Generalized Telegraphist’s Equations for
Waveguides

By S. A. SCHELKUNOFF
(Manuseript received April 30, 1952)

In this paper Maxwell’s partial differential equations and the boundary
conditions for waveguides filled with a heterogeneous and non-isotropic
medium are converled into an infinite system of ordinary differential equa-
tions. This system represents a generalization of “telegraphist’s equations”
for a single mode transmission to the case of multiple mode transmission.
A similar set of equations is obtained for spherical waves. Although such
generalized telegraphist’s equations are very complicaled, it is very likely
that useful resulls can be oblained by an appropriate modal analysts.

From a purely mathematical point of view the problem of electro-
magnetic wave propagation inside a metal waveguide reduces to obtain-
ing that solution of Maxwell’s equations which satisfies certain boundary
conditions along the waveguide and certain terminal conditions at the
ends of the waveguide. If the medium inside the waveguide is homo-
geneous and isotropic and if the cross-section of the waveguide is either
rectangular or circular or elliptie, the desired solution is obtained by the
method of separating the variables. The method works for some other
special cross-sections. It works also if the medium inside a rectangular
waveguide consists of homogeneous, isotropic strata parallel to one of
its faces. Similarly, it works if the medium inside a circular waveguide
consists of coaxial, homogeneous, isotropic layers. But in general if the
medium is either nonhomogeneous or non-isotropic or both, the method
does not work. The mathematical reason for this is that the solution is
of a more complicated form than a simple production of functions, each
depending on a single coordinate. Any function that one usually en-
counters in physical problems, and therefore a solution of Maxwell’s
equations, may be expanded in a series of orthogonal functions. Sets of
such functions are provided by the solutions for waveguides filled with
homogeneous media. Such functions already satisfy the proper boundary
conditions and the problem is to obtain series which also satisfy
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Maxwell’s equations. From the physical point of view this method
represents a conversion of Maxwell’s equations into generalized “tele-
graphist’s equations.”

Thus it is already known that Maxwell’s partial differential equations
and the boundary conditions along a waveguide are convertible into a
set of independent ordinary differential equations, each resembling tele-
graphist’s equations for electric transmission lines." Each equation de-
scribes a “mode of propagation” in terms of concepts well known in
electric circuit theory. A waveguide can be considered as an infinite
system of transmission lines. If the medium inside the waveguide is
homogeneous and isotropic and if the surface impedance of the boundary
is zero, the method of separating the variables enables us to obtain a set
of “normal”, that is, uncoupled modes of propagation. Any irregularity
or ‘“discontinuity” in the waveguide provides a coupling between
some, or all, modes of propagation. The irregularity may be in a boundary
of the waveguide or in the dielectric within it. A heterogeneous dielectric
may be considered as a homogeneous dielectric with distributed irregu-
larities.” Similarly a heterogeneous non-isotropic dielectric may be con-
sidered as a homogeneous isotropic dielectric with distributed irregu-
larities. Such irregularities provide a distributed coupling between the
various modes appropriate to homogeneous isotropic waveguides. Our
problem is to calculate the coupling coefficients. The generalized tele-
graphist’s equations, obtained in this manner, are very complicated in
that they represent an infinite number of coupled transmission modes.
They are useful, however, in suggesting a physical picture of wave
propagation under complicated conditions, and can be used in approxi-
mate analysis when we can ignore all but the most tightly coupled
modes. For example, this picture was successfully employed by Alber-
sheim® in studying the effect of gentle bending of a waveguide on propa-
gation of circular electric waves. In this caseit was important to consider
the coupling between only two modes, TEy and TMy , which have the
same cutoff frequency in a straight waveguide. More recently, Stevenson
obtained exact equations for waves in horns of arbitrary shape.' His
equations express the propagation of the axial components of E and H.
The various modes are coupled through the boundary of the horn. In
1 8. A. Schelkunoff , ““Transmission Theory of Plane Electromagnetic Waves,’
Proc. Inst. Radio Engrs., Nov. 1937, pp. 1457-1492,

28, A Schelkunoff, ‘‘Electromagnetic Waves,” D. van Nostrand Co., (1943),
1)1)5%%—.93: Albersheim, ‘“‘Propagation of TE; Waves in Curved Waveguides,”
Bell System Tech. J., Jan. 1949, pp. 1-32.

