Relay Armature Rebound Analysis

BY ERIC EDEN SUMNER
(Manuseript received Oectober 25, 1951)

Rebound of mechanical structures subsequent lo impinging on stops gen-
erally has deleterious effects on their performance and should, therefore, be
minimized. A considerable reduction in rebound can often be obtained by
introducing additional degrees of freedom to the structure.

A mathematical treatise of the dynamics of rebound motion of systems
representing idealized relay armatures is presented. Normalized differential
equations of motion and their solutions for the “free” and “impact” inter-
vals are derived for systems having one, two, and three degrees of freedom,
allowing the rebound behavior of a specific system to be calculated. The equa-
tions of series of rebounds, and possible combinations of such series are con-
sidered next for systems having one and two degrees of freedom. The field of
posstble rebound maxima is mapped for a practical range of mass distribu-
tion constants, coefficients of restitution, and force ratios. A sufficiently broad
optimum design region 1s indicated.

The results of this analysis have been checked closely on a model and have
led to appreciable reduction of armature rebound in relay designs.

I. INTRODUCTION

In numerous types of mechanisms it is desirable to arrest the motion
of a member at a particular point and to maintain it in this position.
One of the simplest means of accomplishing this is to allow the moving
member to impinge on a fixed member (stop) and to provide forces to
tension it against this stop. Because the member to be arrested possesses
kinetic energy and because the stop cannot generally absorb all of this
energy, the moving member will rebound from the stop. The rebound
motion generally deteriorates the performance of the mechanism and
should be minimized.

Investigation of this phenomenon has been stimulated by the armature
rebound problem in relay operation, where rebound from the front stop*
tends to reclose contacts and must therefore be compensated for by
additional (waste) travel, resulting in deleterious effects on speed and

* Among relay designers the front stop has been generally referred to as ““back-
stop’’. In this paper the terms front stop and heel stop have been used through-
out for easier identification.

172



RELAY ARMATURE REBOUND ANALYSIS 173

magnetic characteristics. Analysis in this paper will be directed towards
relay armature systems, but it is also applicable to rebound in similar
mechanisms.

II. STATEMENT OF PROBLEM

Analysis will be restricted to planar motion of armature systems
having one, two, and three degrees of freedom as depicted in Figs. 1,
2, and 3. Generally one stop must be provided for each degree of free-
dom, although in the three-degree-of-freedom system of Fig. 3, two of
the stops have been combined.

Applied forces F1, Fy, F;, have been chosen so as to be most easily
correlated with actual relay designs.

The initial condition in all cases will be a pure rotation about the
“heel” just prior to a “zero” impact at the “front” of the armature.
The “zero” impact will be followed by rebound motion and impacts at
the various stops eventually bringing the armature to rest. The object
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will be to minimize rebound motion at the front, since this is usually
near the point actuating the relay contacts.

The basic problem is then to find the response of the armature subject
to aperiodic but well defined impulses, which are functions of the
positions and velocities of the system.

III. ASSUMPTIONS

In order to facilitate the solution of this problem, the following
modifying assumptions are made:

(1) As mentioned in the previous section, analysis is restricted to
planar motion.

(2) The armature is assumed to be a rigid body.

(3) Stops are assumed to be very stiff, massless springs capable of
energy absorption during impact with the armature. The associated
coefficient of restitution is assumed constant. Core and stop vibration

are neglected.
(4) The tensioning forces F; , F» , Fy are assumed to be constant forces.

(This is fairly closely true for moderate rebound amplitudes of practical

relay structures.)
(5) All displacements are small relative to the dimensions of the

system and in particular the angular displacement # is sufficiently small
so that

cosf =1

sin @ = @

IV. DERIVATION OF EQUATIONS OF MOTION

The derivation of the equations of motion resolves itself into the
solution of two different types of intervals:

(1) Free Interval: This is the period during which the armature is
not in contact with any of its stops and only the tensioning forces are
acting.

(2) Impact Interval: During such intervals the armature is in contact
with at least one of the stops. The stiffness of the latter is assumed so
high that the tensioning forces during this interval may be neglected.

