Network Representation of Transcendental
Impedance Functions
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(Manuseript received November 5, 1951)

The purpose of the paper is to show that the admittance or impedance of
certain continuous structures, such as, for example, a finite length of trans-
mission line of any sort, or resonant cavily, can be represented exactly al
all frequencies by a network comprising lumps of constant resistance R,
inductance L, conductance G and capacitance C. The network will contain
an infinite number of branches, in general, although a finite number may
be used if it is desired to represent only certain modes.

The procedure 1s based upon a proposition known to students of function
theory as “Mittag-Leffler’s theorem,” which amounts, roughly, to an ex-
tension of rational functions to apply to transcendental functions of the
type encountered in the theory of continuous structures.

Several tllustrative examples of the network synthesis are given.

GENERAL

Students of network theory are familiar with the fact that the im-
pedance at a pair of terminals in a linear network comprising a finite
number of resistors, inductors and eapacitors, connected in any manner,
is a rational function of the frequency having, in general, the fractional
form of one polynomial divided by another. They are also familiar with
the partial fraction rule whereby the funection can be broken up into a
series of elementary fractions, each of which exhibits one of the poles of
the original function. This form is sometimes useful in the problem of
network synthesis, where the impedance function is given and the ob-
ject is to find a network having this impedance.

The purpose of the present paper is to show how a similar procedure
can be carried out for certain transcendental impedance functions per-
taining to struetures having distributed constants, such as, for example,
a resonant cavity or a piece of transmission line. The method employs a
well-known proposition of function theory, which is usually referred to
as Mittag-Leffler’s theorem. This theorem provides a tool for breaking
up a transcendental meromorphic funetion into an infinite series of
simple fractions in much the same way as the partial fraction rule is used
to break up a rational meromorphic function. The series representation
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provides a means of determining a network of resistors, inductors and
capacitors that will have an impedance equal to the specified transcen-
dental impedance function. This process will be referred to as obtaining
a “network representation” of the function. If the given function is the
impedance of some continuous (i.e., non-lumped) electrie structure, the
result will be an equivalent network for the structure. For other pur-
poses, such as, possibly, analogue methods of computing, the given funec-
tion may not arise from any electrical structure. In either case, the net-
work representations to be derived are possible only if the function
satisfies certain restrictions, which are stated in the section immediately
following.

The discussion is confined to transcendental impedance funetions be-
cause of the technological interest in the electromagnetic structures with
which they are associated and because they have not received as much
attention as rational functions in the literature dealing with network
synthesis. The problem with which this paper is concerned can then be
stated as follows: given, a transcendental impedance function satisfying
certain conditions: to determine a network comprising elements of
constant resistance, inductance and capacitance whose driving-point im-
pedance funetion, at a pair of terminals, will equal the given function at
all frequencies, real and complex (except at the poles).

For illustration of the procedure, three examples are given. The first
is the impedance of a short-circuited or open-circuited transmission line
in which the distributed primary constants, B, L, ¢ and C are assumed
to be invariable with frequency. The second and third examples are the
impedarces of resonant cavities driven in two different modes. In these
examples the variation of resistance with frequency, due to “skin-effect,”
is taken into account.

IMPEDANCE FUNCTIONS

The functions under discussion will be referred to as ‘“impedance
functions” with the understanding that the term is meant to include
“admittance funetions” as well. By reason of the duality principle that
runs through all electrie circuit theory, any general proposition devel-
oped for one must apply to the other. The functional designation, F (p),
will be used to denote either an impedance or an admittance function,
When a distinetion is necessary, the impedance will be designated by
Z(p) and the admittance by Y(p). The independent complex variable p
is the generalized radian frequency. (For sustained sinusoidal currents
and voltages, p = iw = 2mif where f is the real frequency.)

For the applications contemplated, F(p) is a transcendental mero-
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morphic function, which term implies that the function is given by the
ratio of two entire functions, one or both of which is transcendental, and
that the singularities of the function are ordinary poles, except for the
point at infinity, which is an essentially singular point. In order to realize
the particular network developments to be given, it will be supposed
that the function satisfies the further restrictions given below:

(1) All the poles lie in the left half of the p-plane with none on the
imaginary axis. .

(2) F(p) = F(p). (The superbar denotes the complex conjugate of
the unbarred symbol.)

(3) Real part [FF(iw)] > O for all real values of w.

These three conditions are necessary to insure that the function is the
impedance of a possible linear, passive electric circuit structure. Inter-
preted physically in terms of this possible equivalent structure, the first
condition specifies that the structure shall be stable; that is, every natu-
ral mode of oscillation dies away exponentially. The second condition
specifies that the natural oscillations are real functions of time. The
third condition specifies that if a sinusoidal current flows at the driving-
point terminals of the equivalent structure, the average real power de-
livered to it will be positive. Since these three conditions, or their equiva-
lents, are frequently mentioned in discussions of network theory, it is
assumed that they are understood without more detailed explanation.

In addition to the above restrictions on the form of the impedance
function, the following two conditions, while not necessary, will be im-
posed to limit the scope of the discussion:

(4) All the poles of F(p) are simple.

