Delay Curves for Calls Served at Random

By JOHN RIORDAN
(Manuseript received March 11, 1952)

This paper presents curves and tables for the probability of delay of calls
served by a simple trunk group with assignment of delayed calls to the
trunks at random and with pure chance call input. These are contrasted
with the classic results of Erlang (“Erlang C”) which are based on service
in order of arrival. Trunk holding times for both have an exponential dis-
tribution. The theoretical development for computation of the curves is di-
rected to the determination of the moments, which seem to be a natural means
of stmplification.

1. INTRODUCTION

One of the classic results in the study of telephone traffic is the for-
mula for delay given by the Danish engineer A. K. Erlang! in 1917. This
is for random call input to a fully accessible simple trunk group with
the trunk holding time exponential and calls served in the order of arrival.
A proof for this formula and a set of curves for its use have been given
by E. C. Molina.?

In many switching systems it is not feasible to fully realize this ethical
ideal of first come, first served, and it has long been of interest to de-
termine delays on another basis. The contrasting assumption is of calls
picked at random, which is again an idealization but in large offices ap-
pears to be called for, as a bound for the service actually given.

The first attempt to formulate the last seems to be that of J. W.
Mellor.? While his basic formulation is incomplete, it offers a useful
approximation to the complete results, particularly in the most interest-
ing region of heavy traffic, and will be referred to here as the “Mellor
approximation.” A complete formulation due to E. Vaulot* appeared
in 1946 and included both the fundamental differential recurrence rela-
tion and formulas for delay probabilities for small delays. For complete-
ness, these are repeated below. F. Pollaczek® has given a development of
Vaulot’s work directed toward determining an asymptotic delay for-
mula.
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Considerable further theoretical work has been necessary to obtain
the results given here. Vaulot’s differential recurrence relation, which
formulates the probability of delay at least ¢ of a call which arrives when
n other calls are waiting, has no simple solution. By approximate meth-
ods, it was possible to use a differential analyser to determine these
probabilities for small values of n. But it was not feasible in this way to
cover the whole range of interest, and these results were supplemented
by approximations for large n, which are described below. Finally the
delay for an arbitrary call was obtained by summing on n.*

These results are not reported here, because the attempt to verify
the accuracy attained led to formulation of the moments of the delay
curves and this in turn to the representation of the curves as sums of
exponential curves, with great simplification of the calculations re-
quired. As will appear, two exponentials furnish a sufficient approxima-
tion except for heavy traffic.

2. DELAY CURVES

The delay distribution on calls delayed for oceupancy levels (defined
below) from 0.1 to 0.9 in steps of 0.1 is shown in Fig. 1. The abscissae
are derived time units which seem to be natural to the problem: u =
ct/h, with ¢ the number of trunks and h the average holding time. The
ordinates, on a logarithmic scale, are conditional probabilities that a
call delayed will be delayed at least w, that is, values of a function
F(u); the logarithmic scale is chosen to emphasize the dominantly ex-
ponential character of the curves. The occupancy level a is the ratio
a/c where a is the average call input in average holding time h.

Fig. 1 is a master curve for all eventualities and may be changed to
working curves for various sizes of trunk groups. For the construction
of these curves Table I, from which Fig. 1 was made, and which also
compares present results with those for calls served in order of arrival,
is convenient. A more elaborate table will be given later. For the con-
venience of the reader, it may be noticed that for order of arrival serv-
ice Fu) = ¢,

The striking feature of Table I is the increase in delay time for ran-
dom service, which becomes more pronounced with decreasing F(u)
and increasing occupancy (or traffic) level, . The increase throughout
the table is an effect of the limitation to small values of F(u). For given

* Thanks are due to George W. Abrams for directing this work, to Dr. Richard
W. Hamming for transforming the equations into forms suitable for the differen-

tial analyser and for supervising its operation, and to Miss Catherine Lennon for
a great deal of calculation.
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Fig. 1—Delay curves for random service. F(u) = conditional probability of
delay at least u; u = ¢t/h, ¢ = no. trunks, h = av. holding time, a = call input
in time h, « = a/e.

a, the delay curves for order of arrival and random service include the
same area, which is in fact equal to the mean delay (of calls delayed),
(1 — a)™". Since F(0) = 1 for both, and the random service curve
decreases more slowly for large u, the curves must intersect at some
point, say for u = u ; for u < uy, the o0.a. curve must be above the ran-

TaBrLE I — DELAY-TiME AND RANDOM SERVICE

Delay Times, , for given F(u) and & and for order of arrival (0.a.) and ran-
dom service.

