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This paper offers a general approach to the realizability theory of net-
works with many accessible terminals. The methods developed are applied
to give a complele characterization of all finite passive networks.

I. SUMMARY

1.0 A principal result of this paper is to characterize those matrices
Z(p), funetions of the frequency parameter p, which can be realized as
open-circuit impedance matrices of finite passive networks. This char-
acterization is provided by the following theorem:

1.1 Theorem:* Let Z(p) be an n X n matrix whose elements are Z,,(p),
1 < r, s < n, where
(i) Each Z,(p) is a rational function

(ii) Z,,.(:rﬁ = Z,(p) (the bar denotes complex conjugate)
(iii) Z..(p) = Zu(p)

(iv) For each set of real constants &, , --- , k. , the function
<P/(P) = Z er(p)ll'r""s
r.s=1

has a non-negative real part whenever Re(p) > 0.
Then there exists a finite passive network, a 2n-pole, which has the
impedance matrix Z(p).

* 1’1‘(%5;11][e:l to the American Mathematical Society, April 17, 1948. Abstract
260, Bulletin of the A.M.S. No. 54, July, 1948.
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Conversely, if a finite passive 2n-pole has an impedance matrix Z(p),
that matrix has the properties (i), (i), (i), (iv).

A formally identical dual theorem holds for open-circuit admittance
matrices Y(p).

1.2 A general realizability theorem, applicable to and characterizing
completely all finite passive networks, whether having impedance ma-
trices or not, is also proved.

1.3 An effort is made to lay a foundation adequate for the realizability
theory of both active and passive multi-terminal devices. To this end,
a large part of the paper is devoted to the serutiny of fundamental
properties of networks.

II. INTRODUCTION AND FOREWORD

2.0 Network theory provides direct means for associating with an
electrical network a mathematical description which characterizes the
behavior of that network. Typically, this results in shifting engineering
attention from a detailed, possibly quite intricate, electrical structure
to a mathematical entity which succinetly describes the relevant be-
havior of that structure. An essential feature of this shift in focus is
emphasized by the word “relevant”: only those terminals of the net-
work which are directly relevant to the problem at hand are considered
in the mathematical description. Design work can then be done in
terms of constructs relating explicitly to these accessible terminals, the
effect of the internal structure being felt only by implication.

The physical origins of these mathematical constructs, and the im-
plications of the internal structure upon them, cannot however be en-
tirely forgotten, for they have mathematical consequences which are
not always immediately evident. Until he knows these limitations—
imposed upon him by the physical nature or the necessary structural
form of the networks he is designing—a design engineer cannot make
free use of the mathematical tools that network theory has provided.

We give the name “realizability theory” to that part of network
theory which aims at the isolation and understanding of those broad
limitations upon network performance, i.e., upon the mathematical
constructs which describe that performance—which are imposed by
limitations on the network structure. One may also include in the
province of realizability theory some of the converse questions: the
study of those structural features common to all networks whose per-
formance is limited in some specified way.

Realizability theory would have little content were it not that *per-
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formance” here must be construed to mean performance as viewed from
the accessible terminals only. Were all branch currents and node poten-
tials in a network available to observation, a mathematical statement
of performance would be equivalent to stating the full system of dif-
ferential equations governing these quantities, i.e., equivalent to giving
the detailed network diagram.

2.1 With a few important exceptions, the converse kind of problem in
realizability theory does not lead to a strict implication from functional
limitations to structural features, because the field of equivalent struc-
tures for a specified performance is very broad. Typically, it is only by
imposing some general a prior: limitations on structure that further
conclusions can be firmly drawn from a functional limitation. In study-
ing this kind of problem one is rapidly led from those basic issues which
are clearly part of realizability theory toward general, difficult, and
usually unsolved problems of network synthesis. One cannot, and should
not, draw a sharp boundary here, but Nature so far has provided a
fairly definite one for us, in that most of these problems have proved
too difficult of solution.

2.2 The direct realizability problems, the passage from structural prop-
erties to functional properties, have been somewhat more tractable.
Here, again, there is no clear dividing line between general realizability
theory and the sort of design theory in which, for example, one specifies
a particular filter structure depending on a limited number of param-
eters and examines the performance of the structure as a function of
these parameters. There is an extensive literature at or near this latter
level of generality, most of it relating to filters or filter-like structures
(e.g., interstage couplers in amplifiers).

At a more basic level, the limitations on a network’s structure which
are commonly met in practice are of the following kinds:

a. Limitations on the kind of elements appearing, e.g., to passive
networks, networks without coupled coils, networks whose elements
have specified parasitics, ete;

b. Limitations on the general form of the network diagram, e.g., to
ladder or lattice structures, without limitation to a specified number of
elements or parameters.

Here the problems are varied and difficult. We survey briefly the
present status of some of them.

2.3 Networks with two accessible terminals, two-poles, are basic in
network technology. Fortunately, also, two-poles are unique among
networks in that there is always a simple way to describe their perform-
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ance. Except for the trivial limiting case of an open circuit, every two-
pole has a well-defined impedance, Z(p), a function of the complex
frequency parameter p, which describes its performance in a way which
is by now well understood. Dually, except for the limiting case of a
short eircuit, every two-pole has a well-defined admittance funetion
Y (p). Even the limiting cases are tractable: every open circuit has the
admittance function Y(p) = 0 and every short circuit the impedance
function Z(p) = 0.

In other words, by exercising his option to speak in terms either of
impedance or of admittance, one can always describe the performance
of a two-pole by using a single function of frequency.

The descriptive simplicity and practical importance of two-poles led
early to a fairly complete realizability theory for them. In 1924 R. M.
Foster’ gave a function-theoretic characterization of the impedance
functions of finite passive two-poles containing only reactances. The
corresponding problem for two-poles which are not at all limited as to
structure, beyond being finite and passive, was solved by O. Brune® in
1931. The effects of various structural limitations have since been
studied by several writers (cf. Darlington,’ Bott and Duffin"’).

2.4 Technology, and the promptings of conscience, have meanwhile
urged the study of devices with more than two accessible terminals.
Here, however, Nature has been less kind, in that no uniquely simple
method is available for describing the performance of such devices as
viewed from their terminals.

Indeed, basic network theory has been remiss here, in not even mak-
ing available a mode of description which is generally applicable—
whether simple or not.

W. Cauer’ showed that, when one admits ideal transformers among
his network components, it is sufficient to study networks which are
natural and direct generalizations of two-poles, namely, 2n-poles,* for
arbitrary values of n. The corresponding natural generalization of the
impedance function Z(p) of a two-pole is the impedance matrix of a
2n-pole: just as one multiplies a scalar current by a scalar impedance to
get a scalar voltage, one multiplies a vector current by an impedance
matrix to get a vector voltage.

2.41 Not all descriptive difficulties are resolved, however, by consider-
ing 2n-poles and their impedance or admittance matrices. For the
moment, a simple example will suffice to show this: the 2 X 2-pole which
consists simply of one pair of short-circuited terminals and one pair of

* Defined in Cauer,’ and also later here.
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open-circuited terminals is a finite passive 2n-pole (n = 2) which has
neither an impedance matrix nor an admittance matrix.

2.42 When one eliminates this kind of descriptive difficulty by fixing
his attention only upon 2n-poles for which an impedance matrix (or,
dually, an admittance matrix) is available, the general realizability
problem for finite passive devices is solved. A partial solution, for the
case n = 2, was published by C. M. Gewertz' in 1933. The solution
(Theorem 1.1) of the problem for a general value of n has been an-
nounced recently by three authors, independently: Y. Oono," in 1946,*
the present author, in 1948,1 and M. Bayard," in 1949. The problem
for reactive 2n-poles is much simpler and was solved by Cauer,’ in
1931.

2.5 Intermediate between the fairly specific problems of filter theory on
the one hand and the general realizability theory of multi-terminal
devices on the other, lies the study of four-poles as transducers. There
is a considerable literature on the realization of transfer functions or
transfer impedances under various structural limitations. The basic
cnd extensive work of Bode™ on active systems belongs also in this
category since it is avowedly limited to single-loop structures.

2.6 Beyond the important result that, by sufficiently elaborate circum-
ventions, one may avoid the use of transformers in the synthesis of any
two-pole, (Bott and Duffin') little in general is known about networks
which do not have transformers.

2.7 The present paper is an essay in the realizability theory of devices
with many accessible terminals. Ideal transformers are admitted as
network elements; indeed, their use is essential. This fact is indicated
by the adjective “formal” appearing in the title.

The availability of ideal transformers makes it possible to exploit
the simplification noted by Cauer and to consider only networks which
are 2n-poles in his sense. The aim of the paper, therefore, is to set a
foundation for realizability theory which is completely general within
this framework.

2.71 The first problem is that of description. We observed above an
example—entirely trivial—of a passive four-pole which had neither an
impedance nor an admittance matrix. Unfortunately, opportunities

* Date of Japanese publication. This reference, and manuseript of Oono!?. 11,
were sent by Professor Oono in a personal communication to R. L. Dietzold, who
showed them to me in December, 1948, while an early draft of the present paper
was in preparation. The recent (1950) American republication of Oono!® unfor-
tunately omits reference to the original.

t Cf. footnote to 1.1.
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for this kind of degeneracy become manifold in multi-terminal devices,
and some degree of degeneracy is the rule rather than the exception.
Consider an entirely practical example: that of an amplifier chassis from
which the tubes have been removed.* Here the degeneracy is essential
and intrinsic; it would be highly artificial to regard it as the mere acci-
dent of a limiting case. True, given any particular degenerate network,
there is usually evident a method for representing or describing its be-
havior. What is needed, however, is a mode of representation which is
applicable generally to any 2n-pole without a priori knowledge of its
structure or peculiar degeneracies.

272 The mode of representation adopted in this paper, embodied in
the notions of general 2n-pole (Section 4) and linear correspondence
(Section 6), is an obvious one, and so completely general that it solves
no problems other than the elemental one for which it was introduced.
It provides a definite mathematical construct whose properties one can
discuss with mathematical precision. This is all that we ask of it.

Realizability theory begins and ends with the study of these proper-
ties. It would be more accurate to say that the notion of general 2n-pole
describes a particular, but still very large, class of mathematical en-
tities; realizability theory consists in the study of certain subclasses of
the whole class of these entities, the particular subclasses being distin-
guished by special, and to us interesting, properties.

2.73 Despite its avowed aim at generality, the paper is oriented toward
the realizability theory of finite passive networks. It ultimately provides
a proof of 1.1 and indeed a complete characterization of finite passive
2n-poles, however degenerate. This characterization is accomplished in
a sequence of postulates, each one delineating a property of general
2n-poles, i.e., a subclass consisting of all 2n-poles having this property.
The class of 2n-poles having all of these properties is then identified
with the class of 2n-poles obtained from finite passive networks.

974 Tf we have succeeded here in our hope to set an adequate founda-
tion for the realizability theory of devices with many terminals, it will
be because of the nature and organization of the postulates themselves.
They describe what at present seem to be individually significant prop-
erties of 2n-poles, of progressively greater specificity, which in the
aggregate characterize finite passive devices. By eliminating them in
various combinations one obtains larger classes of objects. Further re-

* Tt is exactly this example, and the practical need of an adequate theory for

it, which led the author first to study the realizability theory of passive multi-
terminal devices.
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search alone will tell whether or not one obtains in this way the kinds
of device which are significant. For example, one would like general
realizability theorems for structures containing vacuum tubes with
frequency-independent transconductances, vacuum tubes with non-
ranishing transit times, unilateral devices with specified parasitics, ete.

2.75 Actually, the postulates as we have given them are certainly not
adequate for such an ambitious program. Exigencies of the presentation
have dictated a number of condensations and compromises. It is hoped
that the basic ideas are still evident even if not isolated individually in
separate and entirely independent postulates. In any event, it is the
author’s firm belief that the presentation as given is at least illustrative
of the kind of approach, and the level of mathematical detail, which
will be needed if one is ever to provide a truly adequate realizability
theory: a theory which will cover, for example, the broad range of active
linear systems which present-day technology allows us to consider.

2.8 Apart from the network theoretic concepts, which must be evalu-
ated by their effectiveness in solving problems—an assessment which is
by no means yet complete—this paper is strongly marked by an idio-
syncracy of its author: a consistent and insistent use of geometric ideas
and terminology. This is based on the personal experience that linear
algebra achieves logical unity and a freedom from encumbering notation
when viewed in this way. A general reference covering most of the linear
algebra (geometry) required here is P. R. Halmos’ elegant monograph’.

2.9 TFor a proof solely of 1.1, which has already been three times proved
in the literature,” ' "' this paper provides an apparatus which is too
cumbersome. There is even a sense in which 1.1 alone provides a charac-
terization of all finite passive devices, for it seems to be generally ac-
cepted that, by the use of ideal transformers, any finite passive network
can be represented as a network which has an impedance matrix to
which is adjoined suitable ideal transformers. Therefore we cannot claim
that, in using this cumbrous apparatus to characterize all finite passive
2n-poles (including the degenerate ones), we have offered anything not
already provided by a simpler proof of 1.1.

Three things may be said in rebuttal. First, we have already empha-
sized that the apparatus here exhibited was designed for more problems
than that to which it is here applied. It is presented in the belief that
it will prove of further use.

Second, even in the study of passive networks, it has seemed to the
author helpful to look at the manifold things which are not passive net-
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works. One gets then a clearer view of the unique position occupied by
passive devices among all linear systems.