(6) F(p) = 0(1), exactly, as | p| — = everywhere except at the poles.

Condition (4), while limiting the scope of the exposition required, does
not restrict the application of the results in any important way, because
most impedance functions for which a network representation may be
required have only simple poles.

Condition (5) implies that as p increases along any straight line drawn
through the origin and not passing through any pole of F(p), the modu-
lus of F(p) either approaches a limit or oscillates between finite limits.
The physical implication of this condition is that the response of the
network as a function of time to a suddenly applied cause begins with a
discontinuity of the same degree as that of the cause. For example, the
current response of the network to an applied step of voltage begins with
a finite discontinuity. This behavior is a characteristic of continuous
(non-lumped) electromagnetic structures, which furnish the principal
application of the network developments to be desecribed.
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MITTAG-LEFFLER’S THEOREM?
Let the poles of the given funetion F(p) be p1, p2, ps - -+, where
0<[p| L |p| < |ps] -

and let the residues at the poles be Ay, A2, A5 - - - | respectively. Suppose
that it is possible to draw a sequence of closed eontours, (', , such that
C. encloses p;, P2, - - - P, but no other poles and such that the minimum
distance of C, from the origin tends to infinity with n. Suppose also that
F(p) satisfies conditions (2), (4) and (5) above. Then Mittag-Leffler’s
theorem gives the following series development for F(p):

F(p) = F(0) + Limit f ( Ay A") (1)

5w 25y \D = Pu | Da.

The notation here used employs the convention that

Pen = Pn and A_, = A,,

since, by virtue of condition (2), the poles oceur in conjugate complex
pairs. The value, n = 0, then allows for a pole on the negative real
axis.

Given any suitable function, the procedure is to determine its value
for p = 0 and the location of its poles. The residues are next determined

by
A, = Limit ('P - Pn)F(?J)

P—*Pn

Then the Mittag-Leffler expansion can be written down at once.

NETWORK REPRESENTATION

In the series (1) the terms occur in pairs with conjugate complex poles
and residues. The object is to obtain a network representation of each
such pair of terms. If F(p) is taken as an admittance, the branches rep-
resenting the pairs of terms will all be connected in parallel; if F(p) is
taken as an impedance, they will all be connected in series.

Methods for obtaining a network representation for a rational funec-
tion, such as the one comprising a pair of terms in the series (1), are well
known. It is only necessary to describe certain procedures of particular
application to the present problem. Brune® has stated that the necessary
and sufficient condition for a network representation of a rational func-
tion of p to be realizable is that it be a ‘“‘positive real function,” that is,
a function that is real for real values of p and whose real part is positive,
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or zero, when the real part of p is positive, or zero. In view of conditions
(1) and (2) above, only one test'” need be applied to each pair of terms
of the series (1): the sum of a pair of terms will be a positive real func-
tion if, and only if, the real part of their sum is greater than, or equal to,
zero for all purely imaginary values of p.

The general term pair for which a network representation is sought is
T O XONNE)
P—Pn P —Pn Pa Dn
Evidently two cases can be distinguished at the outset, depending upon
whether P,(0) is positive or negative. If P,(0) is positive, the network
branch, in order to be realizable, should be designed to represent P,(p).
The left-over negative term, —P,(0), then can be absorbed in the posi-
tive first term, F(0), of the series (1); more will be said of this later. If,
on the other hand, P,(0) is negative, the network branch should repre-
sent the whole term, P.(p) — P.(0). This procedure insures that the
real part of the branch impedance will be positive, or zero, at zero and
infinite frequencies. To guarantee that the resistance is positive at all
other frequencies requires further tests now to be specified.

Let the real and imaginary coefficients of the poles and residues of
the n™ term be

F.(p) =

Pn = —Oy + T'Bn y ﬁn —Qp — T'.Bn
An = ay + by, A, =a, — b,

(With this notation, a, and 38, are always positive; a, and b, can be either
positive or negative.) Then (dropping the subscripts)

2(ae — bB) + 2ap

PO = o+ 2ap + 17
1 _ 2(ae — b8) (o’ + 8°) + 20*(aa + bB)
RIPG = "o ¥ oy + 200(@ — B9 T ®
P(©0) = F___Q(Zf; Bbf)

—2(ad’ — 3a’bB — 3aap’ + b8’ — 2(aa — b)w*
(@ T Bl + 6 + 2@ — F)u T o
The necessary and sufficient conditions™ for the real part of a rational
function of p to be positive, or zero, for purely imaginary values of p are
that the function be positive for p — 7% and have no imaginary roots
of odd multiplicity. When this test is applied to the functions P(p) and

R[P(iw) — P(0)] =
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P(p) — P(0), as given by (3), the following conditions are obtained:
P(p) will be a positive real function if, and only if,

ae — b3 > 0; ie. P0) >0 4)
and

aa + b3 > 0
P(p) — P(0) will be a positive real function if, and only if,

ac — OB < 0, ie. P0) <0 (5)
and

aa’ — 3a’bB — 3aaf’ + bB' < 0.

