Introduction to Formal Realizability
Theory—II

By BROCKWAY McMILLAN
(Manuseript received February 15, 1952)

This part of the paper exhibits a network to realize a given positive real
impedance malrix.

I. INTRODUCTION TO PART II

1.0 In this part of the paper we prove the following theorem:

1.1 Theorem: Let Z(p) be an n X n matrix whose elements are Z,,(p),
1 <r 8 < n, where

(i) Each Z,.(p) is a rational function

(i) Z.(p) = Z.(p)

(iil) Z.(p) = Z..(p)

(iv) For each set of real constants k, - - -, k., the funetion

wz(p) = Z_l Z,(p)k,k,
has a non-negative real part whenever Re(p) > 0.

Then there exists a finite passive network, a 2n-pole, which has the
impedance matrix Z(p). A dual result holds for admittance matrices
Y(p).

1.2 The converse of this theorem was proved in Part I: that if a finite
passive 2n-pole has an impedance matrix Z(p), then this matrix has
properties (i) through (iv) of 1.1.

1.3 We recall that in Part T matrices satisfying the conditions of 1.1
were called positive real (PR).

1.4 The proof of 1.1 is a direct generalization to matrices of the Brune
process” for realizing a two-pole impedance function f(p). For this
proof we shall require from Part I certain specific properties of positive
real operators and matrices. These will be summarized in Section 2 be-
low. Further than this, the present part is almost independent of Part I,
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although in terminology, notation, and method a direct continuation
of it. References to sections or paragraphs in Part I will be made thus:
(I, 6) or (I, 6.23).

1.5 The distinction emphasized in Part T between operators, as abstract
geometrical objects, and matrices as concrete arrays of numbers repre-
senting these geometrical objects, is not one which we have now to
maintain with any strictness. We shall generally preserve it verbally
but not use the bracket notation for matrices introduced in Part I.

II. PROPERTIES OF POSITIVE REAL OPERATORS AND MATRICES

2.0 We recall that an impedance operator Z(p) is a linear function from
the linear space K of current vectors k to the linear space V of voltage
vectors ». A positive real operator Z(p) is one whose matrix in any real
coordinate frame is positive real. ITn Section 16 of Part I the following
properties of a PR operator Z(p) were established:

2.01 Z(p) has no poles in T'. .*

2.02 If Re(Z(p)k, k) = 0 for some p e I'y., then Z(p)k = 0 for all p.
2.03 If it exists, Z'(p) = Y(p) is PR.

2.04 If Z(p) has a pole at p = py, it has one at p = pq.

2.05 If Z(p) has a pole at p = iwy, that pole is simple and

P+ v

where R is real, symmetric, semidefinite, and not zero, and Z(p) is PR-

2.06 If Z(p) has a pole at p = =, that pole is simple and
Z(p) = pR + Zi(p)
where 12 and Z,(p) are as in 2.05.

2.07 It was emphasized at several points in Part I that the fact of pos-
sessing an impedance matrix, and that of possessing an admittance
matrix, are each restrictions on a 2n-pole N. It is readily verified from
(I, 6.3) and (I, 6.31)—and, indeed, well known—that if N has both an
impedance matrix Z(p) and an admittance matrix Y (p), then

Y(p) = Z7(p).

* I, is the open right half plane: all finite p such that Re(p) > 0.
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That is, if the impedance matrix of a 2n-pole N is non-singular, then its
admittance matrix exists, and conversely.

2.08 It was proved by Cauer’, and in (I, 16.8), that if Z(p) is PR
and of rank m < n, then there exists a real, constant, non-singular
matrix W such that

Z(p) = WZ ()W (1
where Z”(p) is a non-singular m X m PR matrix bordered by zeros.
2.09 Properties (i) through (iv) of 1.1 define the PR property for a
matrix Z(p). A convenient equivalent definition is that

(1) Z(p) is symmetric,
(ii) For each k e¢K, the function

e(p) = (Z(p)k, k)
is a PR function of p.

This equivalent definition was established in (I, 16.13).

2.1 In Section 16 of Part I it was also mentioned that there exists for
any rational operator Z(p) (PR or not) a numerical function 4(Z)
which generalizes to operators the usual definition of the degree of a
rational function. We list here the properties of this degree 6(Z). They
will be established in Section 7.

2.11 8(Z) is an integer > 0.

2.12 If 8(Z) = 0, then Z(p) is a constant—that is, does not depend
upon p.

2,13 If Z7'(p) exists, then 8(Z) = &(Z 7).

2.14 If Z(p) = Zi(p) + Z.(p), where Zi(p) is finite at every pole of
Za(p), and Z.(p) is finite at every pole of Zi(p), then

3(Z) = 5(Z) + 8(Zy).

2.15 If Z(p) = f(p)R, where f(p) is a scalar and R is a constant operator,
then

§(Z) = [degree of f]-[rank of R].
Here the degree of f is the sum

>~ [order of the pole of f(p) at po)

Po

where pg runs over all poles of f(p), including .
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216 If A and B are constant non-singular matrices, then
8(Z) = 8(AZB).

It is evident then that 6(Z) is a geometrical property, being constant
over the usual equivalence classes

W Z(p)W
or
WZ(p)W

of matrices. Hence we may speak of the degree §(Z) of an operator Z(p).

2.17 If Z(p) is formed from an m X m matrix Z,(p) by bordering the
latter with zeros, then

8(Z) = 8(Zy).

2.18 Concerning the degree 3(Z) we here state a fundamental theorem:
Theorem: The 2n-pole whose existence is asserted by 1.1 can be con-
structed with 8(Z) reactive elements, and no fewer.
The proof of this theorem will be distributed through Sections 4 and
6. In fact, we must even define exactly the phrase “can be constructed
with = reactive elements.” This will be done in Section 3.

2.2 Lemma: If Z\(p) and Zs(p) are PR operators or matrices, then

Z(p) = Zi(p) + Z:(p)

is also PR. If either of Zi(p) or Z.(p) is non-singular, then Z(p) is.
Proof: Clearly Z(p) is symmetric. By 2.09, therefore, Z(p) is PR if
the function

(Z(p)k, k) = (Zi(p)k, k) + (Za(P)E, F) 1

is PR for each k ¢ K. The right hand side is obviously PR by hypothesis.
If either of Z(p) is non-singular, the function (1) cannot vanish in
T, unless k = 0 (thisis 2.02). Hence in this case Z(p) also is non-singular.

2.21 Clearly 2.2 is independent of the implication, tacit in the notation,
that the operators involved are impedances. The lemma holds for PR
operators, whether interpreted as operating from K to V (impedances)
or from V to K (admittances).

2.3 In (I, 6.21) and (I, 6.3) it was noted that any n X n impedance
matrix Z(p) defines by fiat a general 2n-pole N whose impedance matrix
is that Z(p). Such is the generality of the notion of general 2n-pole
@ 4.
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Given 2n-poles N; and N., with impedance matrices respectively
Z\(p) and Z.(p), we know then that there is a general 2n-pole N whose
impedance matrix is

Z(p) = Zi(p) + Z:(p).
We call this N the series combination of N; and N, .

2.31 Designate the terminal pairs of N; by (S, , S:), those of N, by (7',
), 1 < r < n. It is evident that if N; and N, appear in a diagram so
connected that

(i) S, is connected to T, 1 < r < mg

(i) No other connections are made to these nodes;
then the device with terminals S, , T, is N. This follows at once from
Kirchoft’s laws applied to the ideal graph (I, 4.11).

2.32 Dually, if Ny and N; have admittance matrices Y,(p), Y:(p), then
Y(p) = Yi(p) + Ya(p)

is the matrix of a 2n-pole N defined as the parallel connection of Nj
and N;. N is the device whose terminal pairs are formed by joining
S.,T.and also S,, 77,1 < r < n.

2.33 Fig. 1 shows the conventions to be used in indicating 2nr-poles
(n = 4 in the Figure) with, respectively, impedance matrices and ad-
mittance matrices. Fig. 2 then shows the series connection of two im-
pedance devices and the parallel connection of two admittance devices.
In each case the terminals on the left are those of the composite device.

2.4 The series and parallel connections just described are special ways
of combining 2n-poles needed for the generalized Brune process for
matrices. They have been introduced here on their merits, as new op-
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Fig. 1—Conventions used in representing 2N poles.
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erations. They are, however, expressible in terms of the basic operations
of juxtaposition (I, 17) and restriction (I, 18).

For example, the series connection of Ny and N; is formed by first
juxtaposing N; and N , to get a 2 X 2n-pole N. Let J be the 2n dimen-
sional space of 2n-tuples

j:[jli"':jﬂaflx"')tn]-

We interpret this j as a 2n-tuple of currents in the 2 X 2n-pole N, where
4. is the current in the r* terminal pair of Ny and £, that in the ™ pair
of N, 1 < r < n. Let K be an n-dimensional space. Given an n-tuple
I eK, say

k= [k, -, kal,
we define the operator C from K to J by
j=Ck =Tk, -, kn,be, +,kal
Restricting N by C gives the series combination N of Ny and N:. The
details may easily be supplied by the interested reader.

2.41 Representing the series and parallel connections in terms of juxta-
position and restriction makes the lemma, 2.2, an immediate conse-
quence of the lemma, of (I, 17.2) and the theorems of (I, 17.3, 18.3).

2.5 We report here for record a curious property of PR operators which
has so far found no application:

Lemma: If Z(p) is a PR impedance operator from K to V = K*,
and Y (p) any PR admittance operator from V to K, then the operator

1+ Y(p)Z(p)
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Fig. 2—Series and parallel connection of 2N poles: Series, left, and parallel,
right.
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in K is non-singular. Dually
1+ Z(p)Y(p)

in V is non-singular.
Proof: Suppose that k ¢ K is such that

(14 Y(@)Z(p)k =0 (1)
for all p. Then
0=2m)Q1+ Y@)Zp)k = Zp)k + Z(p)Y(p)Z(p)k

for all p. Then, however,

(Z(p)k, k) + (Z(p)Y (p)Z(p)k, k) = 0. (2)
We may write the second term as
(Z*@D)k, Y(p)Z(p)k) = (Z(p)k, Y*(p)Z*(p)k) (3)

by (I, 14.0) applied twice. Now Z(p) is PR, in particular real and sym-
metric, so

Zx(p) = Z*(p) = Z'(p) = Z(p).
Using a similar calculation with ¥ (p), the quantity (3) becomes
(Z(p)k, Y(P)Z(p)k). (4)

For each p e 'y, we have § ¢ I'y and the first term of (2) has a non-
negative real part. But for § e I';., (4) is the conjugate of

(v, Y(p)v) (5)

where » = Z(p)k. Now (5) is a PR function of , hence has a non-nega-
tive real part for § € I'y, for any ». In particular therefore this is true
for the » which, at p, makes (5) the conjugate of (4). Therefore (4) has
a non-negative real part throughout I'; . It follows from (2) then that

Re(Z(p)k, k) =0
for all e I'y . By 2.02, then,
Zp)k =

I
e

By (1), then
1k =Lk = 0.

Henece (1) implies &£ = 0. Therefore the operator in (1) has an inverse
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III. A SIMPLE REALIZABILITY THEOREM

3.0 The following theorem is contained in Cauer’. Since it provides the
basic step in our realizability process, we shall prove it here.

3.1 Theorem: Let f(p) be any one of the four functions

@) f» =1,
(i) f(p) = p,
_1
(iii) f(p) = >
(i) fp) = =2 £ 0
1v fp—p2+wg, wo > O

Let R be a real, constant, symmetric semidefinite n X n matrix of

rank r. Then:
(A) The matrix

Z(p) = f(PE

is PR and there exists a finite passive 2n-pole N with the impedance
matrix Z(p).

(B) The 2n-pole N can be realized with ideal transformers and, re-
spectively,

(i) with r resistors,
(ii) with r coils,

(iii) with r capacitors,

(iv) with r coils and 7 capacitors.

(C) The dual statements to (A) and (B) are true.

Proof: That Z(p) in PR is easily verified directly. It will follow also
from the results of Part I when we exhibit a (finite passive) network
whose matrix is Z(p). To construet this latter, let D be a diagonal matrix
such that

R = WDW'

where W is a real, constant, non-singular matrix. That D and W always
exist is the analog for impedance operators of the result of Halmos®, par.
41, for dimensionless operators. In fact, W can be taken to be orthogonal
(W™ = W', cf. Halmos®, par. 63). If R isof rank r, D hasr non-vanishing
diagonal elements, say du, daw, -+, dmr.