4 A. F. Stevenson, ‘“General Theory of Electromagnetic Horns,” J. Appl.
Phys., Dec. 1951, pp. 1447-1460.
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the present paper we shall consider waveguides of constant cross-section
and conical horns of arbitrary shape filled with a heterogeneous and
non-isotropic dielectric and derive the equations for propagation of the
generalized voltages and currents representing the transverse field com-
ponents. The various modes are coupled through the medium. It is very
likely that our equations can be generalized to include the coupling
through the boundary.

To understand the mechanism of coupling between the various modes
through the medium consider Maxwell’s equations

curl E = —jwB, curl H = °J + jwD, (1)

where °J is the density of conduction current while the other letter
symbols have the usual meanings. In the most general linear case the
components of B and D are linear functions of the components of H
and F respectively, with the coeflicients depending on the coordinates.
These equations can always be rewritten as follows

curl £ = —jouH — M, curl H = jwell + J, (2)

where M and J are the densities of magnetic and electric polarization
currents.’

M = jo(B — uH), J ="°J + ju(D — €B), (3)

and u, € are constants (not necessarily those of vacuum). If M and J
were given, they would act as sources exciting various modes of propa-
gation in a homogeneous, isotropic waveguide. If M and J are functions
of H and E, they can still be considered as the sources, acting on power
borrowed from the wave, of the various modes. Thus M and J will
provide the coupling between the modes existing in a homogeneous,
isotropic waveguide.

Thus in order to derive the generalized telegraphist’s equations we
shall first consider the various modes of propagation in a homogeneous
isotropic wave guide. Each mode is described by a transverse field distri-
bution pattern® T'(u, v), where u and v are orthogonal coordinates of a
point in a typical cross-section. This function is a solution of the follow-
ing two-dimensional partial differential equation

_ 1 [8 (edT d (e dT\] _ s
T= e [au (el a;)*‘ a;(‘ E)] = —xT ()

5 See Reference 2.
6 8. A. Schelkunoff, “Electromagnetic Waves,”” D. van Nostrand Co. (1943),

Chapter 10.
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where x is the separation constant and e, , e. are the scale factors in
the expression for the elementary distance

ds’ = ef du® + e dv’. (5)

In the case of TM waves the T-function must vanish on the boundary
of zero impedance. This boundary condition restricts x to a doubly in-
finite set of values x.,.. with the corresponding functions 7', . In the
case of TE waves the normal derivative of the 7'-function must vanish
on the boundary of zero impedance. Since we have to consider both
types of waves simultaneously, we shall distinguish between them by
enclosing the subscripts in parentheses for TM waves and in brackets
for TE waves. The double subscript designation of various modes has
been standardized only for rectangular and circular waveguides. For
waveguides of other shapes the standard is to use a single subseript by
arranging the modes in the order of their cutoff frequencies. For con-
venience, we shall use this convention in the general case and denote
TM modes by T, (u, v), and TE modes by 7';(w, v). The correspond-
ing cutoff constants will be xy and x(,;. In what follows it is under-
stood that whenever the T-functions should be designated by double
subseripts, our single letter subseripts should be considered as symbols
for ordered double subseripts.

The transverse field components may be derived from the potential
and stream functions,” V and I for TM waves and U and ¥ for TE
waves. Thus

E, = — grad V — flux ¥, H, = flux T — grad U, (6)

where the components of the gradient and flux of a scalar function W
are

aw aw
grad, W = o an’ grad, W = L i
aw ow (0
flux, W= —, flux, W= — .
e dv e, du

The T-functions corresponding to the various modes of the same va-
riety are orthogonal; that is, the following integrals over the cross-section
vanish,

f TwyTm dS = 0, f Tt Tim dS = 0, ifm #n (8)

It should be stressed that 7', and T, are not, in general, orthogonal.