If all terms of the series satisfy one or the other of these conditions,
network branches can be devised to represent all the terms and all the
R, L, G, C elements of the branches will be positive.

In case all the terms are of the type where P,(0) is positive, so that
the network branches are made to represent P,(p), the left-over constant
terms can be collected and added to the first term, F(0), of the series.
This collection of terms then must be represented by a final branch of
pure resistance, or conductance, of value,

F(0) — Z_: P.(0)

If the sum of the variable terms approaches zero for p — =i, the
final constant term supplies the high frequency resistance of the fune-
tion F(p) and since this must be positive, if condition (3) is satisfied, the
final resistive element will be positive. If the series converges non-uni-
formly, the sum of the variable terms can have a value other than zero
as p — i in spite of the fact that every term approaches zero indi-
vidually. In that case (see example 1) all or part of the high frequency
resistance may be supplied by the sum of the variable terms.

In case all the terms are of the type where P,(0) is negative, so that
the network branches are made to represent the sum, P,(p) — P,(0),
of the variable and constant terms and the series is uniformly conver-
gent, all the high frequency resistance is provided by the branches rep-
resenting these terms. The first term, F(0) then supplies the dec re-
sistance, which is positive by condition (3). Non-uniform convergence
can modify this division of high- and low-frequency resistance, however.

Cases can arise in which the series contains terms of both types. In
such a case the de resistance, or high frequency resistance, or both, of
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the given function might be less than the sum of the variable terms for
these frequencies, with the result that the final resistance branch would
be negative for either the series or parallel type of network development.

To make the procedure as concrete as possible, particular forms of
networks are described in the section following with explicit formulas for
computing their elements.

NETWORK FORMULAS

Simple forms of network branches are shown in Figs. 1 and 2. Those
of Fig. 1, referred to as branches of “‘the first kind” are suitable for con-
nection in parallel where the given function F(p) is an admittance, ¥ (p),
while networks of “the second kind,” shown in Fig. 2, are suitable for
connection in series to represent an impedance, F(p) = Z(p). The net-
works of Figs. 1a and 2a apply where the value P,(0) of the general term
is positive, while Figs. 1b and 2b apply where P,(0) is negative. Figs. 3
and 4 illustrate, respectively, networks of the types of Figs. 1a and 2a

Cn - Ln
B | - --%%--
Rn Ln Rn Cnh
1
& &
(a) (b)
Fig. 1—General branches of the first kind.
Fig. 1a Fig. 1b
(use where F(p) = Y(p) (use where F(p) = Y(p)
and Y,(0) > 0) and Y,(0) < 0)
_ 1 _ Balah + B2)(an + b3)
L., = Sa. L, = S
1 . (b [ M
e, o (a2 + 1) L.Co = Bia + b2)
Gn _ 1 _ _ _a‘nan - bnlsn (G)
'CT’“ = a_n (a'n.an bnlsﬂ) G"L" - '__—lu'—_
R. _ 1 ____ N
L.~ g (e F 0B Bl =gy
G, =Y(0)— 2 Yu(0) G =7Y(0)

n=o
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connected to form the completed network with the final non-reactive
branch, G, or R, , in place.

Formulas for the network elements are obtained by equating the poles
and residues of the network impedance function to the given poles and
residues of the general term of the series. Since both poles and residues
oceur in conjugate complex pairs, and since equality of real and imagi-
nary parts is involved, there are four equations, which are necessary and
sufficient to determine the four constants, R, L, G, C, of the network.
The formulas that are obtained by solving these equations are given
beneath Figs. 1 and 2.

The values given for G, and R, in each case assume that all the terms
of the series are of the type specified for that case.

Cn Ln
-= w '\/1\/\1
& &
VAL
Rn Ln Rn Cn
(a) (b)

Fig. 2—General branches of the second kind.

Fig. 2a Fqg. 2b

(use where F(p) = Z(p) (use where F(p) = Z(p)
and Z,(e) > 0) and Z.(0) < 0)

o - L o = Buleh + 85)'(ah + b3)
" o, " 20
L 1) e

Lo, = \at L.C. = Bial + b2

R, _ 1 _ v _anan - bmen

E; - a'_“ (anan bm@n) Rn('n - M— (7)

a 1 N

¢, = a, (e B0 Gl = G )

R, = Z(0) — > Z.(0) R, = Z(0)

n=e

where M = a.(8% — a3) + 2aBubn
N = —ana‘: + 3&3,1)"{3,, + 301,,6!,..,61 - bm@:
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In the case of the parallel-type networks (Figs. la and 1b), p, =
—a, + B, is a pole of the admittance, ¥ (p), and 4, = a, + b, is the
corresponding residue. In the case of the series-type network, the same
symbols represent a pole and residue of the impedance, Z (p).

The networks specified by Figs. 2a and 2b are duals of the networks
of Figs. 1a and 1b, respectively, and are obtained from the latter merely
by replacing L, by C,, R, by G., and vice versa.

The formulas are intended to apply to complex poles. They can be
applied to real poles by taking b, and 8. equal to zero and doubling the
residue, a, , but this procedure is unnecessary, because the network rep-

R, Ra

; L, Lz

[N C @ Cs

S+

Fig. 3—Network of the first kind (branches 1a}.