Since R is semidefinite, each d:f(p), 1 < ¢ < r, is the impedance of
an obviously passive two pole. Call this two-pole M;. Let Mrs1, -- -,
M, be two poles consisting of short circuits. Consider the 2n-pole Ny
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made by connecting M, between 7', and 7, , 1 < s < n. This 2n-pole
has the impedance matrix

Zi(p) = [(p)D.
Then
Z(p) = f(p)WDW' = WZi(p)W'

is the matrix of a 2n-pole N which can be obtained from N; by the use
of ideal transformers. Clearly N, , and therefore N, contains exactly the
elements claimed in (B) of the theorem.

The dual theorem (C) needs no comment.

3.11 Corollary: The conclusion (A) of 3.1 holds if the hypotheses on
f(p) are replaced by “f(p) is PR.” The same method of proof applies
but one must use the Brune theory to realize the impedances d;;f(p),
1<i<r.

3.2 The case (ii) of 3.1 shows that any physical system of coupled coils
can be realized with a set of isolated (i.e., not coupled) coils, with ideal
transformers to supply the coupling [Cf. (I, 19.12)]. With this fact in
mind, we see that the method of network synthesis used in (I, 19) can
be simplified to the following: one starts with a finite collection of two-
poles: each one is a resistor, capacitor, or coil (inductor). These are then
appropriately connected to suitable ideal transformers. Viewed from
certain selected terminals of these transformers, this network is a 2n-pole
equivalent to the desired one.

The difference between this process and that of (I, 19) is the minor
one that coupled coils have been eliminated. We may then, however,
regard any finite passive network as made up solely of simple two-poles
(resistors, capacitors, coils) and ideal transformers.

It is readily verified from (I, 19.2) that open and short circuits are
special cases of ideal transformers.

If a network made up in this way uses { coils and ¢ capacitors, we shall
call £ 4+ ¢ the number of reactive elements in the network (or used by,
or used in, the network).*

3.21 Lemma: The network described in the proof of 3.1 uses §(Z) reac-
tive elements. This is obvious from 2.12, 2.15, and 2.16.

IV. THE BRUNE PROCESS FOR A POSITIVE REAL MATRIX
4.0 Let Z(p) be an n X n PR matrix. We can regard it as the impedanece
matrix of a general 2n-pole N. In this section we shall describe the

* By this definition, a reactive element is an energy storage element. Ideal
transformers are not reactive, by the very fact of their ideality.
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construction of a finite passive network which, as a 2n-pole, has the im-
pedance matrix Z(p)—i.e. is a 2n-pole equivalent to N. We call such
a network a (physical) realization of N, or of Z(p). The dual problem,
that of realizing a PR admittance matrix, can be handled dually.
B Let Zy(p) = Z(p), Np = N, ng = n. We deseribe an inductive proce-
dure which, given a 2n,-pole N, , r > 0, either

(i) Construects a physical 1ea.hzat10n of N,, or

(i) Constructs a 2n,,;-pole N, such that if N,,, is physically real-

izable, then N, is.

To show that this induction actually gives a realization of any PR
matrix Zy(p) we must demonstrate that, first, it is effective—i.e. that
at any stage N, at least one of (i) and (ii) is possible. Second, we must
show that the process terminates with the construction of a finite net-
work. The details of these demonstrations are given in the paragraphs
4.1 et seq. of this section. In the paragraphs 4.01 to 4.07 we describe the
logical pattern into which these details are to be fit when they are
established.

401 There are nine basic operations by which the networks N, are con-
structed. We name the operations here, in order to give a clearer picture
of the logic of the process, but their mathematical treatment is deferred
to later paragraphs.
IP: A PR impedance matrix Z,(p) which has poles on p = 1w is
represented as

Z.(p) = pR, + - Ru + Z o Ri + Zm(p),

where Z,41(p) is PR and has no poles on p =
AP: A PR admittance matrix Y,(p) is mpresented dually:

Y.(p) = pG, + = G’n o, G + Yeu(p).

ID: A PR impedance matrix Z,(p) is represented as W'Zi(p)W,
where Z21(p) is a non-singular Z,:(p) bordered by zeros.

AD: Dual to ID.

Res: A PR matrix Z.(p) is represented as

Z.(p) = aS + Z,1(p),

where S is real, constant, symmetric, and positive definite,
and a > 0 is the largest a for which Z,.1(p) is PR.
Con: The dual to Res.
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IB: This is the analog of the step in the Brune process for scalars
in which the reactance of a minimum resistance structure is
tuned out to create a zero. The details are intricate in the
generalization to 2n-poles.

AB: This is the dual operation to I1B.

F: A 2n,-pole N, which has a constant PR matrix (admittance or
impedance) is realizable at once, by 3.1. The operation F de-
notes this realization.

To each N, , one of these nine operations is to be applied. The effect
of the last (F) is clearly salutary. That of each of the others is to split
off a realizable piece of N, and leave a 2n,;-pole N,;; to which again
some one of the operations is to be applicable.

Exactly which of these operations to apply at any stage depends upon
the properties of the N, in question. We shall first devise a notation for
describing the relevant properties of N, , and then in 4.04 present a table
which summarizes what is to be proved in the paragraphs 4.1 et seq.

4.02 Definition: We say that Z(p) has a zero of its real part at p = 7w
if for some k eK, k = 0, we have

(Z(iw) + Z(—iw)lk = 0.

4.03 Let I be an integer describing a 2n-pole N as follows:
I = 0 if N has no impedance matrix.
I = 1 if N has a non-constant impedance matrix which has no poles
on p = iw, and no zeros of its real part on p = iw.
2 if N has a non-constant impedance matrix with a zero of its
real part on p = 1w, but no poles on p = 7w.
I = 3 if N has an impedance matrix with a pole or poles on p = 7w,
Let A be an integer deseribing the admittance category of N in a
dual way (e.g., A = 0 if N has no admittance matrix, ete.).
Let (I, A) denote the category of 2n-poles N for which the indicated
values of both I and A are true. Let

(L + I, A+ 4) (1)

I

Il

denote the category of 2n-poles N for which either I; or I, is true and,
simultaneously, either A; or A, is true, with a similar definition for
more summands. Then for example the category (1) above consists of
the logical union of the following:

(Il 3 Al); (Il ] A‘l)s (['3 ] Al)) (Iz » AZ)'

Let €' denote the category of 2n-poles N which have a constant ma-
trix, impedance or admittance.
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Tt is clear that any 2n-pole N belongs in €' or in exactly one of the six-
teen elementary categories whose union is (0 + 1 + 2 + 3,0+ 1+
2 + 3).

Table 4.04 shows for each category of N, , except (0, 0), which opera-
tions may be applied, and the possible categories of the resulting N,...

A 2n-pole N not in (0, 0) has at least one matrix, and if it has two these
are of the same degree (2.07, 2.13). We may then denote the degree of
whatever matrix N has simply by 8(N). The fourth and fifth columns
of Table 4.04 show the relations of 6(N,) to 8(N,41), and of n, to nr41 .

4.05 Table 4.04 summarizes facts to be proved in 4.1 et seq. Assuming
now that the assertions in this table are true, we can show that the
inductive procedure is effective.

We observe first that the category € and every possible elementary
category (I, A) except (0, 0) is contained in at least one of the categories
listed in the first column. Hence to any 2n-pole not in (0, 0) there is at
least one operation applicable. Further we note that the category (0, 0)
does not appear in the third column. Since by hypothesis No is not in
(0, 0), it follows by induction that no N, will be. Therefore the process
can stop only by the operation F: completion.

Second, we notice that if N, is not in the category (1, 1), then an
applicable operation can be found which actually reduces one of the
two numbers 8(N,), n, . Furthermore, if N, isin (1, 1), a sequence of two
operations can be found which reduces one of 6(N,), n.. Therefore
before the realization process terminates (with F),

(i) There are not more operations chosen from the list IP, AP, IB,
AB, than the integer &8(INo);

(ii) There are not more operations chosen from the list ID, AD, than
the integer ny — 1 (since after these, still 7,41 > 0);

TasLE 4.04

Category of Nr gﬁg‘; Category of Nry1 50;&:_1) “’; "
3,0+1+4+243) [1P C+(1+2,0+4+14+2+3) >0 0
O+1+2+3,3) [AP [C+(O0+1+2+3,1+2) >0 0
1420 ID 1+214+24+3) 0 >0*
0,1+ 2) AD | (1 +2+3,1+2) 0 >0*
(1, 1) Res | (2,0 4+ 1+ 2+ 3) 0 0
1, 1) Con | (0+1+2+3,2) 0 0
2,14+ 2) 1B C+(1+2+30+1+24+3) >0 0
1+ 2,2 i\B C+(0+1+2+3,1+2+3) | >0 0
o] 5 - — —

* Butb frpn > 0.
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(iii) There are not more operations chosen from the list Res, Con,
than the integer 6(N,) + ny, — 1.
Finally, then, the process must terminate after at most 25(N,) +
2ny — 1 operations.

4.06 Besides the data in 4.04, one other fact must be established about
each operation: that N, is physically realizable if N,,; is. This will be
done as we discuss each operation. When it is established, we reason
back from the result of operation F, which provides a physical realiza-
tion of some N,, (m < 26(Ny) + ny — 1), through N,,_; to Ny = N, and
obtain a realization of N in finitely many steps.

4.07 TFinally, we shall prove about each step that:
If N,;; can be realized with z,, reactive elements, then N, can be
realized with

Tri1 + B(Nr) - 5(Nr+l)

reactive elements. This observation will provide the basis for proving
the theorem of 2.18. For if N,, is the network with which the process
terminates, then by 3.21 N,, can be realized with §(IN,,) reactive elements.
Reading back through the construction, each increment of degree that
is encountered is balanced by an equal increment in the total number
of reactive elements, so that, finally, 6(IN) is the total number of reactive
elements used. That no construction using fewer reactive elements can
succeed will be shown in Section 6.

We now turn to IP, ID, Res, and 1B, omitting the dual considera-
tions. In each case, notation is simplified by writing Z, ¥, N, n respec-
tively for Z,, Y., N,, n,, and Z,, Y., N1, m for Z,41, Yopa, Noyy,

Nrg1 -

4.1 Given a 2n-pole N in any category for which I = 3, its impedance
matrix Z(p) exists by hypothesis and has poles on p = 7w. These can
be removed successively by 2.05 and 2.06, giving

_ 1 2P
Z(p) _pR”+5R°+;§p2+

s R + Zi(p). (1)
wk
In this expansion, either of R, , R, may of course be absent, and all the
R: are real, symmetric, constant and semidefinite, for k = 0, 1, - -+,
K, «. Furthermore, Z;(p) is PR and has no poles on p = iw, by 2.05,
2.06 and construection.

Let N, be the 2n;-pole whose impedance matrix is Z;(p). We define
IP to be the operation giving N, from N. Either Ny eC,or I = 1 or 2
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for N, , since at least Z,(p) exists. Furthermore, by construetion Z(p)
is again an n X n matrix, so n, = n. ’
By 2.14 and 2.15,

8(7Z) = rank (R_) + rank (Ro) + 2 ki rank (Ry) 4+ 8(Zy). (2)

Since §(Z) is finite, this shows that K is finite. Indeed, 2K < 4(Z).
Furthermore, 6(Z) > 8(Z1), because a matrix of rank zero is itself zero,
and by hypothesis Z(p) has a pole on p = iw. Therefore we have estab-
lished the claims in the first line of the Table 4.04, and by a dual argu-
ment those in the second line.

We must yet show that if N, is physically realizable, then N is. Each
term in (1), save Zi(p), is the matrix of a physically realizable 2n-pole,
by 3.1. There are at most K + 2 such terms. The series combination of
their respective 2n-poles is therefore physically realizable and N results
from the series connection of these and Ny (2.2). Therefore if N, is real-
izable, so is N.

Fig. 3 shows the relation of N and N; under IP, and the dual rela-
tion under AP. Here we have shown n = 3. The boxes labelled 0, «,
.+-, K are the devices corresponding to the poles at 0, =, - -+, wwx,
the terminals on the extreme left are those of N, and N, is on the right.

4.11 From (2), and (B) of 3.1, we see that the number of reactive
elements used in the realization of the network between N; and N is

exactly
8(Z) — 8(Z,) = 8(N) — 6(Ny).

Clearly the dual result holds for AP. This verifies 4.07 for IP and AP.

