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This paper applies the Boltzmann method of gaseous kinetics to the prob-
lem of charged particles moving through a gas under the influence of a static,
uniform electric field. The particle density is assumed to be vanishing low,
and the ion-atom collisions are assumed elastic, but the field is taken to be
strong; that is the energy which it imparts to the charges is not assumed
negligible in comparison to thermal energy. In Part I, the formal framework
of such a theory is built up; the motion in the field is describable by the drift
velocity concept, and the smoothing out of density variations as an aniso-
tropic diffusion process. In Part I1, the “high field” case is treated in detail;
this is the case, for which thermal motion of the gas molecules is negligible;
the equation s solved completely for the case that the mean free time between
collisions may be treated as independent of speed; complete solutions are
also presented for extreme mass ratios of the tons and the molecules; special
attention 1s given lo the case of equal masses, which has to be handled by
numerical methods. In Part III, information about the “‘intermediate
field” case is collected; with the help of a convolution theorem the case of
constant mean free time is solved; beyond this, only the case of small ion
mass (electrons) is available. In Part IV, the diffusion process, whose
extslence was proved in Part I, is pushed through to numerical results.
Part V discusses the scope of the resulls achieved and demonsirates the possi-
bility of extending them semiquantitatively beyond their original range.

Parr I — GENERAL THEORY oF STrRONG FIELD MoTION
IA. QUALITATIVE DISCUSSION

It is well known that if we consider a mixture of gases under no ex-
ternal forces the steady velocity distribution which establishes itself
in the mixture does not depend on the interactions between the gas
molecules; we have always a Maxwellian distribution for each species
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with a temperature common to all. This result arises from statistical
mechanics; the derivation of it is simple and requires few assumptions,
yet it enjoys a wide degree of generality. As soon, however, as a non-
equilibrium feature is imposed upon the system this simplicity vanishes,
and the subject acquires ramifications. Results must now be derived by
kinetic theory. The amount of labor required increases, while, at the
same time, the result achieved becomes less general.

A mixture of charged particles (ions or electrons; in the following often
simply referred to as ions) and gas molecules can in principle never be
in equilibrium since the presence of the former in itself represents an
instability. However, one might expeet, that equilibrium exists in a
restricted sense, for instance, as regards motion. Even this is rarely the
case under actual conditions of observation. The non-equilibrium fea-
tures of greatest importance for analyzing ion motion are a constant
force (electric field) acting upon one species but not the other (mobility
theory), and a concentration gradient for one particular species (diffusion
theory). It is the purpose of this paper to apply kinetic theory to these
problems, and to compute with its help the most important properties
which such a gas of charged particles possesses. The work will be dis-
tinguished from similar ones in that the electric field will not be sup-
posed weak; velocity distributions which have no resemblance to the
Maxwellian distribution will thus make their appearance. Furthermore,
the mass of the charged particles will not be assumed small, which
means the possibility of getting results for gaseous ions as well as elec-
trons. Magnetic fields, plasma and A.C. phenomena will, however, be
excluded. The quantities of interest under those conditions are the drift
velocity of the ions, their energy, energy partition and diffusion con-
stants. These quantities will be calculated by assuming plausible mechan-
ical models. The work just outlined has been published in part in
abbreviated form in the Physical Review;! the exposition to follow will,
however, proceed independently from these articles.

Much of the work which concerns itself with transport processes in
gases makes use of perturbation theory. This method permits us to
predict the behavior of a gaseous assembly under an electric field or a
concentration gradient in the limit when the field or the gradient are
vanishingly small. The result of so perturbing a Maxwellian distribution
can be expressed through certain constants, such as the mobility or the
diffusion coefficient, which involve the Maxwellian distribution and
the internal interactions, but not the perturbation itself.

! Wannier, G. H., Phys. Rev., 83, p. 281, 1951 and Phys. Rev., 87, p. 795, 1952.
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The limits of such a procedure can easily be estimated. In the case
of an electric field, perturbation techniques apply if the kinetic energy
acquired by the ion from the field is small compared to thermal energy.
This means at least that the energy acquired in one mean free path be
small, i.e.,

eEN < kT

where e is the electronic charge, E the electric field, k¥ Boltzmann’s con-
stant, 7' the absolute temperature, and X the mean free path. Actually
the situation is not even that favorable. If the mass of the ions and the
molecules is very different, the energy transferred upon collision is
small, and hence the ions possess the ability to store the acquired energy
through many collisions; for this reason, the inequality reads more

properly
M m
— 4+ =) eEN K kT
(ml +31) :
where m is the mass of the ions and*M the mass of the gas molecules.
After some substitutions this estimate becomes

M  m -

where p is the true gas pressure and ¢ the collision cross-section. Taking
as an example an ion travelling in the parent gas we find

E P 471071
» $2. T 5a0w

or in commonly employed units

: g & 2 volt/em (mm Hg) .

= 5-10"° esu.

It is clear that this limit is often surpassed in experimental situations.

The cases in which the limit (1) is applicable are of no further interest
here because they are well covered in the literature.” A field will be called
“low” when it satisfies the criterion (1) and “high” when the inequality
is reversed. It is important to notice that a fixed field at a fixed gas
density may shift from “low” to ‘“high” through a drop in temperature.

All calculations to follow will contain the assumption of “low ion con-
centration” which is often made in studies of this sort. It means that

2 Qee for instance: A. M. Tyndall, The Mobility of Positive Ions in Gases,
Cambridge University Press, 1938, Chapter IV.
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all effects which ions exert upon each other are neglected. The equation
for the distribution funection of ionic velocities is then linear instead of
quadratic. It is clear that this simplification presents great advantages
from the point of view of calculation.

In deriving a criterion for the validity of this assumption we must
distinguish two types of effects of the ions upon each other. The first
is the space charge effect. In this effect the ions at large distances make
the major contribution. Its magnitude depends on apparatus dimensions.
The criterion for no space charge distortion of the field E is

B
n < IreX

where n is the number density.of the ions and X a suitable length chosen
from apparatus dimensions. Inequality (2) is quite stringent because
it predicts field distortions at values of n of the order of 10* em™. This
is the value at which it will become impossible, or at least difficult, to
make significant experimental measurements. But from the point of view
of theory this criterion is not relevant. Space charge does not change
the character of the velocity distribution of the ions because the type
of ion-ion interaction producing the space charge field is long range and
creates only a smooth modification of the electric field which we may
presume to have been included in the original field. What we are con-
cerned with here are ion-ion interactions which have a random character
and thus are apt to upset a velocity distribution derived from the “low
coneentration” theory. From this point of view neighboring ions are
most effective because their relative location fluctuates rapidly, and
hence, the Coulomb force between them will induce mutual scattering.
The magnitude of this force is of the order ¢'n*® where n is the number
density of the ions. It is known from theory® that the effect of a Coulomb
force is preferably not represented by discrete ‘“‘collisons” but by a
continuous bending of the entire path. Thus we come to the conclusion
that random ion-ion forces have no effect if the force given above cannot
produce a significant deflection in one mean free path. This means

()

3

e'n**\ < mean ion energy (3)

According to whether we are in the high or low field region we get differ-
ent ecriteria from this. At low field the thermal energy predominates
and we get

en’’® K po (3a)

3 Mott and Massey, The Theory of Atomic Collision, Oxford Press 1933,
Chapter ITI.
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At high field the “field” energy predominates and we get
e'n*® & eE (g + ﬂ) . (3b)
m M
A rough evaluation of inequality (3a) for one mm Hg pressure gives

10*-47-107"
25-10

n < 10" particles/cm®

2

& =1.10' em™

This corresponds to a current of about 10 particles/cm? sec or
200 pamps/cm’. At lower pressure the criterion becomes more stringent.
Equation (3b) gives similar results.

It is appropriate to survey at this point the past theoretical work
treating the “low concentration” theory of ionic motion for arbitrary
fields. A rather complete body of work exists for electrons where the
following three assumptions seem appropriate: (a) that the mass of an
“jon” is very small compared to the mass of a molecule, (b) that the
total kinetic energy is conserved in each encounter, and (¢) that the
angular distribution is isotropic in the center of mass system.

These three assumptions lead to a distribution law given by Chapman
and Cowling.* The law has considerable flexibility because it permits
the substitution of an arbitrary relationship connecting mean free path
and speed of encounter. In addition it contains no assumption as to
whether we have low or high field. A more specialized and explicit dis-
tribution law is obtained if we assume in addition: (d) that the colli-
sion cross-section is independent of the speed of encounter (hard sphere
approximation); and (e) that we deal with the high field case only. The
special law resulting in this case is the distribution law of Druyvesteyn.

If an improvement over the Chapman-Cowling distribution for elec-
trons is desired account should be taken of inelastic collisions, that is
assumption (b) should be discarded. Work in that direction has been
carried out by Smit, Allen® and others.

The assumption to be discarded first in theory of ionic motion is, of
course, assumption (a). In order to understand what this implies we
must understand what advantages assumption (a) has in a calculation.
In the limit when the ionic mass is very small the encounters with gas

4 Chapman-Cowling, The Mathematical Theory of Non-uniform Gases, Cam-
bridge University Press 1939, Sections 18.7-18.74. Other references are found

there.
5 Smit, J. A., Physica, 8, p. 543, 1937 and H. W. Allen, Phys. Rev., 60, p. 707,

1937.
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molecules become such that momentum is lost quickly, but energy is
accumulated in the form of random motion. As a result of this we end up
with a distribution function which is very nearly spherically symmetrical
in velocity space. Such a situation permits obvious procedures through
which the entire calculation is simplified. These procedures will not longer
be available when assumption (a) is dropped.

Knowledge concerning the structure of the velocity distribution fune-
tion for gaseous ions is practically nonexistent at this time. Hershey,
who deals with the motion of ions in the high field case, simply substi-
tutes for it a Maxwellian distribution with an unknown offset of the
origin and unknown temperature parameter,’ shown in Fig. 1(a). He
then computes these two parameters by applying the laws of conserva-
tion of momentum and kinetic energy. It is to be expected that this
procedure should give reasonable values for the mobility and the mean
energy of the ion; indeed, if we consider the polarization force only, we
get exactly the right values; the reason for this is that one may evaluate
velocity averages for inverse fifth power forces ignoring the distribution
function’ and that he did this in effect for the drift velocity and the

Cz Cz

— -

Cx I Cx
(@) (b
Fig. 1 — Simplified pictures for the high field velocity distribution of gaseous
ions. (a) Hershey’s assumption. (b) Modification with correct second moments.

¢ Hershey, A. V., Phys. Rev., 66, p. 916, 1939.
7 This will be shown in Section IIB.
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total energy. In order to test whether an offset Maxwellian distribution
is a satisfactory approximation we have to go one step further and
examine the partition of the energy among the three degrees of freedom.
There we find Hershey’s distribution in error, for he assumes equiparti-
tion for the random motion, while, in reality, the random energy parallel
to the field is much higher than at right angles,” giving the distribution a
decided “ridge” structure. This diserepancy could be taken into account
by the use of an elliptically distorted Maxwellian distribution, shown in
Fig. 1(b), and this may prove to be convenient in some applications.