F =0.1 F = 0.01 F = 0.001

@

0.4 Random o.a. Random 0.4. Random
0.1 2.56 2.58 5.12 5.47 7.68 8.60
0.2 2.88 2.91 5.76 6.57 8.63 10.68
0.3 3.29 3.34 6.58 8.056 9.87 13.35
0.4 3.84 3.91 7.68 10.04 11.52 16.95
0.5 4.61 4.68 9.21 12.89 13.82 22.09
0.6 5.76 5.82 11.51 17.25 17.27 29.97
0.7 7.68 8.28 15.36 23.14 23.03 43.33
0.8 11.51 12.57 23.03 36.80 34.54 70.29
0.9 23.03 25.99 46.05 77.24 69.08 156.63
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dom curve. This is shown in Fig. 2 for @ = 0.9, but the logarithmic
scale for F(u) obscures the equality of area.

The character of the comparison may be clearer if the picture is
changed. Consider a department store counter with ¢ clerks (correspond-
ing to ¢ trunks) in attendance. The time for a sale corresponds to the
trunk holding time, and the rate of arrival of customers is like that of
call input. For service in order of arrival customers are given serially
numbered tickets on arrival; for random service, these tickets may be
supposed drawn from a hat, or numbered from a series of random num-
bers, or since aggressiveness and the clerks’ attention are subject to
devious rule, it may be that no attention at all to order of service is
equivalent to random service.

The fact that the average delay is independent of the order of service
may be explained roughly by saying that the average rate at which wait-
ing lines are removed depends only on the average rate of arrival of
customers and the rate at which they are served. Notice however that
service at random causes more variable delays (the second and all
higher moments are larger than for order of arrival service). Thus with
random service the proportion of waiting customers receiving quick
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Fig. 2—Comparison of delay curves for order of arrival and random service;
a =09
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service is increased (over order of arrival) but this is achieved at the
cost of making other customers wait much longer.

Service in order of arrival has the advantage to the customer that his
delay is independent of all who come after him, and this is particularly
appreciated in times of heavy crowding when long delays are possible
for random service. In Table I, these crowded conditions correspond to
small values of F(u) or large values of a, or both. In this picture it
seems intuitively clear that much longer delays are possible for random
service, for those unlucky customers who keep missing their turn.
(Of course, a more realistic model would also include the effects of cus-
tomers leaving before service, a factor of considerable telephone interest
also.)

As noted at the start of this section, F(u) is a conditional probability,
the probability of delay at least u of a call that is surely delayed. To
obtain unconditional probabilities of delay, F(u) is multiplied by the
probability that all trunks are busy, which is the probability that a call
is delayed. This probability is given by a well-known formula due to
Erlang and customarily written as

c—1
a

(e — D!

c =]
a
+(c—-1) !(c—-a)]
Tables of this function are available®.
Finally it may be noticed here that for random service and light traf-
fic (roughly, a less than 0.7), with sufficient approximation

F(u) = 3 ™" 4 070"
withy, = 1 — Vea/2, 92 = 1 + Va/2.
* But there seems to be no extensive tabulation. However, the table for the

Ell'Iang B function made by Conny Palm (Stockholm, 1947) may be used with the
relations

c

a
c— 1) 1(c—a)

2
C(c,a)=( [1+%+%+...+

111
Cle, a) " B(c, a) Blc — 1, a)
L (a/c)
T B(e, a)

Notice that C(c, a) also has the recurrence relation

1 _ -1 (c — a)le — 1)
Cle, a) c—1—a alc — 1 — a)C(c — 1, a)
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3. BASIC FORMULATION

As noted above, the following notation is used: ¢ is the number of
trunks, h is the average holding time (the distribution of holding times
is exponential) and a is the average number of calls arriving in time in-
terval h. Then, if F,(f) is the probability of delay at least ¢ of a call
arriving when n other calls are waiting, the differential recurrence
relation given by Vaulot is

dF,(t) _ =n ¢
dt  n+1h

Foa®) = TR0 + 5 Fan® ()