The three-degree-of-freedom case will be considered first and the
others subsequently deduced from it by allowing some of the constants
to approach zero.
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A. Free Interval

The motion of the armature will be described by the displacement at
the stop points: x;, 23, 23 .* Let m be the mass and R the radius of
gyration of the armature about the center of gravity. The latter is
located by the dimensions (R, &R, and &R relative to the stop points,

e., the points on the armature which contact the stops in the rest
position (Fig. 3).

The equations of motion are derived in Appendix I and are put into

dimensionless form:
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W, Y, Yo, are the initial velocities and yw , Y, ¥ the initial dis-
placements for the free interval in question.

The equations of motion for a two-degree-of-freedom system are
obtained, if F3 = 0. Then for the two coordinates of interest:

[Cn + Crl (P):I (£) + y"m (t") + o
I _rANT
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3 [CE[ + Ca (ﬁ)] (é_) + 20 (;) + i

A summary of all notations used in this paper is given in Appendix IV.

n
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For a one-degree-of-freedom system s = Cu + Cn (%’) = 0, whence
1

1 NN t
h = 5 |:Cu - C—zz—:l (}) + Tho (;) + ?jm} (5)

B. Impact Interval

The change of velocity at point “4”” due to an impact at “i” is, by
definition of the coefficient of restitution “k”,

A:iil = — (1 + k;):ﬂ‘

It is assumed here that the action of the stops are true impacts, i.e.,
the changes in velocity take place while there is negligible motion of the
body. The velocity changes then occur as instantaneous rotation about
the conjugate axis, leading to the general relation for an impact at
point “2”’:

Yion = Yieta— + Kilietn) (6)

The first subscript indicates the coordinate, the second subscript
indicates the beginning (0) or the end (e) of the free interval described

by the third subscript. The impact transfer coefficient K relating a
velocity change at point “7”’ to an impact at point “2”:

Kj = — % 1+ k) (7)

Equations (1) through (7) allow any one specific case to be mapped,
if the mass distribution and force ratio are known. A sample of such
mapping of rebound motion for a rectangular two-degree-of-freedom

armature appears in Fig. 4.

V. ANALYSIS OF REBOUND PATTERN—ONE-DEGREE-OF-FREEDOM SYSTEM

The rebound pattern for the one-degree-of-freedom system—as de-
rived in Appendix II—consists of an infinite series of parabolic arcs of
diminishing amplitudes. The structure comes to rest after a finite time
interval. The maximum rebound occurs during the first bounce and
equals

k!
Y = 20 (8)
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where
_ o Ch
C - C‘11 ‘6,; (9)
The system returns to rest at
i 2
r C =k (10)

VI. ANALYSIS OF REBOUND PATTERN —TWO-DEGREE-OF-FREEDOM SYSTEM

The reason for choosing a two-degree-of-freedom system over a one-
degree-of-freedom system would be, in keeping with the philosophy of
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this treatment, to reduce Y, , the greatest excursion at the front. In
order to simplify mapping, this maximum excursion will be expressed
as 2CY, , the ratio of Y, to ¥ as given by Equation (8) for the case of
Lk = 1. Thus 2CY; is the ratio of the greatest excursion of the two-
degree-of-freedom system under consideration to the greatest excursion
of the corresponding perfectly elastic one-degree-of freedom system.

We first introduce two basic constants which are functions of the mass
distribution relative to the stop locations:

2
C

il (11)

M;i; =
This constant represents a mechanical coupling coefficient. As
M.; = M;;, the two-degree-of-freedom system under consideration here
has only one such non-trivial constant M., .
The second constant represents a force transformation factor from the
“3” coordinate to the “2”" coordinate:
P, = g_ (12)
In the analysis of the two-degree-of-freedom system only Py, is important.
If there is to be any heel motion, the ““zero” impact at the front must
impart a positive velocity to the heel. By Equations (6), (7), and (12),
this requires that Py be negative, which in turn implies that 4 > 1.
For the limiting case of 4z = 1, Py, = My = 0 and no coupling exists
between the heel and the front. Physically this means that the two
stops are the centers of percussion of each other and the system will
act as a simple hinge.
With the above foundation, it is possible to analyze the patterns of
motion and maximum rebound amplitudes. )

A. Motion Immediately Following * Zero” Impact

After the “zero” impact at the front, both front and heel will lift off
in accordance with impact Equation (6) and continue to move in ac-
cordance with the free interval Equations (4). Whether the next impact
occurs at the front or the heel depends on their respective periods,
thand i :