For a detailed knowledge of the distribution function it is necessary
to specify the interaction between an ion and a molecule. This interaction
can be, broadly speaking, summarized under three headings: (a) the
polarization force, (b) the short distance repulsion, and (c¢) symmetry
effects. The polarization force arises because an ion, when passing close
to a molecule, induces on it a dipole moment; this moment is then at-
tracted by the charge of the ion. The attractive force F resulting from
this is

2¢°P (4)

where P is the polarizability of a gas molecule and e the charge of the
ion. The force varies inversely as the fifth power of the distance p; for
such a force the cross section o varies inversely as the speed of encounter
~. Whenever the cross section shows this type of variation it is advantage-
ous to define a mean free time 7 rather than a mean free path . The
formula is

T= = (5)

There is a standard difficulty which arises when one tries to make use
of a formula of the type (5). For most force laws, a total cross-section o
cannot be defined; a differential cross section per unit solid angle always
exists, but it becomes infinite in the forward direction because of small
deflections suffered by particles passing by each other at a large distance.
Thus equation (5) is, strictly speaking, meaningless. This is actually
never a difficulty in the computation of a physical quantity. However,
equation (5) is convenient for order-of-magnitude thinking and the
question arises how it can be reasonably interpreted. The general method
of salvaging (5) — excluding a small forward cone from consideration —
is of little value for this purpose. An analysis of the inverse fourth power
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attractive potential shows a better way out. The potential gives rise to
two kinds of orbits; orbits of large angular momentum which look some-
what like hyperbolas, shown in Fig. 2(a), and orbits of small angular
momentum for which the particles are ‘‘sucked’’ toward each other in a
spiralling movement until a repulsive force reverses the trend, as shown in
Fig. 2(b).* A calculation of Hassé® shows that the latter type of motion
is much more efficient in scattering than the former and one gets there-
for a picture which is semiquantitatively correct if one substitutes into
(5) the cross-section for spiralling collisions and assumes isotropic scat-
tering.” This cross section equals

LVEe ©
Y
A numerical estimate of the cross section (6) automatically leads one
to compare it with the short distance repulsion familiar from the kinetic
theory of gases. The two are of the same order, but for the usual gaseous
speeds (which enter into (6) through ) and small molecules the cross

1
=2 —
o=impf -t

(a) (b)

Fig. 2 — Sample orbits (schematic) showing the motion of a particle in the
polarization force field. (a) Hyperbolic orbit (large angular momentum). (b)
Spiralling orbit (small angular momentum).

8 There are quantum mechanical analogues to these classical ideas; they should
lead to practically identical answers unless the angular momentum quantum
number is small.

® Hassé, H. R., Phil. Mag., 1, p. 139, 1926.

10 This will be discussed more fully in Section IIIB.



178 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1953

section (6) is bigger. This situation is accentuated in an actual scattering
calculation which shows an attractive force to be generally more efficient
than a repulsive force of equal range.

A detailed numerical discussion of these questions is found in Massey
and Mohr" for the case of He" ions moving through He gas. Their
interest is in the low field mobility. They show that for this problem the
repulsive force makes so little difference that it could be neglected en-
tirely without much affecting the results. It does finally come out that
the polarization force gives a mobility which is too big by a factor of two.
But the additional scattering is due to an effect which we listed above
under (c): namely a resonance attraction between the He atom and the
He™ ion for which the cross section is abnormally large. It should be
possible to eliminate this effect by increasing the cross section (6) until
it masks even this special effect. Lowering the field is not sufficient to
achieve this because of the temperature motion; it would be necessary
in addition to reduce the absolute temperature by a sizeable factor and
so to decrease the value of v in (6). Thus we are led to the prediction
that if the temperature of He is reduced the mobility of He* ions in He
should gradually rise from its “anomalous’” value of 12 em®’/volt sec to
the “normal” value of 22 em®/volt sec, which one gets by taking account
of polarization forces only.

IB. GLOSSBARY

The complicated appearance of equations in gaseous kinetics suggests
special care in the use of symbols and a convenient arrangement for the
reader to find their meaning. It is hoped that the glossary to follow will
accomplish this purpose. It explains all symbols except those used at
one location only.

Generally, Latin capital letters will refer to the gas molecules and
Latin lower case letters to the ions; Greek letters will have no special
relationship; exceptions will be made for generally recognized symbols.
Thus we define
E, E = electric field.

z, y = cartesian coordinates at right angles to the field direction.
z = cartesian coordinate along the field direction.

r = position vector with components z, ¥, 2.
t = time.

m = ionic mass.

e = ionic charge.

11 Massey, H. 8. W., C. B. 0. Mohr, Proc. Roy. Soc., 144A, p. 554, 1931.



MOTION OF GASEOUS IONS IN STRONG ELECTRIC FIELDS 179

¢eE . . .
a,a = — = ionic acceleration.
m

b = impact parameter.

biim = limiting value of the impact parameter separating hyperbolic
and spiralling orbits (equation (125)).

¢ ¢, ¢, ¢, ¢r, ¢; = various ionic velocities or components.

e, e, e = energies of ionic motion (or “high field” parts thereof)
along x, y, 2

e.* = random part of the above energy,

j. = total particle current density of the ions (may be a function of
r and ).

j = partial current density induced by the concentration gradient; see

equation (22).

= Boltzmann’s constant (only when followed directly by T).

k, k = relative concentration gradient of the ions (a different use is
made of & in Section 1IE).

n = number density of the ions (may be a function of r and {).

P, ¢, 7, 8 = undetermined constants; used three times independently
(equations (82), (90) and (160)).

p™, p* = various approximations to these numbers.

, v = ionic velocities.

w = ionic velocity rendered dimensionless (see eq. (75) or (85)).

g = the inner integral in the double integral eq. (69).

C, C' = molecular velocities.

D = ionic diffusion tensor.

Dy, D. = components of above tensor parallel and perpendicular to
the field.

M = molecular mass.

N = number density of the molecules.

P = molecular polarizability.

’

=1

u7

T = gas temperature.

U, U’ = molecular velocities.

X, Y = left and right hand sides of equation (111a).
1

B = WT = temperature parameter (A different use of § is made
in Section ITIB where it is the relative impact parameter b/bjim).

Y, ¥’y 1, n' = relative velocities of ion and molecule.
£, n, { = cartesian coordinates oriented on c.
= distance between ion and molecule.
= collision cross section of ions and molecules (may be a function of 7).
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— mean free path of ion between collisions with molecules

=~

(may be a function of v).

T = = mean free time for the ion between collisions with mole-

g~

cules.

r, = same parameter for “spiralling” collisions.
_dint(y)
T diny

X, Xe, Xu = angle of scattering of ion and molecule in the center of

mass system. :

x = angle of scattering of the ion by a molecule in the laboratory system.

¢ = scattering azimuth of ion and molecule in the center of mass system.

w = scattering azimuth in the laboratory system (azimuth of the initial

ion velocity about the final ion velocity).

9, 9" = angle between velocity vector and field direction.

¥, o, 0, ¢, 8 = other angles (these angles are defined on spherical tri-

angles which are exhibited in Figs. 8 and 15.

d(c, r, {) = density function of ions in phase space.

+ 1. It is assumed constant in Section ID.

3/2
m(c) = (,BTm) exp (—Bmc") = Maxwellian velocity distribution function
for ionic mass.
{3 M 3/2 9
M(C) = (—) exp (—BMC*) = Maxwellian velocity distribution func-
™

tion for molecular mass.

h(c) = “high field” distribution function of the ions for the case that
the spatial distribution is uniform (the exact meaning of this
term is to be explained in the text).

f(c) = true velocity distribution of the ions for the case that the spatial
distribution is uniform.

g(c) = correction to f(c) or h(c) for the case of a constant relative con-
centration gradient k.

8(c) = vectorial 8-function in velocity space.

® -t
Ei(z) = f e? dt (suppression of two minus signs).

I(z) = modified Bessel function of order 0.
Ko(z), Ki(z) = Modified Hankel functions of order 0, 1. (Alteration of

Macdonald function by a factor ?—r).
P,(r) = Legendre Polynomials.
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h.(e), g.(¢) = expansion coefficients which result when h(c), g(c) are
expanded in Legendre Polynomials about the field direction.

I..,(x) = A set of functions of the scattering angle defined in (48).

{ ) = the quantity in pointed brackets is to be averaged.

(s, ) = abbreviation for (w*P, (cos #)); the average is taken over h(w).

{s, »} = A normalized correction to (s, ») contributed by g(w); see
equation (155).

A special convention will be adopted to distinguish velocities before
and after a collision:

C', (o4
c, C

velocities before the collision.

velocities after the collision.

1

When used in this fashion the twelve components of the four vectors
above satisfy the four identities:

me’ + MC' = me + MC (7)

me” + MC”? = mé® + MC* (8)

The same convention is to apply to other vector quadruples, such as
u, U, v, Uf

For the velocities in the center of mass system we use

r

v = ¢’ — C’ = relative velocity before the collision.
¥ = ¢ — C = relative velocity after the collision.

In consequence of (7) and (8) the 4’s obey the relation
¥ = ©)
The multiple integrations occurring in the theory are of the following
two types. Either they are over the three components of a velocity in
a Cartesian velocity space; we shall denote such integrations by
dc, du, dU’, ete. Or they are proper “collision’ integrations which classi-
cally have the form

v b db de

where b is an impact parameter and e an azimuth. In most cases these
integrals depend on extraneous factors for their convergence but this
fact is usually disregarded for convenience; we shall follow this habit by
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writing the above differential in the form

1

ir
Here dQ is meant to represent an integration over a solid angle and the
subseript v, that it is over the solid angle swept out by the vector ¥.
The notation makes use of the fact that the choice of the polar axis is
arbitrary in such an integration. The function II(x) is the probability
of scattering which equals unity for isotropic scattering. In cases where
small angle scattering is infinitely probable the above expression becomes
meaningless, strictly speaking, TI(x) being a §-function at x = 0 and ¢
being infinite. However if a quantity such as 1 — cos x is multiplied
in, which removes the 8-function then the integration gives a finite num-
ber which may be denoted by (s-(1 — cos x)).

ya(y)T(x) sin x dx de = ;111; yo(y)I(x) d2,

IC. FORMAL SURVEY OF THE THEORY

Under the assumptions stated in Part IA we may describe the motion
of ions in a gas by their density in phase space. The change in time of
this function is deseribed by a Boltzmann equation” which, in our
notation, reads

ad(c, 1, t) ad(c, r, ) ad(c, 1, t)
ot a dc te or

= g_r f f (M(C)d(c, t, ) — M(C)d(c, T, )} yo(x)T(x) d2y dC

+

(10)

The equation is linear in the unknown function d(c, r, ); this is due to
neglect of ion-ion collisions, as stated earlier. The negative term on the
right hand side actually reduces to a known function of ¢ multiplying
d(c, 1, t). The positive term is a genuine integral term; it has been shown
by Pidduck® that the number of integrations in it can be brought down
from five to three; this reduction will not be made use of in the following.