This may be derived as follows. Consider the interval df after the epoch
of arrival of the call in question. In this interval three events may occur:
(i) a call may arrive, (ii) a trunk may be released, or (iii) neither of
these. The probability of a call arrival is (a/h)df and if a call arrives
the delay function is F,41(t — dt). The probability of a trunk release,
because of the assumption of exponential holding time, is (¢/h)dt, and
if a trunk is released the number of waiting calls is reduced by one; the
probability that the call seizing the waiting trunk will not be the call
in question is n/(n + 1). Finally the probability of the third event is
1 — (¢ 4+ a)dt/h. All this is summarized in the differential relation

Fal) = %dt Fonlt — dt) + —2— S @t Foa(t — dt)

n+1h
+ (1 — C-;:adt)F,,(t — di)

Passing to the limit gives equation (1).
Using new variables: © = ct/h, « = a/e¢, equation (1) may be written
more simply as

dF.(u) _ n
du  n+ 1

Fn—l(u) - (1 -+ a)Fn(u) + aFn+1(u) (13’)

This equation is a mixed differential-difference equation of the first
order as a differential equation and of the second order as a difference
equation; hence three boundary relations are required. For the differen-
tial part, it is clear that F,(0), which is the probability of some delay
of the test call, is unity for all n in question, that is, for all integral non-
negative n. Also F,(u) = 0 for all negative n, is an obvious necessity,
and, since F, is a distribution function F,(«) = 1. Finally the third
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condition may be stated as

lim F(u) = 1, all »

The probability of delay at least u of an arbitrary call is the sum on
n of the product of the probability that n calls are waiting when the
call arrives and the probability, F.(u), that for this condition the call
is delayed at least u. The first probability (for statistical equilibrium)

is known to be
(1 — &) Cle, a)a"

where C(c, a), as stated above, is the probability that all trunks are
busy; (1 — «)C(e, @) is the probability that all trunks are busy and no
calls are waiting. Hence the probability in question, say f(u), is given by

ﬂw=u—mmw$wm@

or by
f(u) = Cle, a)F(u)
if
P) = (1 — o) 3 'Fa(w) @)

F(u), like F,(u), is then a conditional probability, the probability at
least u of a delayed call. Notice that, consistent with this, F'(0) = 1.

It is interesting to notice that Mellor’s basic equation, which in pres-
ent notation may be written as

dG.(w) _ _ 1
= a1 e (3)

follows from (1) if first it is supposed that F_y(u) = F.(u) = Fn(u)
and then, for clarity, G, replaces F, . Hence, as indicated by the third

boundary condition, it may be expected to be useful for large values of
n. Its solution is

Gn(u) — e—-ul'(ﬂ-H.) (4)

A somewhat better approximation may be determined by the Mac-
Laurin series obtained by repeated differentiation of (1a) and evaluation
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at u = 0; this is as follows

~ 1 _ a (w)' aa — 1) (w)
Fulu) ~ 1 n+ it sm+D " 31 m+D (5)
L al2x — 1)@Ba — 2) (w*
4 (n + 1)
But this is the same* as:
Fo(uw) ~[1 — (1 — &)u/(n + DM (5a)

As a approaches unity, (5a) approaches (4). Equation (5a) has been
used, for large values of «, in the direct computations mentioned above.

It may also be noted that for « = 0, equation (1a) has the solution
(now writing F.(u, «) for F.(u))

Fo(u,0) = ¢(u,n) — Tl ¢(u,n — 1) (6)
where ¢(u, n) is the Poisson sum
(1 +ut g + -+ “—)

n!

Finally, for completeness, note that for small values of u, the Mac-
Laurin series for F(u) is

F(u)=1—u]‘ma£lcog1
u’ l -« 1
+§(1—a)[2—- p logl_a] )
3 0 n
—-%(1—a)[+3a—(l—a)log1 le%]
4, MOMENTS

The k’th moment (about the origin) of the delay density function
which is —F’(u) (F(u) itself is a distribution funection is defined as

M, j u[—F'(u)] du,
o

I

(8)
=k f w R (u) du, k>0,
0

the last by integration by parts.

*G. W. Abrams is due credit for noticing this.
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Following (2), this may also be written as
M= (1= @) 3 e, ©)
with

My = fm w [ —F'(u)] du,
' (10)
= kf W F L (w) du, k> 0.
o

First, notice that
Mug = — fu P du = Fa(0) = 1;
hence
M.,=(1—a)§:;a"=1,

showing that F(u) is properly normalized.
Next, by integrating both sides of (la) with respect to u from 0 to «,
and using the second form of (10) (with k = 1)

—(n+1) =nmes1— (n+ 1)1+ a)mus+ (n+ Damagaa (11)

In the same way, after first multiplying (1a) throughout by ¥ it is
found that

—k(n + I)mn.k—l (12)
= M — (n+ 1A + a)max + (n 4+ 1omasa e

Unfortunately, neither (11) nor any other instances of (12) have simple
solutions; nevertheless they may be used to determine Mj .