Third, there is a kind of semantic issue here: the assertion that any
finite passive metwork (sic) can be put in such a form that 1.1 applies
seems to this author to give a kind of circular characterization of such
devices. A characterization which did not itself involve the concept of
a network seems more satisfying. Logically, there is no circle here, but
this is a fact requiring proof. A careful reading of this paper will show
that it provides a proof. This particular subtlety does not of itself justify
the lengths to which we have gone. It is, however, no longer a subtlety
if one wishes to consider devices which do not have a representation in
terms of something non-degenerate to which ideal transformers have
been added.

2.91 The present Part I of the paper is so organized that at the end of
Section 8 the reader is in possession of all of its principal results and its
basic ideas. The remaining Sections, 9 through 20, may then be regarded
as an Appendix containing the details of proofs. Indeed, Part 1I will be
largely devoted to further details of proof, though there will be there
one important idea not mentioned, save casually, in Part I—the idea
of degree for a matrix.

In Sections 4 through 11, technical paragraphs have been distinguished
from explanatory or heuristic ones by starring the paragraph numeral.

Part II of the paper contains the bulk of the proof of 1.1. This proof
is modelled after that of Brune® for the realizability of two-poles. One
familiar with the Brune process will probably find Part II readable
without extensive reference to Part 1.

Let the reader be warned that the Brune process is not a practical
one for realizing networks because of its critical dependence upon a
difficult minimization and balancing operation. The same criticism
applies to the generalized Brune process of Part II.

The Brune process is of theoretical importance because it does realize
a network with the minimum number of reactive elements. These facts
will be brought to light in Part II.

The proofs of Oono' and Bayard' are different from ours. That of
Oono" again follows the Brune model.

III. INTRODUCTION TO PART I

3.0 We keep before us first the problem of finding a mathematical de-
seription applicable to and characterizing the behavior of all finite pas-
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sive networks. Second, we seek to make mathematically precise those
ideas which appear to form the basis of general realizability theory.
Sections 4 through 7 introduce the immediate mathematical machinery
for this. Section 8 states the fundamental realizability theorem and
outlines its proof. At this point the reader has had an introduction to
the results of the paper. The remainder of the paper is then devoted to
the technical details of proof. Beginning with Section 12, the device of
starring the technical passages will be dropped.

3.1 Cauer’ distinguished precisely the class of networks called 2n-poles
from the class of all multi-terminal networks. He also showed that, by
the use of ideal transformers, any multi-terminal network is equivalent
to a network which is a 2n-pole (for some n) in his sense. We shall in
Section 4 define a class of objects to be called general 2n-poles. This
class includes all electrical networks which are 2n-poles in Cauer’s sense.
Its definition abstracts the significant properties isolated by Cauer.

For the study, alone, of finite passive networks, this definition is
unnecessary, since one can in fact so put the arguments as to deal only
with 2n-poles which are finite passive networks, and therefore to deal
only with concepts already defined in Cauer’. The somewhat physical
notion of a general 2n-pole is a convenient backdrop against which to
display the important physical properties of finite passive networks,
and, indeed, of networks in general. Having it available, we use it
throughout the realizability arguments.

IV. DEFINITION OF GENERAL 2n-POLE

4,0* Network theory establishes a correspondence between oriented
linear graphs and systems of differential equations. With each node of
the graph is associated a potential ¥, = FK,(¢) and with each oriented
branch a current [, = I4(f). These potentials and currents are constrained,
first by Krichoff’s laws, and second by differential equations which de-
pend upon the nature of the branches but not upon the topology of the
graph.

4.01* A finite passive network is one whose graph has the following
properties:

(i) There are finitely many nodes, 1, 2, --+ | N,

(ii) There are finitely many branches, 1, 2, --- | B.

* Technieal paragraph as explained in Section 2,91,
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(iii) Let the b-th branch begin at node n, and end at ny . Let v, =
E,, — E., . Then for each b, one of

vy = Rily, R, >0 (a)
d
L= C,  C>0 (b)
Iy
vy = bZ Ly dcl_: , (c)
holds, where the matrix Ly, is real, symmetric, and semi-defi-

nite.

Cauer has shown’ how an ideal transformer can be defined as the
limiting case of a finite passive network. It is indeed no more nor less
ideal than an open cireuit (Ry = « or (4 = 0) or a short circuit (B, = 0
or (p = o).

4.02 We seldom deal with networks in the detail which is implicit in
(iii) above. We are usually interested in the external characteristies, so
to speak, of such networks as viewed from a relatively small number of
terminals (nodes). These multi-terminal devices, however, we continue
to incorporate into larger network diagrams. It is usually clear how
Kirchoff’s laws are to be applied in these cases, and what the differential
equations of the resulting system are. We are obliged, however, to make
these matters precise before we can deal intelligently with the most
general physical properties of networks.

4.1 We have seen the two kinds of constaint that a multi-terminal de-
vice imposes on the branch currents and node voltages in a network in
which it is incorporated: the topological ones contained in Kirchoff’s
laws and the dynamical ones described by differential equations. Cor-
respondingly, there are two aspects to the concept of general 2n-pole.

4.11* In its relation to Kirchoff’s laws, a general 2n-pole is indicated as
an object with n pairs of terminals (7', , T)),1 < r < n. Each terminal
can be made a node in an arbitrary finite diagram constructed out of
network elements and other general 2m-poles, with arbitrary values of
m. This diagram is not an oriented linear graph, so we have no basis
for the use of Iirchoff’s laws. From it, however, we construct an ori-
ented linear graph, called the ideal graph of the diagram, by the follow-
ing rule:

The nodes of the ideal graph are those of the original diagram. Every

* Technical paragraph as explained in Seetion 2.91.
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oriented branch of the original diagram is repeated in the ideal graph,
similarly situated and oriented. Between those nodes which, in the
original diagram, were the (T, , T}) of a 2n-pole N, is drawn a branch
B, , called the r-th ideal branch of N, oriented from 7', to T, . This is
done for each such terminal pair.

Kirchott’s laws now apply to this ideal graph.

4.12* Consider a particular 2n-pole N. Let E, be the potential of T,
E, that of T’ . Define

b

»,(l) = E, — E. .

Then () is the voltage across the ideal branch g, so oriented that
v(t) > 0 when T, is positive relative to 7 . Let k,(f) represent the cur-
rent, entering 7', . Then k.({) = I.(), the current in 8, , so k.({) is also
the current leaving T, . This is the force of the notion of ideal branch
and the fact which distinguishes a network which is a 2n-pole from an
arbitrary network with 2n terminals.

4.13 For example, the network at (a) of Fig. 1 is not a 2 X 2 pole because
its currents are not constrained to meet the ideal branch requirement.
The addition of ideal transformers in either of the ways shown in (b)
or (c) of the figure converts it to a 2 X 2 pole. Of course in a circuit in
which the currents are constrained externally—as they would be, for

Tio W % AMA—0T,

T, o o) T,

.IH. .l:l'
Ty o= % lé N % aAaY; é”é 0Tz
i (b) T
To VNV A oT.
+ Lo % ol
o [ ).
1 1y 2

(c)
Fig. 1—Conversions of a four pole to a 2 X 2 pole.

* Technical paragraph as explained in Section 2.91.
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example, when the 2 X 2 pole is driven by separate generators in the two
external meshes—these transformers can be eliminated. The definition
of 2n-pole requires however that in every context the ideal branch con-
cept is valid.

4.2* The second aspect of the concept of general 2n-pole is that it im-
poses some kind of constraint—other than that implied by 4.11 and
Kirchoff’s laws—upon the voltages across and currents in its ideal
branches. Define the symbols

v = y(t) = [vl(t)l U'Z(t'): Tty Uﬂ(t)]
and
k= k() = [k(0), ks(t), -, Bal®)]

as the n-tuples, respectively, of voltages across (T, 77) and currents
into T, 1 < r < n. These are added and multiplied by scalars by the
usual rules of vector algebra. If » and k represent simultaneous values
of voltage and current in the 2n-pole N—i.e., values satisfying all the
constraints—then we say that N admits the pair [z, k].

We say that N admits » if there is a k such that N admits the pair
[, k]. This k is said to correspond to v. Dually, N admits & if there is a
v (corresponding to k) such that N admits [v, £].

" The constraints imposed by a general 2n-pole N on voltages and cur-
rents are completely described by the totality of pairs [, k] which N
admits. We shall define a general 2n-pole, therefore, as

(i) a collection of n oriented ideal branches, as in 4.11, and

(i) a list of pairs [, k] of voltages and currents admitted in these
branches.

Hereafter we shall usually drop the adjective ““general.”

421 The definition we have just given is, in a way, a postulational
form of an n-dimensional Thevenin’s theorem. It postulates that a
2n-pole is a thingt which, as far as the outside world is econcerned, can
be represented by a collection of two-poles 8, , 1 < r < n, among which
there exists a complicated agreement as to what currents and voltages
will be admitted.

4.22 The passive networks (b) and (¢) of Fig. 1 define 2 X 2 poles, be-
cause they satisfy 2.01 and clearly permit a complete specification of
the admissible pairs [, k]. Any equivalent network would also specify

" * Technical paragraph as explained in Section 2.91.
1 In fact, at this level of generality, any thing.
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the same 2 X 2 pole, because—by its very equivalence—it would admit
the same pairs. The closest association we can make between a 2n-pole
and a network, then, is to identify the 2n-pole with an equivalence
class of networks.

4.23 The completely symmetric role played by voltages and currents
in this definition of general 2n-pole will make it possible to take early
advantage of the well-known duality principle of network theory. We
shall do so freely.

4.3* We shall call a 2n-pole physically realizable if its admissible pairs
[, k] are the solutions of a system of differential equations obtained
from a finite passive network, admitting the limiting elements: ideal
transformers, open circuits, and short eircuits.

V. PHYSICAL PROPERTIES OF NETWORKS

5.0 There are clearly a great many properties of finite passive networks
which are not yet possessed by the general 2n-poles now introduced. It
is instructive to examine these properties physically.

5.1 In the first place, the dynamical constraints (a), (b), and (e) of 4.01
are expressed by linear, time invariant, differential equations. Accord-
ingly, the 2n-poles of network theory are:

5.11 Linear, in that the class of admissible pairs [2, k] is a linear space;

5.12 Time invariant, admitting with each [p(f), k(f)] also all
[v(t 4+ 7), k(t + 7)] for aribtrary .

5.2 In the second place, a physical network N cannot predict the future,
le., it cannot respond before it is excited. This can be formalized in
terms of the pairs [v, k] admitted by N, but to do so would require some
digression. The reasons will be seen under 5.7 below.

5.3 We have already mentioned the constraints imposed on voltages
and currents in a network by the topology of the network, through the
medium of Kirchoff’s laws. These constraints have three important
properties:

531 They are workless, since they are imposed by resistanceless
connections, leakless nodes, and, in the formal theory, by ideal
transformers,

5.32 Though it seems scarcely necessary to say it, they are the only

workless constraints. All other constraints are dynamical and have
powers or energies associated with them.

* Technical paragraph as explained in Section 2.91.



230 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952

5.33 They are frequency independent, that is, holonomic in the sense
of dynamics.

5.4 The workless and the dynamical constraints in a physical network
are all defined by relations with real coefficients. The space of admissible
pairs is then a real linear space.

5.5 The positivities specified in 4.01 are characteristic of passive sys-
tems. They correspond to the fact that the power dissipation and the
stored energies are all positive.

5.6 By definition, finite passive networks contain finitely many lumped
elements. Correspondingly, their resonances and anti-resonances are
finite in number.

5.7 We are accumstomed to dealing with networks which have, in addi-
tion to the properties listed above, a kind of non-degeneracy, in that
the list of admissible pairs [, k] satisfies:

5.71 At least one of » or k can be specified arbitrarily—any real function
is admitted;

572 When the free number of [v, k] is specified, the other is uniquely
determined.

For these non-degenerate networks, the property 5.2 above is easily
formalized: if, say, k is determined by », then

J() = 2'(t) for 1<t

implies
() = K@) for t< i,

where [o, k'] are admissible pairs, ¢ = 1, 2. The general statement of 5.2
involves this condition and some discussion of the ¢’s for which N ad-
mits [2, 0], and the dual notions.

5.8 The reason for speaking in terms of pairs [y, k], instead of in terms
of “cause” and “effect,” or “impulse” and “response,” is hinted at by
57 above. For the tacit implications of the cause and effect language
completely obscure the fact that 5.71 and 5.72 are properties which are
not automatically possessed by electrical networks. In fact, the simple
four-pole of 2.41—a pair of unconnected terminals 7'y , Ty, and a pair
of shorted terminals 7% , T,—has neither property, yet it is a perfectly
good linear time invariant four pole. Its admissible pairs are

[(S‘J1 ’ O)J (0) k2)]:

where #; and k; are arbitrary real functions of the time
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VI. LINEAR CORRESPONDENCES

6.0 In developing the formal properties of 2n-poles which are equivalent
to the physical ones just listed, it would be instructive to adjoin re-
quirements piecemeal, much in the order given in Section 5. Space does
not permit us full enjoyment of this luxury, but the reader will find a
rough parallel between Section 5 and the developments of this Section
and Section 7.

6.1 It is well known that linear time invariant systems are best studied
by the tools of Fourier or Laplace analysis. We make this fact the basis
of our first step in characterizing physically realizable 2n-poles simply
by phrasing our whole discussion in the frequency language. The con-
tent of the following paragraph will be obvious enough, but it does de-
fine terms to be used later.

6.11* Let v and k, without underscores, represent n-tuples of complex
numbers:

‘U=[!'|,’Ug,"',l}n], (1)

=Tk, ke, o, kal (2)
These are to be manipulated by the rules of vector algebra. Let p be a
complex number. We shall say that a 2n-pole N admits the pair [v, k]
at frequency p, if in the sense of 4.2 N admits the pair [¢, k] (with under-
scores) where v has components

vt) = Re(w,e™), 1<r<mn, (3)
and & has components
k() = Re(ke™), 1 <7< )

Also analogously to 4.2, we say that N admits v at frequency p if
there is a & such that N admits [», k] at frequency p, and that this %
corresponds to » (at frequency p). Similarly, N admits & at frequency p
if there is a (corresponding) v such that N admits [v, k] (at p).