4.2 Consider a 2n-pole N in (1 + 2, 0). In particular, then, the imped-
ance matrix Z(p) of N exists and is not constant, but Z(p) has no in-
verse. Then 2.08 applies, and we have

Z(p) = WZi(p)W, (1)

where W is real, constant, and non-singular, and Z 7 (p) is a non-singular
matrix Z,(p) bordered by zeros. Let N be the 2n;-pole whose impedance
matrix is Z,(p). We define ID as the operation which gives N, from N.
Now n, < n, because Z(p) is singular and Z(p) is not. Also, Zi(p) is
not constant, because Z(p) is not, and 3(Z,) = §(Z), by 2.17. Therefore
ny ¥ 0, also Ny is not in C. Because Z,(p)™" exists, Nyisin A = 1, 2 or
3. Because Z(p) has no poles on p = iw, neither has Z(p), so Ny e (1 +
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2,1 4+ 2 4 3). This verifies the statements on the third line of the
Table 4.04, and the fourth by duality.

That N is physically realizable if N, is, is the gist of (I, 8.11) and (I,
8.4). We prove it here by noting that Z1(p) is the matrix of a 2n-pole
N, which obtains by adjoining n — m; > 0 pairs of shorted terminals
to Ny . Then (1) shows that N obtains from N; by the use of ideal trans-
formers (I, 9.1). i

Fig. 4 shows in schematic form the effects of the operation ID and
AD. In each case, it is emphasized that N, has a matrix dual to that of
N. We have shownn = 5, n, = 3.

4.21 No reactive elements are used in this construction, so 4.07 is
satisfied.

4.3 Consider now a 2n-pole N in (1, 1). Then its impedance matrix
Z(p) is finite for every p = 1w, and not constant.
Let R(p), I(p), respectively, be the real and imaginary parts of Z(p):

2R(p) = Z(p) + Z(p) = Z(p) + Z(p) = Z(p) + Z*(p);
2il(p) = Z(p) — Z(p) = Z(p) — Z(p) = Z(p) — Z*(p);
Z(p) = R(p) + I(p).

Lol M I I

= . - ]

L ]
o] [os) K Ny

STRUCTURE RESULTING FROM IP

[«]
1
1

O -

0 o K N,

STRUCTURE RESULTING FROM AP
Fig. 3—Structure resulting from IP, above and AP, below.
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Then R(p) = R*(p), I(p) = I*(p), and both are real and symmetric.
If k is any vector,

(Z(p)k, k)

and the self-adjoint property of R and I imply that each scalar product
on the right is real. Therefore

Re(Z(p)k, k) = (R(p)k, k),
Im(Z(p)k, k) = (I(p)k, k).

Il

(R(p)k, k) + «(I(p)k, k),

(1)

We note that
201(p) = Z(p) — Z*(p) = Z*(p) — Z(p) = —2il(p)
so that, in particular, I(iw) is an odd function of w.

4.31 Lemma: Let S be a given real, constant, symmetric, and positive
definite matrix. Then there exists a unique number a > 0 such that
(i) The matrix

R(iw) — aS
is semidefinite for every o,
(ii) For some wy = 0, possibly 4 <,
R(iw) — aS

is singular.
Proof: We first show how the number @ would be calculated, and then
reduce the claims of the lemma to a well-known and basic theorem in

O
§o ] o —
O
! — ] o— ~
O ~—
—e—— | =k =
- e . o—
g O- O _I
- o —
o - o— ]
N w N, N w Ny
SCHEMATIC OF OPERATION ID SCHEMATIC OF OPERATION AD

Fig. 4—Schematic of operation ID, left and AD, right.



FORMAL REALIZABILITY THEORY—II 557

the theory of quadratic forms. Fix » and consider the matrix
R(iw) — AS
as a funetion of A. Its determinant,
Bu(N) = | R(iw) — NS,

is an n'™ degree polynomial in A with the following two properties:
(a) The coefficient of A" in A,(M\) is not zero and is independent of w,
(8) The n roots of

A =0 (2)

are real and positive.

Now R(iw) is rational, hence continuous, and finite for all w, including
w = o, by the hypothesis that N is in (1, 1). By (a) above, therefore,
each root of (2) is a continuous function of w on the compact set — o
< w £ . Let a(w) denote the least root of (2). Then a(w) is again
bounded and continuous for all w. There is, therefore, an w, where a(w)
takes its least value. This is the wy referred to in the lemma, and

a = a(w).

We see that this caleulation requires solving an n™" degree polynomial
equation containing a parameter (w), and then minimizing the least root
by varying the parameter. Though some properties of K (iw) are available
to assist in the process, and the choice of S is somewhat free to us, this
is scarcely a feasible calculation in practice. Even when one reduces the
minimizing problem to finding the roots of a derivative, there remains a
prodigious calculation in all but the simplest cases.
~ Since by its definition R(iw) = R(—iw), we may take wy > 0.

The relation (1) above implies that

(R(iw)k, k) > 0

for all real w and all k € K, because Z(p) is PR. That is, R(i{w) is semi-
definite. The hypothesis that Z(p) has no zero of its real part R(p) on
p = 1w then implies that R (iw) is positive definite. All of (i), (ii), (),
and (8) then follow from well-known properties of definite quadratic
forms. They may, for example, all be deduced from Halmos’, paragraphs
62, 63, and 74, by choosing a coordinate frame in which the operator
corresponding to S above is represented by the unit matrix. A more
elegant reduction to the cited results of Halmos® can also be constructed.

4.32 Lemma: Given N in (1, 1), we choose any real constant symmetric
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and positive definite matrix S and find the a described in 4.31. Then the
matrix

Zi(p) = Z(p) — aS
is PR and has a zero of its real part at p = % .

Proof: Clearly Z(p) is symmetric. By 2.09, then, Z,(p) is PR if the
function

ep) = (Zu(p)k, k) = (Z(p)k, k) — a(Sk, ) (3)

is PR for each k. Clearly this function is rational and has no singularities
in T', . It suffices then to show that its real part is non-negative on
= 1w. By (1) of 4.3

Re ¢1(ivw) = (R(iw)k, k) — a(Sk, k)

and this is non-negative by (i) of 4.31.
That Zi(p) has a zero of its real part at p = fwo is (ii) of 4.31.

433 Let N, be the 2n-pole whose impedance matrix is the Z,(p) of 4.32.
We define the operation Res as that which produces Ny from N. It is
evident from (3) above that the poles of Z:(p) are exactly those of Z(p),
hence I = 2 for N, . Nothing can be said of the admittance matrix for

. 8(Z) = 8(Z) by 2.14 and 2.15, and ny = n by construction. The
C]B.]IDS in 4.04 are now established for Res, and dually for Con.

The relation
Z(p) = Zu(p) + a8

shows that N is a series combination of N; and a device with the im-
pedance matrix aS. Since @ > 0, this latter is a realizable resistance
network (3.1). Hence N is realizable if N, is.

434 We observe that no reactive elements are used in the network
between N; and N (2.12, 3.12). This verifies 4.07 for Res and Con.

4.4 We now turn to the piece de resistance of the generalized Brune
process, the operation IB and its dual. Consider a 2n-pole N in the
category (2, 1 + 2)—i.e., its impedance matrix Z(p) exists, is not
constant, is non-singular on p = iw, and has a zero of its real part at
some p = iw, . We have for some k ¢ K such that & 7 0,

R{iwg)k = 0. (1

Here, R(p) is as defined in 4.3.
4.41 We now assert that we may assume that 0 < wp, and fwy ¥ o in
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(1). Certainly we may take wy > 0, because R(iw) = R(—iw). Further-
more, by (1),

Z(iwo)k = 11 (wg)k. (2)
I(iw), being odd, and finite everywhere on p = iw, must vanish at w = 0,
and at i@ = . Hence if wy = 0 or iw, = =, Z(iw)k = 0 and Z(p) is
singular on p = 7w. This denies our hypothesis that N ¢ (2, 1 + 2).
442 Let J be the set of all vectors k ¢ K such that (1) holds: the null
space of K (iw). Then clearly J is a linear manifold. Furthermore, J is
real, because, if (1) holds then

R(iw)k = R@w)k = R(iw)k =0 =10

and & also isin J.
Relations (1) and (2) hold for all k € ]J.

4.43 By its construction, I (iw,) is real and symmetric, but not necessarily
definite. There does however exist a real diagonal matrix D and a real
non-singular W such that I(iw) = W'DW. Let D, be the (diagonal)
matrix obtained from D by replacing all negative elements of D by zero,
and define D_ by

D=D,—D_. (3)

Then D, and D_ are real, symmetric, and non-negative semidefinite.
Define
A = WD W,

B = Ywow @)
o

We have chosen wy > 0, so A and B are both real, symmetric and non-
negative. Certainly therefore

Z9() = Z(p) + ; A+ pB (5)

is PR. Also Z®(p) has an inverse, because Z(p) has one by hypothesis
and 2.2 applies.

4431 Let » e V be such that for some k; e K
v = .‘”1'1
and for some k. e K

Then » = 0.
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Proof: We may assume that the first r diagonal elements of D are the
non-zero elements of D, , the next s those of —D_. By (4),
(H’H)-IU = wnD+W’\'1 y

W™ = 1 D_Wk,.
o

The first of these relations exhibits (T7/)™» as an n-tuple with non-zero
components at most among the first r, the second as an n-tuple with

non-zero components at most among the last n — r. Hence all com-
ponents of (W’) ‘v are zero. Hence v itself is zero.
4.44 Define
1
X(p) = > 4 — pB, (6)

and let Nx be the 2n-pole whose impedance matrix is X(p). Ny is not
physically realizable, since it is made up of negative reactances.

Let N® be the 2n-pole whose impedance matrix is Z®(p). Then by
(5) N obtains from N and Ny by connecting them in series.

We have the following relation holding on p = 4w, but only thereon
since it is only there that X(p) is a pure imaginary:

2%(iw) = Rliw) + i [I(im) ~la+ wB:I.
In particular, at 7wy,
ZP(wy) = R(iwy) + 1[I (iwe) — WD W + W D_W]
= R(iw),

by (3) and (4). Since J is the null space of E(iw) by definition, J is the
null space of Z® (iwy).

4.45 Now Y%(p) = [Z®(p)] " exists and is PR. Since Z® (iwp) annihi-
lates every element of J, it follows that ¥ (p) does not exist at p = iwe—
therefore ¥ (p) has a pole at 7w, . Hence we may apply AP and repre-
sent Y®(p) as a reactance network, with admittance matrix

2 G: (7)

2
G(P) = pz ¥ o

in parallel with a 2n-pole N® which has an admittance matrix, say
Y¥(p) = G(p) + Y(p), (®)
where Y®(p) is finite at p = 7w .
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4.46 Multiplying (8) on either side by Z® (p),

2p
P+ wp

GZ(z)(p) + Y(s)(p)z(z)(p) =1
(9)

— _ Z(?) G Z(?) Y(i!) .
o+ (P)G + Z7(p) Y™ (p)
Here, to be strictly correct, we should write two separate equations,
interpreting 1 as the identity operator in K for, here, the left equality,
and as the identity operator in V for the right equality. Multiplying
(9) through by p — 7w and letting p — 7wy , we obtain

GZ%(lwy) = 0 = Z% (1)@,

Here, as in (9), we have condensed two dimensionally incompatible
equalities. From this it follows that each of G and Z (iw) has its range
in the null space of the other. In particular, therefore, the range of G is
contained in J.

4.47 Consider now a v such that Gv = 0. Then, by (7) and (8),
v= 2PV = Z9mY (o
80, ab two,

v = Z06e) Y P (i) = Z% (lwo)ke

for some finite vector k = ¥ (fwy)o. Since Z® (iwy) is finite, v 5 0 implies
that k » 0. Then, however, v lies in the range of Z® (iw). Combining
this fact with the result of 4.46, we see that for Gv = 0 it is necessary
and sufficient that » lie in the range of Z® (iw): the range of Z™ (iw,)
is exactly the null space of G.

4.48 Now in Halmos’, par. 37, it is shown that for any dimensionless
operator in an n-space the dimensionality of its range space (its rank)
and the dimensionality of its null space (its mullity) add up to n. A
similar result and proof hold for operators between V and K. Let m be
the dimensionality of J. Then n — m is the rank of Z%® (iwy), and there-
fore the dimensionality of the range of Z% (iw), and by 4.47 the dimen-
sionality of the null space of (. Hence, finally,

rank (G) = n — (n — m) = m.
By 4.46, therefore, J is exactly the range of G.

