A Comparison of Signalling Alphabets

By E. N. GILBERT
(Manuseript received March 24, 1952)

Two channels are considered; a discrete channel which can transmit se-
quences of binary digits, and a continuous channel which can transmit band
limited signals. The performance of a large number of simple signalling
alphabets vs computed and il is concluded that one cannot signal at rates
near the channel capacity withoul wsing very complicated alphabets.

INTRODUCTION

C. E. Shannon’s encoding theorems' associate with the channel of a
communications system a capacity ('. These theorems show that the
output of a message source can be encoded for transmission over the
channel in such a way that the rate at which errors are made at the re-
ceiving end of the system is arbitrarily small provided only that the
message source produces information at a rate less than (' bits per second.
(' is the largest rate with this property.

Although these theorems cover a wide class of channels there are two
channels which can serve as models for most of the channels one meets
in practice. These are:

1. The binary channel

This channel can transmit only sequences of binary digits 0 and 1
(which might represent hole and no hole in a punched tape; open-line
and closed line; pulse and no pulse; ete.) at some definite rate, say one
digit per second. There is a probability p (because of noise, or occasional
equipment failure) that a transmitted 0 is received as 1 or that a trans-
mitted 1 is received as 0. The noise is supposed to affect different digits
independently. The cpacity of this channel is

C=1+plogp+ (1 —p)log(l —p) (1)
bits per digit. The log appearing in Equation (1) is log to the base 2;
this convention will be used throughout the rest of this paper.

' C. . Shannon, “A Mathematical Theory of Communication,”” Bell System
Tech. J., 2T, p. 379-423 and pp. 623-656, 1948, theorems 9, 11, and 16 in particular.
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2. The low-pass filler

The second channel is an ideal low-pass filter which attenuates com-
pletely all frequencies above a cutoff frequency W cycles per second and
which passes frequencies below W without attenuation. The channel is
supposed capable of handling only signals with average power P or less.
Before the signal emerges from the channel, the channel adds to it a
noise signal with average power N. The noise is supposed to be white
Gaussian noise limited to the frequency band | » | < W. The capacity
of this channel is

L. 7 P b
¢ =T l()g(l + N) (2)

bits per second.

Shannon’s theorems prove that encoding schemes exist for signalling
at rates near (' with arbitrarily small rates of errors without actually
giving a constructive method for performing the encoding. It is of some
interest to compare encoding systems which can easily be devised with
these ideal systems. In Part I of this paper some schemes for signalling
over the binary channel will be compared with ideal systems. In Part
IT the same will be done for the low-pass filter channel.

Pamr 1
THE BINARY CHANNEL
1. Error-Correcting Alphabels

Imagine the message source to produce messages which are sequences
of letters drawn from an alphabet containing K letters. We suppose that
the letters are equally likely and that the letters which the source pro-
duces at different times are independent of one another. (If the source
given is a finite state source which does not fit this simple description,
it can be converted into one which approximately does by a preliminary
encoding of the type deseribed in Shannon’s Theorem 9.) To transmit
the message over the binary channel we construct a new alphabet of
K letters in which the letters are different sequences of binary digits of
some fixed length, say D digits. Then the new alphabet is used as an en-
coding of the old one suitable for transmission over the channel. For
example, if the source produced sequences of letters from an alphabet
of 3 letters, a typical encoding with D = 5 might convert the message
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into a binary sequence composed of repetitions of the three letters.

00000
11100
and 00111

If K = 2°, the alphabet consists of all binary sequences of length D
and hence if any of the digits of a letter is altered by noise the letter will
be misinterpreted at the receiving end of the channel. If K is somewhat
smaller than 2” it is possible to choose the letters so that certain kinds
of errors introduced by the noise do not cause a misinterpretation at
the receiver. For example, in the three letter alphabet given above, if
only one of the five digits is incorrect there will be just one letter (the
correct one) which agrees with the received sequence in all but one place.
More generally if the letters of the alphabet are selected so that each
letter differs from every other in at least 2k 4+ 1 out of the D places,
then when k or fewer errors are made the correct interpretation of the
received sequence will be the (unique) letter of the alphabet which
differs from the received sequence in no more than & places. An alphabet
with this property will be called a k error correcting alphabet’.