If there were no terms on the left hand side of equation (10) then the
solution of it would have the equilibrium form

d(c, 1, t) = nm(c) (11)

where n is a constant. This result is a direct consequence of equation
(8) which makes the curly bracket in (10) vanish identically when
Maxwellian functions are inserted.

12 See Reference 4.
13 Pidduck, F. B., Proc. Lond. Math. Soc., 16, p. 89, 1915.
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The function m(c) is not the solution of our problem because of the
presence of the second and third term on the left which arise from an
electric field and a density variation respectively. These disturbances
will be assumed of different relative importance. The density variation
will be assumed sufficiently small so that the third term can be treated
by perturbation theory; the field term, on the other hand will be taken
so large that the equilibrium distribution (11) no longer represents a
first approximation to the solution. In consequence, the equation is
solved in two stages. In the first, only the second term on the left is
retained, and the resultant equation is treated rigorously; in the second,
the full equation (10) is used, but the new terms are taken as
perturbations.

The first stage describes those properties of the ion gas which it po-
sesses when assumed of uniform density. Since the field is also assumed
uniform and not changing in time, the dependence on r and ¢ drops out.
We may then write

d(e, 1, 1) = nf(c) (12)

where n is a constant and f(c) is a velocity distribution function. The
equation for f reads

¥ I [ puense) - M©Es@) vent) doy e (13)

with the side condition
[ steyie =1 (14)

As a result of solving (13) we shall obtain the distribution function
f(e) as a function of the electric field contained in a. This distribution
differs essentially from the Maxwellian one in that it is not symmetric
about the origin. The vectorial mean of the velocity is therefore not zero

- f fle)e de # 0 (15)

This is the drift velocity of the ion in the field which is reached as a
compromise between the acceleration a and the frictional losses caused
by the ion-atom collisions. From the structure of equation (13) there is
one general prediction that can be made concerning this velocity, namely
that it depends on the gas density and the field only through a/N;
this is the well known E/p, of the experimental analysis. This type of
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dependence does not only hold for (¢), but for all averages derivable from
f(c), notably the mean energy.

A more important formal prediction can be made about the second
stage of the contemplated calculation. For it will be shown now that the
diffusion concept is still applicable in the presence of a strong electric
field. It is true, that if we have a variable density in space the primary
motion observed is not diffusive but a displacement of the entire density
pattern with the drift velocity (c). However, once this dominant com-
ponent is subtracted out, then a supplementary current proportional to
the density gradient is identified. The constant of proportionality is
anisotropie, that is, we have a diffusion tensor rather than a diffusion
coefficient. The tensor is axially symmetric about the field direction,
yielding a longitudinal and a transverse diffusion coefficient.

To demonstrate these features it is convenient to assume a special
type of variation of ion density in space. As we shall see the velocity
distribution is primarily sensitive to the relative density gradient k;
we shall therefore assume it to be a constant. In other words we set

n(r, t) = ng exp [k-(r — {c)t)] (16)

The relation can of course not hold everywhere since n increases beyond
all bounds in one direction, but we must remember here that we are
doing perturbation theory, that is k is assumed small. The inconsistencies
in the assumption (16) can then be pushed as far away as we please.
Furthermore there is no inconsistency at all in the half space where n
decreases. It is to be observed that according to the assumption (16)
the spatial distribution is moving unchanged through space with the
drift, velocity (c). This seems to contradict the program of finding the
effect of diffusion upon n(r, t). However, we follow in this simply conven-
tional steady state computational methods in which a gradient is as-
sumed maintained from an infinitely strong source; the modification
appears then as a change in the velocity distribution function, which, in
turn, yields a steady diffusion current. We set therefore

d(e, r, 1) = n(r, Df(e) + g(c)] (17)

where g(c) is a correction to the solution of (13) which arises from the
assumption (16). It follows from the definition of n(r, £) and (14) that

Jg(c)de =0 (18)

The consistency of the assumptions (16) and (17) with equation
(10) becomes evident when they are substituted into this equation. We
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find, after simplification with (13)

a.99()

09+ L[ @) — (€0 yotymit) de, dc

= —k-(c — {c){f(c) + g(c)}

This is an equation in velocity space only, r and ¢ having disappeared
completely; this justifies the assumptions. In solving the equation we
observe that our interest is only in diffusion, that is, the current resulting
from a concentration gradient when treated in first order perturbation.
In this case both k and g(c) are to be treated as small and their product
in (19) is to be neglected. The equation then becomes

a9 N[ (ar©)g(e) — M©(e) lranx) dey dc

dc
= —k-(c — (c)f(c)

The homogeneous prototype of this inhomogeneous equation is (13); an
arbitrary amount of f(c) could thus be added to a particular solution
of (20) were it not for the orthogonality condition (18) which makes the
solution definite,

The existence of the diffusion phenomenon follows easily from equation
(20). The total current j, is given by

(19)

20)

e, ) = [ die,r, e de (21)
Upon substitution of (17) into this expression two terms result
jl(rr t) = n(r, t)(C) + j(l', t’) (22)
with
i(r, 0 = n(r, ) [ glee de (23)

The first term in (22) is seen from (15) to just equal the product of the
density and the drift velocity; this is the expected drift current. The
new current j(r, f) induced by the density gradient is thus given by (23).
From (20) it follows that g(c) is a linear function of the three com-
ponents k. , k, , k; with coefficients which do not depend on the density
or its gradient, but only on the unperturbed velocity distribution f(c);
furthermore, the first two of these coefficients are equal. Hence, from
(23) j comes out as a linear function of the three quantities n(r, ¢)-k. ,
n(r, t) -k, , n(r, t)-k, ; these are the components of the density gradient
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as is evident from (16); in addition the multipliers of the first two com-
ponents are equal. We may write therefore

iy = —@ 5 (24)

where (D) is a tensor which is axially symmetric about the field direction;
its two components which we shall call the longitudinal diffusion coeffi-
cient D, and the transverse coefficient D. are computed entirely from
the unperturbed velocity distribution f(c). This makes Dy and D. inde-
pendent of the density or its gradient; it is to be noted, however, that
they do depend on the electric field as a parameter because this quantity
enters several times in the course of the computation.

ID. DIMENSIONAL ANALYSIS

Dimensional analysis is a convenient tool in a qualitative discussion
of (13) and (20). In order to get results the situation has to be
schematized somewhat, but not so much as to impair its usefulness.
In the first place it is convenient to keep in mind the two limiting cases
of high and low field, as discussed in the introduction. In addition some
assumption must be made about o(y) and II(x) occurring under the in-
tegral sign. The most convenient way to dispose of II(x) is to take it as
independent of v. This happens to be true for the two models treated
in detail later, the polarization force model, and the hard sphere model.
Actually II(x) can be taken as approximately independent of v in a wider
sense. The forces which produce scattering are either repulsive or short
range attractive, that is, long range attractice forces are absent. As long
as this is the case the scattering is roughly isotropic and hence can
change but little with v M

A more drastic assumption is needed to dispose of o(y). We must
assume

o) y* =T (25)

where « and T' are taken to be constants. This assumption contains two
important special cases in it. They arise respectively by taking a = 0
and @ = 1. The case @ = 0 is the case of a constant mean free path as
exemplified by the hard sphere model. The case a = 1 is the case of
constant mean free time; it is applicable to the polarization force as dis-

14 This statement is checked in detail in Section ITIB for the polarization
force. This is the attractive force with the longest range which can arise in this

field.
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cussed in Section IA. When (25) is inserted into (13) it is seen that
a, N and T enter only in the combination a/NT. The quantity

(&

has the dimension of a velocity. A second such quantity is

()"

which arises from the Maxwellian functions under the integral sign.'® In
the high field case, this quantity does not enter, that is, the velocity dis-
tribution functions for the molecules could be replaced by é-functions
at the origin. Hence the first combination controls all velocity averages.
For the mean drift velocity, we can thus write

{es) = consi;-(ﬁa—r)ﬁ (26a)

This formula gives the variation of the drift velocity with the electric
field. Tt is worth while writing the result out explicitly for the two special
cases discussed above. The first is the case of constant mean free path,
a = 0, for which

(cs) = const-a'’\"* (26b)

This is a drift velocity varying as the square root of the field or a mo-
bility varying inversely as the square root of the field. The second case
is the one of constant mean free time « = 1, for which

{c.) = const-ar (26¢)

This means a drift velocity proportional to the field or a constant mo-
bility. )

In the low field case we cannot disregard one of the two velocity
parameters constructed above; but now equation (13) is to be solved by
perturbation theory only, it then yields a drift velocity varying with the
first power of a/NT. Dimensional analysis then yields the dependence of
the mobility on the temperature. We find

a [(ET\Z:
c;) = const-— | ==} 2 27a
e (57 (270)

16 Dimensional analysis is incapable of distinguishing between m and M ; this
means that we eannot master dependence on mass by the method of this section;
all our “‘pure numbers’’ are actually unknown functions of m/M.
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with the special cases

-1/2
{¢;) = const-a\ (%) (27b)

for constant mean free path and
{c.) = const-ar (27¢)

for constant mean free time. Comparison of (26c) and (27¢) might lead
one to surmise that we have here twice the same formula. This is indeed
the case, as will be shown in Section ITTA.

Proceeding now to the diffusion problem, we observe from (20), (23)
and (24) that we must add the quantity

nk
NT
to the previous list of parameters when computing the diffusion current.

However, the current is always linear in this quantity, which means
that the diffusion coefficients contain the factor

1

NT
and beyond this factor depend on the same variables as previously. This
gives in the high field case

1 a \=2
D = const- ﬁf'(ﬁ)zﬂ (28a)
with the special cases
D = const-a'/"\** (28b)
and
D = const-a’r’ (28c)

In the low field case, the diffusion process becomes independent of the

field and we get
1ta
D = const- 1%, (%)T (292)

with the special formulas

1/2
D = const-A (%/IE) (29b)
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and

D = const-r %1 (29c¢)

The information in the formulas (29) is now new, but dependent on (27)
through a universal relation first discovered by Nernst and derived
independently for gases by J. J. Thomson; it is widely known as the
Einstein relation. It states that

p = % KT

da m (30)

Equation (30) contains of course more than is obtainable from (27)
and (29), since it relates one undetermined constant to another in a
known way.