7 See Reference 6.
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Similarly the gradients of the T-functions of the same variety as well as
the fluxes, are orthogonal,

[[(erad ) (arad Tew) a8 = || [ (fux T) - (frux Tem) S
9)

= [[ rad Tu)-(erad Tian) dS = [f (tux Ty (rux Tio) dS = 0,

if m 5= n. The following gradients and fluxes of the T-functions are ortho-
gonal for all m and =,

ff(grad Tew) - (flux Tim) dS = f (grad Tpm) - (Hux T¢my) dS
(10)

= ff(grad T(n})'(ﬂux Tm) dS = 0.

On the other hand, grad T and flux T'(,; are not, in general, orthogonal.
If all modes are present, the potential and stream functions are

'_I(ﬂ) (Z) T(ﬂ) (u) 'U),
—Ilﬂl (Z)T[n] (ua 'U),
where the tensor summation eonvention is used: whenever the same
letter subscript is used in a product, it should receive all values in a
given set and the resulting products should be added. The negative

signs have been inserted in order to avoid a preponderance of negative
signs in later equations. Substituting in (9), we have

Il

V = "'V(n)(z)T(n)(u: ”)s I
¥ = —Vm@E)Tmw,v), U

(11)

E; = V(n) gra.d T(,,) + V[,..] flux T[n] y
H, = —I(ﬂ) flux T(n) + I[,.] grad T[n] .

(12)

The T-functions for the various modes are determined by equation
(4) and the boundary conditions except for arbitrary factors related to
the power levels of the modes. If we choose these constants in such a

way that
[[(erad 1) (grad 1) as = x* [[rtas =1, (13)

then the complex power carried by the wave is given by an expression
similar to that in an ordinary transmission line,

P =3Vl + 3Vimlin . (14)
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Hence, the V’s and I’s correspond to the voltages and currents in coupled
transmission lines.
In an expanded form equations (12) are

9T (ny T aT 0T ()
Eu = V,, V n y Ev = Vn - V n
“elau-l_ e, av ™ ey av SPRE T (15)
5
T (ny T T (n) T )
Hu = In I n ) Hu = —In In .
”elau+ []Bgav ”egau+ ”elau

To these we add the following expansions for the longitudinal compo-
nents of £ and H

Es = X(n).V:,(u)(z)T(n)(“! 1')) HZ = X["]IZ-["](Z)T["](Hi U). (16)

- Equations of this form satisfy automatically the boundary conditions
on E. and H, . The multipliers x, have been inserted arbitrarily in order
to make the physical dimensions of the second factors to correspond to
those of voltage and current.

Let us now write Maxwell’s equations in an expanded form

oK. _ ok, —iwB aH. _ aH, — oD

ey 0z J@Bu 5 e 0 9z 19T

oK oF . ol ol .

u o : ., uo_ z — D,, ,

dz e; Ju joB az e du Je amn

3(32Eu) 6((31]51.;) . a(GZHr) a(e].Hu) B
—_ = — W03, — = d GDZ .
ou v Joerees 5 o v Jusbr6e

Substituting from (15) and (16) in the left column of (17), we find

GT(.‘) _ dI-’(“) (')T(,,) dV[,.] aT[,,] _

X Ve s Ay dz e v dz e du —jeB.,  (18)
T , AV 0Ty | AV 9Ty _ .
X Vavto e ou + dz e du dz esdv JwBy, (19)

. agT(,.) d (e 67‘[,.]) azT(n) d fe10T
Ve — Vi = (200 _y, N
“ du gv Hdu(el ou ™ Gv ou ) 3y e dv
(20)

= —jweiesB,.