Consider first the simplest case, My . If (11) is multiplied throughout
by " and summed on n, the result may be written

—Ly = aly — (1 4+ &)Ly + Lu — Ln
= '_LUI
where for convenience in writing and of later notation
Lo = 2 a"ma,, = (1 — o)™ My
L = 2 (n+ 1)a"ma,
In=>(n+la" =D o =(1—a)”

(13)
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and D = d/da. Hence
M1 = (1 - (.‘)t)_1

This is the mean delay of calls delayed and as mentioned above is the
same as for service in order of arrival.
In the general case*, the following notation is convenient

Lo = 3 a"mas = (1 — )M,
Lig=2m+1Dn+2) - - (n+ Ha"mus
Using the relations
nn + 2) -+ (n + j)
=nn+1)---+j—D+G—Dnn+1) - (n+j—2)
e+ G- Damr+ 1) -0 +7—7—1) + -
+ (G — D,
nn + 1) - (n+j— 1)
=+ D +2) - (5 — i+ D+ 2 +j— 1)

with
G-Di=G-DG—2)---G—1),
the summing of (12) is found to result in
kLjpw = [ — (G — DalLjae — af(j — 1)2Ljai (14)
+ (G — Dsljs + -+ (G — Diljige + -+ + (G = DLyl

But this may be simplified by multiplying through by j and sub-
tracting from the same equation with j replaced by j + 1; the result is

(G4 1= ja)Lj — §'Liax = kLjaes — kL (15)
Notice that for j = 0, £ = 1, Ly = Ly, as in (13). Notice also that
«Lp =2 (4 1) (g
=DXYX(m+4+1) - (n+j— 1a""
D(e’Lij-1,)

I

so that
L;‘o = ij_l,o + fIDLjfl.n = j!(l - a)uj_]

* This procedure is the development of a suggestion made by S. O. Rice.
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Then the ratio
Loe(Lio) ™"

Il

(1 — &) La/k!

. (16)
(1 — a)’M/k! = Rx

1l

is the ratio of these moments to those for order of arrival service; the
last relation is a definition. In the same way the ratio

Li(Ljseo)™

might be considered, but to avoid fractions the following somewhat odd
change of variables seems convenient:

(L = piLisrao (17
where go = ¢ = 1 and
g = (2 — )73 — 20)* " -+ (b + 1 — ka)
gus = 2 — @)@ — 20" -+ (k 4+ 1 — ka)”
Notice that
gasa(gn) ™ = gulgu)” = @ —a)B —2a) -+ (k+ 1 — ka) = Dipr

the last being a definition, again.
Since

(1 — a)Lkoy = kLgo
it follows from (15) that
G+ 1— jo)pp — 1 — a)pjak
= (g/ DG + Dpjsraa — J1 — @)pjn]
By taking differences of this equation and writing

(18)

Qo = Pok

qu: = P — P = Apox

g = Pu — 2pu + P = A’poi

g = Agj1e = A'pu
a somewhat simpler recurrence relation is found to be as follows
G+ 1 — ja)gie = (/i)

) . . . (19)
ljagiaia + (G + 1 + jadgiaa + 7 + Dgive]
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Since pj = 1, all j, g0 = 1, and gjo = 0, j # 0. From these boundary
conditions, it follows at once from (19) that

gn =0, >k
By comparison of (17) and (16)
gt = po = qox

A short table of the ¢'s is as follows:

i | o | 1 2 3

0 1 1 2 2(2 + a)

1 0 a2 — a)! | 4a(2 — a)7! 2a(18 — 5a — 4a?)D3?

2 0 0 23 — 2a)"' | 202(18 — Ta — 2a?)(3 — 2a)"?
3 0 0 0 6a®DiD7!