The dimensional methods of this section are convenient for a rough
classification of experimental material. Figs. 3 to 7 show the drift velocities
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in the parent gas, observed for He*, Net, A+, Krt and Xet. The plot
is a log-log plot of these quantities against a/N, a variety of fields
having been used to determine each point. The data are taken from
measurements of J. A. Hornbeck'® !” and R. N. Varney." These data
verify in the first place that the drift velocity depends on a and N only
in the combination a/N. Beyond this we see that the curves consist of
two straight line portions: in the lower field portion (¢;) is proportional
to a/N, in the higher is proportional to v/a/N. We recognize in this
latter region the high field dependence predicted in equation (26b).
We learn from this that the collision cross section between noble gas
atoms and their ions is approximately constant in the experimentally
significant velocity range. To determine these collision cross sections
the computation of only a single number, namely the one entering into
18 Hornbeck, J. A. and G. H. Wannier., Phys. Rev., 82, p. 458, 1951.

17 Hornbeck, J. A., Phys. Rev., 84, p. 615, 1951
18 Varney, R. N., Phys. Rev., 88, p. 362, 1952.
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(26b) is required. The linear range of this plot is not as informative as
the high field one. The slope unity is common to all formulas (27), and
the temperature dependence of the mobility is needed to give the correct
interpretation with the methods developed here. There is a certain
likelihood that the parameter a of equation (25) drifts from 0 to 1 as
the speed of the ions is reduced; this was pointed out for the special case
of He" in He in section TA. A qualitatively similar situation appears to
prevail for the other noble gases.

Pawrr IT — TaE MotioN oF UNirorM IoN STREAMS IN THE HIiGH
FieLp Case

IIA. FORMULATIONS OF THE BOLTZMANN EQUATION

The dimensional analysis of the last section shows that there is an
intrinsie simplicity to the high field case which is comparable to the low
field case, while the intermediate case is more difficult. With one excep-
tion,® however, theoretical analysis has occupied itself with the low
field case only. We shall try to remedy this in the following. To begin
with, a tractable but accurate formulation of the problem has to be
found. Such a formulation cannot treat the field term of equation (13) as
a perturbation term, but must try instead to make use of the basically
simple features of the problem, notably those exhibited by the dimen-
sional analysis of Section ID.

The equation governing the high field properties of the ions is ob-
tained simply by substituting é-functions for the Maxwellian velocity
distributions in equation (13). This gives

ah(c) _ 1
* e ,(C) h(c) ff 3(C)h(c’ =F )II(x) Q.. dC  (31)

A reduction of the number of integrations from five to two must be
possible in the integral term of (31), owing to the presence of the §-fune-
tion. To achieve this we must transform the variables of integration so
as to make three of the differentials equal to dC’. We do this in the
following way. First observe that

+r=¢—C

and that c is a constant vector. Hence we may replace dC by dy. The
five-fold integration reads then

dQ,. dC = +" dvy dQ, dQ, (32)

that is, it goes over the magnitude ¥ which the two vectors have in
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common, and their orientations, for which they are independent. It is
known that in integrating over the two angles defining an orientation
the polar axis may be chosen freely. We shall, in the following, adopt ¢ as
our polar axis with ¢, x being pole distances of ¥ and ¥’ to ¢ and ¢, w the
corresponding azimuths. In Fig. 8 these angles are exhibited on the
unit sphere. All vectors are assumed to be plotted from the center of the
sphere, and show up through their piercing points. The angles between
the vectors then show up as sides and the azimuths as angles. The ex-
pression (32) becomes then

v* dy sin ¢ dy de sin « dx dw

The main transformation consists now in introducing the three com-
ponents of C’ in the place «, ¥ and ¢. The transformation formulas
follow from the vector identity

r_ _ M _ m '
C=c—wxnY T+mn” (33)
and read in full
r_ My _ my .
C: = M_I_msm:,bcosga ﬁ——P{_i_mSlnx(‘,OSm
r_ M'y . . _ my . .
C, = M+msm¢sm¢ “ﬂ4+mSlnxslnm

7

X
Fig. 8 — Definition of the angles employed in the formulations of the Boltz-
mann equation for the high field case.
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r_ M'y _ my
C; = M_I_mcos:,b M+mcos:c+c

From these equations the value of the Jacobian comes out to be
3(Ct, Cy, Cp)
a(x, ¥, o)
2 3
= —?&—ssingb {cos ¢ sin k — sin ¥ cos « cos (¢ — w)}

(M + m)

We needs its value only at the position C; = Cy = C; = 0. If we take
the above equations for C;, C,, C; and multiply them respectively by
COS K COS w, COS « Sin w, — sin «, add and set C' = 0 we get the identity

ML-I-Tm {cos ¢ sin x — sin ¢ cos k cos (¢ — w)} = csin«
The curly bracket is exactly the one occurring in the Jacobian which
therefore reduces to

a(cé,c.’,,c;)] _ Mm op
and hence

2 _(M+m)2 rgt
7" dy d2, d,, = -——W-dc de dw

Substituting finally this expression into (32) and (31) we get the Boltz-
mann equation in the form

i) | 1
Cz
M+m (34)

= (M + m)2 [ Af=m] 1 ! i !

The equation is in need of additional elucidation as regards the exact
meaning of ¢’ as a vector and as regards the auxiliary variable x. As to
the first point we may describe the integration as occurring over a sur-
face in velocity space. This surface is obtained from the relation

C=0 o=y (35)
which substituted into (33) becomes
(M + m)e — my" = My (36)
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Squaring this and using (9) we get
M — m)e”* + 2me’-¢c — (M + m)ct = 0 (37)

This is the equation of a sphere in velocity space which passes through
the point ¢’ = c¢. For all other points ¢’ is bigger than ¢ (eollision with
a stationary object always brings energy loss). The center of the sphere
lies on the line joining ¢ to the origin; it lies on the side of the origin
from ¢ when m < M, at infinity (making the sphere a plane) when
m = M and away from the origin when m > M. We make use of (37)
to express the polar angle « of ¢’ with respect to ¢ (which does not occur
as an integration variable in (34)) in terms of ¢’. We get

_ (M + m)c* — (M — m)"”

2mec’ (38)

COS K

The angle of scattering in the center of mass system also results from
squaring of (36) if the term my’ is first taken to the right. We find

(M +m) & _ M 4 m
2Mm " 2Mm
There is a more useful form of equation (34) which results if x is taken as

one of the integration variables rather than ¢’. Substitution is made
from the equation (39) above; it yields

ah(c) 1 1 f : II(x) (c')a f“ ’

a ac. —+ ;'((—5 h(c) = 4:—-7[. A sin X dx TTCT)- Z A h(c) dw (40)

The magnitude of ¢’ and its polar angle with respect to ¢ are now auxiliary

parameters; the first is obtained from (39)
M+ m

(39)

COS X =

L
¢ = V/M + m? + 2Mm cos x (41)
and the second from (38) and (41)
M
cos Kk = m+ o X (42)

VM? + m* + 2Mm cos x
As previously, the azimuth o of ¢’ about ¢ is an independent variable.

The simplifications of the equation (31) exhibited in (34) and (40)
still leave a double integral in the fundamental equation. The integration
over dw will now be eliminated by decomposition of %(c) in spherical
harmonics about the field direction. There is no loss of generality in
this step.

h(c) = 2} h,(c)P, (cos &) (43)
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We have now to consider simultaneously the three vectors ¢, ¢’ and a
as well as the angles between them. These angles are defined in Fig 8.
We study equation (34) or (40) term by term in order to see what be-
comes of it upon substitution of (43). Starting with 2(c’) under the inte-
gral sign we get from Fig. 8 and the addition theorem for spherical har-
monics

h(c") = Z::, h(c)[P, (cos $)P, (cos k)

+ 2 F; E: ; 'u;' P} (cos #) P, (cos k) cos pw]

For this expression, the integration over o is elementary and gives
27 0
f h(c") do = 27 2 h(c")P, (cos #)P, (cos k) (44)
(1] v=0
Further, we get for the derivative in (34) or (40)

aic. (:Zu h, (c)P, (cos d))

= dh, () 1
=0 de 2 + 1

{( 4+ 1P, (cos 8) + »Poy (cos 9)}  (45)

= h (c) %vi—]l) {Py-1 (cos 8) — Puy (cos )}

Through the equations (43), (44) and (45), all terms in equation (34)
or (40) are developed in spherical harmonies with respect to the angle ¢
between ¢ and the field direction. We can therefore annul separately
the coefficient of each Legendre polynomial in cos ¢. This gives the follow-
ing set of equations

M+m

(O + m)? [pem e hy(c) | T
2Mme  J. 7(c") P, (cos «) T(x) de 0
va dh’v—l(c) _ y—1
T 5= 1( dc c h'—l(c)) (46)
(v + Da (dhle) , v+ 2 )
+ % T 3 ( e + 5 hy1a(c)
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or
E I "3
% j; I:'((;)) (g—) P, (cos «) II(x) sin x dx
o) _ va dhya(c) v —1
re) 2 — 1{ de c h'_l(c)} “7)
(v + Da [dha(e) |, v+ 2

s { 0 12y )
where

y=0,1,2,3 .

The auxiliary parameters entering are given by (38) and (39) for equa-
tion (46), and (41) and (42) for equation (47).

The equations (46) or (47) obtained by Legendre decomposition still
are, in general, mixed integral-differential equations in one independent
variable. Further simplification is possible only in special cases some
of which will be discussed later. An even more simple and tractable form
of the Boltzmann equation can be achieved in general, however, if one
gives up the idea of determining the velocity distribution function and
concentrates instead on its moments. In other words, the Boltzmann
equation can be looked upon as a system of relations between velocity
averages, and as such it becomes a linear algebraic system.