Py
1 ==
w_ T m (13)
e 1+ Pef 1+ k&
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where:

A large value of &/f will result in a series of heel impacts and the
heel will come to rest while the front is still displaced from the stop.
This will be called a complete heel series. A small value of #/t, results in
a similar complete front series. If t,/f is near unity, a limited number of
impacts on one end are followed by an impact on the other end, etc.
An analysis of front and heel series follows:

B. Front Series

If t/t, < 1 a series of front impacts occurs. The impact velocities at
the front are

Yin = ]'J k: kg’ T, K" (14)
The corresponding time intervals are
_ 2k 2k 2k -
o= a0 (15)
where
4 = ((:'11 + Clzf)
During this time, the heel velocity and displacement are given by
. . 2B
Y20tnt1) = Yoon + [Z - Pu(l + ]\'-1):|'!jiun
(16)

«
4

Yooty = Yoon + I:A Yin + ?)zun:lg]mn

where
B = Cy + Cyuf

The velocity and displacement at the heel after a given number of front
impacts are obtained by a summation of Equations (16). For a com-
plete front series n — =, and

_ 2!\,‘1 B}.’l
e = ey 4 P

. 1 [2Br
Jom = © -[;}1 b— Pl + Au):‘

(17
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In addition it is useful to set down energy equations in order to
simplify evaluation of greatest rebound for the various groups of re-
bound patterns. The kinetic energy function 7' is evaluated in Appendix
I. A potential energy term V—the work done against Fy and F; from the
equilibrium position—is introduced. If T, is the total energy of the
system prior to the “zero” impact, then

T+V='2+%gz—2M”yg
T, TP T Pl T @18)
—2C(n + fy2)

The energy loss due to n front impacts is

T n .
o (TEY) = a - i) - it (19
0
For a complete front series n — «, and
—A (T; V) = (1 — Mwiie (20)
1]
If a complete front series follows the “zero” impact, g10 = 1 and
T
—A( ;— V) = (1 — Myp) (21)
1]

After completion of this “initial” front series, the system maintains
only one degree of freedom (rotation about the front) until a heel
impact occurs. By setting 1 = 11 = % = 0in (21) we obtain the heel
impact approach velocity . = Pu.

Apparently energy loss due to n front impacts is a function of My,
k; , and the approach velocity of the first impact.

C. Heel Series

An analysis similar to the above can be made for partial and com-
plete heel series following the “zero” impact. This is demonstrated in
Appendix III, yielding, for &y = kn*

_ AP12(1 + JTC)Z l:APlz ’{'(1 - ?‘C) _ .]
o = pr—pp | B 1Fk
o _ 14 JcI:ZAPu _kQ - k)
Ve =75 B T TR

* The more general form k; # ki can be obtained as indicated in Appendix IIIL.

(22)
- Mm(]. + }1‘)]
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The energy relationships for heel series are
4 -
—A(T*“)=(1—L?)yﬁg—rfﬁﬂﬁm (23)
Ta Piz
For a complete series n — =, and
—A (T + V) _ M1 — My) .,
Tﬂ P%g yzcﬂ

If a complete heel series follows the ““ zero” impact, 5200 = Pi(l + k1),
and

(24)

T+ V _ _ L \2 =
—A( T ) = My(1 M) (1 + ki) (25)

0

Finally, for the special case where a complete heel series follows an
initial complete front series 420 = P12, and

—a (T ; V) = MMy — 1) (26)

0

It is to be noted that the energy loss due to a partial heel series is a
function of M2, P12, k2, and the approach velocity of the first impact,
but that the equation for a complete heel series does not contain %, .
Finally, a complete initial heel series is a function of only Mi; and k; .

D. Complete Mapping of Problem

Equations (1) through (26) make it possible to completely map the
two-degree-of-freedom rebound problem. The relative maximum ampli-
tude 2CY; and the rebound pattern will be determined.

Examination of the necessary equations, show that 2CY; is in all
cases a function of four parameters: ky, ks, M and Puf. Of these, ks,
enters only if a partial heel series occurs prior to the time of maximum
rebound. If it is assumed that for this limited group of cases k; = &y = £k,
the number of parameters is reduced to three: &, My, Puf.