In view of (4) the last equation reduces to

Xt Vin Ty = —jwB:. (21)
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Multiplying (18) by [—0T /€2 00] dS, (19) by [8T ¢y /er du] dS, adding,
and integrating over the cross-section, we obtain

de m m
_x(m)Vz (m) + = - fj-( aT( ) — B aT( )) das . (22)

" In the first term the summation convention should be ignored. Multiply-
ing (18) by [0T(m/ex du] dS, (19) by [0T 1m/ €2 dv] dS, adding, and in-
tegrating we find

Wit — —ju |[ ( w4 p '”Q) ds. (23)

e, ou € dv

Multiplying (21) by T'tm dS and integrating, we have
Viw = —jo [[ BT 5. (24)

Subjecting the right column of (17) to a similar treatment, we obtain
three additional equations. Summarizing, we have

WV 9T AT
m g ff (B,L w _ p 9% ’) S + xomVeom,  (25)

dz er dv e,

et = =i ] (. S+ 0. ) s o
Woer - o [[ (B 200 4, 200 s, -
er o [ (=020t 4 0, 2T0) a5 + Lo, 28)

V[m] = _jwf BzT[m] d‘g, I(m) o —jwf quv(m) dlg. (29)

In the last terms of equations (25) and (28) the summation convention
should be ignored.

If the components of B and D are linear functions of the components
of H and E respectively, then with the aid of (15) and (16) they can be
expressed as linear functions of Vi, Viss Loy Loy Ve s Lo -
Solving (29) for V. and I., and making the appropriate substitu-
tions in (25), (26), (27), (28), we obtain the generalized telegraphist’s
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equations in the following form

dV(m) g v

iz = —Zmwlmy — ZommIm — TommVm — T Vim,
(l[( ) - r I T

d: = —Y (m){n)Irtn) - Iftm)[n]T [n] — TT(m)(anz)I(rt) - T(m)[n]I[n] ’

) (30)
W _ g Ton — Zimor Loy — “TimgoaVis — TV

iz [m)n}4 [n] (ml(m) 4 (m) [m][n] ¥ [7) ml () ¥ (n) 5
dI[ml r I I

& —Yimm Vi — Yium Ve — Tl m — Tl -

The transfer impedances Z, the transfer admittances ¥, the voltage
transfer coefficients "7, and the current transfer coefficients 'T between
various modes are in general functions of z. They are constants if the
properties of the waveguide are independent of the distance along it;
in this case the problem of solving the generalized telegraphist’s equa-
tions reduces to solving an infinite system of linear algebraic equations
and the corresponding characteristic equation.

Similar equations may be derived for spherical- waves either in an un-
limited medium or in a medium hounded by a perfectly conducting coni-
cal surface of arbitrary cross-section. If the latter is circular and if the
flare angle is 180°, we have a plane boundary. Hence, the case of spheri-
cal waves in a non-homogeneous medium is included. In the spherical
case we shall use the general orthogonal system of coordinates (r, u, v)
where 7 is the distance from the center and (u, v) are orthogonal angular
coordinates. In this system the elements of length ds and area dS are
given by

ds’ = & + *e; di’ + es di’), dS = r’dQ, dQ = ejes dudv.  (31)

The transverse field components may be expressed in a form similar
to that for waveguides

rE, = — grad V — flux 11, rH; = flux II — grad U, (32)

where grad and flux of a typical scalar function are defined by equations
(10). Instead of (11) we have

V - I'(,.,(r) T(M(”‘; "): II —I(,.)(J') T(ﬁ)(”; L‘),
V= =Vl v), U= —Iu) T, ),

where the T-functions satisfy equation (4) and appropriate boundary
conditions. These functions, their gradients and fluxes are orthogonal.