To carry out this reduction we multiply equation (47) by ¢ and
integrate from 0 to «. The second term on the left is then a simple
velocity average. The same is true on the right hand side if two integra-
tions by part are permissible and leave no integrated out part.s = —1is
probably adequate for this. The integral over the integral term at first
looks as follows

_; L ) e j; - h'(c,f)) (g)a P, (cos «) TI(x) sin x dx

r(c

2

In this expression we pass from ¢ to ¢’ as the independent variable.
From (41) we see that

de de’
c ¢

Hence the expression becomes

j; E ¢ he) dc’ 3 fo ) (E-). P, (cos «) I(x) sin x dx

r(c") 4
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From (41) and (42) it is seen that this is actually the product of two
independent integrals if the angular distribution II(x) is independent
of the velocity of encounter ¢’. The first integral is then identical with
the one arising from the second term in (47), and the second is a collision
integral having no connection with the velocity distribution. Even if
this is not the case, the second integral is still a dynamic average which
can be evaluated as a function of ¢’ previously to any knowledge of
h(c"). We express this by introducing the abbreviation

I,, = (;i,)‘ P, (cos k)

Using (41) and (42) we see that I, , is the following function of x

o) = (VHE 9T 20 ooa Y,

P( m + M cos x )
T\ V/ME + mE + 2Mm cos x

(48a)

which, for the particular case of equal masses, takes the simple form
I,,(x) = cos’ §x P, (cos 3x) (48b)

With this definition the integrated equation (47) reads

w/l lv(x)\ a+2 _V(V+8+1) 1
[ () meettae = 22D [D @t e

v+ D —=» [7 o+
+ —*—2";+—3—- j; h,+1(6)6 dC

or in terms of averages

(2v + 1) < 1- I' '(X) ¢'P, (cos t?)\

=p(v + s + 1)(0'_113»_1 (cos @) (49)

+ (w4 (s — y){c'_va_l (cos &)

I believe that equation (49) contains all possible derivable relations
between averages as special cases. Some of the most notable ones are
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listed below

s=1, v =1
1 -
<—m—(cf)s—x ¢ cos ﬂ> = M;;r ke (50a)
s = 2, y=20
1 — cosx 2\ _ (M + m)*
(0 ) = "m {c cos &) (50b)
s = 2, v=2
. 2 _
<3M sin® x -l; T‘l(r:;(l cos X) 6P, (cos 0)> _
4 + m)* (500
m
== {c cos &)

While the averages entering into (49) are not always the desired
ones, it remains true nevertheless that all solution methods evolved in
the following use this equation system as a starting point rather than
other forms of the Boltzmann equation.

IIB. THE MEAN FREE TIME MODEL AT HIGH FIELD

If the angular distribution in the center of mass system is independent
of speed and the collision cross section varies inversely as the speed
then the developments of the previous section permit actually a solution
of the Boltzmann equation. It is a solution in the sense that all signifi-
cant velocity averages can be obtained directly without the knowledge
of the velocity distribution function.

Before developing these facts from the equations of the last section, I
should point out that the derivation to follow is in a sense artificial. It
has been shown already by Maxwell”’ for related problems that if the
mean free time between collisions is assumed constant specially simple
techniques may be employed to get constants of experimental im-
portance. These techniques can be employed here; they consist essentially
in multiplying (13) by a suitable multiplier, followed by integration
over ¢. However, if we were to follow this procedure we would have to
duplicate for a special model in an unsystematic way the work done
systematically for all laws of interactions in the preceding section. A
further advantage of using systematic procedure is that we can see at a

19 Maxwell, J. C., Collected Papers, Vol. II, p. 40.
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glance what averages can or cannot be obtained, and what the relation-
ship is between the high field and the general averages.

For this reason we limit ourselves at present to the high field averages
obtainable from (49). For the special case under discussion this equation
system takes the form

2+ 1) <1_+T(")> (c'P, (cos &)

= »(y + 5 4+ 1){c"P,_1 (cos 9)) (51)
+ (v + 1)(s — »){c"" Py (cos 9))

that is we have a system of linear relations connecting the averages
{c’P, (cos #)). The connection between these averages is made apparent
in Fig. 9. Each average {¢’P, (cos ¢#)) is marked in this figure as a dot in
an s-v-plane if s is integer. The equations (51) connecting these averages
are shown as lines with different equations leading to the same dot shown
in different outline. These equations generally have the shape of a V;

Fig. 9 — Interconnection established by the Boltzmann equation among the
averages (c*P, (cos 9)); case of constant mean free time.
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there are two notable exceptions to this rule, however, which make the
recurrence method possible, the equations » = 0 have no left leg and the
equations s = » have no right leg. Starting out with the average
s = 0, » = 0, which equals unity by definition one can thus proceed
systematically as shown in Fig. 10, to get other averages. The averages
reached are the ones for which s and » are non-negative integers of equal
parity with the restriction s = ». One verifies easily that this set is equiva-
lent to the set of all products of integer powers of the velocity compo-
nents.

The first three relations one uses in the path outlined in Fig. 10, are
the simplified forms of the three equations (50). We find

@ =2 () i
(M + m)® //1 — cos x\*
) = "3 \ ar x> =
) . 4(M + m)
{¢*Ps (cos o)) = o <3M sin? x + 4m(l — cos X)XI — cos x>
‘ ar ar

or, more conveniently with the help of (53)

(M + m)® <M sin® x + 4m(1 — cos x)>
D= ar
(ca) = 7 <3M sin? x + 4m(l — cos X)XI — 608 x>2 (54)
m - -

The three equations (52), (53) and (54) give the drift velocity, the
total energy, and the energy partition of the travelling ion. Equation
(52) gives a constant mobility and can actually be derived from a low
field theory. Formula (52) thus states that for problems involving a
constant mean free time the high field and low field mobilities are numeri-
cally identical. One would suspect that the intermediate field value would
have to fall in line too. This is indeed the case as will be shown in Seetion
IITA.

A convenient interpretation of (53) may be had by combining (52)
and (53) in the following way

(me*y = m{c.)’ + M{c.)’ (55)

The left side is essentially the total energy of the ion, the first term on
the right is the energy visible in the drift motion; it follows therefore
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that the second term is the “invisible’” or random part of the mean
energy. Formula (55) thus states that

random energy _ molecular mass

visible energy ion mass (56)

that is, it exhibits in a quantitative way the capacity of storing energy -
in the form of random motion which light ions travelling in a heavy gas
possess; for ions travelling in the parent gas the ordered and the random
part of the energy are just equal; for heavy ions in a light gas the dis-
ordered fraction becomes negligible.

There are various ways of understanding the implications of equation
(54). One way is to derive the mean energy in a direction at right angles
to the field by the use of (53). We find

(M + m)B <Si.l'l.2 X\

ar /
3M sin? x + 4m(1 — cos )() 1 — cos x\? (57)
Mm < \/ >

ar /N ar

(e =

Now from (54) and (57) the partition of the energy ¢ may be obtained.

14
o] 1 2 3 4

Fig. 10 — Order to be followed in computing by recursion the averages
{¢*P, (cos 9)); case of constant mean free time.
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It:comes out to be

_ <M sin® x\ /M sin® x\, /M sin® x + 4m(1 — cos x)> (58)
T

T T

€zleylé€:

This shows up immediately the equipartition property for small m/M
and the overwhelming preponderance of the motion in the field direction
for large m/M. As an analysis of the random motion, however, equation
(58) is deficient because the three directions become only comparable
after the square of the drift velocity (52) is subtracted out of the z-com-
ponent. We find

M + m)’ <M sin® x + 2m(l — cos x)
@~ = —mrs — SNCY)
Mm/ sin x + 4m(1 — cos x)\<1 — ¢08 x\
\ ar / ar /

and from this a more refined partition formula which only counts random
motion

. % _ /sin®x\,/sin’ x\,/M sin’ x + 2m(1 — cos x)
GazCy= s __< T /< T >< (M + m)r (60)
For small m/M this result does not differ essentially from (58) but if
m/M is large the z component of the random energy does not grow in-
definitely the way the total energy does. Instead it stops at a value which
is about four times one of the other two values.

A discussion of these expressions for special models will be delayed

until the equations are extended to intermediate field conditions. This
will be done in Part III.

IIC. THE CASE OF LARGE MASS RATIOS: ELECTRONS OR HEAVY IONS

The distribution of velocities for a small value of m/M is treated
in the literature because it applies to electrons.”® However, for the sake
of completeness the derivation will be carried out here for the high
field case. In this derivation all features of the law of scattering are left
open, except that conservation of the kinetic energy is assumed.

The development in spherical harmonics carried out in Section ITA
is the suitable starting point for small m/M, because, in this case, the
distribution is almost spherically symmetrical and the expansion in
spherical harmonics is also an expansion in powers of m/M. If we keep
only ho(c) and hi(c) in the system (47) and treat m/M as small we get
two equations, one for » = 0 and the one for » = 1. We may then use
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(41) and (42) in the simplified form
!

C m
Ef-..'l-]-ﬂ(l — cos x) (61)

cos k ~ cos x + ;1—{ sin® x (62)
and develop the equations in powers of m/M. Starting out with the
simpler equation » = 1 we find

1 — cos x\ _ _dh(c)
< oo )@ =~ (63)

This same procedure is not adequate for the equation » = 0 because
the two left hand terms in (47) cancel in zero approximation. We must
therefore develop the integral up to linear terms in m/M ; this is a per-
fectly straightforward, though somewhat cumbersome, step. It leads to
the following equation

/1 — cos x\ /1 — cos X\
M[ dc{\ ar() /"“()}+3\ ar(c) /""():I

[‘”“(c) + 2 hute )]

~3
The equation may be integrated by multiplication with ¢*; this yields
_am /1 —cosx\
h(e) = 3 i \T{c) /Ghro(c) (64)

Elimination of hi(c) from (63) and (64) gives a differential equation for
ho(e) which is easily solved by quadrature; the result is

ho(e) = exp [—3 _% j;c <1—;%(>2 c dc] (65)

Except for the dependence on the angular law of scattering this formula
may be found in the literature." Tts most important special cases are
obtained for r = const (Pseudo-Maxwellian distribution) and
t = const/e¢ (Druyvesteyn distribution).

The derivation of (65) should be completed by a proof that indeed
ha(c) is small compared to hi(c). This is not true for all values of ¢; on
the contrary, the argument below shows that near the origin where
¢~ ar(c), ho(c) is actually comparable to hy(c). For our purposes, however,
it is sufficient if it is true in the overwhelming majority of cases. As the
proof applies equally to all h,’s we will run it in this manner. Assuming
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provisionally that
hyyr K hy K hyy
we see that we can drop the terms in h,4; in the system (47). The integral

in (47) is evaluated in zero order with the help of (61) and (62); it
becomes then

hy(c) 1
-r(c) 2

This means that we may solve explicitly for h,(c) in terms of h,(c).
The formula is

f P, (cos x)II(x) sin x dx

R e 0
ho(e) A ~— 3
2 — 1 /1 — P, (cos x)
\ ar(c)
To estimate the order of magnitude of this we may neglect P, (cos x) as

compared to 1 and assume » large. The operation in the numerator will
lead to two kinds of terms: some of the form

(66)

L (o)
C

and others of the type
m

M l(a‘r( )}

coming from differentiation of an exponent of the type (65). Now we
find from (65) that the overwhelming majority of particles have speeds
¢ which in order of magnitude satisfy

¢ ~ (M/m)"ar(c) (67)

1 r—l (C)

because this is the range within which the exponent remains comparable
to 1. Applying this to the two types of terms arising from (66) we find
for them in order of magnitude

var(c) % ha(c) ~ v (%)m e

and

m 1/2
@) T a0 ~ () s
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If we substitute this into (66) we see that the h,’s decrease as (m/M)*’,
with a possible »! slowing up the final convergence. In any case hs(c)
comes out small compared to h(c) which is all that is needed to make
equation (65) approximately correct.