Error correcting alphabets have the advantage over the random
alphabets which Shannon used to prove his encoding theorems that they
are uniformly reliable whereas Shannon’s alphabets are reliable only in
an average sense. That is, Shannon proved that the probability that a
letter chosen at random shall be received incorrectly can be made ar-
bitrarily small. However, a certain small fraction of the letters of Shan-
non’s alphabets are allowed a much higher probability of error than the
average. This kind of alphabet would be undesirable in applications such
as the signalling of telephone numbers; one would not want to give a
few subscribers telephone numbers which are received incorrectly more
often than most of the others. It is only eonjectured that the rate C' can
be approached using error correcting alphabets. The alphabets which are
to be considered here are all error correcting alphabets.

A geometric picture of an alphabet is obtained by regarding the D
digits of a sequence as coordinates of a point in Euclidean D dimensional
space. The possible received sequences are represented by vertices of
the unit cube. A & error correcting alphabet is represented by a set of
vertices, such that each pair of vertices is separated by a distance at
least v/2k + 1

Let Ko(D, k) be the largest number of letters which a D dimensional

2 R. W. Hamming, ‘“Error Detecting and Error Correcting Codes,” Bell System
Tech. J., 29, pp. 147-160, 1950.
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k error correcting alphabet can contain. Except when k = 1, there is no
general method for constructing an alphabet with Ko(D, k) letters, nor
is Ko(D, k) known as a function of D and k. Crude upper and lower
bounds for Ko(D, k) are given by the following theorem.

Theorem 1. The largest number of letters Ko(D, k) satisfies

oD 9P :
= ) < =
N(D, 2 = KD b < 55 @

where
k
N(D, k) = 2. Cp,,
r=0

is the number of sequences of D digits which differ from a given sequence
m 0,1, -+, ork places.

Proaf

The upper bound is due to R. W. Hamming and is proved by noting
that for each letter S of a k error correcting alphabet there are N (D, k)
possible received sequences which will be interpreted as meaning S.
Hence N(D, k) Ko(D, k) < 2°, the total number of sequences.

The lower bound is proved by a random construction method. Pick
any sequence S; for the first letter. There remain 2" — N(D, 2k) se-
quences which differ from S, in 2k + 1 or more places. Pick any one of
these S, for the second letter. There remain at least 2” — 2N (D, 2k)
sequences which differ from both S; and S, in 2k + 1 or more places.
As the process is continued, there remain at least 2" — ¢N(D, 2k)
sequences, which differ in 2k 4+ 1 or more places from Sy, .-+, S,
from which S, is chosen. If there are no choices available after choosing
Sk, then 2° — KN(D, 2k) < 0 so the alphabet (S, -+, Sk) has at
least as many letters as the lower bound (3).

Tor all the simple cases (D) and k not very large) investigated so far
the upper bound is a better estimate of Ky(D, k) than the lower bound.
The upper and lower bounds differ greatly, as may be seen from a quick
inspection of Table I. For example, in the case of a ten dimensional two
error correcting alphabet, the bounds are 2.7 and 18.3.

2. Efficiency Graph

The first step in constructing an efficiency graph for comparing alpha-
bets is to decide on what constitutes reliable transmission. The criterion
used here is that on the average no more than one letter in 10* shall be
misinterpreted.
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TasLe I
TasLe oF 2°/N(D, k)

k= ... 1 2 3 4 5 6 7
D=3 2
4 3.2
5 5.3 2
6 9.1 2.9
7 16 4.4 2.9
8 28.4 6.9 2.8
9 51.2 11.1 3.9 2
10 93.1 18.3 5.8 2.7
11 170.7 30.6 8.8 3.6 2
12 315.8 51.8 13.7 5.2 2.6
13 585.2 89.0 21.6 7.5 3.4 2
14 1092.3 | 154.4 34.9 11.1 4.7 2.5
15 2048 270.8 56.8 16.8 6.6 3.3 2

Missing entries are numbers between 1 and 2.

This sort of criterion might be appropriate for a channel transmitting
English text. For other messages it is not always appropriate. For ex-
ample, if the messages are telephone numbers, one would naturally
require that the probability of mistaking a telephone number be small,
say less than 107", If the telephone numbers are L decimal digits long,
and if the alphabet has K different letters in it (so that it takes about
L log 10/log K letters to make up a telephone number) the probability
of making a mistake in a single letter should be required to be less than
about

107" log K
L log 10

which gives alphabets with large K an advantage over alphabets with
small K.

