occurring.
Hence in determining the domain sizes from the slope of the decrement vs

Fig. 13—Photograph of domains in a single nickel crystal (after Williams), Field of
view, 0.5 mm,

frequency curve, equations (1) and (2) for domain boundary motion are
appropriate,

When the data of Fig. 12 are extrapolated to zero frequency it appears
that there is a microhysteresis loss (which is independent of the frequency)
giving a decrement of 0.01. The initial slope of the &; vs f curve is then about