In Figs. 5 to 10, 2CY, is plotted against Pyf for the most useful range
of 1/8 < My, < 1/25,03 < k < 06and 0 < Ppf < 10.

As Pyf is increased from zero to infinity (corresponding to an increase
in the heel tension 5), the rebound pattern goes through some or all of
five regions. The criterion for location in any one region is based upon
the parameter

P12
"ot _wa+w

= TP & &

(27
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Region I—Complete initial front series for 1 < @ < 1/k. Within this

2
region, if Mi, > Q;M, the maximum rebound occurs during the
1+ Punf
first bounce and
(1 — M)k
207, = X ———— 28
1 ¥ Puf (28)

If the maximum rebound occurs later, it must occur during a com-
plete heel series which follows the initial complete front series. From
Equations (21) and (26)

20Y, = M5 (29)

By comparing Equations (28) and (29), the critical requirement
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for the latter case is that Ppf > (1—# I
12
while the first rebound maximum, shown in solid lines on Figs. 5 to 10,
is always realized, the later rebound given by (29) is an upper limit—
shown in dashed lines—and is not always realized. In the dashed re-
gions, phasing is extremely critical and small variations in the param-
eters may cause large variations in maximum rebound. From an
engineering standpoint these regions are essentially undesirable.
Region IT—Partial initial front series for
' 1 14k

E<Q< [

This region is one of critical phasing, and attention is limited to
special cases leading to maximum rebound. These cases occur when a
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heel impact immediately follows the last front impact of the series.
These cases occur at

1-K
Q= j— . (30)
and lead to rebound amplitudes
20Y, = My + (1 — M) — Mu(l — k™) (31)

In Figs. 5 to 10, these special points are plotted and connected with
straight dotted lines, which therefore indicate upper limits to rebound.
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Region ITI—Partial initial heel series for

1+ k 1+ k
k 1 — k) + Muk(1+ k)

<Q<k(

This is a region of critical phasing, and values were determined only
for the maximum cases, where a front impact just precedes the last
impact of the partial initial heel series. Here:
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and:
20V =1 — (1 — M)A — ) (1 + [k — Mu(l + E)(1 — k")
— Mu(l — Mu)(1 + k) {1 — k™ (33)
k= k" — Mw( + k)1 — k)

Region IV—Complete initial heel series. A complete initial heel series
implies that when the heel has come to rest, the front is still away from
the stop. When the front finally meets its stop, the situation is identical
with that just prior to the zero impact except that the energy content of
the system is lower. The pattern must then repeat with diminished
amplitudes. For this region we recognize two groups of cases. The first
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group is that in which the front velocity is positive at the completion of
the heel series. In that case

2(1 + k)
kQ — k) + Mu(l + k)

(1 + &)

> 9> TR F MakQ T B

and

(1 — Myp)k?
L+ Prnf

For the second group the front velocity is still negative when the heel
comes to rest from which point on the system acts as a one-degree-of-

207, = (34)
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freedom system until the next front impact. The requirement for this
group is that

2(1 + k)
Q> FT =) + Mal + B

and the maximum rebound is given by
20Y, = My —(1 — Mu)l(1 — &) + Mn(l + k)’ (35)

It is to be noted that in the upper part of Group 1 the amplitude in-
creases with successive heel impacts. This can be explored through the
use of Equation (22). For simplicity of mapping, however, the limit
given by Equation (35) has been extended back from the lower boundary
of Group 2 until it intersects the line marking the first rebound ampli-
tude of Group 1.

In Figs. 5 to 10 the respective regions have been identified by means
of the symbols indicated below:

Region I from Ppf =0 to ©
Region II from © to A
Region ITI from A to X
Region IV, Group 1 from X toO
Region IV, Group 2 from O to Pyf —

E. Discussion of Rebound Charts

Aside from quantitative data contained in Figs. 5 to 10, the following
general trends are of interest:

For values of My, > 1, and the values of & under consideration, most
of the useful range of Py.f involves critical phasing and the rebound
maxima are relatively high.

For values of ¥ < My < 1, consistently controllable rebound ampli-

tude may be obtained.
For values of My» < % rebound increases again and the structure

approaches the one-degree-of-freedom case.