C1 CZ

L I

A LA

e AN ——AAA— — Ao
R L A
° Gy Gz T
_/V\/\[——J-O-D_G\—
Ry Ly Ra Lz

Fig. 4—Network of the second kind (branches 2a).

resentation of a real pole can be found readily enough hy inspection of
the impedance terms involved. (See Example 1.)

The above discussion is intended to sketch a general picture of the
procedure. Individual cases may involve considerable detail that can be
understood more readily by reference to the next section.

APPLICATIONS

Ezample 1a: A transmission line with its far terminals short-circuited
affords a simple illustration of the equivalent network theory. Let it be
assumed that the parameters, B, L, G and C' of the line are constants. In
the more advanced examples to follow, the variation of these parame-
ters with frequency for a particular kind of line will be taken into con-
sideration.
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The impedance of the short-circuited line (Fig. 5) is
Z = Zytanh T (1-0)

where Z, is the characteristic impedance and T is the total propagation
constant of the line. We have

_ (R + pL 2 ’
%= (F30) o
T = [(R + pL)(@G + pO)]"* (1-2)

R, L, G and (' being given for the fofal length of line.
To obtain a development in terms of network branches of the kind
shown in Fig. 1, we consider the admittance function,

}' = ),u ('()t-h T (1-3)

where Y = 1/Z and Y, = 1/Z, . Our first task is to find the poles of this
funetion and the residues. Since the complex frequency variable p oceurs

)

Fig. 5—Short-circuited transmission line.

R,L,G,C

7=

sls
<|-

under square roots in both Z, and T, it might be suspected, offhand, that
the singularities of the function are branch points rather than poles.
Such is not the case, however. There are no branch points and all the

poles are simple.
The singularities of ¥ are to be found among the zeros of tanh T,

which oceur at
' = imn, n=0+1 £2 x3, - (1-4)
To determine them, we solve
I* = (R + pL)(G + pC) = —='n’ (1-5)
“and find these roots:

pn = —ay + ?TBJI ] p—n = ﬁn = —y — 1‘,3",
where

2 2 G R 271/2
,@n = [1;‘2}, - (‘-’)T - l—_)_]:)} (”’ > 0) (I‘G)
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For n = 0, the above would give

__k_¢
pﬂ— LP C

But if we let T — 0, so that tanh T — T, we find that only the point,
—R/L, is a singularity of ¥; the other point, —G/C, is a regular point.
Therefore ¥ has only one real singularity.

To find the nature of the singularities of ¥, we next calculate

it [P =P ] _ _
Lt [Zu(p) tanh F(p):l A (1-7)

and find that at each p, the limit exists and has the value

i(om — =
= 1 1 ( " L) B )
A= 2T L 5L T (1-8)

where TV(p,) = (—% I'(p), evaluated at p = p, . The fact that this limit

exists shows that all the singularities are simple poles. The values of A,
are then the residues at these poles.

When we now apply formulas (6) to determine the elements in the
general branch of the equivalent network of Fig. la, we obtain, for
n>1,

L 1w G. @G R. R (1-9)
=3 Lo ¢-C¢ LoL "
The network then comprises an infinite number of such branches in
parallel. Each branch has the same elements K, and L, , equal, respec-
tively, to half the total resistance and inductance of the transmission
line, but the elements G, and C, decrease from one branch to the next in
inverse proportion to the squares of the integers.

The Q of the n'® branch, which can be regarded as the @ of the asso-
ciated resonance of the short-circuited line, is

L.

Wn Wn Wn

=% "G R G _E (1-10)
c

& G
w=Arie o Vic o (1-11)

where
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Thus, for small dissipation, the resonances would become sharper in di-
rect proportion to the frequency (if the parameters R, L, @, C, were
invariable with frequency, as assumed).

The above described branches of the equivalent network account only
for the complex poles (n > 1) of the admittance function. Two more
branches remain to be calculated. One is for the real pole (n = 0), which

oceurs at pp = —R/L, with residue, 4, = % The required branch for

this pole is
A 1
p—p R+ pL
The other is the final conductance branch, which is calculated as follows:

) = A /G 1
G() = Y(O) + ﬂ-z—ﬂa = 1/}_8 coth ‘\/GR E

(1-12)

(1-13)
- 1
2 R GR "
so that, for this example, the conductance branch vanishes. The network
is drawn in Fig. 6.
A series type of network, as shown in Fig. 7, can be determined by

— 2@ 0

e
- Fi5g. 6—Network of the first kind equivalent to the short-cireuited line of
ig. 5.