6.12* Let V denote the aggregate of all n-tuples (1), and K the aggre-
gate of all n-tuples (2). These are then complex linear spaces.

6.2* As our first step toward characterizing realizable 2n-poles, let us
consider a linear correspondence L between V and K described by the
postulates:

P1. There is a set I';, of complex numbers and for each pel'; a list
L(p) of pairs [v, k], veV, keK.

* Technieal paragraph as explained in Section 2.91.
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P2. If [!, k'leL(p) and [*, k*]eL(p), then
[aw' + an’, ak' + a:k’leL(p)

for any complex numbers a; , as .

6.21* Given such a linear correspondence L, we can always describe a
2n-pole N, by:

N. admits [v, k] at frequency p if and only if [v, k]eL(p).

That is, we can always interpret the pairs [v, k] generated by (3) and
(4) from the [v, kleL(p), for each peT., as the voltages across and
currents in a set of n ideal branches. We call N, the 2n-pole associated
with L.

6.22* We call T';, the frequency domain of L (or of N ).

6.23 From here on, the words “2n-pole” can with some strain be re-
garded as suggestive but unnecessary. We in fact deal with linear corre-
spondences—having properties as yet unspecified—and shall show how
physical networks can be constructed which admit the pairs [v, kleL(p).
Actually we use freely the concept of general 2n-pole and thereby avoid
some elaborate circumlocutions.

6.24* We identify two correspondences L, and L. as being the same if
(i) their frequency domains differ only by a finite set, and (ii) for each
p where both are defined the lists Ly(p) and Lsy(p) are the same.

6.3 The simplest linear correspondences are those generated by ma-
trices. For example, let Z(p) be an n X n matrix with, say, elements
Z..(p) which are rational functions of p, 1 < r,s < n. Let I', consist of
all the values of p at which Z(p) is defined. For pel'., define L(p) as
the class of all pairs

[v, K] (6))

obtained by letting k range over K, where for each k, v is defined by the
matrix equation

v = Z(p)k. (6)

This kind of matrix equation will be used throughout to symbolize the
n component equations

v, = ; Zopk, 1<7r<n. (7)

The list of pairs L(p) defined by (5) clearly satisfies P1 and P2. It
can therefore be used to define a 2n-pole N, . It is easy to see that N,

* Technical paragraph as explained in Section 2.91.
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in fact is non-degenerate in a sense similar to that of 5.7, for the current
amplitudes & can be specified arbitrarily, and the resulting voltage
amplitudes v are then fixed by k and p, by (6).

Z(p) is called the impedance matrix of the 2n-pole N, . It is also
sometimes called the open-circuit impedance matrix, because each
Z.(p) is, by (7), the voltage amplitude across (T, , T,) when the current
amplitudes at all terminals save (7, , 7.) are zero—i.e., when all pairs
save the s-th are on open cireuit.

6.31 Dually, the pairs
[v, Y(p)v]

defined by an admittance matrix Y (p) as » ranges over V define a linear
time invariant 2r-pole which is non-degenerate.

VII. WORK AND ENERGY

7.0* A linear correspondence satisfying P1 and P2 is something which
abstracts the properties of linearity and time invariance. Most of the
remaining properties of physical networks involve the mention of work
or energy. These concepts enter our picture by way of the scalar product
(v, k) between a voltage n-tuple (1) and a current n-tuple (2), of 6.11.
This scalar product is defined by

n

(l’, "n) = Z l’,—%r. (1)

r=1

7.01 If p = 7w, one easily calculates from (3) and (4) of 6.11 that

T n
2 Re(p, k) = lim )i [Z u,(t)k,(f.)] dt.
T—+x _,T -T r=1
That is, when p = iw, the real part of 2(», k) measures the average total
power dissipated by the system of currents k.(f) against the driving
voltages v.(1).

When p is not a pure imaginary, the interpretation of the scalar
product (v, k) is not so clearly physical as this. The reader will ulti-
mately observe that our significant statements about such products can
all be reduced to statements applicable when p = 7w, i.e.,, when the
power interpretation is valid.

7.1* An important concept in what follows is that of the annihilator of
a linear manifold (Halmos®, par. 16). Let V; € V be a linear manifold.

* Technical paragraph as explained in Section 2.91.
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Then its annihilator (Vy) is the set of all k such that
veV, implies (v, k) = 0.

(V4)" is a linear manifold in K.
Dually, given K; € K, (K;)" is the linear manifold of all veV such
that

keK; implies (v, k) = 0.

The annihilator concept is the analog in our general geometric frame-
work of the idea of orthogonality. It clearly suggests a connection with
workless constraints.

7.2* The complex conjugate of an n-tuple v (or k) is defined in the
obvious way: if

vo=[o, 0
then
=D, -, Ol
This conjugation operation clearly has the properties
= £
at + by = at + b

where @ and b are scalars and & and n are (consistently) elements of V
or K. Furthermore, at once from (1) of 7.0,

k) = (3 F). 3)

7.21* A linear manifold will be called real if it contains, with any
n-tuple also the conjugate of that n-tuple.

el

()

7.22*% A real manifold is spanned by real n-tuples. This will be proved
in the Appendix, Section 20.

7.23* The annihilator of a real manifold is real. For let K; be real and
k', -, k" be real n-tuples which span K; . Then if ve (Ky)" every

(U, k”) = 01

and conversely. But then also

(5v ks) = (U, ks) = 6 = 0:
S0 !_}E(Kl)n.

* Technical paragraph as explained in Section 2.91.
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7.3* Given a linear correspondence L, we make several definitions:
V.(p) is the set of all veV such that there is a k with [v, kleL(p).
K.(p) is the set of all keK such that there is a v with [v, k]eL(p).
V.(p) is the set of eV, (p) such that

[v, O]eL(p).
K(p) is the set of keK . (p) such that
[0, E]eL(p).

7.31* The postulate P2 implies that for each pel'y, Vi(p), Ki(p).

Vwu(p) and K.o(p) are all linear manifolds.

7.32 V.(p), for example, is the set of veV such that N, admits v at

frequency p.

7.4* We now postulate

P3. There exist fixed linear manifolds V., € V, K, € K such that
(A) For every pel'y, , Vi(p) = V., = (Kua(p))'

(I) For every pel';, , Ki(p) = K. = (Vio(p))".
7.41* We may henceforth write Voo, Kuo , for Vie(p), Kwo(p), knowing
that, under P3
VLO = (KL)ol
KLI] = (VL)D.

7.42 Linear correspondences satisfying P3 abstract the properties men-

tioned in 5.3. The equalities V.(p) = V., K. (p) = K, guarantee the

frequency-independence of the workless constraints. The equalities

Vip) = (Ku(p)’, Ku(p) = (Vu(p))® in a sense guarantee that the

only constraints imposed upon admissible currents and voltages (as

opposed to constraints relating currents and voltages) are those which
arise from open or short cireuits, i.e., are workless.

7.43 An illustrative consequence of P3, for example, is that if L satisfies
P3 and if N, is such that all of the current amplitudes can be specified
arbitrarily, then indeed the voltages are determined by the currents.
This will appear as a consequence of 8.1. It is a very general theorem
about networks of a kind that this author, at least, has not heretofore
encountered.

* Technieal paragraph as explained in Section 2.91.
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7.5% Continuing toward realizability, we introduce
P4. If peTy, , then pely. If [, kleL(p), then (3, kleL(p).

This postulate embodies most of the reality properties of networks.
It has as an immediate consequence the

7.51* Lemma: If L satisfies P1, P2, P3, and P4, then all of
Vi, Vi, K, Kpo

are real.
Proof: By P4, veV,(p) = V. implies 9eV,(p) = V. . Hence V. is
real. Then Ky, = (V.)'is real, and dually.

7.6* The three remaining postulates on L refer to scalar products.
They are concerned with the energy questions related to passivity,
rather than with the workless constraint questions.

P5. If [w, jleL(p) and [v, kleL(p), and if

(A) v and v are real, or if
(I) 7 and k are real,
then
| (u, k) = (v, ).

7.61 This is the property which provides the reciprocity law. In its
presence, the relations in P3 may be weakened to

Viulp) = Vi 2 Ku(p)',

K.(p) = Ki 2 (Vuol(p))'.
This fact will appear as a consequence of the lemma of Section 12.
7.7% Lemma: A consequence of P2 and P3(A) is that if

[v, kdeL(p), r=1,2,
then for any ueV, ,

(u, k1) = (u, ks).
For by P2 we have that
[0 — v, ki — ko] = [0, kx — ko]eL(p),

hence ki — k:eKo . Then however, by P3(A), ueV, implies ue(Kp)', so

* Technical paragraph as explained in Section 2.91.
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that
0= (u, ky — k) = (w, k1) — (u, ky).
Q.E.D. A dual result follows from P3(I).

7.71* The result of 7.7 above means that the scalar product (v, k) is
fixed by » alone when we know that [v, k]eL(p). This means that, given
veV, , there is a unique function F,(p) defined for pel';, by

Fr(P) = (b‘, k)

where [v, kleL(p). Dually,

Ji(p)
is defined for each fixed keK, .
7.72* (P6.) The complement of T'j, is finite and

(v, k)

(I) For each veV,, , F,(p) is rationai
(A) For each keK,, , Ji(p) is rational.
7.73* (P7.) (A) Re(p) > 0 implies Re(#F,(p)) > 0
(I) Re(p) > 0 implies Re(Jx(p)) > 0.

VIII. THE FUNDAMENTAL REALIZABILITY THEOREM

8.0* We can now state our fundamental realizability theorem: If a
linear correspondence L satisfies P1, --- | P7, the associated 2n-pole
N, is physically realizable. Conversely, given a physically realizable
2n-pole N, the associated linear correspondence satisfies P1, --- , P7.

8.01 Actually, the postulates P1, --- | P7 are not unique nor even en-
tirely independent. Many changes may be rung on them. We indicated
one above. At the expense of apparent asymmetry, the (A) or (I) por-
tions, in various combinations, can be deleted or weakened. We shall
not pursue this subject further at this point, but must come back to it
in Section 12.

8.02 We close this Section by outlining the proof of 8.0. The details are
then contained in the remainder of the paper.

8.03 The proof that PI through P7 are necessary for physical realiza-
bility will be a direct one: it will be shown that, considered individually,
each network branch and each ideal transformer satisfies the postulates.

* Technieal paragraph as explained in Section 2.91.
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By an application of Kron’s method (described by Synge'®), it will then
be shown that the imposition of Kirchoff’s laws preserves the postulates.
This work is most efficiently performed after the full machinery of the
sufficiency proofs is available, and will be done in Section 19.

8.04 The sufficiency of P1 through P7 can be deduced—and we will do
so—from the lemmas to be quoted below. Apart from Section 19 on
necessity, the remainder of the paper is devoted to the proofs of these
lemmas.

8.1* Lemma: If L is a linear correspondence satisfying P1, P2, P3, and
P4, then there exists a fixed real nonsingular matrix W such that

8.11 The list L w(p) of all pairst

(W, W'kl
where [v, kleL(p), describes a linear correspondence Ly satisfying
P1, P2, P3, and P4.

8.12 The 2n-pole N (= Ny,) associated with L consists of
(i) Some number r of open-circuited terminal pairs (T4, Ty, - -+,

(Tf' ’ T )l
(ii) Some numbet s of short-circuited terminal pairs (Th—ot1, Tness1),
" (Tn, Tﬂ)x

(iii) A set of m = n — r — s terminal pairs (Trs1, Tria), -+,
(Trim s Trim).

8.13 Either m = 0, or the terminal pairs in (iii) are those of a 2m-pole N,
which has a nonsingular impedance matrix Zi(p).
This lemma, and the following, will be proved in 13.2.

8.9* Lemma: If L satisfies P5, P6, and P7, then Z,(p) is a positive
real} matrix, that is, Z,(p) satisfies (i), - -+, (iv) of 1.1.

8.3* Lemma: If a 2m-pole N, has a positive real impedance matrix, then
N, is physically realizable.

This is the sufficiency half of the matrix realizability theorem 1.1.
Part II will be devoted to its proof.

8.4* Lemma: If Ny is physically realizable, then N can be constructed
from it by the use of ideal transformers.

This is Cauer’s Transformation Theorem® about which we shall say
more in Section 9.

* Technical paragraph as explained in Section 2.91.

+ W-t and W' are respectively the reciprocal and the transpose of W.
1 Gewertz's terminology®, by now traditional.
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8.5* The sufficiency half of 8.0 is now clear. By 8.2 and 8.3, N, is physi-
cally realizable. Clearly then Ny is, simply by the adjunction of the
necessary open and short circuits. Finally N is by Cauer’s theorem, 8.4.

8.6* We can see now how to prove the necessity of positive reality for
the realizability of a positive real matrix Z(p). This is the necessity half
of the matrix theorem 1.1. Let Z(p) be the matrix of a realizable N.
Then N has an associated linear correspondence L satisfying P1, -+ - , P7,
by the necessity half of 8.0. The pairs of L are the pairs

(Z(p)k, k]

generated as k ranges over all n-tuples. By definition, then, the pairs of
Ly are '

(W' Z(p)k, W'E].