449 Now N® whose admittance matrix is ¥ (p), might not be ex-
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pected to have an impedance matrix. The following reasoning shows
that it does have, however:

Consider a v ¢ V for which Y®(p)» = 0. Then from the right side of
(9), with (5),

_ 2 _2 2

v = pz + wg Z(p)G:‘l‘) 4+ pz + wg AGv + p2 + wg BGw. (10)
We have by hypothesis that Z(p) is finite on p = 7w. Therefore we may
calculate, by letting p — 0 in (10), that

2
v = 3 AGY,
wp

and, by letting p — o« in (10), that
v = 2BGy.

These two equations exhibit » as an element in the range of 4 and also
an element in the range of B. The only possible such v isv = 0, by 4.43.
Therefore there is no non-zero » such that ¥ (p)v = 0. Then Z¥(p) =
Y¥(p)™ exists as a PR operator.

4.491 Let
9.4

L(p) = 1—13 H + pF (11)

be the matrix whose poles at p = 0 and p = « are those of Z“(p).
That is, let

Z9p) = L(p) + Z¥(p), (12)

where Z“ (p) is PR and finite at 0 and «. Because Z®(p)is PR, H and F
are both real, symmetric, and semidefinite. Let N, be the 2n-pole whose
impedance matrix is L(p), and N® the 2n-pole with matrix Z“(p).
In fact, Ny is realizable. N is the series combination of Ny, and N*,
by (12).
4.5 Equations (5), (7), (8), and (12) above are statements about matrices
in a particular coordinate frame—that frame appropriate to the given N.
We can interpret them as"operator relations by simple decree. We wish
now to draw a circuit diagram illustrating these relations. To do so, we
introduce a suitable new coordinate frame.

Because G(p) is PR and of rank m, we know that a frame can be
found in which the matrix for G(p) is an m X m non-singular matrix
bordered by zeros (2.08, or (I, 16.8)). By (7) and the result of 4.48, we
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may take the first m current vectors, ki, ko, -+, kn, specifying this
frame, to span J. It follows from the matrix form of G then that the
corresponding dual vectors vy , -+ + , v, span the range of G—i.e., the null
space of Z® ({wy). We shall adopt such a frame for the further discussion.
Let K, be the space spanned by ki1, - -+, k., and Vi that spanned
bY Ymi1, "+ , Vs, in this frame. Then
K = J @ K]_
(1)
Vv=Ua&V,

say, where U = J* V; = K [Cf. (I, 10.6)].

If M is the name of any given 2n-pole discussed in the paragraphs
4.4 to date, we let M denote the Cauer equivalent of M in this new
frame.

4.51 Let Ng be the 2m-pole whose matrix in the new frame is the m X m
non-singular admittance matrix which, when bordered, gives the matrix
of the operator

2p
Glp) = 7 =G
(P) pz + wg
The 2n-pole whose matrix is G(p) then obtains by adjoining n-m open
cireuits to Ng . The matrix of N, operates from U to J and has an inverse.

4.52 Fig. 5 shows a diagram, which n = 5, m = 3, of the manner in
which we now have N represented. The terminals on the extreme left
are those of N. N is obtained from N by a transformer. The horizontal
current paths cut the dotted section A-A at points which may be inter-
preted as the terminals of N. Ideal transformers, as in Fig. 1 of I, can be
introduced here as needed. Putting them in the diagram merely com-
plicates the picture.

N is the series connection of Ny and N®. The terminals of the latter
are on B-B. N, again, is the parallel connection of a 2n-pole obtained
from N, by the adjunction of open circuits, and N”. The latter has its
terminals on C-C. Again, N is the series connection of N, and AR

4.53 Let M ,p be the device between A-A and D-D of Fig. 5. This device
has n terminal pairs on A-A and n more on D-D. We may suppose that
ideal transformers are attached at each terminal pair as in Fig. 1 of I,
since including them in the construction of N would not alter its be-
havior. Then M,y is a 2(2n)-pole.

M ,p, is constructed from certain 2r poles (with various r) as indicated
in the diagram of Fig. 5. The ideal graph* of this diagram (rather, of

*Cf. (I, 4.1).
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the relevant part of it between A-A and D-D) obtains from Fig. 5 by
inserting ideal branches—two poles—across each terminal pair of each
box, and neglecting the outlines of the boxes. The upper m channels of
this ideal graph are then T' sections, and the lower n-m are degenerate T
sections with no shunt arm. This ideal graph is shown in Fig. 6. The
ideal branches are shown as small boxes.

The program of the next few paragraphs is to demonstrate that M ,p,
is a physically realizable 2(2n)-pole.

4.54 Let us designate the terminal pairs of M p on the section A-A by
T, T; R A T',. , Where the rh pair is the intersection with A-A
of the leads to the r* terminal pair of N. We designate the pairs on

: |
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D-DbyS:, 8 ; - ;8., S, where here the ™ pair is the intersection
with D-D of the leads to the " terminal pair of N, In each case we
orient the pair T, T or S, S’ so that the primed (negative) terminal is
on the lead to the primed terminal of N or N®. '

Let the 2n-tuple

lay, @z, -+, @n, by, bayoov ) by (2)
represent the currents into the terminals of M 4p in the order
Ty, Tay ooy Tuy Sty -, Se.
Then we may interpret
lav, =+, @l 3)

as a vector in K expressed in the coordinate frame introduced for Fig. 5,
and also

by -y Dul (4)

as a vector in K in the same frame. That is, any current vector into
M .p can be written as an ordered pair

Fyy foo (5)
where each k; e K, with the convention that such a pair determines a
2n-tuple (2) from the n-tuples (3) of & and (4) of k. .
We shall write the ordered pair (5) in the form
nr\‘l @ ]\12 . (6)
Because we have K represented in the special way

K=J®Klr

where J is the subspace spanned by n-tuples (3) in which the last n-m
components vanish (this is (1) of 4.5) we can further split the 2n-tuple
(2) into

(L@ &) © (j: ® &), @)
where j;eJ, €:eKy, 7 = 1, 2, and in (6)
ki =J: @ 4. (8)

Tormulas dual to those of (2) through (8) of course hold for voltage
(2n)-tuples. Let K* be the space of current 2n-tuples (2) (or (7)) and
V2 the space of voltage (2n)-tuples

lev, e, - ensfi, Jal = (1 @ 01) @ (we @ )
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analogous to (2) and (7), with the scalar product

n n

2 el + 2 fibr. (9)

It is a common and convenient malpractice in vector algebra to use,
for example, the symbol 7 both for an m-tuple in J and for the n-tuple

J@0eJ @K,
of the form (8). Taking this advantage, we can see that (9) is simply
(e + v, 50+ &) 4 (e + 0, 5o + &) 99

where here the parentheses denote scalar products between V and K.
The form (9) can also be derived directly from (1), (7), and (I, 10.6).

4.55 We now wish to compute the voltage-current pairs admitted by
M ,p . Referring to Fig. 5, we observe that Nx and N, both have im-
pedance matrices (X(p) and L(p) respectively, or, rather, the matrix
forms of these in the frame of present interest) finite at all p except
p = 0, p = «. Each will, therefore, admit any current n-tuple into its
terminals, i.e., through its ideal branches, at any but these exceptional
frequencies. By construction, Ny has a non-singular admittance matrix
and therefore also will admit any current m-tuple into its terminals
(2.07), except at most at certain isolated frequencies. It is evident by
Kirchoff’s laws applied to Fig. 6 then that M 4p will admit any current
2n-tuple of the form

(h@ k)@ (G @ (—k) (10)
where j;eJ, 7 = 1, 2, and k ¢ K;, except at most at finitely many ex-
ceptional frequencies. Conversely, if the current 2n-tuple specified by

(7) is that in M ,p , conservation at the absent shunt arms of the lower
degenerate T-sections implies that, as elements of K,

k1+k2=0,

that is, the current is of the form (10). Hence 2n-tuples of the form
(10) span the space of currents admitted by M ,p . Let us call this space
Kjr . It is a proper subspace of K unless m = n.

4.56 Let G'(p) denote the m X m impedance matrix of Ng. Then by
(7) of 4.4, interpreted as an operator equation,

a(p) =(%p+;—i)G"l (11)

—1 . . . .
where 7 is a real, constant, symmetric, non-singular m X m matrix.
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We can now compute the voltage across M ,p corresponding to the
current (10). Let w be the n-tuple of voltages appearing at the section
B-B or C-C of Fig. 6, with its components listed in the appropriate
order. Then we may interpret w as a vector in V, and write it

w = Uy D vy (12)
where 1 € U, vy e Vy. Now by Kirchoff’s current law applied to the
shunt arms in the upper channels of Fig. 6, the current into Ng is

e,
and therefore

uy = G (p) (G + J2)- (13)

By Kirchoff’s voltage law applied to a typical mesh which begins on
A-A, goes through Ny to B-B, and then through a shunt arm and returns
to A-A, the voltage n-tuple appearing at A-A is

X + k) + w.
Referring to (12), let us use wu, also to denote the vector
u ® 0eV,
and v to denote
0 ®weV.
Interpreting (13) in this way we get
X+ k) + GHp)Gh + 5 + v (14)

as the voltage n-tuple on A-A.
A similar caleulation gives

Lp)G: — k) + G @) + o) + w (15)

as the voltage n-tuple on D-D. The ordered pair (14), (15) then gives
the voltage 2n-tuple corresponding to (10), in the notation analogous
to (5).

4.57 X(p), L(p), and G7'(p), respectively, are defined in (6) of 4.44,
(11) of 4.491, and (11) of 4.56. Each one is finite except at p = 0 and
p = «. Let I'y be the complex plane from which these two points are
deleted. It is now possible to show that the linear correspondence whose
pairs, for each p e I'y , are the voltages (14), (15) € V? and the currents
(10) € K*, satisfies P1 through P7 of (, 6, 7)—that is, is PR (I, 16.71).
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In the present special circumstances it is almost as easy to study M ,p
in a slightly different way than this. Since fewer direct references to I
are involved, we shall take the alternative path.

We first calculate the scalar product between the voltage (14), (15)
and an arbitrary current of the form (10), say the current

(@) ® (hs ® (— 1)) eKiy .

To do so, we consider the form (9') for such a product. In the first writing,
then, this scalar product is

(XP)G+ k) + G @G+ 2 + v, b+ )
+ (LG — k) + G @Gy + 7o) + v, ha — £).

Each of these scalar products has three voltages appearing in it. Dis-
tributing the products over these voltages, and using the facts that the
range of G '(p) is J and that v, eV, = (J)" we get a second form:

X6 + k), b+ 0 + @O0+ 52), ) + (@, O
+ (LP)Ge — k), he — & + (@' @G + Jo), h) + (0, — ).
The terms involving vy go out and we can collect to

(X@)G + k), b 4+ O + (@@ + 52, b+ )

. (16)
+ (L(p)(jo — k), ha — 1).
This is the desired scalar product.
4.58 Let us now consider the (n 4 m)-tuples
{al’aﬂi"':aﬂrblx'”:bm]=j1@k@j2 (17)

obtained from (2) by deleting the b1, - -+ , b . We still interpret these
as currents into the relevant terminals of M ,p . We also observe that
when the current (17) is given, (2) can be determined, because by (10)

am+a+bm+a:0, 3=1,2,"',n-m.

Given (17), and therefore (2) or (10), we can determine the voltages
(14) and (15), where v, is an arbitrary element of V, . Let us agree now
always so to choose vy that the component of (15) in the subspace V;
vanishes. This means that, in (17), we have specified arbitrarily the cur-
rents into the left-hand terminals of M ,p, (on A-A) and into the upper m
of the right-hand terminals. We have also agreed that the voltages
across the lower n-m terminals on D-D shall be zero, so that (15) is an
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n-tuple of the form
u®0 (18)

where u e U. Regarding (15), with this determination of vy, as simply
an m-tuple u (ignoring its last n - m zero components), we see that (17)
and the ordered pair (14), (15) are now currents and voltages in a
2(n + m)-pole Mo obtained from M ,p, by shorting and thereafter ignor-
ing the lower n - m terminals on D-D,

4.59 Now (17) is unrestricted. Given it, the corresponding voltages
can be computed from (14) and (15) by determining v, so that (15) lies
in U. Hence Mj4p has an impedance matrix, since any single valued
linear mapping from (17) to voltages can be deseribed by a matrix. Our
job is now to show that this matrix comes under 3.1. Before doing this,
however, we shall point out that a realization of Min provides one
for M ,p .