< <
2 2
IL [
A I
AN N -

(Ro=0) 2 2
G G

L AAN——000~ L AAN—— 000 ~

2R 2L 2R 2L
”2(%]2 ”2{%)2 1,5..2(%)2 ”2(%)2

- Fig. 7—Network of the second kind equivalent to the short-cireuited line of
ig. 5.
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gimilar means. Since, however, it is a dual of the parallel network of Fig.
9 for the open-circuited line, next to be discussed, it can be drawn im-
mediately, without further caleulation, once the latter has been found.
Example 1b: We now calculate a network for the same line with its
far terminals open (Fig. 8). To obtain a network of the first kind, with
branches in parallel, we deal with the admittance function, '

Y = Yytanh T (1-14)

The singularities of ¥ are found among the zeros of coth T, which occur
at

I =ixr(n + 3), n=0x1,x2 £3, - (1-15)

The points p = —R/L and —G/C are both regular points this time.
(—G/C is a zero of ¥.) The singularities are simple poles, as before, with
residues,

1

A = T )

(1-16)
as before.

The network branches for the complex poles are therefore obtained
merely by putting n + % in place of the n in all formulas of the short-
circuit network. There is no branch corresponding to the branch B + pL
of the other network and the conductance branch is again found to be
zero. The complete parallel network is drawn in Fig. 9 and the series net-
work, in Fig. 10.

Tt will be observed that the series network of Fig. 10 is the dual of the

R,L,G,C

=L
2=y

Els

Fig. 8—Open-circuited transmission line.

fo .
Fig. 9—Network of the first kind equivalent to the open-circuited line of Fig. 8.
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parallel network of Fig. 6 and the series network of Fig. 7 is the dual of
the parallel network of Fig. 9. These dual relationships are of course a
result of the fact that the impedance of an open-circuited line is the dual
of the impedance of the same line when short-circuited.

Example 2: Short-circuited Concentric Line (or Torotdal Cavily with
E Radial). The preceding example considered a fictitious transmission
line of invariable parameters, R, L, G, C, having a perfect short circuit
at one end. The present example has to do essentially with the same
problem but considers it from a more practical point of view. The vari-
ation of R and L with frequency is taken into account and the impedance
of the “short-circuit” is no longer neglected. :

Let the line be the piece of coaxial cable plugged at both ends with
condueting material as illustrated in Fig. 11. Considered from an alter-
native point of view, our line is now a toroidal cavity oscillating in the

Cc C

C 2 z
IL IL
I A

(Ro=0) MYV W B
G G
—\AM—000 ~
L 2R 2L 2R 2L
G 772 72 a2 ame

Fig. 10—Network of the second kind equivalent to the open-circuited line of
Fig. 8

mode where the electric force E is directed radially and the magnetic
force H lies in planes at right angles to the axis. If we assume the cavity
to be excited, or “driven,” from one end,* the impedance that is effective
in defining the selective characteristic of the cavity with respect to fre-
quency is the total impedance at that end, that is, the sum of the im-
pedance Z;, viewed into the cavity, and the impedance, Z,, of the ad-
jacent end-plug. Therefore, we have to deal with the impedance,

Z=07+2Z. (2-1)

By “impedance” is here meant the same thing that one considers in look-
ing at the problem from the point of view of transmission line theory,
namely, the complex ratio, for exponential oscillations, of the voltage
between the inside and outside eylindrical surfaces to the total current

* For determining the “natural frequencies’’ of oscillation of the cavity, it is

immaterial at what point along it the impedance is taken; the total 1mpedance
at every point has the same roots. The impedance is, neverthe]ess. not the same
at all points so that the behavior of the ecavity, when drlven will depend to some
extent on the driving point.
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flowing axially in the inner conductor at the same point. The zeros of Z
define the natural frequencies of oscillation of the cavity and their asso-
ciated damping constants, or @’s. Our task is to develop an equivalent

network for this Z.
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We have
_ o, (1™ 140
Z—Zl-l-zz-—zo(l _pg—ﬂ‘rh"_ =
F?\/\/\/ - — 00
—g‘-(wﬁ) %(l+m+ﬁ)

27T
c==—
LOGE-

Fanzdn 3 3
Won C (‘+2dt}',-. _256,,)
T
@on= "R
1
v = =3(109)
Voo

-9
(€.9) Mo= 47 (1077), €= 2=, FOR AIR IN M.K.S.UNITS

Hu=Uy, 9=58(107),

(n=1 FOR FUNDAMENTAL MODE)
Fig. 11—Toroidal cavity, F radial.

FOR COPPER IN M.K.S. UNITS
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where

1/2
Zy = (R + ’”L) : v = (R + pL)"*(G + pO)'"*  (2-3)

G + pC
7o — Z
/A (2-4)
Zy = %r log (2-5)
) (ea) 7 Ko(ob) p,ug b
Bl = nea T E Kot T og 08, (20
G+ pC = ; (g0 + pe) (2-7)

log -

h, a, b = cavity length, inner radius, outer radius, as shown in Fig. 11,

all measured in meters
(:szf:)] 12
q (2-8)

