Principle Strains in Cable Sheaths and
Other Buckled Surfaces

By I. L. HOPKINS
(Manuseript Received February 25, 1952)

Equations are developed for rigorous delermination of magnitudes and
directions of principal strains in plastic deformation, by means of measure-
ments of rectangular strain rosettes. Application lo the study of felephone
cable sheath is described.

In the course of certain studies of the polyethylene used in the sheath
of telephone cable, it was necessary to caleulate the magnitudes and direc-
tions of the principal strains from data obtained by measurements of
the distortion of a square grid which had previously been printed on the
surface of the cable. The strains were large, rendering useless the usual
expressions for analysis of strain rosette data'. Such large strains are
characteristically sustained for a wide variety of high polymeric ma-
terials of increasing importance for wire and cable sheathing as well as
other structural uses. In this article the requisite formulas are developed.

The basic assumptions are:

(1) The strains may be large.

(2) The strains are uniform over any square of the grid (equivalent
to the condition that a square transforms into a parallelogram).

(3) The square may be regarded as plane.

(4) Two of the principal strains arve parallel to the surface.

We shall first consider only the two prineipal strains in the plane of
the surface of the cable. Suppose these two strains to be parallel with
the 2 and y coordinate axes, respectively, and that one side of the square
is aligned, before straining, at the angle ¢ with the x axis. This is illus-
trated in Fig. 1.

Let e, = maximum principal strain
¢, = minimum principal strain
)\z = 1 + [
=146
LI—CE)I' example, Max Frocht, “Photoelasticity,’”” 1, p. 37, 1941.
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If primes are used to refer to the strained state,

! r U li

Tp — Xy Tg — T,
)\== =

Ty — T Td — ¢

r ! ! !
A _ Yo — Ya _ Ya — Yo
y = =

Yo — Ya yd_yc

If L, and L. are the lengths of the sides of the unstrained square, and
Ls and L, the diagonals,

(In + A L)* = Nz — )’ + N(wo — va)’ (1a)
(Le 4+ A Ln)* = Noza — )" + N(ya — ve)’ (1b)
(2 — Ta)’ = (ya — %) = L1 cos’dy = Lj cos’ey (2a)
(o — o)’ = (xa — x.)° = Lisin’¢, = L3 sin’¢y (2b)
whence, if

L+ AL -EIA L _ Ly, L+ Al _EzA L _ L, ete. (2¢)
LY = A; cos’ ¢y + A, sin’ ¢ (3a)
Ly’ = ALsin® ¢; + A cos’ ¢y (3b)

y

€x

d° *drYd

Fig. 1—Lines ab and cd, before the xy plane is strained by stretching (or com-
pressing) in the x and y directions.
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Henceforth, for elarity, suppose the subseript ““1” to refer to the longer
side of the parallelogram, “2” to the shorter side, ‘3" to the longer dia-

gonal, and “4” to the shorter.

S: = original slope of L, = tan ¢; = Yo — Ya
Iy — g
S, = original slope of L. = tan ¢, = Ya — Ye
Tg — T

!

.Sl = tﬂ.n{ﬁ’l =%S]

S, = tan g5 = 7 S,
A
Since ¢1 — ¢ = 90°,
1
Se = — 5
S = —N\/AS1

By expansion and substitution from Equations (4) and (5),

M (S. + i)
tan (¢} — ¢3) = 228U
- ()
Let ¥ = 90° — (g1 — ¢u)
then

)
tan (90° — (¢1 — ¢2)) = tany = )\_____Ll—
v (s +5)

which is the shear between L; and Ls .

(81 + 1/8) = tan ¢ + cot 1 = %

and substituting this in equation (7),

20\, tan ¢

sin 2¢; = THEEY)
z v

(4a)

(4b)

(5a)

(5a)

(6)

(7)

(8)

(9)
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whence
T a2y 2 4.2,
cos 2 = 1/ 1— 4(__%"”_ tilfj)f (10)
Remembering that
cos’p; = 1+ cos 24 (;OS 241 (11a)
and
sin® ¢y = Ll%:——% (11b)

and substituting Equation (10) in Equation (11), Equation (11) in
Equation (3), and then solving the quadratic equation thus formed for
Az and A, , we have

12 1”2 2 1242 2 yl2 2
AL A2 = (L) + L") =+/ (Ly -|2‘L2 414" Ly cos™ ¢ (12)

Referring to Fig. 2, and using the law of cosines, and remembering that
Ly is the ratio of the strained to the unstrained length of the diagonal,

2L — (L + L)

13
oL (132)

— cosf = siny =

whence

ALy (L + Ly — L") — (I — L")’

cos’ ¢ = (13b)

2512
4111 )

Fig. 2—A parallelogram formed by straining a square. L\, L.’ and L;' are the
ratios of the lengths of the indicated lines to their original lengths.
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This expression, substituted in Equation (12) and reduced, gives

s 2 (L4 L) =+/2(L7 — LY ) + 2(Ly* — Ly)’
Ao, A = 5

(14)

It may be noted here that a property of the parallelogram, namely, in
the notation used here, '

L + Ly = L' + Ly’ (15)

makes it immaterial which diagonal is used. This may be readily seen
by substituting

L = L + L — L¢
in Equation (14). The effect is merely that of substituting L, for Ls.
In Equation (13a), however, the result is a change in the sign of ¥.

As an example of the application of these equations, the measurements
of one specimen were:

Ly =21
Ly =12
Ly = 2.0

From Equation (14),
A= 4758, A\
ANo=1.092 ),

2.181, e, = 1.181
1.045 ¢, = 0.045

]

From Equation (13a),
sin ¢ = 0.4266, whence
Y = 25.3°
tan ¢ = 0.472
From Equation (9),
sin 2¢, = 0.587
¢ = 18.0°

tan¢, = 0.324
From Equation (4a),
tan qbi 0.1554

¢, = 8.83°
TFromEquation (9), it is obvious that the maximum value of tan ¢ occurs
at ¢, = 45° and is in this case equal to 0.804.

Il
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This example is illustrated in Fig. 3.

The question of direction of the z and y axes is simply settled by draw-
ing a line through either of the acute angles of the parallelogram, crossing
the parallelogram at an angle ¢; with the longer side. This line will be
parallel to the = direction, which is, according to the convention, that
of greatest strain.

So far no mention has been made of strain in the third dimension;
that is, a change in thickness of the sheath. In plastic deformation, the
volume change is generally negligible. This requires that

A = 1

whence

Fig. 3—A square and the parallelogram resulting from stretching to length
ratios Az = 2.1R81 in the z-direction and A, = 1.045 in the y-direction.

TaBLe I
Principal Strains, per cent
Degrees of twist in 3 feet Parallel to Surface
Perpendicular
to Surface

Max. Min,
180 16 06 —19
270 26 09 —27
360 33 14 —34
450 36 20 —39
540 42 19 —41
630 43 22 —43
720 46 24 —45
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In the example given,
A = 0439, e, = —0.561

Polyethylene sheaths of cable specimens 3 feet long buckled severely
over their entire length when the cables were twisted 720° and showed
the strains given in Table I at steps up to the final twist’.

The ratio of maximum to minimum strain parallel to the surface is
about 2:1. Tests with a 1:1 ratio’, a more severe condition, have shown
that the principal strains at rupture will be of the order of 300 per cent.
Therefore it is evident that the strains incidental to the most severe
types of handling will not, of themselves, cause rupture of the sheaths.

? Unpublished memorandum by A. G. Hall.
31, Lp Hopkins, W. O. Baker and J. B. Howard, J. Appl. Phys., 21, No. 3, pp.
206-213, March, 1950.