Il
Il

(33)
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They are assumed to be normalized as follows
‘ ff (grad T)- (grad T) d2 = f Tdg =1, (34)
where d is an elementary solid angle. Hence, equation (14) will again

represent the complex power flow in the direction of propagation.
~ The various field components may then be expressed as follows

aT(,.) BT(,.g AT AT tn)
Eu = n y V n - V n
T m + o 90 ™ 3 ) o’
v = n) — In 3 u = —4A(n n 3
rH I()elau+ []6261? rH I()8230+I e du

r'E, = xm Vemy Teny s r"H, = ORAORAICE

It should be noted that the physical dimensions of V, ) and I, n are
not those of voltage and current. Substituting in Maxwell’s equations
and using transformations similar to those in the case of plane waves,
we find

aVem _ Jw ff (rBu 0w _ rB, aT('")) A2 + xem? " Vesm
e dv

dr € du

i ] (e )

Wi —jo [[ (o 2Pt 4, 2Tt} g, (36)
it = ] (= 0 5 o0 ) 0 e,
Vi = o [[6'BITwm 42, T = —jo [[¢*D) T d.

Returning to the plane wave case and assuming the following general
linear relations

Bu = UuuHu + ﬂuvHv + ﬂvquz y Du = ['quu + Equﬂ + Equz y
Bv = FuuHu + ﬂann + .Hvsz 3 Du = fl\uEu + frquu + vaEz 3 (37)

Bz = .U-zuHu + P-WHU + I-lzsz y Dz = fzuEu + Evau + euEz )
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we find
_ _ aT(ﬂ) BT(.., [ 6‘T;n1 &T[,‘l:l
Bu = I(n) I: Buuw —— e 0y + 31 o + I[n] Fuu & ou + Uyp & v
+ I, mpusxim T'inl
T w aT(n):I |: 3Tm 3Tlus:|
= n = MKvu I n U
B, I()[ K 620”4' & o + Iy | & @ d + & 0v

+ IZ. [nli-'uX[an[nl ’

T o aT(,.)] [ T aT[..,]
- n — I n zu . zv
B. I“[ . e,au+ € T | elau+y e v
+ IZ.["]”zzx{ﬂ] T[ﬁ] ’ (38)
[~ 0Ty 3T<n)j] I: 0T (n) 3T{nl]
= €yp —/—— V n, U = Cuy T/
Dy =V Ky + € P + Vi | € wor e ou
+ V;,(n}euzx(n)T(n) H
i aT(n) BTtn)] l: 87t 6T[,.,]
D, = Ve Y e OU T e O t Vim | € ad " aou
+ V.meorxim Temy »
B ATy BT(ﬂ)] |: 9T 6T[nl]
= o 2 V n 2y = €
D. = Vi Eryr e 3, + Vin | € mor < oou

+ Vg,(n)ész(n)T(n) .

Substituting from equations (38) into equations (25) to (29) we ob-

tain

AVemy _ _

dz

+ joln ff [#uu

+ jwl.,n ff I:#u;

Jol ff l:#a.u

ad T(n) 0 T(m)

T 8T (my

e: dv ey 9V

= Huv

" e, 0U € Ou

0Ty 0T my

T 8T my _

€1 ou €2 av

aT[n] BT(m)

e, du e, ov

+ Hu

aT(m)
€y av

e v e 0Uu

aT[nl aT(m) _

6‘T(n) 6'1"(».)] dS
o e 0v e 0u

(39)

e 0v e dv

3T m
“edu

T BT(m)] s
“ e du e Ou

]X[an[nl dS + x¢mVaim ,
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dl om . ff [ Ty 8T iy ATy T oy
= = V n wu v T T
dz Jovm € e 0 e ou e v ez dv