)IIZ

o = (pug

&, g are permeability, conductivity of the conducting material of the walls
(for copper: p = 4x(1077), ¢ = 5.8(107) in M.K.S. units).
Ko, go, €0 are permeability, conductivity, dielectric constant of the dielec-
tric material occupying the cavity (for air: uy = 4=(107), g = 0,
= (107")/367 in M.I.S. units), p = generalized frequency vari-
able.
Io(2), I.(2) are Bessel functions of the first kind for imaginary argument
and of order 0, 1.
Ko(z), Ki(z) are Bessel functions of the second kind for imaginary argu-
ment and of order 0, 1.
Except for ignored small deviations of the field around the corners of
the cavity, the above formulas are exact. To arrive at results that are
sufficiently compact to be useful, we make these approximations, at the

start:
; L 1/2 7][? b
Zo = Ko = [(—]:l = o7 log a (2-9)

where

1/2
m = [@il = 1207 ohms (2-10)
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From this,

n— "M
= 2-11
7+ M (2-11)

Having in mind microwave applications, where the moduli of the argu-
ments of the Bessel functions are >3000, we take

Io(2) _ Ko(2) _
L(z) Kiz)

so that

b

1,1 Do
+ 6) =+ 5‘;1(@& (2'12)

R L=2(z2
+ 27 (a.
Also, we have in mind only air dielectric and assume any loss therein to
be negligible; that is, we assume G = 0.

All further approximations that are made are either

1
1—A
where, for an air-space enclosed by copper walls, and for frequencies on
the order of 30,000 megacycles, A is on the order of 10~*. For ecavities
made of other materials, the results obtained may not be sufficiently ac-
curate and the problem would have to be reviewed from the start. In
particular, the results do not hold for a cavity having walls of magnetic
material, because we assume here that the permeability of the metal walls
is the same as that of air;ie., u = uo.
To obtain an equivalent network of the first kind, we deal with the ad-
mittance, which is, from (2-2),

=14+A o (142)"=1+4

Y =

1 (1 — p)(1 — pe ™)
7 = Hy 501 — pleth) (2-13)
where Hy = 1/K,.

The poles of ¥ are then the zeros of 1 — p'e ™ which are obtained by
successive approximations. We first make a close estimate of the zeros by
assuming that the impedance of the short-circuiting plugs is zero; that
is, we assume, Z: = 0, whence p = —1. To obtain this estimate, we have
to solve

h 2\
vh = Ev—(l + %) = TN (n = %1, +£2, £3 -+ ) (2-14)

where
_ 2ab log (b/a)
a+b
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and » = 3(10%) meters per second. The approximate solution is
1
'pln = Pon (l + '—)
do'l)u

. 1T
on = —
h

where

and gon = (Ponpg)'"

Next we improve our estimate of the zeros by the well-known method in-
volving the derivative of the function, 1 — p¢ ™ with respect to p,
evaluated at p,, . This now takes account of the actual impedance of the
end-plugs. The values of the zeros, so obtained, are

Pn = —ay + iﬁn ; P_n = ﬁn = — o, — i.Bn
where

1 1
Op = Win (2(26,; + E)

1 1
n = n 1 age I
A @0 ( + 2ds, hﬁn)
where §,* is the real part of o, . That is,
bn = (woung/2)""*

(2-15)

where
T
h

As an incidental matter of interest, the above gives the Q of the cavity
at any resonance, namely

Win =

= B _ !
Qu = 5 = ds, ¥ (2-16)

1+_]T

For example, the dimensions, « = .5 em., b = 1.0 em., h = .5 em. pro-
vide a cavity that resonates at about 30,000 megacyecles. Then the Q’s at
the first three resonances would be as follows:

Won
n 5 Q
1 30,000 x 10° 4250
2 60,000 x 10° 6010
3 90,000 x 10° 7360

* For any frequencys, 8§ = (wpg/2)"? is sometimes referred to as the “skin depth?’’
beeause it is the depth of metal at which the current density falls to 1/¢ times its
value at the surface of the metal.
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The importance of including the effect of the end-plugs in determining
Q is shown by the fact that, if they were assumed to have zero impedance,
() at the first resonance would be 12,120 instead of 4250.

To determine the residues at the poles, we write

o W= —pe ™) _ F(p)
V=t =5 e~ @) @17
and then the residue at a simple pole p, is
F(pa)
A, = 2-18
@) (218)

This limit is found to exist, showing that the poles are, in fact, simple.
The value found for the residue, 4., is

Ap = a, + iba, A, = A, = a, — b,
GHH““’““ 1_L__L)
T 2ds,  2hé. (2-19)

‘ chon( 1 1
b= = \oa, +2Tan)

When formulas (6) are applied to determine the elements of the tuned
branches of the equivalent network of the first kind, the results are, for
the n'" branch,

;Kmrn 1 1
Ln = 50" (1 + fn + m)
o =i )
= won | 1+ 5= — 75
L.Ch an " hé, (2-20)
G _ @on
C.  2hé,
R. 1 3 )
L. ™ (d_a,, 2hs,

In terms of the R, L and C of the piece of coaxial line, the elements of the
™ hranch are as follows:

L. = hL(-i- +i)

2ds, | 2hs,
2hC L3 3 (221)
Cn = (1 ~ aa, T z—ha—)

_ W(]"C _ 3 3
Gn = o, (1 s, T Z‘E)
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where

Mo b 1 fwonp 12 71 1)

L_Z_—arloga' R_‘Zvr(Zg) ath
2men Y wWon Ty 12

C==5, wn=T-,  b=("5Y
log p

The network is shown in Fig. 11.