‘While the case of small m/M is generally known it appears to be other-
wise for large m/M. The intuitive basis for the solution of this case is
the fact observable from (52), (57) and (59) that (c) increases indefinitely
with m/M, but that the relative deviation from the mean decreases so
that the distribution function approaches a é-function. The structure of
this limiting function may be explored, starting directly from (40),
because in the limit of large m/M the sphere of integration shrinks as
may be verified from (37). This makes it possible to replace the integral
in (40) by differential terms. This becomes clearer if (40) is written in
the form

a].;f;f) f I(x) smxdx2 f ) {(%) ?-E—Z,—;- — %} (68)

Let us call the inner average §. It exhibits the differential properties
discussed earlier: the curly bracket is the difference of two terms which
are almost identical. Hence we approximate the value of § by expanding
the slowly varying terms to first order in ¢’ — ¢, while the fast varying
h(c’) will be expanded to square terms. This expansion is obviously
permissible for everything except the rapidly varying function h(c’).
For h(c’) itself no justification can be offered except success. By proceed-
ing to square terms in this expansion we mitigate any possible error com-
mitted, but it is quite possible that structural details are lost in the
procedure.
The development of ¢ is straightforward. We proceed as follows

g=io%“§“((7ﬂ; )+ (%) wﬂ“”‘”@%

"3 1 1
<10 {(5) 7 ~ o} + e [ de ) — 00

The expansion of the first term involves only (41) which to this order
reads

c’—c,-f‘scj—h-r-(l — cos x)
m

This formula does not contain the azimuth w which therefore disappears
trivially. In the second term on the contrary we are dealing with a
vectorial difference involving all three polar coordinates ¢, «, w of ¢’.
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If we set
c: = ¢ sin k cos w
¢y = ¢’ sin ksin o
! '
Cy = € COS K
we find
N ah(c) ah(c) 6h(c) 19 h(c)
h(c") — h(c) 7 e+ ac, Fy (et — ©) + 5 Fye
1 8°w(c) . , 1 8°h(c) 3*h(c)
T3 @ t3 3 act (e — o) + aEacch“"’
a°h(e) 1os a°h(e)
+ e cile; — o) + 3e,90; ealer — ) +

With the formulas given, integration over w is elementary. We find

AR T 1 [ah(c) B
g ~ h(c) {() e '@}_{_r(c){ (¢’ cos k — ¢)

1 (9’h(c) , a°h(c) 1 9h(e)
47(c) ( dcgt + ac,? 37(c) do (¢’ cos k — ¢) }

All coefficients are to be evaluated only to the lowest non-vanishing order
in M /m. From the equations (41) and (42) we get

+ ) ¢ sin® k +

¢ cos k — ¢~ (M/m) ¢(l — cos x)
¢ sin® k & (M/m)’¢" sin® x

The first term in  is simplified further by introduction of the parameter
« used in the dimensional analysis of Section ID. According to that
section we have that

d nr(c) o

d {ne —l+a (69)

We can generalize the original definition for any r(c) by the above
equation, where a is now a function of ¢. Eliminating also the tempo-
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rary device of a £, 7, { coordinate system we find for J:

h(c) M (1 — cos x) oh
7 B {"' 2. T o6

oh M\ sin® x (0% *h EXA
T 5} + (:5) T 9oz T aeE T e

M\ 2(1 — cos x)* — sin’® x a a 4
+(%—) GC‘E"_C“E"""EE

47(c)
{e0h 4 6 Oh ok
¢ dc. c dcy ¢ dc:

= — (4 — ale))(1 — cos x) —=

If the last term is evaluated exactly terms of the order (M/m)* are
added to the first derivative terms in A(c). They are obviously negligible.
Finally integration over x yields the following form for equation (68)

“ oh(c) _(g) = M <1 — co8 X >{4 — a(0)}h(c)

dc. 7(¢c)
M /1 — cos X 1 M\? /sin® x\ o < 9°h
ta\T7o ; ti (E) \ 7@ ) e 2oz O
1M\ /(1 — cos x)(l — 3 cos x)\ < a*h
+ 1 (E) \ ‘r(c) > i.kz-1 Gk dc.ock

When equation (70) is considered up to linear terms in M/m it yields
a 6-function about the drift velocity (c.) which results from the implicit

equation
1 — cos x\
(e = 77 / < 7©) Jemten) (1)

The é-function takes here the aspect of a non integrable function which
in a special case can be seen to equal

h ez + ey + (e — e} ™"

When normalization is imposed on such a function it is made to vanish
everywhere except at the point corresponding to the drift velocity.

The square terms in M /m are necessary to gain information about the
functional form of h(c). Since the region in velocity space in which & is
appreciable is still small we may take « as constant in that region. A
further simplication results from order of magnitude considerations
onc:

&~ ~ e >~ ~ (e — ()
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In working out the details we see that division by
M /1 — cos X\
m 7(c) /

puts the first two terms on the right hand side of (70) in a simple form.
The coefficient of the field term becomes then

am _ am ((Ca )1““
1 — cos x\ 1 — cos X ¢
M W
(c) 7(€)  Je=(er)

The first factor is just (c;) by the identity (71). For the second factor we
have up to linear small terms

=Vetcit+e=Ve+d+ (o) +e— ()

and hence for the coefficient of the field term

u(@) ~ () — (1 — a)les — (e)

After division by

M/l—-cosx>
m\ ) /,

the square terms still contain another small factor M/m; it appears
sufficient, therefore, to keep only the leading terms which are the ones
containing (c;)* as factor. All these terms are multiplied with the ratio
of two angular averages over dx; these may be taken as independent of
¢ to a good approximation. Equation (70) thus takes the form

ah(c) ah(c) ah(c)

(4 — a)h(c) + ¢ + + (2 = a)e. — (e

<Bll]. x\

r / 2h((.‘.) azh(c)}
<1 — cos x\( )’ { + “ack (72)
/

T

+

1M
4 m

/(1 — cos x)\

11{\__7_/ (e’ a"h(c) _
2m /(1 — cos x)\ ' act

T

_|._
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The equation can be solved explicitly in Cartesian coordinates by the
method of separation of variables. The result is

/1 — cos x\
m \ T / G: + Cs
M (X (e
\

T

hic) = exp| —2

(73)
/1 — cos x\ _l
m \ T /(e — (Ca))z

— (2 — a) =
M /(1 — cos x)*\ (e’
(Em) @

T

This is a Maxwellian distribution with elliptic distortion and shifted
origin, that is, the type shown in Fig. 1 (b).

The result (73) indicates the main features of the solution for heavy
ions. Because of the neglect of derivatives higher than the second in
h(c’) it is not certain that (73) is correct in all details, even in the limit
of very large m/M.

IID. THE CASE OF EQUAL MASSES; IONS TRAVELLING IN THE PARENT GAS

The developments of the previous section show that if the ion mass is
either large or small in comparison to the molecular mass, analytical
methods can be applied successfully to determine the velocity distribu-
tion of the ions. No such possibility was found for the mass ratio unity,
which one would judge to be of particular interest because it applies to
ions travelling in the parent gas. There exist isolated fragments of such
an analytical theory; for instance, if we assume isotropic scattering in
(46), that is II(x) = 1, then the zeroth equation (46) becomes explicitly
integrable and yields

(o) = — 3 ar(e) P49
This is a curious reversal of the differential relationship (63) derived for
electrons and implies a rather strong condition on the structure of
hu(c). However, I have not been able to consolidate these fragments into
something which can be used successfully in computation. The high
field distribution function for mass ratio unity appears, however, suffi-
ciently interesting to warrant the use of other methods. _
A numerical determination of the velocity distribution function was
undertaken in cooperation with R. W. Hamming by the so-called
Monte Carlo method. The Monte Carlo method is a way of gaining

(74)
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statistical information about a system by following an individual member
through a large number of random processes. The result of such a pro-
cedure is knowledge about one member of the assembly for a long period
of time. Time averages of various kinds can be obtained from such data;
these time averages are then set equal to instantaneous averages over the
assembly, in accordance with ergodic theory. In our case, an ion was
followed through 10,000 collisions. On an average, the collisions were
isotropic in the center of mass system (II(x) = 1) and obeyed a mean
free time condition 7 = const. Actually, both the free time and the scat-
tering angles varied from collision to collision; the angles varied in a
random fashion over a unit sphere and r was random within an ex-
ponential distribution.

A Monte Carlo calculation of this type consists of three parts. In the
first part the random numbers having the required distributions are
obtained and recorded. In the present problem there were three such
random numbers required for each collision, namely a time and two
angles. These numbers were placed on 10,000 IBM cards, along with
suitable identification. In the second part a calculating machine simulates
the successive collisions and keeps a record of the initial and final veloci-
ties for each one. The third part consists in analyzing statistically the
numerical material accumulated in the second. For the first part of the
caleulation particular values must be chosen for the acceleration a and
the mean free time 7. These values were

a=1
7+ = logp ¢ = 0.43429

However, the dimensional analysis of Section ID shows us at this point
that these two constants enter into the problem only through their
product ar which scales all velocities. It is therefore convenient at the
statistical stage to remove these factors and to analyze the results in
terms of a dimensionless variable which by (26¢) we take in the form

c
W= (75)
In view of the a priori information for mean free time problems which
is gathered in Section IIB we can use the statistical data from the
Monte Carlo caleulation in two ways. We may (a) check the numerical
computation itself or (b) gain new information not available otherwise.
(a) The check of the numerical calculation by statistical analysis
proceeds as follows. From deductive reasoning we have obtained the



MOTION OF GASEOUS IONS IN STRONG ELECTRIC FIELDS 213

averages (52), (54) and (57) for ¢., ¢: and c¢:. These formulas ought
to be verified in the Monte Carlo calculation. This is indeed approxi-
mately true. A sampling covering 9492 out of the 10,000 collisions gives

by Monte Carlo by deduction
(w.) 1.912 2
. | 8
(w;) 0.801 g =0-8%9
(w3 ) 5.165 59—6=6.222

The agreement is essentially there but deviations are noticeable. In
judging these we have to realize that fluctuations are quite large in this
problem. For instance if the calculation is broken down into ten runs of
approximately 1,000 events each one finds the following time averages
for the partial runs:

{ws) (w2) (w3)
1.821 0.837 4.453
1.975 0.748 5.5631
1.915 0.785 5.132
1.954 0.829 5.441
1.868 0.731 4.794
2.003 0.807 5.581
1.766 0.793 4.811
1.962 0.827 5.360
2.003 0.901 5.471
1.914 0.727 5.200

predicted 2.000 0.889 6.222

Among these runs there are some having averages higher than the pre-
dicted values, but the data clearly show that the Monte Carlo averages
are generally lower. In the search for reasons it was first felt that perhaps
the desired mean value for 7 is not actually reached, perhaps through
systematic errors introduced by the operator when rejecting certain
runs. This seems indeed to be the case. The mean free time obtained
from the 9492 runs mentioned above is

T = 0.4269

*which is slightly low. Indeed it is observed that the runs with high
were particularly troublesome in the calculation and were preferably
rejected by the operator. It seems doubtful however that this error
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could account for the entire discrepancy, particularly in the mean
squares, although it must be emphasized that the runs with high = make
a more than proportional contribution to the total average. The angles
of scattering have not been subjected to a similar analysis so that we
cannot make a statement whether the aimed at isotropy in the law of
scattering was realized or not. We conclude therefore by saying that
while the Monte Carlo calculation gives results in general agreement
with the deductive theory there are small but noticeable systematic
errors in it whose origin is only partly explained. Similar errors must
exist in the new results which cannot be compared with theoretical
predictions.