As I ranges over all n-tuples, the nonsingularity of W implies that
W’k does also. Let U = W~ '. Then the pairs above are the same as

(UZ(p)U'E, k]

as & ranges over all n-tuples. Hence Ly has the impedance matrix
UZ(p)U', where U = W' is real and nonsingular. Because Ly has an
impedance matrix, » = 0in 8.12.

Now by 8.1 and 8.2, Z,(p) is positive real and the matrix UZ(p)U’
of Ly is just Z:(p) bordered by s rows and columns of zeros. It is then
easy to see that U/Z(p)U’ is positive real, and finally also that Z(p) is.
These last two facts will be proved formally in Section 16.

IX. CAUER'S TRANSFORMATION THEOREM

9.0 Cauer’s transformation theorem® is the cornerstone of formal reali-
zability theory. In one form, the theorem reads:

9.1* Let Z(p) be the impedance matrix of a physically realizable 2n-pole
N. Let U be a real, constant, nonsingular matrix, Then

UZ(mpu’ (1)
is again the impedance matrix of a physically realizable 2n-pole, Ny .
Ny can be constructed from N by the use of ideal transformers.
9.2* A superficial generalization of this theorem can be obtained at once
from Cauer’s proof. It asserts that if N is physically realizable and is
described by the linear correspondence I, then there is a physically
realizable 2n-pole Ny, obtainable from N by the use of ideal trans-

* Technical paragraph as explained in Section 2.91.
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formers, which is described by the linear correspondence L w whose pairs
at each p are the pairs

W, WE], (2)

where [v, kleL(p).

We refer to Cauer’ for the proof. It is straightforward.
9.21 We shall use the second form (9.2) of Cauer’s theorem in our
realization process. Notice that it is in a sense a ‘“‘physical” theorem,
about the way one physical network is related to another. It is used in
this way: we shall always solve a realizability problem by finding some
network N which is easily realized, and then a W such that N , which
is now realizable, provides a solution to the given problem.
0.22* We shall call the 2n-pole N v a Cauer equivalent of N.
9.3 Although Cauer’s theorem will be applied, in a sense, only a posteriort,
its effect is fundamental. For it implies that formal physical realizability
is a property of matrices which is invariant under the operation (1)
or a property of correspondences which is invariant under (2). There is
an extensive classical literature on the properties of matrices invariant
under operations like that of (1), and the effect of Cauer’s theorem is to
make these results all available to formal realizability theory.

9.31* It is worth observing here that we are already well set up to use
Cauer’s theorem:

Lemma: If L is a linear correspondence satisfying P1, ---, P7, then
the correspondence Ly of 9.2 also satisfies P1, - -+, P7.

Proof: Let M = Ly . P1 and P2 for M are obvious, with I'yy = T'..
By definition of M,

Vaulp) = W'Vu(p) = W'V,
Kx(p) = WKi(p) = WK,
Vin(p) = W 'Vii(p) = W'V
Ku(p) = WKu(p) = WKy

where WIS for a manifold S consists of all n-tuples W™'», where veS.
Hence in P3,

Il

V.\J(P) =Vuy = I’V;IVL
Ku(p) = Ky =WK,
for fixed manifolds Vy , Ky as defined.

* Technical paragraph as explained in Section 2.91.
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Now if vV, then
(v, k) =0

for every keK, = (V)" Then, however, by direct calculation from
Section 7.0,

(W', W*k) = 0,

where W* is the adjoint, i.e. transposed conjugate matrix of W. But
because W is real, W* = T’. Hence if veV,y, then

W, k) = 0
for every keW'K, = K, . Hence
Ky = W'V = (Vu(p)"

By this and its dual, P3 is completed for 1.
The reamining postulates for M follow from those for L by the simple
equality

(v, k) = (W', W'k)
already established, combined with 'y, = T'y.

9.32 For fixed Z(p), the matrices (1), as U ranges over a group, form an
equivalence class. Classical matrix theory treats of such equivalence
classes. This author’s predilection is to regard this theory from a geo-
metrical point of view. In part this prejudice may be justified by the
ease with which that slightly more general object, a linear corre-
spondence, can be treated by geometrical methods. In any event we shall
begin our program of proofs with a brief introduction to the geometrical
approach.

X. GEOMETRICAL PRELIMINARIES

10.0* We now wish to consider V and K as complex n-dimensional
linear spacest respectively of voltage vectors v and current vectors k.
The distinction here is in point of view. A vector v is regarded as an
absolute geometrical object; an n-tuple [v] = [a1, -, a,] is regarded
as a set of eoordinates for the vector », relative to some coordinate basis.
Given a fixed coordinate basis, there is a one-to-one correspondence
between vectors v and the n-tuples [v] which represent them in that
basis, a correspondence which preserves the operations of vector algebra.
* Technical paragraph as explained in Section 2.91.

t For a reference concerning the ideas in this section, see Halmos®, Chapters
I and II.



242 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952

10.01 The effect of attaching a geometric identity to vectors, rather than
to n-tuples, is to make it possible to choose coordinate bases freely and
as convenient, without elaborate constructions or even interpretations.
We can then discuss properties of n-tuples (and other objects, e.g.
matrices) which are invariant under the kind of operations exemplified
by (1) and (2) of Section 9 as propertics of a single geometric object,
rather than as properties shared by an extensive class of concrete ob-
jects which are converted into each other by the group of operations.
10.1 This change in point of view need not change formally anything we
have said to date; it simply erects a conceptual superstructure, or pro-
vides a conceptual foundation, depending on the reader’s personal
attitude.

We shall support this statement by going through the important ideas
of Sections 4, 6, and 7 and examining their geometrical meanings or
counterparts. It is convenient to consider first and at some length the
notions of scalar product and complex conjugate. The geometric struc-
ture will then be complete enough to permit a rapid survey of the
remaining ideas.

10.11* The geometrical counterpart of the scalar product introduced in
7.0 is a numerically valued function ¢ = (v, k) of two vector variables.
Tts first argument » ranges over V and its second argument £ ranges over
K. The function (v, k) is linear in » and conjugate linear in k:

claw + , k) = ao(u, k&) + bo(v, k),

o(v, ak + bl) = do(v, k) + ba(v, 0).
We denote this function o(v, k) by the simple bracket notation (v, k).
10.12 With this scalar product, the geometry of V and K is that of a
space K and the space K* = V of conjugate linear funectionals over K.
This is analogous to the real geometry of space and conjugate space
discussed at length in Halmos®. In fact, in the introduction to Chapter

IIT of Halmos?, the modifications introduced by the conjugate linearity
of (v, k) over K are treated in detail.

(1

10.13* Because of its importance, we quote here a paraphrase of the
results covered in Halmos®, par. 12.

(i) If f(») is any numerically valued homogeneous linear function of
€V, then there is a unique vector k;eK such that

f@) = (v, k)
for all veV.

* Technical paragraph as explained in Section 2.91.
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(ii) If g(k) is any numerically values homogeneous conjugate-linear
function of keK (i.e., if g(k) is linear in k) then there is a unique v,eV
such that

g(k) = (v, k)
for all keK.

10.2* The annihilator (V,)° of a manifold V; € Vis, as in 7.1, the set of
all keK such that

veVy implies (v, k) = 0.

10.21* It is shown in Halmos® that to each basis #', --- | " in V there
exists a unique dual basis &', - -+, " in K such that
@, k) = bn, (2)

where 8, is the Kronecker symbol:§,, = 0if r # 5,6, = 1,1 < 7r,s < n.
10.22 If
(] = laz, -+, @al

(k] = [by, -+, bal

(3)

are the n-tuples representing » and k relative to a pair of dual bases,
then it is easily computed from (1) and (2) that

(0, k) = 2 arb,. (4)
r=1
Therefore the concrete scalar product of 7.0 is indeed the geometric
scalar product here considered, when we restrict our pairs of bases in
V and K always to be dual in the sense of (2).

10.23* We shall use the words “coordinate frame” or simply ‘“frame”
to denote a pair of dual bases in V and K. Any basis in V (or K) specifies
a frame by the uniqueness result quoted above.

10.24 We shall henceforth deal always with coordinate frames, in fact,
ultimately, real coordinate frames, rather than arbitrary pairs of bases.
This means in classical language that we are considering as ““ geometrical
properties” all properties which are preserved under the group of
linear transformations which leave the bilinear form (4) invariant.
The properties related to physical realizability will turn out to be
invariant only under the subgroup of real linear transformations pre-
serving (4).

* Technical paragraph as explained in Seetion 2.91.
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10.3* Conjugation is an operation which to each veV associates a
vector 7 uniquely determined by » with the properties
v =0, )
- ) (5)
(au + bv) = aa + by,
where a and b are any complex numbers and q, b their conjugates.

10.31* Given any such conjugation operation in V, and given any
keK, define a function g.(v) by

g(0) = (3, k) (6)

for veV. Then gi(v) is linear in v, by (5) above and (1) of 10.11. There-
fore, by 10.13, there is a unique vector keK such that

ge(@) = (v, F). ()
10.32* Directly from (1) of 10.11 and (6) above, if j = ak + b{l, then
agi(v) + bgi(v).

g:(v)
From (7), therefore
(v,7) = alv, E) + b(v, )
for all veV. Comparing this with (1) of 10.11, we see that
j = ak + bt. (8)
The second item of (5) above then holds for vectors keK.

That k = k follows easily: We have from (6) and (7), written for the
vector k, that

@ k) = (v, k). (9)
We also have, by writing (6) and (7) for vectors # and k that
@ k) = @ F).
Taking complex conjugates of these two numbers, and using 3 = v
from (5), we have
(0, k) = @ F). (10)

Then (9) and (10), which hold for all veV, identify & and k by 10.13.

10.34* We have now showed in (3), (8) and (10) that this complex
conjugate satisfies the formal properties of the conjugate for n-tuples
introduced in 7.2.

* Technical paragraph as explained in Section 2.91.
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10.35. The abstract sealar product of 10.11 turned out in the end to be
no more than the concrete one of 7.0 when we restrict our attention to
n-tuples derived from vectors by the use of coordinate frames. In a
similar way, it is not hard to show that there always exists a coordinate
frame in which the abstract conjugation now introduced has the form
of 7.2. This will be done in the Appendix (20.2).

10.36* Our need for writing out the components of vectors has now
almost vanished. Henceforth we shall use subseripts to denote particular
vectors, e.g. v, rather than components.

10.4* A vector will be called real if it is equal to its own conjugate.
A manifold will be called real if it contains with each vector also the
conjugate of that vector. V and K are then real. A basis will be called
real if it is made up of real vectors, and a frame will be called real if its
bases are real. Any frame in terms of which our conjugation operation
takes the form of 7.2 is real by definition because its basis vectors in
that frame have components which are 0 or 1. The vector 0 is real,
similarly.
10.41* The basis dual to a real basis is real, for if

(vr, ko) = b7,
then by (10) of 10.3 and the hypothesis that », = 3, , we have

(l'r ’ Ea‘) = b5 = 0rs

so the k, satisfy the same equations as the k. The uniqueness of the
basis dual to v, - -+ , v, then proves that k, = k,, 1 < s < n.
10.42*¥ Any vector » can be written

=1 + ’il'g

where »; and . are real. Namely

n = - (v+ 9.

1 .
ve = 5 (» — 9.

10.5* It is shown in Halmos®, par. 34, that if veV, keK are represented
by [v], [k] in some coordinate frame, and by [v]; , [k]; in some other frame,
then there is a nonsingular matrix [}'], which (a) depends only upon the

* Technical paragraph as explained in Section 2,91,
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two frames, and (b) relates these n-tuples as follows:
[vh = [W]'[),
(kL = [W]*k].

Tt is easy to show that if [IW] has real elements, so that [W]* = [W]',
then the two frames involved above are either both real, or else neither is
real. Also, conversely, if both frames are real, then necessarily the [I¥] of
(11) has real elements and [W]* = [W]".

10.6* Some further important geometrical notions must be mentioned

before we proceed.
If V, and V. are disjoint linear manifolds in V—i.e. linear manifolds
having in common only the single vector 0—we write

Vi®d V,

for the linear manifold consisting of all vectors v = v + v, where
Vi, i = 1, 2. The cirele around the plus sign is used to denote the
disjointness of V, and V.

It is shown in Halmos’, par. 19, that if

V=V,aV, (12)

(11)

then
K = Kl @ Ka 3 (13)
where K; = (V2)", K; = (V1)" and the dimension of K, is equal to that of

Vi, = 1, 2. We call (13) the decomposition dual to (12). We some-
times write K; = V¥ to denote the K; dual to V; in the decomposition

(13). It is shown in Halmos', loc. cit., that there exists a basis v1, - -,
v, in V and its dual &y, - -+ , k, in K such that, if r is the dimension
of V1 ,
%, -, isa basisfor Vi
Vg1, ** 5 Ua 18 a basis for V,
) (14)
ky, -+, k. 1is a basis for K;
Frs1, -+, kn 1is a basis for K, .

Furthermore, if »1, - -+ , v, is any basis in V satisfying the first half
of (14), its dual basis satisfies the second half, and dually.
We shall show in the Appendix that if any one of Vi, Va2, Ky, or

* Technical paragraph as explained in Section 2.91.
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K; is real, then they all are, and that in this case the bases (14) can be
chosen to be real.
Similar considerations apply to decompositions into more summands
if
V=V,oV,® -+ ®V,p
then
K=K1®K2® @Km:
where

Vi-K =N (Zv)

il

XI. GEOMETRICAL CORRESPONDENCES

11.0 With the geometry of V and K now in hand, we consider the
geometric aspects of our network theoretic concepts.

The definition in Section 4 of general 2n-pole desceribes a conerete
thing and stands unaltered in our geometric view. The definitions in
6.11 of the terminology typified by “N admits [», k] at frequency p”
are unchanged except that we should now explicitly indicate that we are
discussing concrete n-tuples of complex numbers by placing brackets
around the vector symbols, thus: [¢], [k]. In other words, a 2n-pole is
deseribed by a conerete relation between n-tuples.