0Tty T (my 8Ty 07 (my
T e dv e on | e du e dv 8

+ jwV[,,] ff |:_€w a[‘lﬂ] aT(m} + e aT[,.] aT(,,,, (40)

e dv e ou ey 0u e dv

67 [n] 6T(m) 3T[n] 611("1) ¥
e Goun e dn e e dv ds

- z,(n vz n T n
JwV ()ffl: elau € 82d X Ty dS,

AVim . ff [ T oy 9T (m) T (my 8T tm
—_— = I n uu - Hew o o
dz 495 K esdv e ou K e, 0w es v

s aT(r-) BT[,,.] o ?_h aT[m]]
e du e du e dv ey v

~ ol J[ [ o Dot e, 91 Tt ()
+ o S e, ST 8T

— jal . m ff [#us T + u 331([3 :IX[s-le ds,

ot = oo [[ [ e ‘”; o e o

~ G o o ST  as
—iot [ SR i @

— e Tl _ 9T 3T[ml:| d
“ e du ex o ey dv e ou

. aT aT
Vz n ff — Cu:z S v fm] n Tu S mI m
+ JoVem [ E—Gzaﬂ—'_f-ela X Ty dS + X(m Iz, m

IZ.["] ffjwﬂzzx[n]T[n]T[m] dS = —V[m]

—|" I(p) ff.?w [qu %‘ — Mz aT(p)] T[m dS (43)
€2 av 81

) aT aT
— Iy f o [pzu ; L2 R ‘;‘] Tm dS,

10U e d
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Vz,(u) ff jwt‘:z;}((ﬂ)T(n)T(m) as = *I(m)

aT aT
o f[ w24 2] 1
™ jo | e e €1 0u T e o T dS (44)

+ I [p] ff 7‘*‘ [ @ + €y o1 [pl:| T(m} dS
2 OV e 0u

If we solve the last two equations for I. ., and V. (., and substitute
in the preceding four equations, we shall obtain the telegraphist’s equa-
tions in their final form (30). Thus, let

Limin = ff Jeopt=X 1 T Tpmy dS,
(45)
;Y(’")(n) = [f jwezzx(n)T(n)Tj(m) ds.

From these coefficients we obtain another set,
“Zmtmy = normalized co-factor of “Zma ,
*Zwyemy = normalized co-factor of *¥ (e - (16)
Then,
Ly = = Vi Yiamm

. [ T ar
I 217 L ff u *\’P)‘ - zv (») f[’ m dS
+ Loy Y ] Joo | we o e pan | Tm

[ T T S
—_ I n z}r nllm ff Y u —ﬁ‘l zy [p] T‘ m db‘
w1 Yot [ e | s mn T | T 4

(47)
V’z,(u) = _I(m)zz(n)(m)

I [ aTq aTq |, ,
-V (» A(n)(m) ff Jw | € ) + €zp ») -[’(m) ds

e1 0u € O

- . aT oT
+ VUJ]‘Z('L)(?N) fj Jw |:_€zu r] + €29 [131:| T(m) dS-
es v e du

Before substituting in equations (39) to (42), the summation index m
in (47) should be changed to avoid conflict with m in the former equa-
tions. It does not seem necessary to make these final substitutions in
their most general form. The results are very complicated and in prac-
tice the various coefficients are not independent. Some coefficients may
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vanish; others may be small. In isotropic media, puu = pov = pzz =
U, € = € = & = € and the mutual coefficients vanish. In gyromag-
netic media subjected to a strong magnetic field in the z-direction, the
permeability coefficients of superposed ac fields are®

Byu = Moo = H, Meu = — Muv, My = MPzo = Jug = Mpz = 0. (48)

If the entire waveguide is filled with such a medium, assumed to be
homogeneous, equations (43) and (44) become

Iz.[n]j"’l-‘sz[n]f ToyTim dS = —Vim,
(49)
Ve (m Jos€x (m) ff TyTimdS = —Im .