Since the probability that exaectly r binary digits out of D shall be
received incorrectly is Cp,p” (1 — p)°~", we achieve the required re-
liability with a D-dimensional k-error correcting alphabet provided p
satisfies :

Fe

2 Cop'(1 —p)"7 < 1074 @
r=k+1
The value of p which makes the inequality hold with the equals sign
determines the noisiest channel over which the alphabet can be used
safely.
Let K be the number of different letters in the alphabet. Then the
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rate in bits per digit at which information is being recieved is

log K
o

In Equation (5) we have neglected a term which takes account of the
information lost due to channel noise. This is legitimate because all but
10~* of the letters are received correctly.

The worst tolerable probability p of (4) and the rate R of Equation
(5) determine the noise combating ability of an alphabet. To compare
different alphabets one may represent them as points on an efficiency
graph of R versus p. Fig. 1 is an efficiency graph on which the values
(p, R) for a number of simple error correcting alphabets have been
plotted. Each point on the graph is labelled with the two numbers k, D
in that order. The alphabets represented were not found by any systema-
tic process and are not all proved to be best possible (i.e., to have the
largest K) for the stated values of & and D. Fortunately, R depends on
K only logarithmically so that it is not likely the points representing the
best possible alphabets lie far away from the plotted points.

The solid line represents the curve

R=C=1+plogp+ (1 —p)log (1 — p).

According to Shannon’s theorems, all alphabets are represented by
points lying below this line.
The efficiency graph only partially orders the alphabets according to

R = (5)
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Fig. 1—Probability of error in a letter is 104,
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their invulnerability to noise. For example, it is clear that the alphabet
3, 15 is better than 2, 8. However, without further information about
the channel, such as knowledge of p, there is no reasonable way of choos-
ing between 3, 15 and 3, 7.

3. Large Alphabets

We have been unable to prove that there are error correcting alphabets
which signal at rates arbitrarily close to C' while maintaining an arbi-
trarily small probability of error for any letter. A result in this direction
is the following theorem.

Theorem 2. Let any positive e and & be given. Given a channel with p <
there exists an error correcting alphabet which can signal over the channel
at a rate exceeding Ky — e where

Ro=1+2plog2p+ (1 — 2p)log (1 — 2p)

bils per digit and for which the probability of error in any letter is less
than 6.

Proof

The probability of error in any letter is the sum on the left of (4). This
is a sum of terms from a binomial distribution which, as is well known,
tends to a Gaussian distribution with mean Dp and variance Dp(1 —
p) for large D. Hence there is a constant A () such that all & error cor-
recting alphabets with sufficiently large D have a letter error proba-
bility less than & provided

k> Dp + A@) (Dp(l — p))* (6)

Let k(D) be the smallest integer which satisfies (6) and consider an
alphabet which corrects k(D) errors and contains Ko(D, k(D)) letters.
By Equation (5) and the lower bound of Theorem 1, this alphabet signals
at a rate R(D) satisfying

1— % log N(D, 2k(D)) < R(D).

Since p < 1, 2k(D) < D/2 for large D and hence
N(D, 2k(D)) < (2k(D) + 1)Cp srny-

Then an application of Stirling’s approximation for factorials shows that
as D — =

1— ]l) log N(D, 2k(D)) — Ro.
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Hence by taking D large enough one obtains an alphabet with rate ex-
ceeding By — e and letter error probability less than é.

The rate Ry, appears on the efficiency graph as a dotted line.

It has not been shown that no error-correcting alphabet has a rate
exceeding R, . In fact, one alphabet which exceeds R, in rate is easy to
construet. If the noise probability p is greater than %, then By = 0. The
alphabet with just two letters

0000...0
and
1111...1

will certainly transmit information at a (small) positive rate, and with
a 107" probability of errors if I is large enough, as long as p < 1.

Using a more refined lower bound for Ky(D, k) it might be shown that
there are error-correcting alphabets which signal with rates near (.
If one repeats the calculation that led to R, using the upper bound
(3) (which seems to be a better estimate of the true Ko(D, k)) instead
of the lower bound (3), one is led to the rate € instead of Ry .