Fig. 7 shows how a 2(2n)-pole equivalent to Mp would be con-
structed from Mip . The equivalence is evident almost at once: The
pairs of Mip are the currents (17) and the voltages (14) and (15) with a
special determination of vy, where (15) is regarded as an m-tuple. The
current (10) is clearly that which flows in the 2(2n)-pole of Fig. 7 when
(17) flows in M:D. Furthermore, regarding (15) as an n-tuple of the
form (18), we see that the voltages in Fig. 7 can be obtained from (14),
(15) by adding an arbitrary voltage of the form

0 @) ® (0@ v),

where v eV, of course. This arbitrary added voltage eliminates the
special role played by v in (14) and (15). Hence therein v, itself may be
considered to be an arbitrary element of V,, and (14), (15) represent the
voltages in Fig. 7. The pairs admitted by the 2(2n)-pole of Fig. 7 are
therefore exactly tho::c admitted by M,p, Q.E.D.

1.60 We have now established that Mp has an impedance matrix, say
M(p). M(p) operates from an (n + m) space of currents (17) of 4.58
to an (n 4+ m) space of voltages (14), (15) of 4.56, where in (15) we prop-
erly choose v, so that the last (n — m) components are zero and can
be ignored.

Now any impedance matrix 7 (p) is completely determined when we
know for each two currents m; and m. the sealar product

(Z(p)ymy , mo) (1)
(Cf. Halmos”, par. 53). We shall make this computation for M (p). The
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currents (17) of 4.58 may be regarded as elements of the subspace (10)
of 4.55. We have called this subspace Ky . The voltages (14), (15), with
vo chosen to make (15) an n-tuple of the form (18) (4.58), are elements of
a subspace Vy of V.

It is evident at once that the scalar product between a current (n - m)-
tuple (17) and the (n + m)-tuple (14), (15) (v properly chosen!) is
exactly the same as the scalar product between the current (2n)-tuple
(10) and the (2n)-tuple formed from the (n + m)-tuple (14), (15) by
adjoining (n — m) zeros to expand (15) to an n-tuple of the form (18).

il
|

]
IRt

o Map @ Mag

Fig. 7 = Construection of Map from Map*. The solid terminals are those of
Map*, the open circles those of Mup .

Now we know that we may regard (15) as an n-tuple of the form (18)
by a suitable choice of »; . But we calculated in 4.57 the scalar product
between an arbitrary (2n)-tuple and (14), (15) with an arbitrary v, . The
answer was (16) of 4.57. By proper choice of #, , then, (16) represents the
bilinear form (1) above for M (p). Since (16) is independent® of v, , it
contains in itself the whole of the properties of M (p).

4.61 To show that M(p) is PR, we need show only that M (p) is sym-
metric and that is guadratic form (j; = h; and k = £ in (16)) isa PR
function of p (2.09).

By their definitions, X (p), L(p), and G™'(p) are all symmetric. Hence
if all currents are real, the value of (16) is unchanged by interchanging
J: with h; , 7 = 1, 2, and k with £. Therefore M (p) is symmetriec.

4.62 Henceforth we consider the quadratic from

* This is the gist of P3 of (I, 7.4). Use of the results of I here would have given
a more direet but much less constructive representation of Myyp .
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X@)G + k), o+ k) + (G @G+ 22, 5+ 5) _
+ (LP)(Ge — k), jo — k)

obtained from (16). By the definitions of X (p), L(p), and G (p) this is
a rational function taking real values for real p. Hence we need only show
of (2) that its real part is non-negative when Re(p) > 0 to show that it
and M(p) are PR.

Referring to (6) and (11) of paragraph 4.4 and (11) of 4.56 for the
definitions, we see that (2) can be written

L = G+ B D 5 @G 39,5 3

@)

+ (HG = 1,52 = )|
®
1| =BG+ B+ B+ § GG+ 3G+ 3

+wm—mm—m]

That is, the quadratic form in question has poles, simple ones, only
at 0 and e, and has no constant term. If we can show that the residues
at these poles are non-negative, then it will follow not only that M(p)
is PR but that M (p) is of the form

Lty + pit,,
)

where each of these summands is realizable by 3.1.
Unfortunately, there still remains some computation to verify that
the residues of (3) are non-negative.

4,62 We first recapitulate some relations obtained earlier:

sz=mm+%A+w; (4)
this is (5) of 4.42,
@ _ 2p VIR
YO0) = o O+ YO0); (5)
this is (7) and (8) of 4.45.
me=%H+pF+m%m; )

this is (11) and (12) of 4.491.
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By their definitions,
zZ%p) = Y @]
for ¢ = 2, 3. By hypothesis, Z(p) and
Z(p)™ = Y(p)

are both finite everywhere on p = fw. By its construction, Z“(p) is
finite at p = 0and p = .

4.63 We claim now that each ¥ (p) is finite at p = 0 and =, ¢ = 2, 3.
Proof: We need consider only Y®(p) since Y¥(p) differs from it by
something which vanishes at p = 0 and p = = ((5) above). Let

Y®(p) = Tp) + ;E + pQ

where T(p) is finite at p = 0 and p = «. Since Y*(p) is PR (4.43), E
and Q are real and symmetric.
Using the form (4) above for Z“(p),

1= Z%@@Y%(p) = Z(p)¥(p) + BE + AQ
+ p(Z(p)Q + BY(p)) + p’BQ (7

+ ; Z@E + AT®) + 51 AE.

Multiplying through by p°, p,;];é , :; and taking limits as p — 0,0, =, =,

respectively, we obtain

AE =0
Z(OE + AT(0) = 0,

) ( ®
BQ =0,

Z(=)Q + BT (=) = 0.

We can also write a formula like (7) with the factors in reverse order,
and obtain the analogous forms to (8) in which the factors are com-
muted. Let us call these commuted relations (8'). Multiply the second
relation (8) on the left by E and use the first relation of (8’). We obtain

EZ(0)E = 0. (9
Working similarly with the last two relations in (8) and (8), we get
QZ(=)Q = 0. (10)
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Now let v be an arbitrary voltage in V and let

= Z(0)Ev.
Then w € V, and by (9) the current

Lw =10
for any v. Hence

0 = (v, Ew) = (w, E*) = (i, E*)

(Z(0)Ew, E'v)
by (I, 7.2, 14.0). Now F is real and symmetric, as noted above. Hence
E = E = FE'. Furthermore, Z(0) is real, so (11) becomes

(Z(0)Eu, Ev) = 0 (12)

(11)

I

where u = 7 is any element of V. Now Z(p) is non-singular on p = 1w,
and its real part is semidefinite there. At p = 0, Z(0) is its own real
part, hence semidefinite and non-singular, hence definite. Then (12)
implies that Ku = 0. This being true for allu e V, £ = 0.

The proof that @ = 0 follows similarly from (10).
4.64 With Y (p) and Y?(p) simplified at p = 0 and =, we can go back
and compute

1= Z(?}(p)y(Z)(p)

—_ 1 2p ¥ (@) ) (13)
= (Z(p) + EA +’PB>(p2+ng + Y¥(p) ).

Of the six terms obtained on expanding this exactly one, namely
1 @
-~ AY"(p)
P

is not obviously finite at p = 0, and another,

pBY ¥ (p)

is not @ priort finite at p = . We conclude by multiplying through by

p and letting p — 0, and dually at p = o, that
AY®0) =0 = Y?(0)4
@ @ (14)
BY" (=) =0 = Y"(=)B,

where the commuted form can be established by a new caleulation from
1 = Y¥p)Z'(p), or by taking transposes.
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In a similar way, we compute from
1= 29G)YO0) = Z°G)YO ) +2 HY )+ pFYV() (15)

that
HY®0) = 0 = Y®(0)H, 1o
FYP(w) =0 = Y¥9(»)F.

Now Y (p) is finite at 0 and «, so we may expand it in a power series
about either point. Let these be

Y®(p) = Y®00) + pYi"(0) + 0(p"),

(17)
V) = ¥O() + Ly +0 (1)
Putting the appropriate one of these into (13) and taking a limit at 0 or
o we get, by using (14), that

1
1= =5 AG + AYV(0) + Z(0)Y™(0),
0

(18)
1 = 2BG + BY{P(w) + Z() V¥ ().
A relation (18’) with factors eommuted is also true.
We may also put (17) into (15) and get
1 =2zY0)7y%0) + HY{(0),
(19)

1= Z9=)7 () + FY{(w),

and also a commuted form (19').
Right multiply the first line of (19) by A and the second by B, and

use (14). This gives
A = HY®(0)A,
B = FY{?(=)B.

Left multiply the first line of (18’) by H and the second by F. This
gives, by (16),

(20)

2
H = = HGA + HY{¥(0)4,
@o (21)

F = 2FGB + FY{"(»)B.
Using (20) in (21), we have the relations
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=1
[}

HGA

H — A,

E.w

(22)
2FGB = F — B
These are fundamental to the evaluation of the residues of (3). Before
calculating these residues, we draw a further important conclusion from
the formulas just developed.

Relation (20) exhibits A as a product of H and a possibly singular
matrix (viz., ¥1”(0)A). Hence

rank (A) < rank (H).
But relation (21) shows H as a product of 4 by

= HG + HYI(0).

Hence

rank (H) < rank (A).
That is,

rank (A) = rank (H),

(23)
rank (B) = rank (F),

the latter being established in the same way.

4.65 The formulas developed in 4.64 are all quite symmetric as between
relations obtained at p = = and those at p = 0. We shall now con-
tinue to the evaluation of the residue of (3) at p = . The evaluation
at p = 0 proceeds in an exactly similar manner.

The residue in question is, from (3),

—(BGy+ k), i + k) + 3G G+ G2+ )

+ (F(je — k), Ja — k).
Here j, and j» are any elements of J and & any element of K, . The range
of G is J and the operator "' operates from J to U = J*, representing

the inverse to the operation G from U to J.
Let us define & and eliminate j. by the relation

jo = 2h + 2GBGy + k) — jr. (25)

Since the range of Gis J, h e J.
The definition analogous to (25) for the other pole of (3) is

(24)

2 2
Jo= a2 h+ S GA(L+ k) — ji.
Wy wp
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We shall now say no more about this pole.
Putting (25) into (24) we get at once the form

—(B(hr + k), jr + k) + (G'h + GTGB(G + k), 2h + 2GB(j, + k))

+ (2Fh 4 2FGB(jy + k) — Fjr — Fk, 2h + 2GB(ji + k) — j» — k).
Here we cannot at once put G 'G' = 1, because this is only true in U.
We expand in the following way: The first product is left intact, the
second is expanded by distributivity into four terms, and in the third

we use (22) and expand into five terms by distributivity. The ten re-
sulting terms are:

— (BGy+ k), v+ k) + 2(G b, )

+ 2G7'GBGy + k), h) + 2(G'h, GB(jy + k)

+ 2(G'GB(j, + k), GB(jy + k)

+ 4(Fh, ) — 2(B(jy + k), h)

+ 2(Fh, 2GB(ji + k) — ju — k)

— 2(B(Gy + k), GB(GL + k) + (B + k), i + k).

Enumerate these terms 1, 2, - - -, 10 in the order written. We shall show
by combining that only 2 and 6 remain.

Clearly 1 and 10 cancel.

Consider the operator ¢ 'G' as we have defined it. If v € V, we can put

v=1u-+u
where u ¢ U, v; ¢ V; . Then
Gv = Gu + G, = Gu,

because of the matrix form for @ in the coordinate system chosen in 4.5.
By definition of G~ (in 4.56), since u € U,

G 'Gu = u.
Hence, combining the last three relations,
G'Gv=0v—n (26)

for any v € V, where », is a suitable element of V; (depending on » of

course).
Using (26) in term 3, we get for this term

2(B(j1 + k), h) — 2(vy, R)
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for some v, e Vi. But he]J = (V)" ((1) of 4.5). Hence the second term

here vanishes and term 3 cancels term 7. By an exactly similar argu-

ment, since GB(j, + k) €J, we find that term 5 cancels term 9.
Consider term 4, and write it in the form

226G by k) = 200G %k, h)
= 2{(@71)*11 y E) =2(G‘_1E1 y E)

This follows by (I, 7.2, 14.0) and the fact that G ' is symmetric. Put-
ting in the definition of k;, and using the fact that ¢ and B are real,
we get

20k, h) = 2(G'GB(7 + F), h)
= 2(G"'GB(j1 + k), h).
Now J is real (4.42) so h e J. Therefore the reasoning used on term 3
yields finally
2(B(ji + k), b)
as the value of term 4.
We now write term 8 as

2(Fh, f\'z)
and transform it to
2(Fky , 1),
by the reasoning just used on 4. Putting in what ks is, this is
2(2FGB(7, + k) — Fj, — Fk, h).
Using the reality of ¢ and B, and (22), this is
— 2(B(y + k), h).
This cancels term 4 and all terms save 2 and 6 are accounted for. Fi-
nally, then, the residue of (3) at p = = is
2(G7h, h) + 4(Fh, k). (27)
Since @' is definite in J and F is semidefinite, this residue is non-neg-
ative, and indeed not zero if h # 0 and h eJ.