(b) In this part we will discuss the velocity distribution function which
may be constructed from the Monte Carlo results. In constructing such
a function we make use of the fact that, between collisions, the velocity
is accelerated at a uniform rate. Thus, in each period between two
collisions, the velocity vector traces out a straight line parallel to the w.
axis covering equal distances in equal times. The Monte Carlo calculation
furnishes us with a number of such straight lines as shown in Fig. 11. The
density of these straight line tracks in velocity space is the velocity
distribution function. The actual procedure used to obtain it was to lay
a grid with a mesh of 0.23 in a half-plane with coordinates w, and
w, = vV w? + w; and to count the number of lines crossing each hori-
zontal square edge. When the resultant count is converted to density

A
Wz
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fr—()
—
Y

ll l[ oo WETWE

Fig. 11 — Straight line pattern in the w; — w, half plane from which the veloc-
ity distribution is constructed; the Monte Carlo calculation furnishes the initial
and final velocities (dots and rings).



MOTION OF GASEOUS IONS IN STRONG ELECTRIC FIELDS 215

and normalized to 1 we get a distribution in the w, — w, half plane which
is shown in Fig. 12. Division by 27w, will transform it into a conventional
distribution function in velocity space; a plot of this function is shown
in Fig. 13. What distinguishes this distribution function from functions
previously proposed is the elongated probability contours. This feature
is not unexpected in view of the unequal energy partition apparent in
the equations (58) and (60).

The probability contours shown in Figs. 12 and 13 give a reliable general
picture but we must not expect from them fine detail. Indeed we will
now prove that the distribution function is infinite along the entire
positive ¢;-axis, a feature which is not obvious from inspection of Fig. 13.
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Fig. 12 — Motion of ions through the parent gas in a high field; distribution of
velocities in the w, — w, half plane resulting from the Monte Carlo calculation.



216 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1953

7.0

6.5 /’__ 0,001

6.0 /[ l
__1_o0.003 \

55 / P IS

N
ST 1IN

4.0 ._
o/
we 30 /
2.5

S

|
NN
W\ //

RYENEA
/s

[\ T—
T~

: AN\ 28
\— /
-0.5 ..“"“-__ ____4/
-1.0
-30 -25 -20 -5 -10 -05 o] 0.5 1.0 1.5 20 25 30

Fig. 13 — Velocity distribution function of ions moving through the parent
gas in a high field; contours constructed from the Monte Carlo results of Fig. 12.

A simple physical proof of this statement goes as follows. Suppose an
ion and a molecule make a collision which is almost central, but has a
small impact parameter b. The collision will bring the ion almost to rest
because the atom was originally at rest by hypothesis. Because the col-
lision was not quite central, however, the ion will have a small residual
velocity ¢, at right angles to its original velocity ¢; . For any reasonable
law of scattering this quantity e, will be proportional to ¢; and to b.

Cy « ci'h

The probability for a value of b between b and b + db is proportional
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to b db. Thus even if all ¢/’s were equally probable the probability for
¢y would vary as ¢y dey . Actually very small ¢;’s may be specially probable
as the theorem states and this fact may or may not increase the prob-
ability for small ¢;. This means that P(c;)de; probably varies as e,dey, and
may perhaps even contain a smaller power of ¢, . When such a probability
function is plotted in velocity space it will vary as 1/¢; . Thus we know
that the distribution function ¢(c) for ions immediately following a col-
lision has a singularity at the origin at least as 1/c, . The actual distri-
bution function h(c) is derived from this one by spreading each point
out in the forward direction as shown in Fig. 11. For the mean free time
case we can write this out explicitly in the form

hic) = ;1_ j; ) o(c — af) e_;‘ dt (76)

For the case of a mean free path or other laws the formula is more awk-

ward but they all differ from the above only in replacing e_?‘ by a more
complicated weight function. The singularity of h arises out of the singu-
larity of ¢ which contains at least a factor 1/+/¢ + ¢ + (c. — at)?.
Along the c.-axis, this become a factor 1/(c. — at); this factor makes the
integral diverge for all positive ¢; ; as we approach the origin from nega-
tive c.'s the distribution function will become infinite at least as fn 1/¢ .

The reasoning given is intrinsicly classical because of the use of “in-
finitely small” impact parameters. We should not hasten to conclude,
however, that the quantization of the angular momentum will necessarily
remove the singularity. Indeed we know that the only mechanical
information which has to be put into the Boltzmann equation (31) is the
differential cross-section for scattering. If this quantity does not differ
essentially in the 180° direction from a classical cross section then it
will not modify the conclusion we have reached.

Conclusions which are more informative, but less “anschaulich” may
be obtained from a study of Boltzmann’s equation either in its closed
form (34) or (40) or its “Legendre” form (46) or (47). In view of the
proof given we will give only an outline of the reasoning. First we can
remove the second term in (40) by the substitution

cz
h(c) = exp [~ ; &] *(c)

ar(c)

' The exponential is easily seen to be always positive and finite for finite c.
The Boltzmann equation then takes the form

2 de, ah* 1 .
exp [— fn m] Qo = E-(an integral)
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For equal masses the integral on the right runs over a plane in velocity
space. Its integrand is always positive; hence the integral can never
vanish and is always positive; it is conceivable that it could be infinite
for a special position provided the infinity is integrable. Such an infinity
would only make matters worse. At any rate the equation shows that
h*(c) increases monotonely with increasing ¢, . When we approach the
origin from negative ¢, we get a logarithmic divergence (or worse). As
the function h*(c) can nowhere decrease with increasing c. the infinity
along the positive ¢, axis is confirmed and its logarithmic nature is made
very likely.

Information obtainable from equation (46) confirms this conclusion.
Lowest powers in the entire recursion system can be made to cancel by
assuming that for small ¢

hy ~ —Afnw
h; ~ B; 1 >0

with suitable relationships existing between these quantities.

A defect of all three approaches is that they give no information
concerning the nature of the infinity for ¢; > 0. One is tempted to
conclude from Fig. 13 that it cannot be very strong. Something like a
singularity is discernible at the origin, particularly if the contour 0.1 is
drawn back to cut the w,-axis at a negative value; this is perfectly com-
patible with the available information. For large positive w, , on the other
hand, the picture almost contradicts the theorem just proved. One con-
cludes from this that the singularity, for large ¢, , becomes a weak and
narrow ridge rising more or less abruptly in an otherwise well behaved
function.

IIE. THE CASE OF EQUAL MASSES; A NEW COMPUTATIONAL PROCEDURE

The foregoing sections have accumulated substantial evidence that
there are many analytical details involved when one discusses the
structure of a velocity distribution function. These details are of little
interest to the experimenter who may want nothing but a formula for
the drift velocity or the average energy. In view of this situation it
appears very desirable to find a method whereby such quantities can be
derived directly and accurately from the Boltzmann equation without a
full knowledge of the entire distribution.

Maxwell’s original work shows us how to achieve this for molecules
obeying the mean free time condition of Section ITB. In the following,
a general method is described which will permit determination of such
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averages for an arbitrary law of force between the ions and the gas
molecules, and an arbitrary mass ratio. The application will be limited
to the case of the mass ratio 1 whose study was begun in the preceding
section.

The basis of the method is an observation on the equation system (46)
or (47), which is the form taken by the Boltzmann equation after in-
serting the Legendre decomposition (43). It would appear at first sight
that these recursion relations are of such a structure that an arbitrary
function hy(e) could be substituted into the ‘“zeroth” equation and that
the relations would then successively determine hy, hs, hs - -+ . Upon
closer inpsection this is found not to be the case. Suppose we have
obtained somehow functions ho, 1, he - - - h, and we are trying to use
the nth equation to determine h,y, . This equation is of the form

dh,,.H n + 2
de

We solve for h, 1 by multiplying with ¢*** and integrating. This gives

|- hnp1 = known material (77)

h (o) = f (known material) do

The left-hand side is of such a structure that it must vanish both for

= 0 and ¢ = =, It follows that the right-hand integral when taken
between the limits 0 and o must equal zero. This condition is indeed
obeyed for any ho(c) when n = 0. The integral condition reads in this
case

2[ cdcf II(x)smxn:i,'x"w(c () f}:ﬂ((;)) ¢ de

If we invert the order of integration in the double integral, then intro-
duce ¢’ as variable of integration by equation (41) and finally invert
again this becomes

ow ’“((cc)) ]: f (x) sin x dx — 1] 0

This equation is trivally obeyed because the square bracket vanishes in
virtue of the definition of II(x). For values of n higher than 0, the in-
tegrability condition deduced from (77) is not generally obeyed for any
function hy(c). Such a statement may be proved by examples; these
examples will arise in the course of the calculations to follow. Thus
we find that except in the passage from &(c) to hi(c), the recursion system
is such that at each stage it imposes a condition upon the h,’s already
determined if the new hni.(c) is to exist at all. With such an infinity of
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conditions one can improve indefinitely an initial trial function assumed
for ho(c).

The integrability conditions whose general structure is thus indicated
have actually already been written down. They are the equations (49)
for the special case s = ». Generally speaking, the relations (49) are also
of the recursion type, permitting us to start with arbitrary averages
{¢"), and computing successively (c'P; (cos #)) ete. At every stage, how-
ever, there is the exception mentioned: the equation for which s = »
has no third member, and therefore it imposes a condition upon averages
already known from the previous equations. We shall refer to this type
of equation as a “truncated’ relation.

Tt is reasonable to assume that 1/7(c) can be developed into a power
series in ¢ because it equals the known constant polarization value for
¢ = 0. If this can be assumed then each truncated relation s = » is
equivalent to a unique relation among velocity averages involving
ho(c) only. One obtains this relation by applying to each member in the
truncated relation its own recursion formula and repeating this process
until » is brought down to zero. This process will never lead into another
truncated relation s’ = »" because at each step s’ increases by at least
two units with respect to »’.