In view of the orthogonality of the T-functions and the normalization
conditions (13), we have

I;.[m] = _Jx(.[):] V[m], . V;,(mj = ‘_?.—::f I(m), (50)

where the summation convention is waived. In this case all the transfer
coefficients in equations (30) vanish,

v 14 v v I I
Ty = Tewm = Tt = T = Tonwm = T (51)
I I
= Tt = Timm = 0.
The transfer impedances and admittances are
Zmm =0, ifn#=m,

=qu+x‘"" if n = m;
. 0T (n) 0T (m) 0T 0T (m
Zm n] = — uy [f [ ud’u;
(my[n] Jor l:el ou e du + e v e OV ese d

Y{m)(n) = Os if n 7 m,
= jwe, if n = m;

Yimm = 0, allm, n; (52)
Do = jotie ff [aTm 3Tim _ 0T aT[mr] dude, ifn s m,

Ju dv
= jwy, ifn=m;

s C. L. Hogan, “The Ferromagnetic Faraday Effect at Microwave Frequencies
and Its Apphmtlons—The Microwave Gyrator, Bell System Tech. J., Jan. 1952,

P-
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. aT(n) aT[m] aT(n) aT['ﬂ]
Z o= » ff [ d d y
(ml(n) = J@Hu o 0u o ou + o 00 & 9 eiez du av

Yimm = 0, if n = m,
= jwe + —— Xim if n =m;
le-‘-zz
Ylml(") = 0, all m, n.

We note that Zoymi = —Zmom ; Zim = —Zpaim, (0 #m).
In rectangular waveguides we choose cartesian coordinates;
thene, = ea =1, wu = z,v = yand

1.!2 prx TY
T(pq) = lqu(pq)(ab) sin —= sin q—
a b
s TL tr
Ty = ,zx[.,l(ab) U2 6os 2 cos =2 y (53)
a b
2 2 2 2
2 2 P gm __ 2
Xy = Xlpal = el T Xpas

where 1,, = 2 if neither p nor ¢ is equal to zero and 1y, = 1, = /2.
Hence

7 i 1yglyr’
(pay[st] = JWHzy X e
X ff l:(b/a)sp sin 3™ cos p——” cos tarTy sin WTJ

+ (a/b)iq cos 5™ gin ?:—x sm‘_”bi cos gwr_y] dx dy

1Lyolupgl(s/a)’ +(vwﬂ1—( )L — (=)™
XpaXse (82 — PP (¢ — t7)

= Jwhzy

bl

55 p,q 5L (54)

0, fs=porg=1{

Ll — g's)[1 — (=) — (=)™
XpaXa (8° — pY) (¢ — *)ab ’

if s # p,q#t
=0, fs=porg=tbutnotifs=pandg=

Zipats) = Jotay

= juu, ifs =pandg =
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Some of the mutual impedances vanish; thus

Zpprsn = 0, (55)
if either p + sor g + t is even. If p + 5, as wellas ¢ + 1, is odd,
4. y 2 9
ZLipgist) = 4-1pqlajunnpgl(s/a)” + (/0)] (56)

XpoXs (82 — p)(¢* — )
Similarly
Zipals) = 0, (57)
if either p + s or ¢ + tis even, provided p # sand ¢ # £. If p + s, as
well as ¢ + ¢, is odd,
4-1,,1.(p°t — ¢°s") otz
2 2 2 9 * (58)
Xpaxae (s* — p*)(g* — )ab
Consider now the set of modes which includes TEy. This set in-
cludes TEy; modes and all the other modes which are coupled to either
of these modes. Noting that there are no TM ¢, and TM o, modes, we
obtain the following table in which those modes which do not belong
to the set are marked with a bar:

TEuo , TEqn ,

TR0, TEuy , TEx , TMay

TEqn , TE@y , TEpey , TEry , TMen , TMay

TEuo , TEgy , TE2 , TEps , TBug , TMay , TM ey , TMas

From the preceding equations we obtain the coupling impedances,

Z[pq][stl =

(59)

8 . 8 .
Zojpny = — Jutzy Zionpe = — 3 Wby

Z[m][am = Z[30][10] - Z[I]].][[B} = Z[O:{][Ol] = 0)

8 .
7 = —_— = = —Z = —_—
Z o (o1 Zinpo) = Zpojron 03110 = 35 JOHa s
82 . 1/
Zenpnn = —Zpoey = 3¥2 Jopz 1 + 4(5/0-)2] 1.'2,
., © 842 . -
Zipe = —Zpzon = :;ﬂ_/._..?w#sy[l + 4(’-3/1’)2] ”2, (60)

Zuo]m] = Z[u]uo} = Zimpen = Z[ﬂ][m] = 0,

_ IV @y

,".'.:

Znoey = —Zennog
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2. _
Zimay = —Zann = }GBT\{“JWWH + (b/a) T,

Zayna = Zpnay = Zeoon = Zimey = 0.