4.7 We have established the non-negativity of the residue of (3) at
p = . A similar argument (exactly parallel, in fact) will establish the
same for the residue at p = 0. Each term in the representation

| —

Mip) = - Mo+ pM,

i~
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of 4.61 is then realizable by 3.1. Hence M is a realizable reactance
2(n + m)-pole, and so therefore is M, , as we noted in discussing
Figure 7 (4.59). Therefore, if N® of Figure 5 is physically realizable,
so also is N and therefore N. We denote by N; the N obtained in this
way from N, and define IB as the operation which constructs N; from N,

We must still establish the claims made in 4.04 for IB. No properties
of N = N, have been proved beyond the existence of its impedance
matrix, Z“(p), but this is all that is claimed in the third column of
4,04, The fifth eolumn is also established. We must now however com-
pare the degree of Ny, i.e., of Z%(p), with that of Z(p).

By 2.13, 2.14 and 2.15 applied to (4), (5), and (6) of 4.62,

8(Z%) = 8(Z) + rank (A) + rank (B),
8(Z%) =8(Y?) = 5(Y™) + 2 rank (@),
s(Y?) = 8(2") = 8(Z") + rank (H) + rank (F).
We know m = rank (G) > 1. Let
r = rank (A) + rank (B).
Then from (23), and the relations above in order,
8(7Z) = 6(Z%) —r = (6(Z7) + 2m) — r
= 6ZYY+r)+2m—r
= 8(Z") + 2m.

Hence 6(Z) — (") = 8(N) — 8(N,) = 2m > 0. The claims of 4.04
are then established.

4.71 We must yet verify 4.07 for IB. Let §(M) be the degree of
M(p) = 1 My + pM,, .
P

Then by 3.21, Mo , whose matrix is M (p), can be realized with 8(M)
reactive elements. By Figure 7, then M ,p can be so realized, and it
follows that exactly 6(M) reactive elements are comprised between N
and N; under IB.

Now by 2.14 and 2.15,

(M) = rank (My) + rank (M ).

We shall compute the second term. The first is obtained by an exactly
parallel calculation,
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Using the fact that M (p) is determined by its quadratic form, we see
that M, is the matrix whose form is the residue of that of M(p) at
p = o, This residue was computed in (27) of 4.65 to be

2(Gh, ) + 4(Fh, h) (1)
when the current vector, (17) of 4.58, is
n®kog, (2)
and, (25) of 4.65,
2h = ji + j» — 2GB(G + k). (3)

Here j;,joeJand k e K, .
Now M_ is an (n + m) X (n + m) matrix by construction. Then

y = n 4+ m — rank (M) (4)

is its nullity, the dimension of its null space. This is proved in Halmos’,
par. 37, for dimensionless operators, and a similar proof applies to im-
pedance operators.

Now for any symmetric and semidefinite impedance operator Z, the

null space of Z is exactly the aggregate of currents & such that the
quadratic form

(Zk, k) = 0.

This may be seen at once by choosing a coordinate frame in which the
matrix of Z is diagonal. Since we know from 4.65 that M, is symmetric
and semidefinite, we can compute » as the dimensionality of the space
of vectors (2) above for which (1) vanishes.

As noted in 4.65, h e J, and (1) vanishes if and only if & = 0, because
@', as an operator from J to U, is definite (semidefinite and non-singu-
lar). Hence » is the maximum number of linearly independent vectors
(2) for which, from (3),

(1 — 2GB)j + j» — 2GBk = 0. (5)

The left member of (5) is a vector in J depending linearly and homo-
geneously on the vector (2). Hence, regarding J as a subspace of the
space J ® K; @ J in which (2) lies, the left member of (5) is the value
in] ® K, ® J of a certain linear operation applied to the vector (2),
Let us call this operator . The number », by definition the number of
linearly independent vectors (2) for which (5) holds, is the nullity of P.
The dimension of P is n 4+ m, and its rank is clearly m because the left
member of (5)—a typical element in the range of P—lies in J and by
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suitable choice of j» can be made to be any element of J. Hence the
nullity of P is (n + m) — m = n (Halmos®, par. 37). That is

v = n,
and, by (4)‘
rank (M) = m.

A parallel argument will establish the same result for M, . Hence
§(M) = 2m = 8(N) — 6(Ny)
by a result of 4.7. Therefore M, and M ,p, can be realized with
s(N) — s(INy)

reactive elements and 4.07 holds for IB.

V. THE DEGREE OF A RATIONAL MATRIX

5.0 In this section we consider arbitrary » X n matrices Z(p) whose
elements are rational functions of the complex variable p. They are
treated, generally, as arrays of functions with certain rules for addition,
multiplication, and reciprocation, without geometric interpretation. A
geometric development is possible, but would be cumbrous. Related
ideas may be found, geometrically developed, in Appendix I of Halmos®.

This section deals wholly with concepts well known in the algebraic
theory of matrices over an arbitrary field—in this case the field of
rational functions. I have not found, however, any place where the
particular developments which seem to be needed here are made suffi-
ciently explicitly for reference. Accordingly, the presentation here is
somewhat detailed. The particular path of argument followed is only
one of many possible; it was chosen to lead easily to results needed in
Section 6, and to parallel generally the rest of the paper.

This section could be abbreviated somewhat if one restricted himself
to PR matrices Z(p). We prefer not to limit the applicability of these
results, however, since they may well be useful in non-passive realiza-
bility theory.

5.01 Definition: If R(p) is a rational function of the form

R(p) = (p — po)"Ra(p),

where R,(p) is finite and not zero at p,, and m may be of any sign, we
call m the exponent of (p — py) in E(p). The number
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r = sup (—m, 0)

is called the order of the pole of R(p) at po, even if r = 0.
5.1 Let Z(p) be an n X n matrix whose elements Z..(p) are rational
functions of the complex variable p. We write

Z(p) = 0,

.

where N,, and D,, are relatively prime polynomials. Let ¥z(p) be the
least common multiple of all D.,(p), (1 < r, s < n), so normalized that
the coefficient of the highest power of p appearing in ¥z(p), (the leading
coefficient) is unity. Then ¥z(p) is uniquely determined by Z(p).

The matrix ¥z(p)Z(p) has polynomial elements. Its Smith normal
form is a diagonal matrix E(p),

0 E2(p)
Ep) = | : S = A(p)¥Ap)Z(p)B(p), (1)
Ex(p)
0 0-
L <0__|

with the following properties:

(a) R is the rank of ¥z(p)Z(p).

(b) Each Ei(p), 1 < ¢ < R, is a polynomial with unit leading coef-
ficient.

(c) Each E(p) is a factor of E;y(p), 1 < i < B — L

(d) A(p) and B(p) are polynomial matrices, each with a constant
non-vanishing determinant.

(e) Ei(p)E:(p) - -+ Ex(p) is the normalized (and therefore unique)
highest common factor of all k-rowed minor determinants of
V2(p)Z(p)-

These properties of E(p) are developed for example, in Bocher™,
Theorems 2 and 3 of paragraph 91 and Theorem 1 of paragraph 94. A
simple variation of this last cited theorem will also prove the following
uniqueness lemma.

5.11 Lemma: If some E"(p) satisfies (1) and (a), (b), (c) and (d) above,
all written with superseripts on each E, and on A and B, then E'(p) =

E(p).
Proof: E"(p) is equivalent to E(p) in the sense of paragraph 94 of



582 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1952

Bocher", for
E'(p) = A°(p)A™ (p)E(p)B (p)B"(p).

Therefore it is also equivalent in the sense of par. 91 of Bocher'’, (for
this is Theorem 1 of paragraph 94). Hence the normalized greatest
common factor of all k-rowed minors of E°(p) is the same as that of
E(p), that is, Ei(p) - - - Ex(p). But the greatest common factor of all &
rowed minors of E°(p) is Ei(p) --- Ex(p), because of property (c). In
particular then Ei(p) = Ei(p), and consequently Ei(p) = Ei(p) by
induction for 1 < k < R. Q.E.D.

5.12 Definition: The normal form W(p) of Z(p) is the matrix ¥7'(p) E(p).
We write the elements of W(p) in their lowest terms,

[ e Lo
‘Iﬁfp) 0 0
0 6’2(17)
W) = AWZE)BE) = o) @
Yr(p)
: 0.
0 0_

with the polynomials ex(p), ¥x(p) each having unit leading coefficients.

5.13 Theorem: The normal form W(p) of Z(p), as given by (2), has the
properties (a’), (b"), (¢’), (d'), and (e’) listed below. Further-
more, any W(p), given by (2) with superscripts on W, 4, B, e, and
¥(1 € k < R), which satisfies (a"), (b”), (¢"), and (d’) with correspond-
ing superscripts, is in fact W(p).
(a’) R is the rank of Z(p)
(b") For each k, 1 < k < R, ex(p) and ¥(p) are relatively prime
polynomials with unit leading coefficients.
(¢") Each ei(p) is a factor of era(p), 1 < k < B — 1, and each ¥;(p)
is a factor of ¥;4(p),2 <j < R.
(d") A(p) and B(p) are polynomial matrices each with a constant
non-vanishing determinant
(") Wi(p) = ¥z(p).
Proof: (a') and (d’) follow immediately from (a) and (d) of 5.1. (b’) is
a matter of definition. (¢’) follows from (¢) of 5.1 and the definition,
5.12, since the effect of cancelling common factors in each fraction of

the sequence
Eip) Efp) . Exp)
Vo(p)’ Wz(p) 7 Vu(p)
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cannot remove from any E.(p) a factor which was present in earlier
Ei(p)(j < k) but was not cancelled therefrom (treat each linear factor
Eyn(p)

as distinet
E(p)

of ¥, and of K, as distinet, and each linear factor of

to see this easily).

Property (e’) is best proved by a reductio ad absurdum. We recall
that E,(p) is the highest common factor of all elements of ¥;(p)Z(p).
Suppose now that E,(p) contained a factor ¢ in common with ¥z(p).
Then every non-zero element of ¥;(p)Z(p) contains the factor ¢. Hence
no denominator in Z(p) cancels ¢ from ¥z(p). Hence no denominator
contains ¢ as a factor, but this denies its presence in their least common
multiple, ¥ z(p).

The uniqueness of W(p) follows at once from the uniqueness lemma,
5.11. Multiply (2) by ¥z(p). Then

VA(p)W(p) = A"(P)¥2(p)Z(p)B"(p) (3)
has diagonal elements of the form
Vz(p)ex(p)
Sl 1<EkE<L<R 4
¥i(p) @

But by (3) and (d’), these are the result of polynomial operations on
the polynomial matrix ¥;(p)Z(p). Hence the elements (4) are poly-
nomials, and each has unit leading coefficient. \Ifz(p)WU(p) then clearly
satisfies (a), (b), (¢), and (d) of 5.1. Therefore by 5.11, VL (p)W(p) =
E(p) = ¥z(p)W(p). Therefore W'(p) = W(p). Q.E.D.

5.14 Corollary: W(p) is its own normal form.
5.15 Corollary: Let ¢(p) be a rational function and
Zn(p) = e(p)Z(p).

Let W{p) be the normal form of Z(p) and Wi(p) the normal form of
Zi(p). Then, when written in normalized lowest terms,

Wi(p) = e(p)W(p).

Proof: Supposing that (2) above holds for W and Z, we have

e(P)W(p) = A(p)Z:(p)B(p).

Call the left side of this equation Wi(p). We must identify this with
Wi(p). We have just showed that it satisfies (d') of 5.13. It clearly
satisfies (a’), (b") and (¢’), with Z, written for Z. Hence 5.13 implies the
desired equality.
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5.16 Corollary: If C(p) and D(p) are polynomial matrices with constant
non-vanishing determinants, then the normal forms of Z(p) and
C(p)Z(p)D(p) are the same.
Proof:
AZB = (AC)CZD(D™'B)

and the bracketed factors are again polynomial matrices with constant
non-vanishing determinants.

5.2 Definition: The point p, is a pole of Z(p) if some element of Z(p)
has a pole at p = po. If po is not a pole of Z(p), we say that Z(p.) is
finite, or that Z(p) is finite at p, .