VII. ANALYSIS OF REBOUND PATTERNS—THREE-DEGREES-OF-FREEDOM
SYSTEM

Rebound pattern analysis as in Parts V and VI has so far not_been
performed for the three-degree-of-freedom system, partly because of
- complexity, and partly because for the system of Fig. 3 friction at the
hinging stop will greatly influence the motion.
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However, it is felt that the approach and notation of the analysis
presented here is sufficiently general to allow extension of the rebound
pattern analysis to the three-degree-of-freedom case. At any rate, with
the assumption of the magnitudes of frictional forces, the basic equations
of Part IV may be used to plot any particular case.

VIII. ARMATURE REBOUND MODEL

In order to verify the formal analysis presented in Parts IIT, IV and
V, a large model of a two-degree-of-freedom system was constructed.
It consisted essentially of a large bar constrained to move in a plane,
biased against two stops, and to the ends of which writing pens were
attached. As rebound conditions were simulated by releasing the bar
against its stops, chart paper moved at right angles to the bar motion
and thus produced a record of end displacement versus time.

By changing spring members and attaching masses to the bar, it was
possible to vary the mass distribution and the biasing forces.

The results obtained closely agreed with those suggested by the
analysis. The maximum rebound amplitudes were generally somewhat
lower probably due to frictional effects.

IX. RELAY DESIGN CRITERIA RESULTING FROM ARMATURE REBOUND
ANALYSIS

A. Limatation of Analysis

The assumptions which this analysis is subject to have been described
under Part IT. As applied to relays and probably the majority of mechani-
cal structures, one assumption is most frequently and severely violated.
The stops, which have been assumed to be stiff springs associated with a
definite coefficient of restitution are, in practice, massive bodies which
dissipate energy through excitation of high frequency modes of vibration.
Accordingly, the assumption that the stops are at rest is violated,
particularly if the mechanism is subject to repetitive (pulsing) im-
pacts and the stop vibration does not decay greatly in the repetition
period.

However, mechanisms designed in accordance with this analysis have
performed well even under moderate pulsing conditions if the sensitive
phasing region was avoided. In addition, every effort should be made to
reduce the amount and duration of stop and mounting structure vibra-
tion by making them stiff, massive, and dissipative, if possible.
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B. Design Criteria

1. Type of Armature Structure.

The selection of the number of degrees-of-freedom for an armature
structure depends on the expected coefficient of rebound as well as
practical considerations.

It can be shown without great difficulty that for very low coefficients
of rebound the one-degree-of-freedom system is preferable. This is quite
obvious when one considers the limiting value of & = 0. In this case the
one-degree-of-freedom system will have no rebound whatsoever, while
the two-degree-of-freedom system has a heel bounce followed by re-
bound at the front. The value of k below which the one degree system is
preferable varies with the mass distribution relative to the stop points,
being 0.18 for a rectangular plate armature with stops located at its
edges. ’

Experience indicates that & in most practical relays and similar
mechanical structures varies from 0.3 to 0.6. Hence the two-degree-of-
freedom system is superior in all practical cases to the solidly hinged
armature.

As far as three and higher degree-of-freedom systems are concerned,
it may be said that generally the greater the number of modes resulting
in impacts, the quicker the rebound energy can be diverted and dis-
sipated and the lower theoretical rebound values can be obtained. This
consideration would favor systems containing many degrees of freedom.
However, while multi-degree-of-freedom systems can reach very low
rebound values, their motion (phasing) must be very closely controlled
or they may prove to be inferior to simpler systems particularly under
vibratory (pulsing) operation. It is this difficulty which makes it appear
that the two-degree-of-freedom system offers the best promise with the
three-degree system also quite promising. By the same reasoning,
additional spurious rocking modes should be minimized.

2. Armature Mass.

The armature mass should be as low as possible. This will minimize
stop and structure vibration. In addition, in relay applications light
armatures tend to increase magnetic “drag” losses of the armature
during the release motion.

3. Stops and Mounting Structure.

As discussed before, it is desirable to reduce the amount and duration
of stop and mounting structure vibration.

4. Coefficient of Restitution.

The coefficient of restitution should be kept low. Stops having low
stiffness should, therefore, be avoided.
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5. Biasing Forces.

F'y should be kept as high as practicable.

For proper energy loss during impacts, the motion between impacts
must occur outside the region of the compression, i.e., the armature
and stop must separate. Therefore, because all practical stops have a
finite stiffness, the biasing forces (Fy, Fy, ete.) should produce a static
deflection less than say, arbitrarily, 5 per cent of the maximum expected
rebound amplitude.