11.1* All of the postulates P1, --- |, P7 are stated in a language which
now has been given an absolute geometric meaning. In this meaning,
P1 and P2 deseribe a geomelrical linear correspondence between vectors
veV and keK. This is the geometric counterpart of the concrete
notion of a linear correspondence between n-tuples.

11.11 An impedance matrix, as in 6.3, describes a particularly tightly
knit linear correspondence, namely a linear function from K to V.
The geometrical counterpart is an impedance operator which for each
p is by definition a linear homogeneous function which assigns to each
vector keK a unique » = Z(p)keV. That is: an operator is a functional
relationship between vectors and as such has a geometric identity.

11.12 It is easy to provef that, given an impedance operator Z(p),
and given any coordinate bases in V and K respectively, there is a
matrix [Z(p)], with elements Z,,(p), 1 < 7, s < n, such that relative to
these bases the coordinates k, of a vector k and the coordinates v, of

= Z(p)k are related by (7) of 6.3. We call [Z(p)] the matrix of Z(p)

* Technical paragraph as explained in Seetion 2.91.
t Cf. Halmos?, par. 26.
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relative to the given pair of bases. A strong analog of this observation is
contained in the following lemma.

11.13* Lemma: (i) Let L be a geometrical linear correspondence. Fix
any real coordinate frame and let [L] be the linear correspondence
whose paired n-tuples are

[[v], (%1,
where

v, kleL(p).

(ii) Alternatively, let [L] be a (concrete) linear correspondence be-
tween n-tuples. Interpret the n-tuples related by [L] as representing
vectors in some real coordinate frame. Let L be the geometrical cor-
respondence whose pairs, expressed as n-tuples in this frame, are those
of the concrete correspondence [L].

In either case, (i) or (ii), the geometric correspondence L satisfies the
geometric postulates P1,---, P7 if and only if the concrete corre-
spondence [L] satisfies the concrete forms of these postulates.

The proof of this lemma consists essentially in reading the postulates
carefully. We shall not reproduce it.

11.2 Our position is now this: We have on the one hand geometrical
objects, vectors v, k, operators Z(p), Y (p), and geometrical correspond-
ences L. On the other hand, we have concrete n-tuples [2], [k], matrices
[Z(p)], [Y(p)], and linear correspondences [L]. Given any pair of bases
in V and K, in particular, given any coordinate frame, each geometric
object generates a corresponding concrete object which represents it
relative to those bases or that frame. Conversely, given a concrete ob-
ject [£], we can choose a frame in V and K and find that geometric object
£ whose coordinates in the chosen frame are given by [£].

11.21* The concrete object, linear correspondence, defines a linear time-
invariant 2n-pole by 6.21. To complete the picture, we might say that a
geometrical correspondence L defines a Cauer class of 2n-poles.

11.22* This terminology is motivated by the following observation:
if [L] and [L]; are linear correspondences representing L in two distinct
real frames, then there exists a real nonsingular matrix [W] relating the

([o], [k]]e[L](p)
and the
([v]: , (k}Je[LL(p)

* Technical paragraph as explained in Section 2.91.
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by the formulas of 10.5. This means that [L] and [L]; are related like the
[L] and [L ] of 9.2. The 2n-pole associated with [L], therefore is a Cauer
equivalent of that associated with [L].

11.23 The observation of 11.22, combined with (ii) of 11.13, gives an
alternative proof of 9.31. This proof is deceptively free of calculation,
but of course the calculations are concealed in the extensive geometrical
developments of Section 10, many of which are there offered on faith.

XII. THE FUNDAMENTAL LEMMA

12.0 Thissection is devoted to the statement, and the proof in part, of a
lemma which, on the face of it, looks like an exercise in manipulating the
postulates. In fact, the content of the lemma, and most of the details of
its proof, are essential in what follows. To postpone them would force us
into needless duplication of effort.

Lemma: Let L be a geometrical linear correspondence satisfying P1,
P2, P4, P5(1), P6(I), P7(I) and the following weak form of P3(I):

P3/(1): If pel',,, then K,(p) = K, D (Viu(p))".

Then there is a frequency domain I', C I',, differing from T, by a
finite set, such that L satisfies all of the postulates for peT’.

The statement of the dual result is evident and will be omitted.

The proof that L satisfies P3 will be given in this section. Verification
of the remaining postulates will follow in paragraph 16.6.

We assume that the properties of positive real (PR) funections are
known. They are summarized for later use in Section 15. We make
occasional advance references thereto.

To the proof:

12.01 First, K, is a real manifold and for pel',
| K. C (Vu(p)" (1)
This, with P3'(I), gives P3(I) for L.

Proof: Ky, is real, as in 7.51. Consider now a pel'y, and a veVi(p);
then [v, OleL(p). Consider any real jeK, ; then there is a ueV.(p)
such that [u, jleL(p). Now 0 and j are real. Hence by P5(I)

(,) = (1,0) = 0.
Therefore any real jeK; has a vanishing scalar product with every
veVoo(p). Since K, is real, it is spanned by real j and (1) follows.
12.1 By the dual of 7.7, if we know that

[0, KleL(p),
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then the value of (v, k) is determined by k. This makes it possible to
state P6(I) and P7(I) for L (we take P6(I) to include the hypothesis
that T has a finite complement).

12.11 If kK, , then Ji(p) is PR.
Proof: if k is real then

Tp) = (0, k) = (3, k), 2)

where, of course, [v, kleL(p). Then however [#, kleL(p), by P4. Hence
by 12.1, (2) gives us

Tu(p) = Ju(p).

From this and P6(I), P7(I) we conclude that Jx(p) is PR for any real
keK, .
Now, given any keK,, , we have keK,, by 12.01. Then

nrﬂ = kl "]‘ ’I‘:kz

where k&, and k. are real and in K, since K;, is a linear manifold (see
10.42). Let

[v-, K. JeL(p),
r = 1, 2. Then we have (P2)
| [or + iva , kleL(p).
Then
Jup) = (v, k) + (2, ko) + 21, k) — i(ve, k).
Now by P5(I), (1, k2) = (v2, k1). Hence
Ji(p) = (v, k1) + (02, k) (3)

for any pel's . Since each summand in (3) is a PR function, it follows
that Ji(p) is PR for any keK.

12.12 Let K; be the set of all vectors keK;, such that
J(p) =0 for every pel'y, .

Notice that we do not assert that K; is a linear manifold.
If keK, then keK . and (3) above applies. Then

(01, k) + (v2, k) =0

and, using this and the PR property of each summand, we conclude
that k; and k. are in K;.
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12.13 We wish now to show that K; C K(p). Consider a real jeK, and
a real keK;. Let

[u(p), jleL(p),
[v(p), k]eL(p).
Then, given any real A, by P2

[u(p) + No(p), j + MkleL(p).

(4)

Then, because keK, ,
(w4 Mo, 7 + AE) = (u, 7) + Np, 7) + Au, k).
Since j and k are real, by P5(I) this can be written
(w 4+ X, 7+ M) = (u, ) + 27 (v, 7). (5)

Choose any p; such that Re(p) > 0. Then P7(I) implies that the left
side of (5) has a non-negative real part at p = p,. The right side, by
suitable choice of A, can have any chosen real part unless

Re(v(p1), j) = 0. (6)

Hence P7(I) implies (6). Now (v(p), 7) is a rational function, by P6(I)
applied to the other members of (5). By (6), this rational function has a
vanishing real part throughout the right half p-plane. Hence it is an
imaginary constant:

v(p), ) = ia. ™
Then

©(®),5) = @(p), j) = —ia. ®)

But [v(p), kleL(p), so [v(p), kleL(p) by P4. Since also [v(5), kleL(p),
by 12.1, we have from (8) that ,

(v(®), J) = —a.
Comparing this with (7) written for , we have a = 0 and
(v(p),7) = 0 for pel'y. (9)

Now v(p) was determined by (4) wherein % is real. For any keK,,
k = ki + ik, , where k, and £, are real and in K, (12.11). A correspond-
ing »(p) satisfying (4) can be written

v(p) = wnlp) + wwa(p), (10)
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by P2, where [v.(p), kleL(p), r = 1, 2. Then (9) holds for each of
n(p), v2(p) and therefore also for the v(p) of (10).

We have showed now that for any pel', and any keK,;, the v(p) of
(4) has a vanishing scalar product with every real jeK; . Since K
is spanned by real j,

v(p)e(Kp)' = Vi (11)
12.14 By (11),
[v(p), OleL(p).
Comparing this with (4), and applying P2,
[v(p) — v(p), k — 0] = [0, k]eL(p).
Since k is now any vector in Ky, we have
K: C Kulp) € K. (12)

for every pel'y, .

12.15 We can now also show that V.(p) € (K,)'. We return to 12.13
and read (9) thereof as originally derived for real j and k. Applying
P5(I), we have from (9) that

(u(p), k) =0 for pel'y . (13)

By the argument immediately following (9), (13) also holds for any
keK, , provided j is real. As in 12.11 any jeK, can be written
j = ji + 2, where j, and j. are real, and the corresponding

u(p) = w(p) + iua(p)

where [u.(p), jJeL(p). Therefore, finally, (13) holds for any u(p)
satisfying (4)—i.e., any w(p)eVi(p)—and any keK,. Therefore

Vilp) € (K’ (14)
for any pel'. .
12.2 We now fix our attention on a specific real poeT',
12.21 By P4, if
[v, k]eL(po)
we have also ,
(7, kleL(po) = L(po).

In particular, Ko(po) is real.
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12.22 We can now show that K, is a real linear manifold. Consider a
real keK o(py). Then [0, k]eL(py) and by 12.1
Ji(pa) = 0.

Then by 12.11 (and 15.12), J:(p) = 0, so keK, . Since Ko(po) is spanned
by real k (12.21), we have

KL('(pn) c K1 .
Comparing this with (12) gives us
K:.n(Po) =K. (]5)

Since Kpo(p) is a real linear manifold by definition and 12.21, we see
that K, is.

12.3 Let us now write, by (12) and (15),
K., =K, ® K, (16)

where K, is an arbitrary fixed manifold disjoint from K; and with it
spanning K, . All three manifolds are real (12.21, (15), 10.6).
Choose a K; disjoint from K, such that

K=K ®K ®K,. (17)
Let the decomposition of V dual to (17) be (10.6)

V=VieV.a V.
Then Vy = (K. ® K,)’ = (K,)" = V. by 12.01. Hence

V=V,o V,® V. (18)
By (14) and the definitions,
Vi ST Vilp) S Ve @ Vs (19)
12.31 Consider a real p, . Then by P3’(I), (15) and (16) we have
Kio(po) € Ki(py) C Ko @ Kpo(pa). (20)

This is now an expression dual to (19). We shall prove next that, given
any keK.(po)NK.(= K,), there is a unique v:eV.(po)\Vs such that

[0, KleL(po). (21)

Dually, given any 2eV.(p))\V., there is a unique k,eK,.(po)K: such
that

[v, ko ]eL(po).
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The proof is a standard one in algebra and depends only upon P2,
(19), and (20).
Proof: Given keK.(p)) K, there is some veVy(po) such that

[v, k]eL(po).- (22)
By (19), then,
v =1+ 2
where 2V, v6Va. Then
[v0 , O]eL(pn)
so, applying P2 to this and (22),
[v — v, k — 0] = [v2, kleL(po). (23)
Hence ¢V (p)NV. and v, = v satisfies (21). Suppose now
3¢V (po)V; and
[vs , EleL(pn).
Then using this with (23) and P2
[v: — v3, 0]eL(po).
Hence (v; — v3)eVio . Now Vi(po)1Ve is a linear manifold and contains
ve, v3 . Hence ’
(s — v3)eVNVL(po)NVz = 0.
Therefore v2 = v3 .
The dual argument completes the proof.

12.32 The argument actually exhibited in 12.31 uses only P2 and (19),
hence the v of (21) is unique whether or not po is real. Indeed, this is
true even when keK; .

12.33 The result of 12.31 establishes a bi-unique linear mapping between
K. and V.(po)\V. . Hence these two manifolds are of the same dimen-
sion. Since Ks and V. = K¥ are of the same dimension by construction,
it follows that

V@)V = V,
and, by (19), that
Vi(po) = Ve ® Vo

12.4 Let us now introduce a real frame in V and K which provides real
bases in K; , Kz, Kyand in Vi, Vo, Vo of (17) and (18). Let by, - -+, km
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be the basis vectors spanning K, . By 12.32, there are unique vectors
w(p), -+, un(p) in Vy such that

[1:(p), k]eL(p).

Letwvy, -+, v, be the (real) basis vectorsin Vedual tothe ky , -+« |k, :
(v, , ko) = 8,0 1< r<s. (24)

Since the u.(p) are all in V; we have for each pel',,
u(p) = ZE ars(p)or (25)

where the coefficients a,,(p) are ealeulated by (24) to be

an(p) = (us(p), k). (26)
12.41 Because the k, are real, P5(I) implies that
au(p) = (u:(p), k) = (ws(p), k) = a,(p). (27)

By the reasoning just following (8) and by the uniqueness of the
u(p)eVy, since Ve is real, we have u,(p) = u,(). Then

aa(p) = (w(p), k) = (w(P), k) = an(p).
12.42 We have by P2 that
[u:(p) + Muu(p), kr + Mea]eL(p), (28)
for any A. The identity
(u, + we, ke + k) — (U, — e, by — k)
= 20, ks) + 2(us, ky)

holds in fact for any vectors u, , u, , k, , k, . Using (27), (28) and P6(I),
it exhibits a,.(p) as a rational function.