The condition (4) is more conservative than necessary. The structure
of the alphabet may be such that a particular sequence of more than
I errors may oceur without causing any error in the final letter. This is
illustrated by the following simple example due to Shannon: the alphabet
with just two letters

000000
111000

corrects any single error but also corrects certain more serious errors
such as receiving 00 1 1 1 1 for 0 0 0 0 0 0. An alphabet designed for
practical use would make efficient enough use of the available sequences
so that any sequence of much more than k& errors causes an error in the
final letter; the random alphabets constructed above probably do not.
If this kind of error were properly accounted for, the rate By could be
improved, perhaps to C.

4. Other Discrete Channels

If instead of transmitting just 0’s and 1’s the channel can carry more
digits
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a similar theory can be worked out. The simplest kind of noise in this
channel changes a digit into any one of the n other possible numbers with
probability p/n. Then the capacity of the channel is

0=log(n+1)+p!ogg+u—p)log(l—;o).

Error-correcting alphabets for this channel can also be constructed and
the eriterion (4) for good transmission remains unchanged. The proof
of theorem 1 can be repeated with little change using

k
N(D, k) = 2 Cp, i
r=0

as the number of sequences which can be reached after k or fewer errors
[the terms 2” in (1) and (3) are replaced by (n + 1)” ). Once more, using
the lower bound, one finds an expression for K, which is the same as the
one for ¢' but with p replaced by 2p.

Parr II

THE LOW PASS FILTER
1. Encoding and Delection

If f(t) is a signal emerging from a low pass filter (so that its spectrum
is confined to the frequency band |v| < W cycles per second) then
f(t) has a special analytic form given by the sampling theorem®

_ sin # (2Wt — m)
10 = £ 1(G) St = @)

m=—00

Thus the signal is completely determined by the sequence of sample
values f(m/2W). The average power of the signal f(f) is measured by

P = lim 7Tf () dt

T—0 &

which can be expressed in terms of the sample values as follows

P‘,}}.Iimmgz_,,,f( ) ®

As in Part I, consider a message source producing a sequence of letters
from an alphabet of K equally likely letters. To transmit this informa-
tion over the low pass filter we must encode the sequence into a function

3, E. Shannon, “Communication in the Presence of Noise,” Proc. I. R. E.,
37, pp. 10-21, Jan. 1949.
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f(@@) of the form (7), or in other words into a sequence of sample values
Jim/2W). To do this, we construct a new alphabet containing K letters
which are different sequences of real numbers of some fixed length,
say D places. When we let the letters of the new alphabet correspond to
letters of the old one the message is translated into a sequence of real
numbers which we use for the sequence f(m/2W).

If the K letters of the sequence alphabet are

Sitoan, -+, ap
Sz: as, ---, Azp
Sk: ag1, *** , ArD,

the expression (8) for the average power of the function f(#) becomes

1 "
P=m{(d§+d§+"'+d§) (9)
where

D
di = Z a.z‘-,-.
=1

If the DD numbers in the sequence S; are regarded as coordinates of a
point in Euelidean D dimensional space, d; represents the square of the
distance from the point representing S; to the origin.

When f(t) is transmitted, the received signal will be f({) + n(f) where
n(t) is some (unknown) white Gaussian noise signal. The noise signals
n(t) are characterized by the fact that their sample values n(m/2W)
are independently distributed according to Gaussian laws. That is,

1 X .
> m -\ _ —y2/%2
Prob (n (QTV) < }L) Voo, _/;o e dy. (10)

The variance o of the distribution of noise samples is, by an application
of (8), the power of this ensemble of noise signals.

At the receiving end of the channel, there is a detector which observes
each block of D sample values f(m/2W) + n(m/2W) and tries to decide
which one of the K letters Sy, - -+, Sg was sent. In terms of the geo-
metric picture, the detector divides all of D) dimensional space into K
non-overlapping regions U, , - -+, Ug with the property that, if the D
received sample values are represented by a point in U, , the detector
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decides that S; was sent. By Equation (10), the probability that the de-
tector picks the wrong letter when S; is sent is

1 —1i2/22
pisz‘/:‘-..fc ' dyl"'dyp (11)

where U; is the set of all points not in U; and r; is the distance from
(41, -+, ¥p) to the point representing S; .