6. Design Parameters for Two-Degree-of-Freedom Systems.

As clearly indicated in Figs. 5 to 10 for the practical range of coef-
ficients of restitution, most consistently good results are obtained with a
coupling factor My = % to {. This factor is most easily adjusted by
correct placement of the front stop.

For the above range of M, the force ratio //F; should be such as to
make the product

P12_‘>4 Mu=

.

>3 ]‘f]z:‘é‘
>3 Mp =3

(Note: For a rectangular armature structure with the stops placed at
its edges My, = §, Piz = % and force ratios in the neighborhood of 8 are
desirable.)
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ArrenDIX I

DERIVATION OF BASIC EQUATIONS OF MOTION THREE-DEGREE-OF-FREEDOM
SYSTEM

(1) Free Interval

The motion of the armature will be deseribed by the displacement at
the stop points, x; , 22, 23 . Let m be the mass and R the radius of gyra-
tion of the armature about the center of gravity. The latter is located
by the dimensions 4R, LR, and R relative to the stop points (Fig. 3).
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The rotation and displacement of the center of gravity is then

—_ _— Fa
z, = (2 — 1) it [,2+ T3
T, = 21 + (X2 — m1) i _!;1_ A v (a)
0 = Xy — 11
T R+ B)

From this the kinetic energy may be computed
T = ym(iy + %) + imR%6°

_ #0845+ #E G+ D + sk + o)
206 + 12)? (b)

2inds(lly — 03 — 1) — 2as6(6 + £) (& — 3)
2(6 + &)

Applying LaGrange’s Equation to the above, the equations of motion

are obtained:
d (ﬁ) _T _ p
dt\ag./ 9q.

Fi _ s + 6+ 1) + &6l — 65 — 1] — &h(h 4 &)

+

m (fh + B)?

Fp _ il — f5 — 1) + &ll1 + 65 + 1] + #b(h + 6) ©
m (6 + &)

Fy _ —ial(h + B) + @b + &) + &6 + &)’

m @ + &y

The Equations (3) may be solved for i, &, #3 and the results inte~
grated, yielding

T = 21;1 [CuFy + CuFy + CuFalt + dut + zw

Ty = %} [CuFy + Cly 4 CosFa)t* + do + 220 (d)

Ty = .«‘2_17?_?, [CouFy + CoFs + CuF3lt* + Exl + T
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where
Cu=+1) Cu=Ca=5b
Co=(34+1) Co=0Cu=(1— 4 (3)
Cu=(3+1) Cu=Cn= —hbi

10, T, T30 are the initial velocities, 21, T2 , @3 the initial displace-
ments for the free interval in question. Interpretation of the analytic
results is simplified by the introduction of normalization. Let &, be
just before the “zero” impact and define

T Fl . d T
.Tji=:&_ﬂ=$737—na:; y;=d(t_)ya=x.—ﬂ
T (2)
T=:E:,,m
F,

Dividing Equations (d) by #.r yields the normalized equations of
motion:

1 F. F. 2
nh = ﬁl:cu + Cr EF% + Cxag 3;_ (é) + '.'}m( ) + 2w
_1 (Fy) (Fy)] (t)* . (t)
Ya = §|:Cm+ CH(F) +Czsﬁ_ . + Y2 . + Y f (1)
oo 1 () (F3) ] t)2 . z)
Ys E[Cal + Cop—~ (Fl) + Cy Fn. ; + 7 ; + ¥ )
(2) I'mpact Interval
The change of velocity at point “7”’ due to an impact at “7”’ is, by
definition of the coefficient of 1est1tut10n B Vi
Ad; = —(1 + k)i (e)

Since this velocity change occurs as rotation about the conjugate
point as an instant center of rotation, the impact relationships may
be written, for an impact at point “17,

Ady = — (1 + k)in

R
(¢ - o)
Ads = —(1 + ka2 72

(ﬁR + E)
i

Il
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=u+mm%%ﬁ?— gu+hm
£
Aty = —(1 — k) R
GR + =
h
= —(1+ kx)ﬂhf f:-fal) = %E: (1 4 ko)

Similarly it can be shown that impacts at points (2) and (3) follow
the same pattern. The general impact relations for impact at point “z”’
are then

Yion = Yietat) T Kiilietn1) (6)

The first subscript indicates the coordinate, and the second subscript
indicates the beginning (0) or end (e) of the free interval denoted by the
third subseript.