(29)

12.5 Consider the m X m matrix (Z,(p)] whose elements are the a,(p).
the s-th column of this matrix consists of the components of u,(p).
The rank of the matrix is by definition the dimension of the space
spanned by these columns.

12.51 Now the rank of [Z:(p)] can be expressed in terms of the vanish-
ing or not of its various minor determinants. There are finitely many
such minors and each is a rational function. Each is either identically
zero or else vanishes at only finitely many points. Hence the rank of
[Z1(p)], except at these finitely many points, and at the p in the comple-
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ment of Ty, is a constant. We call this constant the nominal rank of
[Z1(p)).
12.52 Let T, consist of all pel', where [Z(p)] has its nominal rank.
Then T, has a finite complement. By the reality result of 12.41, if
peI"L then ;Oel‘;, .

It is clear that at any pel';, the rank of [Zi(p)] does not exceed its
nominal rank.

12.53 By construction, the vectors u,(p), - -+, u(p) all lie in V,(p)(Vz .
By the reasoning of 12.33, at any real anPL they span V.. Hence the
nominal rank of [Z,(p)] is m. Therefore, for any peI’L , [Z1(p)] has rank
m and the w(p), -+ , wa(p), lying in Vy, still span V. . Therefore for all
pel"[,
Vi(p)NV, = V

By (19), then,

VL(’p) = VLn @ V. = Vr. ’ (30)
a fixed manifold, for all pel,.

12.54 Tt is clear by its construction (ef. Halmos', par. 26) that [Z:(p)]
describes the mapping of 12.32 from K, to Vo = V() Vs by

[ee] = [Zi(p)][K]-

Here the m-tuples [v;] and [k] are the components of v and k relative to
the bases now available in V, and K.

12.55 We repeat
K.CcKup) €K, =K, @ K,. (12)

Fix a peI‘L and a keKo(p)NK, . Then [0, k]eL(p). Since 0V , it follows
from 12.54 that [Z:(p)] annihilates k. Suppose m # 0. Since the rank of
[Zy(p)] is m, it follows that k = 0. Hence for peI‘,_

KLO(p)nKE = 0.
By (12), then, (31)
K:.n(p) =K; = Ky,

a fixed manifold. This, with the result of 12.53, proves that L satisfies

P3(A), when m # 0.
If m = 0then Vo = 0, K, = 0 and (31) follows from (12) and (16).

12.56 [Z:(p)] is of dimension m and rank m for any pel‘;, . Therefore
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the correspondence of 12.32 and 12.54 between V. and K. is bi-unique
for any peT, . This extends 12.31 to any pel'’; .

1257 If m = 0, ie, if Vo, = Ky = 0, then V,; = (Ky)" and the fact
that L satisfies all the postulates is trivial because all scalar products
(v, k) for veV, = Vypand keKr = Ky are zero. If m = 0, we have yet
to show that L satisfies P53(A), PG(A), P7(A).

12.6 Since now I satisfies P3, 7.7 as given is applicable and we find
(with 12.1) that if peI“L and

[v, k]el(p),
then (v, k) is fixed by either » or k. Furthermore,
(0, k) = (v 4 v, k + ko)
for any eV, koeKpo .

12.61 If pel, and [v, kleL(p), then veV,, keK,. By (30), (31), and
(16), therefore, there exist voeV.y, hoeKyy such that w = v — weVs,
J = (k — ko)eKs . Then by P2

[u, jleL(p). (32)

By 12.6, then, any value assumed by a scalar product (v, k) with
[0, kleL(p) is also assumed by a product (w, j), where (32) holds and
NEVQ y J.EKQ .

XIII. SUFFICIENCY OF THE POSTULATES

13.0 We suppose that L satisfies the postulates of 12.0. Then the results
of Section 12 are applicable. The ones of first importance are contained
in the facts from (15), (30) and (31), that

VL= Vw@Vz,
K. =K. ® KL(J,

where the choice of K. was governed only by the requirement that the
second of these formulae hold.

13.01 Considering K, and V, as separate spaces, Vo = Ki by 10.6.
Let M be the geometrical linear correspondence between them with
frequency domain T, and pairs deseribed by 12.31 and 12.56 (or 12.54).
That is, as vectors in V. and K

[v, kJeM (p)
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if and only if, as vectors in V and K,
[v, KleL(p).
13.02 In the real frame of 12.4 let us renumber the basis vectors so that
Vi, =, U span Vi,
Urgl, *** 5 Urym Span Vg,
Vrgmgly *° " 3 Un span Vi .
Then
ky, -+, krym span Ks,
Erymyr, ---,ka span Kpo.

We say that such a frame reduces L.

13.1 Let us now interpret the s-th components of [v] and [k] in this frame
respectively as the voltage across and the current in an ideal branch
Bsof a2n-poleN,1 < s < n.

By construction, the vectors veV, in this frame have components
Qrimir = -+ = @n = 0,since vy, - -+, vrymspan Vo . At the same time,
the components byms1, * +* , ba of [k] may be chosen arbitrarily without
altering the fact that [[v], [k]le[L](p) because of 12.06. Therefore, the
ideal branches Bryms1, - * , Ba can each be realized physically by a short
circuit.

In a dual way, since kr41, + - - , kaspan K, any keK,, has components
by, -, b all zero in our chosen frame. Furthermore, the components
@, -+, a of [v] can be chosen at will. Hence the ideal branches
Bi, -+, B can each be realized physically by an open circuit.

Let N; now be the 2m-pole whose ideal branches are 8r41, <+, Brm .
Let the pairs [[], [k]] admitted by N; at each pel', be the [[v], [£]],
where [v, k]eM(p) (13.01). The representation just found for N shows
that N is physically realizable if and only if N, is.

13.11 The matrix [Z,(p)] of 12.54 is the impedance matrix of the 2m-
po]e N1 .

13.12 We now show that [Zi(p)] is a positive real matrix. The displayed
formulae of 12.41 show (ii) and (iii) of 1.1, and 12.42 shows (i). Now
suppose that [v, k]eM (p). Then, as vectors in V and K, [v, k]eL(p) by
definition of M(p). Then, however, if k is fixed

Ji(p) = (v, k)
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is a PR function (12.11). Regarding » and & in V. and K. let
[brsa, =+, beym] = [K].
Then by (1) of 7.0

(v, ff-) = ; Zl G.J(P)bq—rgr-}-r

and this has a non-negative real part if Re(p) > 0. This is (iv) of 1.1-

13.2 We can now prove the lemmas 8.1 and 8.2. Given a linear cor-
respondence [L] which satisfies P1, --- | P7 by 11.13 we can interpret
[L] as the concrete correspondence representing a geometrical cor-
respondence L in some chosen real frame, and L satisfies P1, --- , P7.
Then by the results in 13.01-13.12 there exists a real frame in which the
representative [L]; of L has the properties claimed in 8.1 and 8.2 for Ly .
But we saw in 11.22 that [L] and [L], are related by a real matrix W like
the L and Ly of Section 8. Q.E.D.

13.21 With the proofs of 8.1 and 8.2 we have reduced the sufficiency
claimed for P1, ---, P7 in 8.0 to the sufficiency of positive reality of
[Z(p)] claimed in 1.1, by the argument outlined in 8.5.

XIV. OPERATOR-VALUED FUNCTIONS OF P

The next three sections are directed prineipally toward the proof of the
matrix theorem of 1.1. They do however, contribute to 12.10 and to
the necessity proof.

14.0 We continue to use the geometric language. The reader who re-
gards this as unduly pedantic is free to place a concrete interpretation
upon every argument, for all of the arguments are either frankly based
on matrix representations or upon the three identities:

14.01 (Zj, k) = (Z*k, j) for all j, keK.
1402 ZF = (Zk) for all keK.
14.03 Z' = (Z)* = (2%

14.04 These identities are obvious for matrices using 7.0 and 7.2.
Geometrically, the first and second define Z* and Z, and the third
defines Z’ in two ways. The equivalence of these two ways is a theorem
based on (10) of 10.33.

14.05 The symbol Z will always denote an impedance (operator, matrix,
scalar), and Y will always denote an admittance. An impedance oper-
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ates from K to V, an admittance dually. The operators in Halmos’
are physically dimensionless, in that they operate, e.g., from V to V.
This difference is scarcely noticeable.

We shall regularly omit the duals to concepts or proofs given in terms
of impedances. In doing so, we adopt the rule that the dual to an
expression

(Zk, k)

is

(v, Yv).

14.1 An operator is called symmetric if Z = Z’. Such operators have
three useful special properties:

14.11 If Z is symmetric and j and & are real, then
Zj, k) = Zi, k) = (B)*h,j) = (Z'k,3) = (Zk, 3)

by (10) of 10.33, 14.02, 14.01, 14.03, and hypothesis.
14.12 Let k = ki + ks , where ki and k; are real (10.42). If Z is symmetric
then

(Zk, k) = (Zky, k1) + (Zhz, K2),
for, by 14.11,

(Zky , k) = —i(Zky, ko) = —i(Zks, ko)

— (Z(iks), k).

(Cf. the similar identity in 12.11.)

14.13 The symmetric operator Z is completely defined by the quadratic
form

(Zk, k) (1)

as a function of real keK. For 14.11 permits the formula (29) of 12.42
in any real frame, where u, = Zk, . The matrix elements of [Z(p)] in
that frame are then defined by that formula in terms of values of (1)
for real k.

The form (1) specifies any Z (symmetric or not) if k is allowed to
range over all of K (Halmos', par. 53).
14.2 Let Z(p) now be an impedance operator depending on p. We say
that po # « is a pole of order m of Z(p) if

(k) = lim (p — p)"(Z(p)k, k) ©)

=M
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exists for every keK and is not identically zero. By 15.13, this limit
{(k) defines an operator R, , the residue* of Z(p) at p,, by

(Role, k) = ((k) for keK.

The changes in (2) required to define a pole at p = = are obvious.
14.21 A pole py of order m of Z(p) is a pole of some matrix element of
[Z(p)], of order m, in any frame, and no element of [Z(p)] has a pole at
po of order exceeding m. For the elements of [Z(p)] are defined by the
values of (Z(p)k, k), by 14.11 and Halmos' loe. cit.

XV. POSITIVE REAL FUNCTIONS

15.0 Let f(p) be a scalar function of the complex variable p. Following
Brune® we define f(p) to be positive real if

(i) f(p) is a rational function of p,

(ii) f(p) = f(p),

(ii1) Re(p) > 0 implies Re(f(p)) = 0.

The property (i) of being rational is of course on a quite different
level of ideas from the other properties, but it saves words later to in-

clude it specifically in the meaning of positive real.
We abbreviate the words positive real to PR.

15.01 The open region of the complex plane consisting of all finite p
such that Re(p) > O—the right half plane—we denote by T'y .

15.1 Brune, loc. cit., established a number of properties of PR functions
J(p) which will be useful to us here:

15.11 f(p) has no poles in T'; .

15.12 If Re(f(p)) = 0 for some pel'; , then f(p) = 0 for all p.

15.13 If it exists s PRR.

1
'f(p)
15.14 If f(p) has a pole at p = py, it hasoneat p = pg .
15.15 If f(p) has a pole at p = iy , that pole is simple and

2p
f(P) = p-: + wg r -+ _fl(P),

where » > 0, and fi(p) is PR.

* Properly, R, is a residue only when m = 1. There is no convenient name
available for general m.
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15.16 If f(p) has a pole at p = <, that pole is simple and

f(p) = pr + fulp),
where r > 0, and fi(p) is PR.

15.17 We shall use all of these in the next section, save 15.13. Our aim
is to prove properties analogous to 15.11, - -+, 15.16 for PR matrices
and operators.

The reader familiar with the Brune process’ for realization of a 2-pole
will remember the importance of the properties 15.11, - - -, 15.16 for the
success of that process. Correspondingly, we must establish the analogs
of these properties to implement the general Brune process for 2n-poles.

XVI. POSITIVE REAL OPERATORS

16.0 An operator Z(p) from K to V will be called positive real (PR) if in
some real coordinate frame the matrix [Z(p)] is a PR matrix in the sense
of 1.1—that is

(i) [Z(p)] has rational elements Z,.(p)

(ii) Zu(p) = Zn(p)
(i) Zn(p) = Ze(p)
(iv) For any real keK and any pel'y
Re(Z(p)k, k) > 0.
We intend in this section to establish for PR operators the properties
listed below. By subtracting 0.9 from the designation of each property

one obtains the designation of the analogous property of a PR scalar
function, stated earlier.

16.01 Z(p) hasno polesin T'y .
16.02 If Re(Z(p)k, k) = O for some pel'y , then Z(p)k = 0 for all p.
16.03 If it exists, Z7'(p) = Y(p) is PR.
16.04 If Z(p) has a pole at p = po , it has one at p = o .
16.05 If Z(p) has a pole at p = 7wy, that pole is simple* and
29) = ot B+ 7o),
where R is real, symmetric, and semi-definite, not zero, and Zi(p) is PR.

*i.e., of order one.
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16.06 If Z(p) has a pole at p = =, that pole is simple and
Z(p) = pR + Zi(p)
where R =R = R,R > 0and Z(p) is PR.

16.07 There is property of rational scalar funetions f(p), whether PR
or not, that is essential in the Brune theory: the existence of a finite
integer, the degree of f. Each step in the Brune reduction of f(p) leaves
an unreduced portion which is of lower degree than the funetion upon
which the step was performed. The finiteness of the original degree of f
then guarantees the termination of the process in finitely many steps.