Continuation of this leads to the values of B, listed in Table II. Notice
that for « = 1, by (18)

pix (1) = (G + Dpjrre— (1)
= (7 + DG + 2)pis2n—2 (1)
=0+DG+2) -G+ k)
since gx = 1 for @ = 1 and pjo = 1, all j. From this
pa(1) = g(1)Ru1) = Ri(1) = k!
On the other hand, for « = 0, g;x = 0,7 > 0 and, by (19)
70:(0)/9x(0) = o x-1(0)/gx-1(0)
so that
Ri(0) = Ri(0) = Ry(0) = 1

5. MELLOR APPROXIMATION

It is useful to have the moments of the distribution corresponding to
the Mellor approximation, since they serve as a guide. Here, following
equation (4)

Flu) = (1 — a) );j P (20)
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and.
exp — aM = i Mi(—2)*/k!
——a [ e e DT )
= (- @ X T+ 2+ DI
Hence

= k(1 — a) i (n + 1k (22)

These moments are expressible in terms of polynomials associated with
the distribution of permutations into classes according to the number of
readings left to right necessary to find the elements in standard order.’
Indeed the ratio

(@) = My (1 — a)"/k!

has the recurrence relation

res(a) = (ke + Dr(e) + a(l — a)r'i(e) (23)
and the first few values are as follows
=1 ry =1+ 4a + o

=14a 7=1+1lla+ 11"+ o
rs = 1 + 26a + 66a° + 26a° + o
Notice that r.(0) = 1, r(1) = k!, just as for the precise results.

0. EXPONENTIAL SUMS

The shape of the delay curves, from direct calculation, and also from
Mellor’s results suggests representation in exponential sums. If

F(U) A e--(l—rx)u,'z. + A e—(.l—u)u,':,+ (24)

then
(1 - a)k k k
My ———— = At + A + --- (25)

by a simple calculation. For & exponentials, 2k moments (including
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M,) may be fitted exactly by solution of 2k equations of form (25), as
will be shown.
- The first approximation (k¢ = 1) is the order of arrival curve, say

Fi(u) = ¢ 9"

which has A; = 2, = 1, Ay = 2, = 0, & > 1, and matches M, and M, .
The next approximation (k¢ = 2) is determined from equations

4, 4+ 4, =1
Ay + Agze =1
At + Au = R,
Apl + At = Ry
Eliminating A, from successive pairs,
Ar(xy —a) =1 — a
Ay (o1 — 2) = Re — a9
Ay — a2) = Ry — Roxs
Eliminating A, from these,
T+ a2 — T2 = I

(1 + )Ry — mxe = Ry

(26)

" 2
or, writing a; = & + %2, @2 = 1%, so that 2° — awx + a2 = (x — x1)
(x — x2)

@ —a =R,
(26a)
(I-],Rz — s = Ra

From the first of the second set of equations, and from symmetry (or
from A, + A, = 1)

A = 1 — x2
T — X 7)
Ay = ; T
Taking R. and R; from Table II, it turns out that
-1
i =1—/a/2 =24, 28)

=1+ Va/2 = 24,
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TasLe IT - MomeNT RaTios, CALLs SERVED AT RANDOM
Rila) = Mi(l — a)¥/k!

R|=1
Rz-Z—a
2(2 + a)

T2- a2
4(6 + 5a — 4a? — o

b= e TG — 2

R = 4(36 + 60a — 592 — 24a° + 15a* + 2af) _
i (2 — «)*(3 — 2a)?

R = 8fs(a)

7 (2 — a3 — 22)%(4 — 3a)

B = 8f;(a)

2 — )3 — 22)'(4 — 3a)?

fole) = 432 + 9720 — 20160% — 437a® + 17902t — 528a* — 196a® + 67a’ + Gat
fila) = 10368 + 34560a — 89208a? — 32772° + 177926a* — 104287a° — 29260a®

+ 43876a7 — 915808 — 20390° + 588 + 36alt

and the second approximation is
2Fy(u) = (1 — m) e—uu—am—vrm

+ (1 + ‘\ﬂ!/_Z) e—u(l—l:!) (I-I-\/;,FE)

which turns out to be a good fit for a roughly less than 0.7. Curiously
the corresponding Mellor approximation has a more complicated ex-
pression.

Following the same procedure for three exponentials, it turns out
that the correspondent to the set of equations (26a) is

R — a2 + a3 = Rs
a R — axky + as = R, (30)
aRy — a:Ry + @R = Ry

with a; = &1 + T2 + 3, G = T2 + BT + Taly, Gy = T1TaTs, that is,
the symmetric functions.