It will be found that a “leakage” element, &, , appears in the equiva-
lent network, although the air dielectrie in the cavity was assumed to
have no leakage (G = 0). This element arises from the end-plugs and is
necessary to account for the dissipation in them.

To obtain a network exactly equivalent to the cavity at all frequen-
cies, we should add a branch corresponding to n = 0, as was done in
example 1. This branch would make the equivalence hold down to and
including zero frequency. But, inasmuch as the approximations that have
been made hold only for the high frequencies, where the resonances oc-
cur, it would be inconsistent to add this branch. What has been arrived
at, then, is a partial network representation that gives a close approxi-
mation to the impedance of the cavity at high frequencies, only.

Ezxample 3: Toroidal Cavity with E Axial. For further illustration, we
consider another mode of oscillation of the short-circuited concentric
transmission line investigated in the previous example. This time it is
assumed that the radial electric force vanishes while the axial electric
force between the end-plugs exists. The magnetic force is directed in
circles concentric with the cylindrical central conductor, as before. This
situation is illustrated in Fig. 12, which is the same as Fig. 11, except for
the new disposition of the F-vector.

For the new mode of oscillation, where the wave is a eylindrical one
propagated back and forth between the inner and outer conducting
cylinders, the oscillatory space is naturally thought of as a “toroidal
cavity,” while, in the previous example, where the wave was propagated
axially back and forth between the terminal discs, the space was called
a “concentric line.” Actually, the cavity itself has the same geometric
form in the two cases. A practical distinetion may exist, however, in that
the axial mode of oscillation could be more easily excited in a cavity
whose axial length is large compared to its radius, while the cylindrical
mode would arise more easily in a flat “pillbox” eavity whose radius is
large compared to its axial dimension.

The approach to the problem will be that of transmission line theory,
as before. This time, the “line” comprises two circular dises between
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which the cylindrical wave is propagated. The series impedance and
shunt admittance of such a line are functions of the radius and so will be
designated Z(r) and Y (r), respectively. Their values are given below:

2() = 21+ Lk (3-1)
2mr
Y(T) _ 'iw2]‘:'7"€0 (3_2)

These formulas take into account the losses in the flat walls but assume
the conductance of the air between them to be negligible. Losses in the
inner and outer “short-circuiting”’ cylinders will be taken into aceount by

the boundary conditions.

////Zfa/

[T A
Ty E h
! Y
| 2 7
|< ——————— b------- >
2b-alC(__3 3
72n2 (1 2_'|1|’Jn +2(b—a)Jn)
(b-a)L 1 1 1T
1+ zha, * 35-5777)
O —
(b-a)R 3h
2 ('+ 2(b-a)
72n2dp, 3 3
prwom tas 2hé, o-a1dr)
_ 1 /@Won _7rnv
R=7al2g @on="p-a
L:;‘ﬂ‘!g V=VE%;?O=3{105,
C= 27k 6= worz,,ug

SEE FIGURE 11 FOR g, €5, /,g
("=1 FOR FUNDAMENTAL MODE)
Fig. 12—Toroidal cavity, £ axial.
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If V is the voltage between the flat faces of the cavity at a radius » and
I the total current in the lower face at this radius, we have

dVv
R
dr 49 (3.3)
dl )
o= VYo
By differentiating,
Vv dZ dI 1 dZ , ‘
drt -1 dr Zdr (Z d.r) +vay (3-4)
But
"= (29 + iwuh) 1—‘}’? =5
which is a squared propagation constant, independent of r, and
Ladz _ 1
Zdr 7
Therefore,
dEI'Y 1 dV 27 ~
wtra V=0 (3-5)

is the differential equation for the voltage. The usual solution of this
equation is a linear combination of [4(yr) and K(yr) but since, in this
case, the arguments will be almost purely imaginary, it is more con-
venient to employ the pair of functions, Jo(—1iyr) and No( —iyr).

The solution for the voltage between the upper and lower surfaces at
radius r is

Vir) = AJo(—1yr) + BNo(—2vyr) (3-6)

and, from this, the total radial current in the lower surface, at that
radius, is

—1Yo(r)[AJi(=yr) + BNi(—iyr)] (3-7)
where

Yo(r) = 1/Z4(r) = [Y()/Z()"
The impedance at the inner radius a, looking outward, is then

I(a) iZ(a) AJo(—iya) + BNo(—1iva)

L@ =y A (=iva) + BNy(—iva)

(3-8)



400 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952

The total impedance at a (inward 4+ outward) for which we require an
equivalent network is

Z = Z(a) + Z,
where Z, is the impedance of the central plug to axial current, viz.,
. ﬂ I(oa) .
Za = 2ra I(ca) (3-9)

To evaluate the constants A and B, the following boundary conditions
are imposed at radii ¢ and b:

at a: V = V(a), a given voltage
at b: V = I(b)Z,

where Z, is the impedance of the other “‘short cireuit,” comprising the
outer cylindrical wall. It is given by

_ nh Ku(ab)
* 7 2xb Ki(ab)

Except for ignored small deviations of the field around the corners
of the cavity, the above expressions are exact. The process of finding
the singularities of Z by successive approximations results in expressions
that are too long to write down here. To obtain results sufficiently com-
pact for engineering use, we resort to the following asymptotic approxi-
mations for the Bessel functions:

Jo(z) ~ (%)”2 cos (z — w/4)

.