There exists also for rational matrices (and operators) a concept of
degree. This degree plays the same role in the general Brune process for
2n-poles as the degree of a scalar function does in the process for 2-poles.
To define this degree and develop its properties requires an excursion
into classical algebra. Since we shall not need these ideas until Part IT
we defer further discussion of them to that part.

16.1 If Z(p) is PR it follows at once that the matrix [Z(p)] is PR in any
real frame.
Proof: Two such matrices are related by

[Z(p) = [UNZ@IUY

where U is real, by 11.22 and the argument in 8.6. The PR properties
of [Z(p)] are obviously preserved by this operation.

16.11 If Z(p) is PR, then
Z(p) = Z'(p) = Z*(p) = Z(p).
Proof: Use 16.0 and 14.03 in a real frame.
16.12 If Z(p) is PR, then for any given keK the function

Ji(p) = (Z(p)k, k)

is a PR scalar function. It follows that the limitation in (iv) of 16.0
to real k is a simplification, not a restriction.

Proof: Ji(p) is independent of coordinate representation. By use of a
real frame, (i) of 16.0 implies (i) of 15.0.

By 14.01 and 16.11

Jilp) = (Z*(p)k, k) = (Z(p)k, k) = Ju(p).
This is (ii) of 15.0. For any %, 14.12 and (iv) of 16.0 imply (iii) of 15.0.
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16.13 Conversely to 16.12, if Z(p) is symmetric and Ji(p) is PR for
every real k, then Z(p) is PR, and J(p) is PR for all k.

Prooj: J(p) is rational so (i) of 16.0 holds in any frame by 14.13.
Clearly (iv) of 16.0 holds.

Now for real k, by (10) of 10.33 and 14.02

Tup) = Jelp) = (Z®)k, k).

Hence Z(p) = Z(p) by 14.13. This is (ii) of 16.0, and (iii) there holds
by hypothesis.
16.2 Proof of 16.01: By 15.11 and 16.12, Ji(p) has no poles in T, .
This is 16.01 by the definition 14.3 of pole.
16.21 Corollary: Any PR Z(p) can be considered as defined throughout
T, : for any k, Ji(p) is defined throughout I'y by 16.2. For each p,
as a function of k, Ji(p) defines Z(p) (14.13).
16.3 Proof of 16.03: In any frame [Z'(p)] = [Z(p)]" = [Y(p)] consists
of rational elements, by direct calculation of the inverse matrix. In a
real frame [V (p)] = [Z '(p)] is symmetric and real for real p by the same
argument (both facts are also deducible geometrically). Hence we have
the duals of (i), (i) and (iii) of 16.0 for Y(p). Clearly Y(p) is defined
throughout I'y .

Now suppose that for some »eV and some poeT‘+ we have

Re(v, Y(po)v) < 0.
Then there is a keK such that v = Z(po)k. Therefore
Re(Z (po)k, k) = Re(Z(po)k, k) < 0.

Since this is impossible, we have the dual of (iv) of 16.0 for Y(p) and
Y(p) is PR.

16.4 Proof of 16.04: This is immediate from 15.14, 14.3, and 16.12.
16.5 Proofs of 16.05 and 16.06: Suppose Z(p) has a pole at p = 1wy .
Then (Z(p)k, k) does and that pole is simple by 15.15 and 16.12. Then
by 14.3 we can write

Z(p) = prapen Ro + Zo(p)
where Z(p) is regular at p = iwy . Now Zy(p) has a pole at p = —iw
by 16.5, so a similar argument gives
1 1
Z(P) = Ry + — R + Z](P), (1)

P — twy P + two
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where Z:(p) has no pole at tw, or —iwy . The symmetry of Z and linear
independence of the terms above then imply the symmetry of Ry, R,
and Z,(p).

For any keK, now,
1

p—iwn

1

(Z(pk, k) = P

(Rok, k) + (Rik, k) + (Zi(p)k, k).

Applying 16.12 and 15.15,
(Rok, k) = (Rik, k) > 0

for all k. Hence By = Ry = R (say) and R is semi-definite. Also,
(Zy(p)k, k) appears as the residue fi(p) in 15.15 and is therefore PR.
Then Zi(p) is PR by 16.13. With R, and R, identified, (1) above is the
expansion given in 16.05. We have now proved all of 16.05 save the
reality of R. But

2
=P
— s R
P+ wo
is PR, by 16.13, hence is real for real p. Therefore R is real.
The proof of 16.06 is similar.
16.6 To prove 16.02 we appear to digress somewhat, by first com-
pleting the proof of the fundamental lemma of 12.0. It was established
in Section 13 that the matrix [Z,(p)] deseribing M (p) in the chosen
basis is PR. The case in which it is nonsingular (i.e., m = 0, cf, 12.56,
12.57) remains to be examined.
16.61 If [Zi(p)] is nonsingular then its inverse is PR (16.3). Then for
any veVy,
(v, k) = (v, Y(p)) )

is PR (16.12 dual). By 12.61, for any ueV, , the values of the function
F.(p) are the values of (2) for some veV.. Hence F,(p) is PR. This is
P6(A) and P7(A) for L.

16.62 To settle P5 for L in 12.0, consider pel'; and

[v, KleL(p),  [u, jleL(p),
where u and v are real. Then, say,
Vo= v + U1,
where voeV 1y, v1eV2 . But then

v=10=10 +
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and, because Vo and V. are real, # = #, 71 = v1, and these vectors are
real. Using similar reasoning for u,

,7) = @, Y(pw), (k) = (u, Y(p)n), ®3)

by 12.61. The equality (u, k) = (v, 7) now follows from (3) and the duals
of 16.11, 14.11. Hence we have P5(A) for L and 12.0 is proved.

16.7 We now prove an important

Lemma: Let Z(p) be a PR operator from K to V. Let T, be the set
of p where Z(p) is defined and has a rank equal to its nominal rank. Let
L be the correspondence with domain I', and pairs

Z(p)k, k],  keKy.

Then L satisfies P1, --- , P7.
Proof: L satisfies P1 and P2 (6.3). I',, satisfies P4 by the argument of
12.52. Then L satisfies P4, for by 16.11

Z(p)k = Z(p)k.

L satisfies P5(I) by 14.11 and 16.11. T, satisfies P6 by 12.52. Then L
satisfies P6(I) and P7(I) by 16.12. The fundamental lemma, 12.0,
now proves that L satisfies all the postulates.

16.71 We call a correspondence satisfying all the postulates PR.

16.72 Proof of 16.02: Suppose Re(Z(po)k, k) = 0 for some poel'; .
Because this function of p is PR (16.12) we have

Ji(p) = (Z(p)k, k) = 0.
Hence keK; = Ky (12.12, 12.55). Hence [0, kleL(p) for every pel'..
That is

Z(p)k = 0 for pely.
16.73 Corollary: If Z(p)k = 0 for some poel'y, then Z(p)k = 0.

For the hypothesis here implies that of 16.72. This is the analog of
15.12; the result of 16.02 is stronger.

16.8 An important consequence of 16.7 is the

Lemma*: If Z(p) is PR and of rank m, then there exists a real coordi-
nate frame in which the matrix [Z(p)] is an m X m nonsingular PR
matrix [Z1(p)] bordered by zeros.

* Proved by Cauer®.
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Proof: Consider the PR correspondence L defined by Z(p). Then
Vi = 0, because Z(p)0 = 0 for every pel'y . Consider the real frame
of 13.02. [Z(p)]in this frame takes any of k,pmi1, *** , ks into 0 because
these span Ky . Within K, , [Z(p)] must describe the same operation as
the [Zi(p)] of 12.54. Because [Z(p)] is symmetric the lemma follows.

XVII. THE JUXTAPOSITION OF CORRESPONDENCES

17.0 This section and the next will consider ways of constructing new
correspondences from old. This will provide the basis of the necessity
proof of Section 19.

17.01 It is obvious that if two physical networks are set side by side
and their accessible terminals regarded as the terminals of a single
larger network, that enlarged network is again a physical network.
This is the gist of the present section.

17.1 Suppose that
V=V1®V2, K=K1®Kz,

where K; = Vi and all spaces are real (10.6). Let E; project on V
along V, (Halmos’, par. 33) and E» = 1 — E; project on V; along V; .
Then E; projects on K; along K;, j # ¢ (Halmos’, loc. cit.). It is
easily verified that E; = E;, Ef = E;, from the analog of 14.02 for
dimensionless operators.

Considering V; and K; as separate spaces, let L; be a geometrical
linear correspondence between them with frequency domain I'; ,7 = 1, 2.

Consider the correspondence L between V and K defined by

(i) The frequency domain I';, = Ty,
(i) [v, kleL(p) if and only if [Ew, E;kleL:(p), 1=1,2.
In (ii), of course, we regard E» and E;k as elements of V;, K;.
17.11 L so defined is called the juxtaposition of L, and L .
17.2 Lemma: L is PR if and only if each of L, and L, is PR.

17.21 Proof of “if”: It is clear that L satisfies P1 and P2. Further
notation is now simplified if we put L, = M, L, = N. Consider the
manifolds

Vi@ Vu, Vi ® VNO, Ky ® KN, Kuw® KM},

where Vi € V; is the manifold of voltages admitted by Ly = M con-
sidered as a correspondence between V; and K, , and Vo the manifold
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of voltages veVy such that [v, OleLi(p) for all pel;. Dual definitions
for Ky, Ko, and symmetrical ones for Vy, -+, Ky need not be

repeated.
It is clear from these definitions that the four manifolds above are,

in the order listed, the manifolds
Vi, Vo, Ko, K
for L. Now, for example,
(Ku) = (Ko @ Kwm)® = (K0)’N(Kwo)®

by 10.6. This last manifold, in V, is (V4 @ V2) N (Vy @ Vi), byP3
for M and N, and by 10.6. But by direct calculation

(Vi ®@ V)N(Vy @ Vi) = Vi @ Vy = V.

The dual of this result then completes P3 for L.
P4 for L is immediate because the E; and E; are real.
The duality of the decompositions of V and K implies the identity

(v, k) = (Ew, Exk) + (Ew, Exk)

(that is E\E; = E:E, = 0, and dually. This is Halmos®, par. 33). All
of P5, P6, and P7 for L follow at once from this identity.

. 17.22 The “only if”” of 17.2 is a special case of the result of Section 18.
Tts proof will be deferred to 18.4.

17.23 It is obvious that the notion of juxtaposition and the lemma of
17.2 extend to juxtapositions’'of more than two correspondences.

17.3 Even without the “only if”’ part of 17.2, we have enough for the
following characterization of PR correspondences:

Theorem: A correspondence L is PR if and only if it is the juxtaposi-
tion of

(i) a correspondence defined by a nonsingular PR matrix between
aVianda K, = Vi,

(ii) a correspondence consisting of short circuits: that is of pairs
[0, k] for all keK, and all p,

(iii) a correspondence consisting of open circuits: that is, of pairs
[v, 0] for all veV; and all p.

Proof: If L is PR, the decomposition indicated is that of 13.1, 13.11,
13.12. If L is the juxtaposition indicated, then it is PR by 16.6 and the
“if in 17.1, provided the short and open circuits are PR correspondences.
The verification of the postulates for these latter is easy and will be
omitted.
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17.31 The labor of considering PR correspondences instead of matrices
has yielded the disappointingly simple result of 17.3. We have already
been warned of this, however, by our knowledge of the properties of
physical networks (2.9).

XVIII. THE OPERATION OF RESTRICTION

18.0 In addition to juxtaposition, which is an operation on correspond-
ences clearly motivated by physical considerations, there is an operation,
here called restriction, which has important use in the next section.
There the physical meaning of the operation will become clear.

18.1 Let Vand K = V* be a pair of dual spaces. Let Uand J = U* be
another pair. Suppose that ' is a given fixed linear operation from J to
K: given any jeJ, there is a unique £(j)eK, written
k() = Cj,
such that if k. = Cy,, r = 1, 2, then
aky 4+ ak, = Clayjy + asf)
for any complex scalars a, , a, .

18.11 Let (v, k); denote the scalar product between V and K, and
(u, 7)2 that between U and J. Given (', and any veV, let us find that
unique vector u(v)eU for which

(u(v), D2 = (v, Ci (1)

for every jeJ. That such a vector u(p) exists and is unique follows from
10.13 when we notice that the right-hand side of (1) defines a function
conjugate linear in j. Now for fixed j, the right-hand side of (1) is linear
in v, hence so also is the left side. That is, there is a linear operation C*
from V to U such that -

w(y) = C*,
The following chart illustrates the situation:
VvV K
o* | ic
U J

18.12 We suppose now that €' takes real j into real k, i.e., that C is
real. Then by (1)

(C*, )2 = (C*0, )2 = (v, C])y = (3, Cj), .
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By comparison with (1), we have

C* = C*o.
Hence C* also takes real vectors into real vectors and is real.
18.2 Now let L be a PR correspondence between V and K. We define
one, say M, between U and J, as follows: For each pel's, let M (p)
consist of all pairs

[u, 7]

such that u = C*» and

[v, CjleL(p).

This definition ean be illustrated by enlarging the chart of 18.11:

L
VvV — K
c* | |C

U ar
The w’s corresponding to jeJ can be constructed by going around
through C, L and C*. This then defines a direct mapping from J to U.
18.21 We call the M defined by 18.2 a restriction of L, since its pairs
are images under C* and C™' (which is not defined over all of K) of a
restricted set of pairs drawn from L.
18.22 Clearly there is a dual operation defined by an operator D from
U to V. We might distinguish the operation of 18.2 by calling it a
current restriction, its dual by calling it a voltage restriction.
18.23 The restriction M of L is defined by lists M(p) which exist for
any pel'y. The frequency domain of M has not yet been specified,
however. )
18.3 Theorem: If L is PR, then there is a frequency domain I'y for M

such that M is PR.
Proof: P1 and P2 for M are evident at once, for any pel's. The
remainder of the proof is divided among 18.31, ---, 18.37 below.