For any given alphabet the best possible detector (in the sense that it
minimizes the average probability of making an error in guesssing a
letter) is called a maximum likelihood detector. The region U; for a maxi-
mum likelihood detector consists of all points (y1, - -+, y») which are
closer to the point S; than to any other letter point S;(r; < r; for all
j # ). To prove that this choice of U is best possible consider any other
detector such that U; contains a set V of points in which r; > r;. A
direct calculation shows that the detector obtained by removing V' from
U; and making V part of U, has a smaller probability of error per letter.
The set of points equidistant from two given points is a hyperplane. The
region U; of a maximum likelihood detector is a convex region bounded
by segments of the hyperplanes

ri =T, Ti = Tay "0

To compare signalling alphabets under the most favorable possible
circumstances, we always compute letter error probabilities assuming
that the detector is a maximum likelihood detector.

2. Compuiation of error probabilities

Exact evaluation of the letter error probability integral (11) is im-
possible except in a few special cases. Fortunately we are only interested
in (11) when ¢ is small enough in comparison to the size of U;to make the
integral small. Then fairly accurate approximate formulas can be de-
rived.

Theorem 3. Lel R;; be the distance belween letter points S; and S; . Then

1-J1( - Q) <p:i <2 Qy (12)
ii iAi
where
1

0
—r2/2
Qi = e dz.
Y \% 27 -[R"J'_;Qn

The proof of Theorem 3 follows from the fact that @Q.; is the prob-
ability that, when S, is transmitted, the received sequence will be closer
to S; than to S;.
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In the cases to be computed @; is a rapidly decreasing function of
R;; and the only terms worth keeping in (12) are the ones for which
R;; is the smallest of the numbers Ry, ---, R . Moreover since
the Q;; are all small enough so that the upper and lower bounds differ
only by a few per cent, the upper bound is a good approximation to p; .
Then a simple approximate formula for the average letter error prob-
ability p = (m + -+ + px)/K is

N ® —z2/2
P=on f,o,,‘* d (13)

where 2r, is the smallest of the K(K — 1)/2 distances R;; and N is the
average over all letters in the alphabet of the number of letter points
which are a distance 2r; away.

3. Efficiency graph

The efficiency graph to be described was constructed originally to
compare alphabets for signalling telephone numbers of length equal to
ten decimal digits. It was desired that on the average only one telephone
number in 10" should be received incorrectly. As described in Part T
section 2, if the telephone numbers are encoded into sequences of letters
from an alphabet of K letters, we must require that the average prob-
ability of error in any letter be

p = 10" logy K (14)

or smaller.

Giiven an alphabet, one can compute with the help of (13) and (14)
and a table of the error integral the largest value of the noise power ¢
which can be tolerated. The average power of the transmitted signal is
P given by Equation (9). Hence we can compute the smallest signal to
noise ratio

Y = P/¢’ (15)

which will be satisfactory.

A letter containing log K bits of information is transmitted during
an interval of D/2W seconds. Hence the rate at which information is
received is

_2W log K

f D

(16)

bits per second. Again Equation (16) ignores a term representing in-
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formation lost due to channel noise which is negligible because the error
probability is low.

The efficiency graph, Fig. 2, is a chart on which the signal to noise
ratio Y in db [computed from Equation (15)] is plotted against the sig-
nalling rate per unit bandwidth R/W = (2 log K)/D for different alpha-

24
PAZ
22 .
800,4
19,2 b
L]
20
n,2
18 e
PAlg 10,2
e8,2
pLe PL3 >
| PL20 .
o 16 H Ad ® XS3 6,2 "22
2 e
@ 52, p° o°° /]
» 14 10,3510 w524
[a] [ ]
2y ®exsd /
z 2 OUT.OF 5 i'ala
g 12 ! -
< 3,20 ®6,3 /
o
i 43e LB"‘ ‘ D
Lo r X
o 5,48 ®10,5 W
" [ olii67) £
w o(1,16,7 B
28 7,6 S /4
z \y
S PPIO
2 ®10,9
2 ) | /]
® 15
o sz | o332 ) /
I ¢ | ®32)6 /
>
4 .l 0,19 /
| 64,32 /
2 o’
o
050,49
-2
100,99 /
-4
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/W = RATE PER UNIT BANDWIDTH IN BITS
Fig. 2—Probability is 10~4 that an error is made in a 10 digit decimal number.
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bets. An alphabet is considered poor if its point on the efficiency graph
lies far above the ideal curve R/W = C/W =log (1 + Y).