(29)
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Using Table II for values of the R’s, it is found that
a = (18 — 7a — 2")(2 — a)7'(3 — 2a)™"
a = 18 @2—-a)7@B - 2a)7" (31)
w= 6 2 - )@ - 207"
T, T3 and x, are then the roots of the cubic equation
' — aw’ + @z —a; =0
The coefficients 4;, 7 = 1, 2, 3 are determined from equations like

_ R, — (@2 + x3) + oms

A= (1 — x2)(T1 — 73) (82)

For the fourth approximation, matching 8 moments, the equations
for the symmetric functions are

alR; — asks + a3 — Q4 = R,

alRy — asly + asRe — as = Rs
(33)
ale — a=Ry - azRy — adts = Ry
Ry — axls + azRy — aslly = Iy
and x;, x2, %3 and x4 are roots of the quartic equation
m‘—alx3+agx2—aax+a4=0
Coefficients A; are determined from equations like

_ Ry — (x4 x5 + 2)R2 4 (25 + To%4 + 232) — Tata2y
A = (34)
(1 — Zo) (X1 — a3) (@1 — Z4)

It may be noted that

Ltonton=a—n
ToT3 + ToTy + TzTy = az — Il(al - 111)
DTy = a3 — wlaz — ;e — )] = am

which gives the general structure.

It is worth noting that equations (33) may be used to determine the
R’s if the a’s may be determined otherwise. As a matter of fact, they
have led to the determination of Rs and E; in the following way. The
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results for & = 2 and 3 suggest that
a = 412 — )73 — 20)7' 4 — 3a)”"
az; = 4ay
Then by the first two of equations (33)
mR; — Ry = By — a3 + a4
amBy — @Ry = Ry — als + a4
the solutions of which are
a = 4(24 — 23a + 32 (2 — &) — 2a)(d — 3a)]"
2(72 — 23a — 10a° — 3aY)[(2 — a)(3 — 22)(4 — 3a)]

az

By the last two of equations (33), Rs and R; are determined to be the
values given in Table I, which have been verified independently. Note
that for @ = 0, both Rs and Ry are 1, and for a = 1, Rs = 6!, By = 7!

Table 111 tabulates, for k& = 2 to 5, for convenience in avoiding frac-
tions the symmetric functions by; related to those above by

br; = Dwaj
with, as before,
Di=(2—a)3 —2a) [k — (k— 1)]
and @ = 1. The functions for k = 5 were obtained by a process like

TasLe III — SymMMETRIC FUNCTIONS FOR EXPONENTIAL
Sums or CaLLs SERVED AT RANDOM

=2 by =2 — k=3 bpp = 6 — Ta + 2a?
be1=4 bal=18—7a-2ra’
boa = 2 by = 18
b = 6
k=4 bo = 24 — 46a + 20a® — ba®
bu = 06 — 92(2 + 12a?
bp = 144 — 46 — 20a® — 6o
b43 = 96
by = 24
k=25 bso = 120 — 326a + 329a? — 1460 + 24at
bs = 600 — 978« + 329a? + 1460 — T2a*
bga = 1200 — 978a — 17222 + 78a® + 72a*
by = 1200 — 326 — 17202 — 78a® — 24a*
bsy = 600
bn = 120
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TaBLE IV — SymmETRIC FUNCTIONS FOR EXPONENTIAL SUMS, MELLOR

APPROXIMATION
k=2 a1=3+n' k=3 a|=6+3¢!
ay = 2 a: = 11 4+ ba + 2a*
az = 6
k=4 a; = 10 + 6«
ax = 35 + 26a + 1la?
ay = 50 4+ 26a + 14a? + 6a®
ay = 24

I =5 ay 15 + 10«

az= 85+ B80a + 35a°
az = 225 + 200 + 125a® + 50a?
ag = 274 + 154a + 94a® + 54a® + 24at
as = 120
k=6 a; = 21 4+ 15«
az = 175 + 190« 4+ 85a?
a; = 735 + B8b65a + 585a® + 225«
a; = 1624 + 1604a + 1194a? + 704a® + 2740t
as = 1;% + 1044 4 684a® 4 4440’ + 2640 + 120a°
g =

that sketched above, and without determining s and R, . Notice that
by; = k!(’;—), a=10
=16, a=1

which may be proved independently. All values in Table ITI satisfy
the recurrence relation

bi; = [k — (k — Dalby—,; + [k + (E — Dalbi, i (35)
— (b — 1)’ab_s,j2

which also satisfies the boundary relations for @ = 0 and 1 given above
for all values of k.