18.31 For P3, let Ju be all jeJ such that CjeK.. Then, given jeJu,
for each peI';, there is a v such that

[v, CjleL(p),
whence

[C*v, jleM (p).
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Therefore J x(p), the space of currents admitted by M at frequency p,
coincides with the fixed J y at cach pel', .
Clearly J x is a real linear manifold.

18.32 Consider now U yo(p): if [u, 0]eM(p), then there is a v such that
u = C*v and

[v, CO] = [v, OleL(p).
Hence veVi(p) = Vi for each pel'y, . Therefore, for each pel',,
Um(p) C C*Vy. (2)

Now suppose, conversely, that pel'y and veVy = Viy(p). Then
[v, 0]eL(p). Now 0 = CO, so [v, COleL(p). Hence [C*», 0]eM (p), so
C*veU yo(p). This proves the inequality opposite to that of (2), so for pel',,

Usn(p) = C*Vyp = Uy, (3)
a fixed space.
18.33 Now consider (U o). If 7e(U y0)", then
('lt, J)E = 0

for every ueU 5y . That is, by (3),
(C*Us J)'.! = (U, CJ)[ = 0

for every vV, . Therefore Cje(Vy)’ = K., and jeJ » by 18.31. That
is, we have proved

JM =2 (U Mﬂ)uv
and, combining 18.31 with this and (3),
Tu@) = T 2 (Uan(d)’ = (Uso)' 4)

This is the weak form P3'(I) of 12.0 for M. It is as far as we can go
with P3 at the moment.

18.34 Consider P4. If for pel', we have
[u, J1eM (p)

then [v, CjleL(p) and v = C*». But then [3, CjleL(5) and @ = C*3, by
18.12. Then however

[, 1M (p)
by definition of M. This is P4.
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18.35 Consider P5(I): if
[ur , jrleM (p),
where 7, is real, r = 1, 2, then
(wry Juhr = (C*or, jih = (@, Ciidrs (5)
where [v,, Cf,]eL{p). Since Cj, is real
(0, Ciy = (v2, Cithy
by P5(I) for L. This with (5) for r # s proves P5(I) for M.
18.36 Fix a jeJ » and for each pel';, a u(p) such that

[u(p), jleM (p).
Then u(p) = C*»(p) and

[v(p), CileL(p),
for some »(p). Then as in (5) above

(u(p), N2 = ((p), C.

P6(I) and P7(I) for L then imply that P6(I) and P7(I) hold for M,
using T';, for T'y in PG.
18.37 We now have M satisfying the hypotheses of 12.0. Therefore
there is a T', such that M satisfies all the postulates. This is 18.3.

18.4 Proof of “only if” in 17.2: Suppose that L between V and K is
the juxtaposition of L, between Vi and K, L, between V. and K.
Let, say, U = Viand J = K; . Let € be the identity map from K, to K:
if jeJ = K, then Cj is just j considered as a vector in K. Then (' is
real. It is easily computed that C* is E; .
Consider the restriction M of L based on this C. Its pairs for

pel'y &I, are all the pairs [u, j] such that j = E*jeK, and u = Ly,
where

[v, j1eL(p). (6)
But then
[u, j1 = [Ev, E¥%)]
and this is in Zy(p) by (6) and the definition of juxtaposition. Therefore

the list M(p) is contained in Ly(p).
Suppose that [1, jlela(p). We have [0, 0leL:(p) so by P2 and the defi-
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nition of juxtaposition
[, leL(p).

But then j = E*j, w = EKu, and by definition of M
[2e, jleM (p).

Therefore for every pel's, M(p) = Li(p). Therefore there is a fre-
quency domain (T'y) for Ly such that L, is PR.

XIX THE NECESSITY PROOF

19.0 Fortunately for this section, those parts of network theory which
we require have recently been very succinctly stated by J. L. Synge"’.
We shall paraphrase them here, referring the reader to the source'” for
details of definition.
19.01 First, we observe that in Cauer’s definition®, which we shall
repeat in detail below, an ideal transformer with m windings is a 2m-pole
whose terminal pairs are the termini of the respective windings.

A system of m coupled coils is a 2m-pole with similarly defined terminal
pairs.
19.02 Given a 2n-pole N which is a finite passive network, let us adjoin
ideal transformers as in Figure 1(b). We then draw the ideal graph of
this network. Adjoin to the graph ideal generator branches v,, ---,
Yo, v- between T, and 7, 1 < r < n. Let 8, be the ideal branch repre-
senting the transformer winding between T, and 7, , 1 < r < n. Enu-
merate the remaining branches of the graph 8,41, -+, By .
19.03 The branch v, is in a mesh with 8, and no other branches. Let us
call this the r-th external mesh. Any basic set of meshes must include
each of these.

19.04 Let i, ---, (. be the currents in the generator branches,

i, -+, ks the currents in the branches g, , - -+, By and
() = (6, -, Gyl oy hal, (k] = [kyy - ooy Fa)
Tet wy, ---, w, be the voltazes across the generator brancies,
vy, , vy the currents in the 8y, -+, By and
[w] = [wy, -, wa, 01, -, 0, [v] = [va, -+, »].
19.05 Let us choose a basic set of meshes, let ji, - -+, j. be the respec-

tive mesh currents, and

) = [y ooy gl
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Let
[u] = [wr, -+, )

be the s-tuple of mesh voltages. We suppose thatji, =+« ,jn, %1, =+, Un
refer respectively to the n external meshes. (Cf. 19.03.)

19.06 The results of Synge'* can now be stated as follows:
There exists a real constant matrix [C1] of s columns and b + n rows
(having, in fact, elements which are 41, —1, or 0) such that for any [J]

[ = [Cils] (1)
is a set of branch currents satisfying Kirchoff’s node law, and for any [w]
[u] = [Ci]'[w] (2)

is a set of mesh voltages satisfying Kirchoff’s mesh law. Furthermore,
given any [¢] which satisfies the node law, there is a [j] such that (1)
holds.

19.07 If we interpret the [£], [7], ete., as representations in real bases
then [Cy] is real and [C])" = [Cq]*.

19.08 The matrix [Ci] has the form

C:| 0

0| C

[Ci] =

where [C4) is an n X n diagonal matrix (having diagonal elements =1,
in fact).

Proof: By construction, ji, - -, j. are mesh currents in the external
meshes. These are then equal, save for sign, to the currents £, -+, 4
in the generator branches.

19.09 By 19.08, (1), and the definitions in 19.04,

(k] = [CI7),  [Tul = [CTTo],
and by 19.07, [C] = [C]*
19.1 Let us suppose that we have enumerated the branches Bnii,
.-+, Byin 19.02in such a way that 8,41, - - -, B are all the two poles in the
graph, Bes1, -+, Ba are all the branches containing coils which are
magnetically coupled, and Ba41, - -+ , B the remaining ideal branches of
ideal transformers.

Let [Za(p)] be the (d — n) X (d — n) impedance matrix relating the
voltages across the branzhes B.;1, + -+, Ba to the currents in them when
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we consider the individual two-poles and the system of coupled coils
as separate unconnected networks, Then [Zi(p)] is composed of a
(e — n) X (¢ — n) diagonal matrix in the upper left field and a (d — ¢) X
(d — ¢) matrix in the lower right, with zeros elsewhere.

19.11 The diagonal part of [Zs(p)] has elements drawn from the follow-
ing list:
(@) f(p) = »
(i) f(p) = op
(iii) f(p) = Ap

where p, 8, N are non-negative constants, possibly different for each
branch.

19.12 Tt is shown in texts on electromagnetic theory that the matrix
representing a system of coupled coils is of the form

»lG],

where [(7] is a real, constant, symmetric, and semi-definite matrix.
The lower right field of [Za(p)] is then such a matrix.

19.13 It is obvious from this description that [Z4(p)] is PR. It therefore
describes a PR correspondence between (d — n)-tuples of eurrent and
voltage.

19.2 We must at last consider ideal transformers in detail. Let V; and
K, be m-dimensional spaces represented as aggregates of m-tuples.

Let p1, p2, -+, pm be m real numbers. Let Vr consist of all m-tuples
la] = [a1, - -+, an]eVy such that
h e O
P P2 Pm -

We interpret these relations as follows:
(a) If any p, = 0, then a, = 0
(b) If any two p, , p. are not zero, then

(c) If only one p, # 0, then a, is arbitrary.
Let Kr consist of all m-tuples [b] = [by, -+, bm]eK; such that

Plbl + P2b2 + e + pmbm = 0.

Vr and K7 are linear manifolds.



276 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952

Let [Ly] be the concrete linear correspondence defined by the list
[L7)(p) which consists for each complex p of all pairs [[a], [b]] where
[aleVz, [b]eKr.

The correspondence described by [L7] is what Cauer® defines as an
ideal transformer. He shows, loc. cit., how it can be defined as the
limiting case of a physical transformer.

There is also a dual kind of device, described by a correspondence
admitting all [b]eK; for which

bl b'l L = bm

NN M
and all [a]eV; for which
Rlﬂfl + e + Amﬁ':m = 0.

This also is an ideal transformer obtainable as a limiting case of a
physical one.
19.21 The correspondence Lz is PR.

Proof: We observe that V, = (K)°, for let [aleVr, [b]eKr, and let
¢ be the common value of the a;/p, . Then

((l, b) = Zarar = tzprfbr = I(Ep,.b,,) = ().

The postulates are now all easily proved. We omit the details,

19.3 Let V and K be b-dimensional spaces. We interpret the b-tuples
[v] and [k] of 19.04 as representing vectors veV, keK in a real frame.
Let L be the correspondence between V and K formed by juxtaposing
(i) the correspondence described by [Za(p)] relating components with
indices in the range n + 1 to 4,
(ii) the several correspondences described by ideal transformers,
relating components with indices in the ranges 1 to n and d + 1 to b.
L is PR because it is the juxtaposition of PR correspondences.

19.31 Let U and J be s — n-dimensional spaces. We interpret the [u]
and [4] of 19.04 as representing ueU, jeJ in a real frame.

19.32 Let €' be the operation from J to K whose matrix in our chosen
frames is [C]. Then C* operates from V to U with the matrix

[C]* = [CT. By these definitions, €' is real. Let M be the correspond-
ence between U and J obtained by restricting I with €. Then there is a
frequency domain I', such that M is PR (18.3).

19.4 By 19.09, [M] in our chosen frame is the correspondence estab-
lished between mesh currents and mesh voltages by the network of the
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2n-pole N. When this network operates as a 2n-pole, the only mesh
voltages which are not zero are those relating to the external meshes,
since there are no internal sources of voltage. We must now account
for this.

19.41 Let V., K, be n-dimensional spaces. Choose a real frame and let
D be the operation which takes

[ay, -, ay)eVs ) (3)

into
[ar, -+, a,,0, - ,0]eU (4
in the frame of 19.31. Then D is real and D* in the chosen frames takes
(b, <=+, bale] (5)

into
by, <+, baleKs . (6)

19.42 We interpret the n-tuples (3) and (6) as voltages and currents
in the external meshes of N. Their relations to (4) and (5) are con-
sistent with this interpretation.

Let us restrict M by D, to get a correspondence M, between V, and
K. . In our chosen frame, the passage to [M,] corresponds, by (3) and
(4) of 19.41, to considering mesh voltages in N which vanish for every
internal mesh, and, correspondingly letting the mesh currents adjust
themselves to this situation. We of course observe only the external
mesh currents (G).

19.43 M was PR. So, therefore is M, (18.3 dual). Since [M;] is the
correspondence established by the physically realizable 2n-pole N,
the necessity of P1, --- ) P7 for formal realizability is established.

XX. APPENDIX TO PART I

20.0 We must prove 7.22 and those assertions of 10.6 which are not
covered in Halmos®. These concern reality.

20.1 Let Vi be a real manifold and
V=V1@V~1, K=K1®K2

where K; = (V.)", ete. The basis (14) of 10.6 exists by Halmos®, par. 19.
We show that it can be chosen to be real. We have linearly independent
vectors

Uy =y Uy Urgny 200y Uiy
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where the first r span V;, the last n — 7, V.. Let
Vs = Ug + W, 1 <s<n,
where u, , w, are real (10.42). Since V; is real and a linear manifold,
uy = (0 + 0.)eVy, 1<s <,
and, similarly, w,eV;, 1 < s < r. Among the 2n real vectors
Uy Un, *o* Uy, Wiy oot Wy Urgly * Uy Wegay =00, Wy (1)

the first 2r are in V;, and they span V; because the v,, 1 < s < r, can
be constructed from them. The whole list (1) spans V, because from it
all the »,, 1 < s < n, can be constructed. Since the v,V do not use
in their construction any of the first 2r vectors (1), it follows that the
last 2(n — 7) vectors in that list must contain a set spanning V. The
reality of the vectors (1) then establishes the existence of a real basis,

say,
Bry tty Ury Vs, 0, U (2)
which provides a basis in V; and V.
20.11 We now have 7.22. The unique dual basis
kp, -+, kn
to (2) is real by 10.41. Hence all of Vi, Vs, Ki , K; are real. The proof
of 10.6 is then complete.
20.2 If in a real basis (2) (dropping primes)
v =aw + awy + - + G,

that is, if

[v] = [a1, -+, @al,
then by (5) of 10.3
= aw + -+ Quta,
hence

(7] = [@, ---, @]
The geometrical conjugation of 10.3 is therefore simply the concrete
one of 7.2 in any real basis. This proves the remark of 10.35.
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