4. The alphabets

The alphabets which appear on the efficiency graph are the following:

excess three (X.83): the ten sequences of 4 binary digits which repre-
sent 3, 4, - -+ , and 12 in binary notation;

two out of five: the ten sequences of five binary digits which contain
exactly two ones;

pulse position (PP10): the ten sequences of ten binary digits which
contain exactly one one;

2” binary: all of 2” sequences of D binary digits.

pulse amplitude (PAn): the 2n 4 1 sequences of length 1 consisting
of —m, —n + 1, + -+, n. This alphabet gives rise to a sort of quantized
amplitude modulation.

pulse length (PLn): the n 4 1 sequences of n binary digits of the form
11 --- 10 --- 0, i.e., a run of ones followed by a run of zeros.

Minimizing alphabets (K, D): The above alphabets are taken from
actual practice. They are convenient because, aside from PAn, they
require a signal generator with only two amplitude levels. If we ignore
ease of generating the signals as a factor, a great many geometric ar-
rangements of points suggest themselves as possible good alphabets.
The principle by which one arrives at good alphabets may be described
as follows. When a D and K have been determined which give the desired
information rate B [by Equation (16)] try to arrange the K letter points
in D dimensional space in such a way that the distances between pairs
of points are all greater than some fixed distance and that the average
of the K squared distances to the origin is minimized. By Equations
(9) and (13) it is seen that, apart from the small influence of the factor
N, this proecess must minimize the signal to noise ratio Y required.

Ordinarily it is difficult to prove that a configuration is a minimizing
one. Even to recognize a configuration which leads to a relative minimum
(i.e. a minimum over all nearby configurations) is not always easy. The
eight vertices of a cube, for example, do not give a relative minimum.
Consequently, most of the alphabets to be deseribed are only conjectured
to be “best possible.” Each of them satisfies one necessary requirement
of minimizing alphabets that the centroid of the point configuration
(assuming a unit mass at each letter point) lies at the origin. That this
condition is necessary follows from the easily derived identity

2 2 2
s =1 — Rg
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K=3a K=4a K=5

K=10
Fig. 3—Two dimensional alphabets.

Tig. 4—Three dimensional alphabets.
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where r; is the rms distance from the origin to the points of a configura-
tion A, R, is the distance from the origin to the centroid of A, and 7,
is the rms distance from the points of A to the centroid of A.

In plotting points on the efficiency graph the notation K, D is used
for the best K-letter D-dimensional alphabet which has been found.
The arrangement of points for various K, 2 and K, 3 alphabets is given in
Tigs. 3 and 4. In these figures two points are joined by a straight line
if the distance between them is 1 (which is the value we have adopted
for the minimum allowed separation 2r,). Although not shown, the origin
is always at the centroid of the figure. To aid interpretation of these
diagrams we have included Fig. 5 which demonstrates how all the signals
of a typical alphabet can be generated. The functions of time shown in

aa
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Fig. 5—Generation of the 4,3 code signals.
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Fig. 5 are not the code signals themselves but impulse functions which
are to be passed through a low pass filter with cutoff at W c.p.s. to form
the code signals.

The best possible higher dimensional alphabets can be described more
easily verbally than pictorially. In four dimensions we have found four
alphabets. )

The 25,4 alphabet consists of the origin and all 24 points in 4 dimen-
sional space having two coordinates equal to zero and the remaining
two equal to 1/4/2 or —1/4/2. Eachof the 24 points lies a unit distance
away from the origin and its 10 other nearest neighbors; they are, in
fact, the vertices of a regular solid. This alphabet has an advantage be-
yond its high efficiency. The code signals are composed entirely of posi-
tive and negative pulses of fixed energy and so should be easier to
generate than most of the other codes which appear in this paper.