The principal effect of the gyromagnetic medium on the TE and TEqy,
modes may be understood by taking into account their mutual coupling
but ignoring their coupling to other modes. The equations of propaga-
tion become

av ; ;

d;ol = —joulpey — jeuz 8/t oy,

dI : :

d:n] - (‘:,.mE + J;h) Vior,

; : (61)
d . 2 ;

d[ol] = jop, (8/7) [noy — jepliny,

2

dlo : il

= — s V ¢
Iz Juwe + o) n
For exponentially propagated waves we have

Vi = f/[m]ﬂ_m:, Vienw = f}[“”cﬂjﬁz’ (62)

Ing = Thne ™, Ty = Tne ™.

When the mutual permeability is zero, we have two independent modes
whose phase constants are

R #1!'2 1/2 R Hﬂ'g 1/2
Bro = (w".ué — —) ) 0w = (w'ue ) (63)

JTERL/ )

The phase constants of the perturbed modes may be expressed in terms
of the unperturbed constants and the coefficient of coupling. When the
losses are neglected, the mutual permeability is a pure imaginary. In
this case it is eonvenient to define a real coupling coefficient

k= 5’8’;‘“ i (64)
s

Substituting from (62) in (61) and using (64), we find

2
.3V[101 = wﬂTuol - .‘fwﬂ""I[OI], Bluey = (0’5 -z Q)V[w] y

2
BV = jouklpey + wulioy, Bl = (wé - :—) Vi -
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Eliminating Vi and Vo , we have

8 — Bl = —jkBil o ,

6 — BTy = kBT o - ©9
Multiplying term by term, we obtain the characteristic equation
B' — (Bio + BB + (1 — K")Busl = 0. (67)
Solving, we have
B = 3(8h + 60) £ (Bl —B8)" + 4"BieB"" (68)

The effect of coupling is to increase the larger phase constant and de-
crease the smaller one; that is, to make the slower wave slower, and the

faster wave faster.
Let us assume a > b; then 8y > Bu . Taking the upper sign in (68)
and substituting in the second equation of the set (66), we have

Ty _ gk(Bu/Bu) 1 (Bm _ Bm)
Inm P+ (@ + BV’ P=3 B  Bu/’ (69)

From (65) and (69) we find
Viy _ Bio Loy k(Bro/Bn) (70)

Vg B4 Ton p+ P+ )V

Hence, the ratio of the power carried in the TEy mode to that in the
TE[m] mode is

Pﬂl _ v[nnfrou . kz (71)

P TVwiha [0+ @+ B®WF
This ratio increases as k increases and p decreases.
If the phase constants of the uncoupled modes are equal, then p = 0
and Py, = Py for all values of the coupling coefficient. In this case (68)
becomes

B = Bh(l £ k) or B = Bu(l £ k)" (72)

In terms of the original constants,

T T

The cutoff frequencies of both normal modes are seen to be independent
of either the transverse permeability or the mutual permeability. Since
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pzy 1S a pure imaginary, it effectively increases the transverse permeabil-
ity for one mode and decreases it for the other.

To evaluate the effect of higher order TE and TM modes on wave
propagation we may substitute from (68) in all terms of the character-
istic equation for telegraphist’s equations except the first two diagonal
terms and recalculate the g’s. Alternatively we may replace TE[q and
TE(y modes by the normal modes just obtained, recalculate the cou-
pling coefficients, and evaluate the effect of the mode with the greatest
coupling to the modes under consideration.