5.21 If p, is a pole of Z(p), we may expand each element of Z in partial
fractions and collect those terms having poles at p,, obtaining, when
Po # @,

Zp) = (p — p) " Ze + (0 — p) 2
+ oo+ (p — P21 + Zo(p),

where Zy(po) is finite, Z, ¢ 0, and the Z;, 1 < k < r, are matrices of
constants. If pp = =, we read p’ for (p — p) fin (1), 1 < €< r. All
of Zo(p), Zy, -+, Z, are uniquely defined by their constructionfrom
Z(p).

5.22 Definition: If Z(p) is given by (1) above, then r is the order of the
pole of Z(p) at po .

5.23 Clearly, if Z(p) has the form (1) at py # =, some non-vanishing
element of Z(p) has a denominator containing the factor (p — )", and
no element has a pole of order higher than » at p,. Hence (p — po)"
divides ¥ ;(p), but no higher power of (p — p,) does. Therefore, by (e’)
of 5.13, the normal form W(p) of Z(p) has a first element with an it
order pole at po . In particular, then, p, # o is a pole of order » of
Z(p) if and only if it is a pole of order r of W(p).

5.24 Definition: Consider a pole of order » of Z(p), say pu, with po 7 .
In the normal form W(p) of Z(p), (2) of 5.12, let i be the order of the
pole of the k*" diagonal element

(1)

ek(P)

‘l’.t.-(P}
at the point p = po . Then v > viq1, and y1 = r. We write the v, in
an ordered array

S(Z, Pﬂ) = [71572: :‘Yﬂ]'
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5.25 Definition: Consider two matrices Z(p) and Z,(p), with
S(_Z, pﬂ) = [’Yl y Y2, T, Tﬂ]:

S(Zi, po) = [‘Y; , ')’r P ‘Y’n]-
We say
S(Z, po) > S(Zy, po) (2)
if and only if

ntrt o tncZntrt o +n

forevery k = 1,2, ---, n. We say
S(Z, po) = S(Z1, p) (3)
if
!
Ye = Yk
fork = 1,2, --+, n. It is easy to see that (3) is equivalent to the simul-

taneous validity of (2) and the reverse inequality.
5.26 Theorem: Let py # = be a pole of Z(p). Let F(p) be a rational
n X n matrix which is finite at p, . Then
S(Z, po) = S(FZ, po).
In particular, if F(p) is also non-singular at p, , then
S(Z, po) = S(FZ, po).

Proof: Let r(p) and ¢z(p) be the least common denominators of
the elements of F(p) and Z(p), respectively. Then the exponent of
(p — po) in Yz(p) is r, while in ¥#(p) it is zero by 5.23.

Let —e&: be the exponent of (p — p) in the k™ diagonal element of

the normal form of Z, and — & the similar quantity for FZ. Then
> > e,

> > e,

f],Z{'-

[

3)

1~

!
£ =2 €

by (¢’) of 5.13. Let

Il

ve = sup (&, 0),

r

Yk

sup (e , 0),
Then vi > &, v = & , and
S(Z, po) = [yi,ves -+ 5 val,
S(FZ, po) = [yi, e, =+, val-
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By 5.15, the normal form of FZ is
(Wepz)~" - (normal form of Y 2FZ).

Hence the exponent of (p — po) in the k™ diagonal element of the nor-
mal form of YpyYFZ is r — & . By a similar argument, the exponent
of (p — po) in the k™ diagonal element of the normal form of ¢,Z is
r — & . Hence, by (e) of 5.1,

=+t = e
is the exponent of (p — ps) in the highest common factor of all b-rowed
minor determinants of Yz zFZ. Similarly

r—&a)+ -+ 0—a)

is the exponent of (p — po) in the highest common factor of all b-rowed
minor determinants of ;7.

Now ¢s¢:FZ is a polynomial matrix. A typical b-rowed minor de-
terminant of this matrix is of the form

Yy 20 My, (4)

where the summation is over certain products M N of b-rowed minors
My of F and b-rowed minors Np of Z. For a proof of this, see MucDuﬂ'eew,
Theorem 99.1. The expression (4) is the same as

> WM W) (5)

where the factors (¥5Ns) are now b-rowed minors of ¥zZ. If ¢ is a factor
common to all b-rowed minors of ¥zZ, it certainly is a factor common
to all expressions (4) or (5). Hence the highest common factor of all
b-rowed minor determinants of ¢ zFZ—i.e., of all expressions (4) or
(5),—has an exponent for (p — py) no lower than that in the highest
common factor of all b-rowed minor determinants of ¥;Z. Hence for
any b,

(r—e) 4 -+ 4+ r—e)> =)+ -+ (r— &),
or
a+ - ta>a+ - +a.
It-follows that
mt o Fp>eat ot

This being true for every b, it is certainly true for every b such that all
terms on the right are >0 (cf. (2)). This means that for b = 1, and for
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every successive b > 1 such that & > 0,

Nt EnZnt .

This inequality is now not altered if non-negative numbers are added
to its left member and zeros to its right member. Hence it holds for all
b,1 <b < n,and

S(Z, p) = S(FZ, p). (6)

This is the first claim of the theorem:
Now if F(p) is non-singular at po, then F'(p) is rational, and finite
at py . Hence by what is already proved,

S(FZ) Pﬂ) 2. S(F_I(FZ)J PD)-

This last array is just S(Z, po). Hence we have (6) and its reverse, and
the theorem is proved.

5.27 Theorem: If py # « and
Z(p) = Zu(p) + Z:(p),
where Z:(p) is finite at po , then
S(Z, po) = S(Z1, o).
The proof of this depends upon the following lemma.

5.28 Lemma: Let Z*(p) be such that at p = py # o its only elements
having poles are on the main diagonal. Let —£1, —é, -+ be the ex-
ponents of (p — po) in the diagonal elements of Z*(p), so enumerated
that

+a> 4> >+ e,

Let —&, —&s, + -+, —&q be the exponents of (p — po) in the successive
diagonal elements of the normal form of Z*(p). Then if & > 0 we have

a+ - ta>at o ta.

Proof: There exist constant non-singular matrices F, G such that
FZ*@ has the same rows and columns as Z* so permuted that the diag-
onal elements of FZ*G are arranged in the order of ascending powers of
(p — o), the highest order pole being in the first position. Since the
normal forms of Z* and FZ*G are identical, it suffices to consider Z* it-
self to be in this form.

Let ¢ = ¢z(p). Now ¢Z* has its diagonal elements in the order of
increasing positive power of (p — pi). Furthermore, any off-diagonal
element of yZ* has (p — po)" as a factor.
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Let b be such that & > 0. Any b-rowed minor of yZ* is a sum of
products of b elements of yZ*. That b-rowed minor which has in it a
term with a lowest possible exponent of (p — po) is the upper left b-rowed
minor. Even this minor has a term with exponent

(r—e)+ -+ (r— &) )

for (p — po), this term being the product of the main diagonal elements.
Hence the highest common factor of all b-rowed minors of ¢Z* has an
exponent for (p — po) not less than (7). Hence

r—e)+ -+ (@ — &) (8)

is not less than (7), since this is the exponent of (p — py) in the product
of the first b diagonal elements of the normal form of yZ*. The in-
equality between (8) and (7) is just the conclusion claimed in the lemma.

5.281 Proof of 5.27: Let

W(p) = A(p)Z(p)B(p)
be the normal form of Z(p). Then

W = AZ\B + AZ,B. (9)
If we expand all three terms here in Laurent series about py , the term

AZ.B contributes no negative powers. It follows then from the diagonal
form of W that the matrix

Z* = AZ,B

satisfies the conditions of 5.28. The & of that lemma are, from (9),
just the exponents of (p — po) in the successive diagonal elements of
W, the normal form of Z, and the &, of 5.28 are the similar quantities
for the normal form of Z* = AZ;B. But the normal form of AZ,B is
the same as that of Z; (5.16). Therefore in the inequality of 5.28 we
may interpret all of the &’s as exponents in the respective normal forms
of Z and Z; .
Now

Zy(p) = Z(p) + (—Z=(p))

and — Z:(p) is again finite at po . Hence we may conclude by the argu-
ment just used that if & > 0 also

U !
at+--Ftazat -t
. . ! . .
Hence if either of & or & is non-negative

a4 - ta=eat ot
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By induction on b, then,
& = &
for k = 1, 2, ete. until such k that both are negative. Therefore
ve = sup (& ,0) = vi = sup (& , 0)
forallk = 1,2, -+, n. That is,
S(Z, ;) = S(Z1, po),

Q.E.D.
5.29 Theorem: Let Z(p) be such that at p = p, #  its only elements
having poles lie on the main diagonal. Let ¢y, o2, * -, o, be the orders

of these poles, so enumerated that
g1 2 02> 2O,
Then
S(Z, po) = [o1, 00, *++, aal.
Proof: We write

Z(p) = Z*(p) + Z:p),

where Z*(p) is diagonal, having exactly the diagonal elements of Z(p).
By 5.27,

S(Z, m) = S(Z*, o).

Now Z*(p) falls under 5.28, but is diagonal in addition. In the proof
of 5.28, therefore, it is exactly the principal minors of ¢Z* which have
the lowest exponents for (p — po), since all non-principal minors vanish
and have zeros of arbitrary order at p = p, . Furthermore, (7) is exactly
the least exponent of (p — mo) in any b-rowed minor of ¥Z* since the
principal minors are simple products. Hence (7) and (8) are equal, for
any b = 1, 2, -+, n. Therefore the exponents in the normal form
of Z* are exactly those of Z* and

S(Z: Pu) = S(Z*: pﬂ) = [0'1 302, ", a'n]-
Q.E.D.
5.3. Definition: Let

p =T =

be a non-singular bi-rational transformation from the g-sphere to the
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p-sphere. Denote its inverse by
g =T"(p)
Given a rational Z(p) the matrix
Zu(q) = Z(T(q)
is rational in ¢.
For any po such that T7'(po) # =, we define
Se(Z, p) = 8(Zy, T (o).
5.31 Theorem: If py and T (po) are both finite,
Sr(Z, ;) = S(Z, po).
Proof: Let Wi(g) be the normal form of
Zi(q) = Z(T(q))-
We have
Wi(g) = Al@)Z:(a)B(q)-
Consider
Wa(p) = Wi(T7'(p)) = AT (0))Z(p)B(T™(p)).

Here the pre- and post factors of Z(p) are rational, finite, and non-
singular at p, . Hence by 5.26

S(Wz, po) = 8(Z, po). (1)

Let go = T ‘(o). It is then easily computed that the inverse trans-
formation 7 (p) takes the form

ﬂ(P - Po)
—qy = o P #= 0.
== —-m+r "

Any given diagonal element of W(g) is of the form
(g — 0)'E(9),

where £ may have any sign, and R(g) is rational, finite, and not zero
at go . The corresponding diagonal element of Wa(p) is then

’ a ‘
(p — po) (W) Ry(p),

where Ry(p) = R(T'(p)), and the factor multiplying (p — po)* is again
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finite and not zero at p, . The exponents of (p — po) in the elements of
Wa(p) are therefore exactly the exponents of ¢ — ¢ in the elements of
Wi(g). From 5.29, then

S(W2, po) = S(W1, q).
This with (1) and the definition 5.3 proves the theorem.

5.32 Definition: Given any py , let p = T'(g) be a non-singular bi-rational
transformation such that o = 77 (p) # . We define S*(Z, p,) by

S*(Z, po) = S2(Z, po).

5.33 Lemma: S*(Z, po) is independent of the 7" chosen to define it.
Proof: Consider ¢ = T '(p) and r = U”'(p), each such that p, is
mapped on a finite point. Then by definition

Sz(Z, po) = S(Z1, @),

Su(Z, Pl}) = S8(Z., 'rﬂ)’
where
G = T_I(PO), fo = U_I(Po):

Z(g) = Z(T(q)),
Zo(r) = Z(U()).
Now r = U (T(q)) = V(q), say, and r, and ¢ are finite. Hence by 5.31

Sv(Zz, 1) = S(Z2, 1) = Su(Z, po). (2)
But by definition
Sv(Za, 1) = S(Zs, V(1)) = S(Zs, q) (3)
where
Zi(q) = Z.(V(g)
But

Z(V(g) = Z(UWU(T(@))) = Z(T(9)) = Zi(q).
Hence
S(Zs, @) = S(Z,, q0) = S2(Z, PO)-

This, with (2) and (3), proves the lemma.