The corresponding symmetric functions for the Mellor approximation
are given in Table IV. These have the recurrence relation

arj = Gp,;+ [+ (b — Dalars,;0 — (k — 1)’aars,;2  (36)

For @ = 0, the values are the signless Stirling numbers of the first
kind, that is, the numbers given by the expansion of

I+ 20+ 22) - (1 + ka).

For @ = 1, the results are the same as for the exact case, as given above.
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TaBLE V — APPROXIMATIONS T0 DELAY FuNcTION F(u) FOR RANDOM
SERVICE

RN

Two Exponentials

.3500 | .1351 | .0220 | .0041 | .0008 | .0002
.3490 | .1344 | .0256 | .0058 | .0015 | .0004 | .0001
.3392 | .1332 | .02091 | .0079 | .0023 | .0007 | .0002 | .000L
.3292 | .1315 | .0325 | .0101 | .0033 | .0011 | .0004 | .0002
.3190 | .1203 | .0357 | .0125 | .0046 | .0017 | .0006 | .0003
.3085 | .1265 | .0386 | .0151 | .0061 | .0025 | .0010 | .0004
2978 | .1232 | .0412 | .0177 | .0078 | .0035 | .0015 | .0007
2868 | .1193 | .0434 | .0203 | .0097 | .0047 | .0022 | .0011
2766 | .1148 | .0451 | .0229 | .0118 | .0061 | .0031 | .0016

OO~ W=

5

Three Exponentials

.3586 | .1354 | .0219 | .0040 | .0008 | .0002
.3491 | .1366 | .0254 | .0057 | .0014 | .0004 | .0001
.3303 | .1358 | .0288 | .0074 | .0022 | .0007 | .0002 | .0001
.3201 | .1360 | .0322 | .0092 | .0030 | .0011 | .0004 | .0002
.3186 | .1363 | .0358 | .0112 | .0040 | .0016 | .0007 | .0003
.3071 | .1359 | .0392 | .0133 | .0050 | .0022 | .0010 | .0005
2051 | .1354 | .0428 | .0156 | .0063 | .0028 | .0014 | .0007
2822 | 1344 | .0466 | .0181 | .0077 | .0036 | .0018 | .0010
2683 | .1325 | .0504 | .0210 | .0094 | .0045 | .0023 | .0013

CO~IS T =W~

7. NUMERICAL RESULTS

Table V gives both two-exponential and three-exponential 4 decimal
approximations to the delay function F(u) for

a = 0.1(0.1)0.9(0.1 to 0.9 in steps of 0.1)

and for
w(l — a) = 1(1)2(2)14,

in the same abbreviated notation.* The variable v = u(l — ) is in-
troduced to reduce the spread of these tables. It will be noticed that,
as expected, the two orders of approximation agree closely for small
values of «; indeed, only for the three largest values of « are the dif-
ferences appreciable from the engineering standpoint.

* The results for two exponentials, some of those for three-exponentials, and
all special results given below, have been obtained by Miss Marian Darville,
whom I also thank for her careful drawing of the curves. The entire three-exponen-
tial table has been computed independently by Miss Lennon.
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For & = 0.9, results for four exponentials have also been obtained
and compare with those of Table V as follows (¢ = number of ex-
ponentials):

K
1 2 4 6 ‘ 8 10 ‘ 12 l 14

2 .2756 | .1148 | .0451 | .0229 | .0118 | .0061 | .0037 | .0016

3 .2683 | .1325 | .0504 | .0210 | .0094 | .0045 | .0023 | .0013

4 .2748 | .1402 | .0483 | .0195 | .0091 | .0047 | .0026 | .0015

It is somewhat surprising that two exponentials should do as well as
they do for large values of v (in fact for » = 12 and 14 better than three);
a similar behavior appears in the following comparison of approxima-
tions on the Mellor basis, again for « = 0.9

.

v
K
1 2 4 6 ‘ 8 J 10 ‘ 12 1
2 L2725 | .1115 | .0446 | .0237 | .0129 | .0070 | .0038 | .0021
4 L2671 | .1379 | .0502 | .0207 | .0097 | .0051 | .0029 | .0018
6

i.2777 .1408 | .0477 | .0205 | .0102 | .0054 | .0031 | .0018

From these comparisons, it appears a relatively small number of
exponentials is sufficient for engineering purposes. The curves of Fig. 1
are those for three exponentials, for uniformity.
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