The impact transfer coefficient Kj; relating a velocity change at
point “7” to an impact at point “2’’:

&=—gu+m )

AppenDIX II
ANALYSIS OF REBOUND PATTERNS—ONE-DEGREE-OF-FREEDOM SYSTEM

The equation of motion of this system is

Y = 3C° + Y’ + Yoon (f
where
2
C=Cu—% ©
ot
.

and is measured from the start of the particular interval of free motion
in question. The impact relationship is
thon = — ket

The motion consists of a series of parabolic ares having periods of
2w/C in general, or 2/C, 2k/C, 2K*/C, - -+, 2k"™/C. The time elapsed
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is a convergent series and approaches, for a complete series:

.2 T 2
ImGUHE+E+ - Wl = g
The maximum rebound amplitude in any interval is —i3./2C.

The maximum excursion occurs during the first bounce at ¢/ = 1/C and
equals —k*/2C.

(10)

9

ArpenpIx III
ANALYSIS OF REBOUND PATTERNS—TWO-DEGREE-OF-FREEDOM SYSTEM

The equations of motion of this system are
h = %Aiﬂ + Y1nt’ + Y10

Y2 = 3BU* + Gaonl’ + Yoon | ®
where A = Cy + Chof
B = Cu + Caf
. (h)
Fl
, _ ¢ measured from the start of the par-
7 ticular free interval in question. )
A. Complete Front Series
At the beginning of a front series
=20 ]
= Q)
Y2 = H2e0
g2 = the |

In a manner analogous to that for the one-degree-of-freedom system
each front impact reduces ¢; to —kiy: . Therefore, after the ntt impaet,

Yion = "']‘:Ilglco
and the time elapsed in the nt" interval is

2ky . .
Tn = ‘A—l Y1e0 (])
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At the heel, from (g), the heel velocity preceding the ntt impact is
Y2e(n—1) = Y20(n—1) + Bt (k)

The velocity change during the (n — 1) interval is then equal to
BT._: . From Equations (6), (7) and (12), the change in velocity during
the nt® impact is — P(1 + Tk 1e0 -

The total change of 9 between impacts is then

Yoon — Yoy = BTna — Pl + k)kT e
Similarly in preceding intervals:
Tty — Yoon—zy = BTz — Pra(l + k) kL™ g1

Yooz — T = BT, — Pu(l + )k

e - Y2e0 = — Pu(l + kg
By addition of the above
n—1
Yoon — Y20 = le Tw — Pu(l + k) Z k1100
2B n=—1 n—1

A Y1eo E kT — P(l + kl)ym Z k™

The summations may be evaluated, yielding

2B ky — ki — kT
Yoon — Y2e0 = [A fC11 T Pu(l + k;) ]ylw 4))

To evaluate the displacements at the heel, Equation (g) yields
Yaon — Yooty = Yoon Lo + 1BT. %

Adding these expressions for intervals 0 to n; the total change in ¥, is

n—1 n—1

Yoon — Yo = Z Yoalm + 5B E T2

m=1
25 (1 — kﬂ"l
- c—;l((l__—kll)_) 108200
+ |:2-B(}c1 — 2]{:"“‘ + k:")
A1 — k)?
2Pula(l — b — K7+ K" o
S A(l — ky)? Y10

(m)
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Expressions for an initial series may be obtained by setting 1.0 = 1
P20 = Yoo = 0, and, finally, for an initial complete series m — = and
hence k™ — 0, and Equations (1) and (m) become

v 2k [1& _p :I
Ve = T+l L4 12

. _ 1 [23]\71
Yoo = 1 — ]C[ A

a7
— Pull + k)|

B. Complete Heel Series

For heel series, Equations (1) and (m) may be used by interchanging
the initial velocities, accelerations, and impact transfer coefficients for
those relating to heel motion:

i — e = [% ke — ks Myl 4+ k) 1 — ’C;}’, ()
Y1on Y1e0 B1-rh Pr 1= kg :ljﬂeo
2ky(1 — k27h ..
Mon — Y = m Y10l 200
. (0)

" [2A(J‘cz =2k + K 2Muk(l — RS — kTN 4 kzn_l)]
B (1 = k) BPy(1 — k2) Y20

An initial heel series occurs when the heel strikes first after the * zero”
impact. The first heel impact then occurs Ty = 2Pwn/B(1 + ki) after
the zero impact and the initial conditions are

?]m = Pu(l + 11\'1)
_APlr.