The 800, 4 alphabet is constructed in the following way: Consider a
lattice of points throughout the entire 4-dimensional space formed by
taking all the linear combinations with integer coefficients of a basic
set of four vectors. That is, the lattice points are of the form Cw +
Coas + Cavy + Cyy where Cy , - - -, Cy are integers and the v; are the four
given vectors. In connection with our problem it is of interest to know
what lattice, (i.e. what choice of vy, »2, vs, 1) has all lattice points
separated at least unit distance from one another and at the same time
packs as many points as possible into the space per unit volume. ‘When
a solution to this “packing problem” is known, it is clear that a good
alphabet can be obtained just by using all the lattice points which are
contained inside a hypersphere about the origin as the letter points.
Many of the two dimensional alphabets illustrated in the sketches are
related in this way to the corresponding two dimensional packing prob-
lem (which is solved by letting »; and v, be a pair of unit vectors 60°
apart). A solution to the four dimensional packing problem is affored by

1 1
Ul=‘\/§, \/ﬁ’ 0, 0
1

?;"2=

S-Sl
=Sl
Sl- %

1 1
vy =0, V3 V3 0.
This lattice contains two points per unit volume (twice as dense as the
cubic lattice in which »; , - - - , vs are orthogonal to one another) and each
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point has 18 nearest neighbors. A hypersphere of radius 3 about the
origin has a volume (ﬂﬂ/2)34, about 400. Thus it contains about 800
lattice points. Take these as the code points of the 800, 4 code. Their
average squared distances from the origin can be estimated as

3
f " dr
o

3
f  dr
o

N in Equation (13) may be estimated at 18; this is conservative because
some lattice points outside the sphere are being counted.

The two remaining four dimensional alphabets belong to two families
of D-dimensional alphabets.

The 4, 3;5,4; -+ ; D + 1, D - - - alphabets are the vertices of the
simplest regular solid in D-dimensional space. For example, 4, 3 is a
tetrahedron. Such a solid can be constructed from D + 1 vertices whose
coordinates are the first ) + 1 rows of the scheme

0 0 0 0 0
1 0 0 0 0
3
1 [
? 24/3 0 0 0
2 24/3 246
1 1 1 5 0
2 2/3 246 2410
. 1 1 1 6
2 243 24/6 24/10 2415

The vertices all lie a distance v/D/2(D 4 1) from the centroid of the
figure.

6,3;8,4;---;2D, D, --- are obtained by placing a point wherever
any positive or negative coordinate axis intersects the sphere of radius
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1/4/2 about the origin. Thus it follows that 6, 3 consists of the ver-
tices of an octohedron.

Error correcting alphabets ((k, K, D)): The error correcting alphabets
discussed in Part [ can be converted into good alphabets for this channel
by replacing all digits which equalled 0 by —1. Three error correcting
alphabets appear on the chart; each is labelled by three numbers signi-
fying (k, K, D).

Slepian alphabets (SD): Using group theoretic methods, 1. Slepian
has attempted to construct families of alphabets which signal at rates
approaching €. Although this goal has not yet been reached, families
of alphabets depending on the parameter D have been found which
approach the ideal curve to within 6.2 db and then get worse as ) — =.
In the simplest of these families of alphabets, ) = 2m is even and the
letters consist of all the 2"Can, » sequences containing m zeros, the
remaining places being filled by =1. The best alphabet in this family
is the one with D = 24. It lies 6.23 db away from the ideal curve and
contains 1.1 x 10'° letters. The alphabets of this family for D = 10, 24,
and 70 appear on the efficiency graph labelled S10, S24, and S70.

The conelusion to which one is forced as a result of this investigation is
that one cannot signal over a channel with signal to noise level much less
than 7 db above the ideal level of Equation (2) without using an un-
believably complicated alphabet. No ten digit alphabet tolerates less
than 7.7 db more than the ideal signal to noise ratio.

It would be interesting to know more about good higher dimensional
alphabets. They are very much more difficult to obtain. The regular
solids, which provided some good alphabets in 3 and 4 dimensions, pro-
vide nothing new in 5 or more dimensions; there ale only three of them
and they correspond to our D + 1, D; 2D, D, and 2” binary alphabets.
Worse still, the packing ploblem also becomes unmanageable after
dimension 5.
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