(3-10)

2 \1/2
Ji(z) ~ (—) cos (z — 3w/4)
Tz
2 1/2
Nolz) ~ (—) sin (z — w/4) (3-11)
T2
9 \1/2
Ni(z) ~ (—) sin (z — 3w/4)
T2
Ii(_z) ~ 1 KO(Z) ~ 1
I,(2) ! Ki(2)
Also, with an error on the order of 1074
Zor) ~ 1 — Kylr) = 1/Holr)

27r
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These substitutions result in the following asymptotic formula for the
total impedance Z at radius a

29 ) 7%\ .
—coskxr 4+ 21+ = )sin kz
7 = Kola) 0

; (3-12)
cos kx + D sin kx
M0
where k& = 2— — land z = —ivya.

To find an equivalent network of the first kind to represent Z, we deal
with the admittance, ¥ = 1/Z. It is instructive and saves much work
to put Y in the form of exponential functions, with the substitution

77— M
7+ m

which is the reflection coefficient at both inside and outside eylindrical
surfaces of the cavity. By this means we obtain

—2ikz
Y=HMﬂE$Téﬁﬂ) (3-13)

This is now identical in form to the formula (2-13) of example 2, where
the E-vector was radially, instead of axially, directed. In faet, since

tkx = y(b — a)

_ i (1 N E)lla
v ho

comparison with the similar formulas of example 2 shows that all the
results of that example can be made to apply to the present one merely
by changing the dimensional parameters as follows:

and

Example 2 Example 3
(E radial) (E axial)
h goes into b—a
d = %—ab log (b/fl--) goes into h
a-+ b
The first result of interest is the value of @, which is
Qo = hby — o (3-14)
1+
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where, as before, 8, is the “skin depth” equal to the real part of o, . That

is,
5, = won kg
1/ 2

To gain an idea of numerical magnitudes, consider the same cavity used
in example 2. The dimensions are, as before, h = .5 em., b — a = .5 cm.
For the square cross-section chosen, the first resonance again occurs at
30,000 megacycles, very nearly, and we can make the following direct
comparison of the @’s for the two modes of oscillation:

G"
n won /27 .
‘ Ex. 2 (E radial) Ex. 3 (E axial)
1 30,000 X 108 4250 4370
2 60,000 X 108 6010 6180
3 90,000 X 108 7360 7560

Due to the asymptotic approximations used, the results for example 3
are not as accurate as those for example 2; the two sets of results show
only that the @ of the cavity is substantially the same for the two differ-
ent modes of oscillation.

The poles of Y are given by

P = —Qn + i.Bn: P = Pn = —oan — 7’.'3"
1 1
A, = Woin [%Bn +‘ —_(b — a‘)an:| (3_15)

1 1
Bu = Won [1 + M - (b _ a)_‘sn]

and the residues are

A, = a, + iba, A, = A, = a, — ib,

. __H“(a)m(."[lﬁL_ 1 ]
" m 2hs,  2(b — )b, (3-16)

_ Hn(a)wnn[ 1 1 ]
ba = ™ 2h, + 2(b — a)d,

Applying formulas (6) gives the following values for the n™ branch of
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the network of the first kind:

. ™ 1 1
L. = Kila) 5~ [[ T o T MJ

1 . 1 2
LﬂL_”{1+EZ @i}ﬁ}
(3-17)
o _ e
¢, 30 = a),
R. _ 1 3
7 [hT tam = a)&,.:l

in all of which w,, = mn/(b — a) and v = 1/(uee0)'”* = 3(10°) meters
per second.

The results can be put in the same form as those obtained for the other
cavity mode, dealt with in example 2, by employing the “primary con-
stants” of the eylindrical transmission line, viz.:

Rla) = - [“’""“]”2 Lia) = M

Ta | 2g 2ra

211'@&0

Gla) =0 Cla)

In terms of these constants, the elements of the nth branch of the equiva-
lent network of the first kind are

_ (b — a)L(a) 1 !
L, = - 9 (l + 218, + m)

R, — (h — fz)R(a) (1 i 3h ))

2 2(b — a
(13-8)
o 20 —aC@( 3 3 )
" o 21, 2(b — a)b,

_ ':‘-’DHC'(G‘) 3 3 )
(““;%m(‘ She, T 200 — ),

The network is shown in Fig. 12.

As in the preceding example, a leakage element arises, in spite of the
fact that we assumed initially that g, of the air in the cavity is zero.
This element accounts for the losses in the inner and outer cylindrical
walls.
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A number of people with whom the above material has been discussed
have given helpful comments and eriticisms. I wish to acknowledge my
debt in this respect to H. Nyquist, 8. A. Schelkunoff, R. M. Foster, 8. O.
Rice, J. Riordan and W. H. Wise.
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