P = —I +AT1 = (1 + A) — I

2P
B

(1 + k) [Aglz

ha = ““]ﬁlTl + %ATE = (1 + k1) - .ri)[:|

Substitution of the above into (n) yields

v 2 2 n n
i = h+if§[§iu—m4mu+@u—mﬂ(m

The corresponding expression for i, is quite involved. For the special
case of b = ki = ke



198 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1952

APu(1 + k) [AP_12 (1 — k“)"' _ k(1 — &)

thon = B —B 1— &k 1 — k2
M1 —k )k — k )]
(1 — k)
If the initial series is a complete series, n — « and

_APu(L 4 B [APy k(1 — k) _ ]
Yo = Bl — k) B 1+ Mok -
14 k[24P. k(L — k) _ ]
Y1ewo = 1 = ]\7|: B (1 + ]a M12(1 + ]")

C. Partial Front Series

The worst rebound occurs when heel and front impacts occur nearly
simultaneously, with the front hitting first. From Equation (m) for an
initial front series, this requires that

B 1—-F%

I.P—L;=Q=’—_G—]G“ (30)

After n front impacts conditions are given by Equations (14) and
(19) with 1 = 32 = 0, and

r+V —_ _ _ __gmy _ 10n Mmyg = 2M12k"g2
FL =1 - (= M1 - ) = B+ uk

This may be solved for 9, = Pp(l — k"). The maximum front excur-
sion now possible is that for a complete series of heel impacts. The
above value of 7. in Equation (24) yields

20Y, = My + (1 — M) — Mp(l — k") (31)

D. Partial Heel Series

The worst rebound occurs again when heel and front impacts occur
nearly simultaneously, with the front hitting first. From Equation (9)
for an initial heel series, this requires that

B 1 — kTt

. = Q
APy D) -
1 + k + k(]_ —k )Ml2

(32)
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After n heel impacts . = Pwp(l 4+ k)k" and from Equations (19)
and (23)

E%Y =1— (1= M)l =) — Mu(l — Mu)(1 4+ £)*(1 — &™)
0

= g1 — 2Mu(1 + k)K" 4+ Ml + k)%™

This may be solved for 1 = £ — Mw(l + k)(1 — k") and after the
front impact immediately following:

?}2 = Pu(]. + ’\7)]\3" - P[g(l + A')[k - 11[12(1 + k)(l - kn)]

The maximum front excursion now possible is that for a complete
series of heel impacts. The above value for 5. in Equation (24) yields

20V, = 1 — (1 — Myu)(1 — {1 + [k — Mu(l + k(1 — k"))
— My(l — M) + k) {1 — K (33)
+ [k — k" — Mu( + k)(1 — k"))

Arpenpix IV

SUMMARY OF NOTATION
A = Cn + Cnr + Cnf
B = Cp = Cn + Caf
_ Ch

Ca
Cu=14+6F Cuo=Cu=[l— 4]
Co=14+10 Cy = Cyn = his

Q
I

011

Ca=1+16G Cn=Ciu—bbk

F; = front tensioning force
F, = heel tensioning force
k, = coefficient of restitution at vertical front stop

ks = coefficient of restitution at vertical heel stop
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K = =g (1 + k)
R = vertical front stop location relative to c.g.
(R = vertical heel stop location relative to c.g.
R = horizontal heel stop location relative to c.g.
m = mass of armature
2
Mo = g
P

Q=1+ﬂﬁ’=t_11+lc1

14+ Pef & Ik
R = radius of gyration of armature about center of gravity
;= Tam

F
i = time
= _t.

-
ti = basic period of front after ““zero” impact
f = basic period of heel after ““zero” impact
T. = duration of n** free interval
21 = vertical front displacement
22 = vertical heel displacement
3 = horizontal heel displacement,
i, = front velocity just prior to “zero” impact
y= &

LT

Y, = greatest excursion (rebound) of front