5.34 Theorem: Theorems 5.26, 5.27, and 5.29 hold for S* without the
restriction that py be finite.
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Proof: Let go = T '(ps) # . For 5.26 we have
S*(zl p[’) = S(Zl ] Q’D) 2 S(FIZI 3 Q'O) = S*(FZ, pu)
where the equalities are by definition and the inequality is 5.26 applied

to matrices rational in g, since
Fig) = F(T(@)

is by hypothesis finite at g . The remaining conclusion of 5.26 follows
similarly. The proofs of 5.27 and 5.29 are equally simple.

5.35 Theorem: If we extend 5.3 to S* by defining
S2(Z, ) = 8*(Z, T (po),

then 5.31 holds for S* with no restrictions on pe or 7 (po).
Proof: By their definitions,

ST(Z, p) = 8*(Zy, T (po)) = Su(Zy, T '(m)), €Y
where U is such that U (T (p,)) is finite. But
Suv(Zy, T“(po)) = 8(Z., U(T™"(pn))) (5)

where
Zo(r) = Zy(U(r)) = Z(T(U(r))).
Let V(r) = T(U(r)). Then, by definitions,
8(Zy, UNT (po))) = Sv(Z, m0) = S*(Z, po), (6)
since Vi(py) = U (T (p)) is finite. The theorem follows from (4),
(5), and (6).
5.4 Definition: Let
S*(Zl pﬂ) = {71 y Y2y T, "Yﬂ}-
Define
5(Z, T:‘u) =1+ v+ - + Yn,
8(2) = 228(Z, po),

where the latter summation is over all poles p, of Z(p), including py = .
This §(Z) is the degree of Z for which we must establish the properties
claimed in 2.11 through 2.17. These properties will be demonstrated in
5.41 through 5.45, in numerical order, saving 2.13, which is deferred to
5.46.
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5.41 Clearly 8(Z) is an integer and non-negative. If §(Z) = 0, then every
v at every py is zero. Hence no p,, not even «, is a pole of Z. Hence
each element of Z(p) is a constant. This establishes 2.11 and 2.12.

5.42 Suppose
Z(p) = Zi(p) + Z:(p)

where each Z;(p) is finite at every pole of the other. The poles of Z(p)
are then exactly the poles ps” of Z, and those pS~ of Z,. At each pole,
5.27 applies in the enlarged sense of 5.34, so

5(21 p‘{]‘)) = 6(ZI ] p‘-(".))'
(1) (2)

Breaking the sum defining 6(Z) into sums over the p;’ and py~ proves
that

8(Z) = 8(Z,) + 8(Z.).
This is 2.14.
543 If

Z(p) = [(P)R,

where R is a constant matrix, then the normal form of Z(p) is f(p)
times a diagonal matrix of the same rank as 2 (5.15). 2.15 then follows

at once.
5.44 If
Zi(p) = AZ(p)B,
where A and B are constant and non-singular, the poles of Z:(p) and

Z(p) are the same. At each, 5.26 applies in the enlarged sense of 5.34.
Therefore 8(Z,) = 8(Z). This is 2.16.

5.45 If Z\(p) is Z(p) bordered by zeros, they have the same poles. One
verifies at once from 5.11 that the normal form of Z,(p) is that of Z(p)
bordered by zeros. Since also Z1(T'(gq)) is Z(T'(g)) bordered by zeros, it
follows that

S*(Zy, po) = S*(Z, po)

at every pole, whence §(7Z,) = §(Z). This is 2.17.
5.46 We must prove that if Z(p) is non-singular, then

5(2) = 8(Z7)

Proof: Choose a bi-rational transformation p = 7'(¢) such that at
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p = T() both of Z(p) and Z '(p) are finite. Let
Zi(g) = Z(T(q)).
Then
77 (q) = Z7(T(q)).
Let Wi(q) be the normal form of Z,(q), with diagonal elements

Gk(Q’)
Yi(q)
in lowest terms. Since Z(g) is of rank n, none of these vanish identically.
We first claim that 8(Z) = 8(Z:). The poles po of Z are exactly the
points

o = T(q)
where g, runs over the poles of Z; . At each pole,
SHZ, ) = S1(Z, po) = S*(Zy, @)
by 5.35. Hence 8(Z, po) = (21, q) and the result follows by addition.
Similarly, then, 8(Z™") = 8(Z1").
Next we assert that §(Z) is just the degree of the polynomial
Yilgha(q) - -+ ¥al).

For 6(Z,, q) is the exponent of (g — ) in this polynomial, and the
zeros of this polynomial are exactly the poles of Zi(q).
We observe that if

Wilg) = Alg)Zy(q)B(g),
then
Wille) = B (9)Z7 (@A™ (9).

This then is the result of polynomial operations on Z '(g), and has
diagonal elements

'Pk(Q)' (1)
ex(g)
Clearly by arranging these in reverse order, we have a normal form.
This is 5.13. Hence the functions (1) are the diagonal elements of the
normal form of Zi'(g). The argument above applied to Z '(q) then
shows that §(Z;") is the degree of

ei(g) « - ealg)-
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Finally, we note the determinant relation

[ W) | = | Alg) || Zi(q) || B(q) | = (constant) X | Zi(g) |,

since the determinants of 4 and B are constant. Now Zi(¢) has no pole
at ¢ = o, hence its determinant is finite there. The same is true of
Z7'(q), so indeed

| Zi() | = 0.
Now by direct ealeulation

elg) - e
WD = @

Since this is finite and not zero at ¢ = «, the numerator and denom-
inator are of the same degree. Hence

8(Z) = 8(Z,)) = degree (Iy,) = degree (Ie) = 8(Z7") = 8(Z7).

VI. THE EXACT COUNT OF REACTIVE ELEMENTS

6.0 We showed in the inductive argument of 4.07 that the Brune proc-
ess constructs a realization for a given Z(p) which uses exactly 8(Z)
reactive elements. To establish 2.18, we must still show that no net-
work with fewer than 6(Z) reactive elements can do this. To prove this,
we shall show that if Z(p) is the impedance matrix of a network con-
taining x reactive elements, then

8(2) < . (1)

We shall, in fact, in this Section show somewhat more than (1). The
demonstration of (1) requires enough calculation that is as easy to prove
the following extension of 2.18.

6.01 Theorem: Given any linear correspondence L, (I, 6.2), which
PR, (I, 16.71), there exists a number 6§(L) such that
(i) The realization process outlined in (I, 8) and 4.07 of this Part
constructs with &(1.) reactive elements a network realizing a
member of the Cauer class of L.
(ii) If L is the correspondence established by the Cauer class of a
physical network which contains x reactive elements, then

6(L) < =

The proof is divided among the remaining paragraphs of this Section.
We maintain here a strict distinction between geometric objects and
their concrete coordinate representations.
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6.02 We observe at once that if a §(L) exists satisfying (i) and (ii), then
it must be unique because it is exactly the minimum number of reactive
elements required to realize any representative of the Cauer class L. No
particular pains then need be taken as we go along to verify that the
value of 8(L) arrived at is in fact independent of the mode of defining
it. :

6.1 Given a PR geometrical linear correspondence L between V and K,
there is a frame which reduces L in the sense of (I, 13.02). In this frame
we have the dual decomposition

V=VpaeaV.eV
K=K ®K: ® Ky
in which each subspace is real and spanned by selected basis vectors.
Furthermore,
Ve=Vp@®V,,
KL = K2 @ Kz.o 5

Finally, if 7 is the dimension of V. and Ks , there is an X 7 PR matrix
[Z1(p)] such that, when

[Uz i kg] € L(p)
and
szvg, ]CgEK:,

then
(] = [Za(p)][ke].

Here the r-tuples are those representing »: and k2 as elements of V» and
K, in the chosen frame.

6.11 Definition: We define §(L) by
8(L) = 8([Z4]),

where [Z1(p)] is the matrix described above.

6.12 This number 8(L) is the number of reactive elements used when
the Brune process is applied to realize [Z(p)]. (This is 4.07). Then,
however, by the argument of (I, 8.5), the representative [L] of L in the
particular frame in question can be realized by adjoining open and
short cireuits to a realization of [Z;(p)]. This operation adds no new
reactive elements. Neither does the operation of converting [L] to any
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Cauer equivalent [L]; by the use of ideal transformers. Therefore the
particular 8(L) we have defined—which depends for its definition upon
a somewhat arbitrary choice of coordinate frame—satisfies (i) of 6.01.

6.2 Lemma: Let L be a PR geometrical linear correspondence between
K and V, and M another between spaces J and U = J* obtained by
restricting L as in (I, 18). Then

8(M) < &(L).
Proof: We use the results and notation of (I, 18). In particular, (' is

a real constant operator from J to K, C* its adjoint from V to U, and
the pairs of M (p) are those pairs

[, 7]
such that
u = C* and [v, Cj] e L(p).

Choose a frame in V and K which reduces L as in 6.1. We recall that
J u consists of all vectors 7 e J such that C7 e K. (I, 18.31). Let J. con-
sist of all 7 e J such that

CjeK,.
Let J3 consist of all j e J such that
CjeKyp.

Then J. and J; are disjoint and both are subspaces of J . We can there-
fore write

J.‘r:J'z@J&@Ji:

after a suitable choice of J .
We now claim that

Ji®Ji CJumo. (1)
For we have if j e J » that, uniquely,
J=17J+ 7+,
where j; € J; . Therefore
Cj = Cj:+ Cis + Cja

where by construction Cj:eK., (9j;eK., and, necessarily, then
C7 = 0. If j» = 0, therefore, C7 e K1y and

[0, CJ] € L(p).
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Therefore
[C*0, 7] = [0, j] e M(p).

this proves (1).
We can now write

Ju=Ju @ Jn @ Jo )
where
Je = Ju @ Ju,
J20=JszMu, (3)
Jo=J @Js,
Juwo = Jo @ Jo.

Choosing an arbitrary Js disjoint from Ja , we can write, using (2)
and (3),

J=Jﬁ®J21®Juo, (4)
where

Ju=Ju ® Jmo.
Using the arguments of (I, 12.3), we find that the decomposition of U
dual to (4) is, because M is PR,
U=Uuw®Usx® U (5)
where
Uy = Upo @ Uy

As in (I, 12.3) we can now introduce a frame appropriate to the de-
composition indicated in (4) and (5) and obtain a matrix [Zx(p)] de-
seribing the correspondence between Ju and Usy . Say this is an m X m
matrix, m being the dimension of Jx . We can define

§(M) = 8([Zu]).

Let J. have dimension m, . By (3), if we border [Zx(p)] by mi. — m
rows and columns of zeros, to obtain an m; X m; matrix [Z:(p)], we can
interpret [Z:(p)] as follows:

Given j € Jz, it can be represented by an my-tuple [j] in the basis in
that subspace. Then the m;-tuple

[u] = [Za(p)][J] (6)
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represents in the dual basis in (J»)" a vector u e Uy such that
[, 7] € M (p).
Now this « necessarily is of the form
u = C*, (7N
where
[v, Cjl € L(p).

But jeJ., so €7 eK., so v may be taken to be an element of V., with
components

[v] = [Z:(p)]ICT] (8)

in the basis therein.

‘We have bases now in V, K, U, and J, each of which has a set of basis
vectors spanning, respectively, V., Ko, (J-)°, and J.. By definition of
J:, and by (7) and (8), C operates from J. to K, and C* from Vs, to
(J2)". Hence in these respective bases € and C* may be represented by
my X my matrices. In these bases then, from (7) and (8),

[u] = [C¥[v] = [C*Z:(P)IC]LH].
Comparing this with (6), we have
[Z2(p)] = [CH[Z(m]IC].
Hence by definitions and 5.26,
8(M) = 8([Z2]) < 8([Z)]) = &(L).
This is the assertion to be proved.

6.3 We can now turn to (ii) of 6.01. We follow the synthesis procedure
of (I, 19), as modified in the remarks of 3.2.

Consider a network constructed from z reactive elements, r resistors,
and some ideal transformers. As in (I, 19.2), the synthesis of this net-
work begins by juxtaposing the » + z two poles and the ideal trans-
formers, all as separate devices. The correspondence [L] established by
this juxtaposition is exhibited in (I, 19.2) as one described by a diagonal
matrix [Z.(p)] juxtaposed with one described by certain ideal trans-
formers. A frame which reduces this correspondence as in 6.1 can be
found by a change of basis wholly within those subspaces in which the
ideal transformers operate. Hence the degree §(L) of this correspondence
in exactly 8([Za]) which, by 5.29, is x.

Now let [M] be the concrete linear correspondence established by the
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network to be synthesized. Then (I, 19.3, 19.4) show that [M] is ob-
tained by two successive restrictions upon [L]. Hence by 6.2

(M) < 8(L) = =.
Q.E.D.
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