In order to test the method for a known case, it will be applied first
to the case of constant mean free time. This case is adequately described
by the theoretical treatment of Section IIB and the Monte Carlo
caleulation of Section IID. We have seen that the equations (49) reduce
in this case to the form (51) which dovetails as shown in Fig. 9; this
dovetailing leads to explicit values for certain averages as shown in
Fig. 10. A “computational method” is only needed when one tries to get
an average outside this selected list. In the present case the reduction of
the truncated relations to a condition on ho(w) is particularly simple as
is seen from Fig. 9. A singular relation which starts out as between
(¢'P,_1 (cos #)) and {c'P, (cos #)) actually yields the numerical value
of the latter because the former has been obtained numerically in a previ-
ous stage. This numerical value yields in combination with previous
information (¢’ "'P,_1 (cos #)), (¢'"*P,—2 (cos ¢#)) etc and finally (™).
Thus we end up with the set of even moments of hy(c) which may be
used in succession to determine ho(c) more and more closely. There is no
guarantee that this procedure converges mathematically, since the
general theorems usually require the knowledge of all integer moments.”

20 Shohat, J. A., and J. D. Tamarkin, The Problem of Moments. Am. Math.
Soc., 1943. The original three-dimensional formulation appears a little more
favorable for a proof because, in this case, we know indeed all integer moments.



MOTION OF GASEOUS IONS IN STRONG ELECTRIC FIELDS 221

The justification for the method rests therefore on an empirical basis at
this point.

Assuming isotropic scattering, as in the “Monte Carlo” calculation
we express our results in terms of the dimensionless variable w defined
in (75). The equation system (51) becomes then

2v — DA — Lep(x)))s, v) =

=v(v+s+ 1)(.5'—71, v—L+ G+ D —8){s—1,v+ 1)
where the abbreviation (s, ») has been introduced for (w'P, (cos ¥))
and the quantities (Z,,(x)) are simple numbers computable from (48b)

and the assumption of isotropic scattering. The first truncated relation
iss = » = 1. It yields

(78)

(1,1) = 2
Reducing it with the relation (78) for which s = 2, » = 0 we get
(2,0) =8 (79)

The next truncated relation is s = » = 2, which yields

16
(2: 2) - ?
and the reduction gives
92
(3) 1) = ?
(4,0) = 184 (80)
Similarly in the next stage
128
18112
42 = g5
- 421600
61 = 555~
3372800
(61 0) = 'ng— (81)

As an example of an average which cannot be had explicitly we may
take the mean absolute value of the speed, that is {1, 0). We find this
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value by picking a sequence of trial functions for ho(w) with the ap-
propriate number of parameters and imposing successively (79), (80) and
(81) upon this sequence; this leads us to a sequence of values for {w)
which ean then be examined. In such a procedure careful consideration
of the trial functions is an important element. The following information
is available. It was proved in Section IID that he(w) is logarithmically
infinite at the origin. At infinity, on the other hand, hy(w) falls as ¢™”
times some power of w. One way to check this is to drop the terms con-
taining 1/c as factor in (46); the solution of the recursion system becomes
then

hy(w) ~ (2v 4+ 1)e "w*

where % is some unknown exponent. Armed with this fore-knowledge,
we shall use the following sequence of trial function for ho(w)

ho(w) = pEi(w) + gKo(w) + re™ + swKy(w) (82)

where
Biw) = [ % du
w U
and Ko(w), Ki(w) are the modified Hankel functions of order zero
and 1.*
‘We find in zeroth approximation from normalization only

p© =g @@ =70 =@ =0
(W) = 2.2500 (83a)
in first approximation, using (79)
m _ 9
P =%
¢ = g RO R
(w)® = 2.3818 (83b)

*1 This definition, which is in accord with the tables of Jahnke-Emde, differs
from the usual one by a factor 2/x. This change is suggested by Watson, Bessel
Functions, p. 79, and proves convenient in the following.



MOTION OF GASEOUS IONS IN STRONG ELECTRIC FIELDS 223

in second approximation, using (79) and (80)

@ _ 7
12
@ _ 32
N E; §? =0
1
(2) -
’ 20
(w)® = 2.3858 (83c)
and in third approximation, using (79), and (80) and (81)
w _ 3079
7980
® _ 202544
209475
O _ _ 2507
18620
[ _ 3152
209475
(w)* = 2.3864 (83d)

Appearances indicate strongly that the sequence (83) for (w) approaches
a limit which one would guess to be

(w) = 2.3865 (84)

More evidence that the conclusion drawn is correct can be obtained
by using the set of trial functions

ho(w) = pKo(w) + ge™* + rwe™”

We find then the following sequence of values for (w).
W)” = 2546 )" =2395 (W) = 2.388

This descending sequence confirms (84) by approaching this same value
from above.

Further evidence for the correctness of the procedure can be obtained
by deriving a function ho(w) from the Monte Carlo function h(w) dis-
cussed in Section ITD and comparing it with our trial function. The
function was constructed by covering Fig. 13 with a grid of concentric
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cireles and horizontal lines and replacing the integration

d=x

ho(w) = 2 [ h(w) d (cos 9)
d=0

by a summation over grid points. The function R (w) so obtained is

compared in Table T with h®(w), ho™(w) and h®(w) as defined by

(82) and the numbers following. We observe that the first approximation

TasLe I

Comparison of the Monte Carlo ki (w) for ho(w) with successive approximations
obtained by the new method.

w Iif(w) 1 () 1 (w) I (w)
0 ) 0 )

0.5 0.74 0.8397 0.7281 0.7144
1 0.29 0.3291 0.3019 0.3002
1.5 0.15 0.1500 0.1438 0.1440
2 0.081 0.0734 0.0730 0.0733
2.5 0.0412 0.0374 0.0384 0.0387
3 0.0199 0.0196 0.0207 0.0208
3.5 0.0118 0.0105 0.0114 0.0114
4 0.0063 0.0057 0.0063 0.0063
4.5 0.0030 0.0031 0.0035 0.0036
5 0.0014 0.0017 0.0020 0.0020
6 0.0004 0.0005 0.0007 0.0006
7 0.0001 0.0002 0.0002 0.0002

is an improvement over the zeroth one, while the second one makes little
difference, considering the accuracy to which hi(w) is given. In indi-
vidual cases the sequence drifts away from I (w); this is not surprising
because the latter function is very rough; this is to be expected from its
mode of derivation.

The application of this method to the hard sphere model of ion-atom
collisions offers no new feature of principle. The actual working out of
results is somewhat more complicated, mainly because the connection
diagram for the recursion system (49) is more involved. According to
equation (26b) the dimensionless variable to be used in this work is

c

W=Vt1?\

We denote its averages (w’P, (cos 9)) by (s, ») as previously. The equa-

(85)
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tion system (49) then takes the form

(21’ + D1 — (Ia,r(x»)( 841, P) =

=vr+s+ D —Lr— 1D+ @+ DE—v){s—1, v+ 1)

The numbers (I,,(x)) were already discussed in connection with the
system (78). What distinguishes (86) from (78) is the way in which the
variables are connected ; the new connection diagram which replaces Fig. 9
is shown in Fig. 14. The truncated relations no longer dovetail into each

other as they did before. Only the first stage proceeds in a similar way,
yielding explicit expressions for (2, 1) and (4, 0). In the next stage we

(86)

o

Fig. 14 — Interconnection established by the Boltzmann equation among the
averages {¢'P, (cos 8)); case of constant mean free path.
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start out with a relation between (1, 1) and (3, 2). By the use of regular
recursion formulas we can successively transform this into a relation
between (3, 0) and (3, 2), then (3, 0) and (5, 1) and finally between
(3, 0) and (7, 0). Here we have for the first time the normal situation in
which we do not get the actual value of a moment of ho(c) but only a
relation between two or more of such moments; the reason for this is
that the system fails to connect up with (0, 0) which equals unity a
priori. A similar situation prevails for the next truncated relation; it is
originally a relation between (2, 2) and (4, 3) and is finally reduced to one
between (2, 0), (6, 0) and (10, 0). Similarly, the next truncated relation
reduces to a relation between (5, 0), (9, 0) and (13, 0) and so forth. The
first three of these reduced relations come out to be

(w') = 10 (87)
3w’y = 112(w") (88)
295 (u') = 270" + g0 (") (89)

These formulas will now be imposed upon a sequence of trial functions
for ho(w) suitably chosen. Again, we may make use of the information
of Section IID, according to which ho(w) is logarithmically singular at
the origin. For large w we proceed as previously from (46) leaving off the
terms of 1/c. We get then

hy(w) ~ (2v + e “w
This suggests the following trial function for ho(w)
ho(w) = pEi(bw®) + gKo(3w’) + ret " + sw’Ki(dw®)  (90)
The best zero order approximation is actually obtained by the function
Ko(3w"). We find

¢ = —
21" (34)
In first order we get, using (87)
p" = —0.46543
¢ = 1.45285
In the second order, using (87) and (88)
p® = —0.80856
¢® = 1.88127 P =0
r® = —0.09804

= 1.04605 p¥ = PO = @

I
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In third order, using (87) and (88) and (89)

p¥ = —1.15071
¢ = 2.37034
s = 0.02062
¥ = —0.20016

These successive approximations lead to the following sequence for
the drift veloeity (w cos @)

(w cos #)” = 1.04605 (91a)
(w cos #)" = 1.14256 (91b)
(w cos 1)® = 1.14616 (91c)
{(w cos 3) = 1.14661 (91d)

We conclude from this sequence that
(w cos &) = 1.1467 (92)
In addition to the drift velocity there is some interest in the energy

and the energy partition. For the energy the following numbers are
obtained

WH® = 2.1884 ' (93a)
whH" = 2.3395 (93b)
(w*® = 2.3511 (93c)
(w*)® = 2.3531 (93d)
giving
(w*) = 2.353 (94)

A zero order value for (w* cos® #) cannot be said to exist because the
first truncated relation is the condition that a distribution funection
ho(w) exists at all. Thus, we can get only three numbers in a sequence
approximating (w* cos® &)

(w* cos® $)P = 1.8005 (95a)
(w® cos® 3)P = 1.7696 (95b)
(w* cos’® 9)¥ = 1.7685 (95¢)
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giving
(w* cos® #) = 1.768 (96)

We can understand the results (92), (94) and (96) by giving the frac-
tion of the total energy in ordered motion and the fraction of the energy
in motion along the z-direction. We find for the first ratio

(w cos 9)°

= 0.559 97)
(w?)
and for the second
(w® cos” &) :
v o 71 = (0.751 (98
W) )

The ratio (97) equals 0.5000 for all mean free time models; the ratio
(98) is 0.778 for the mean free time model with isotropic scattering.
Thus, the deviations from the earlier results are not drastic. However,
in certain derived relations the difference is more noticeable. For instance,
a good measure of the anistropy of the diffusion process is furnished by
the ratio of the random energy along the field to the energy at right
angles.” From (97) and (98) we find for this number

(w* cos® ) — (w cos #)° _
(o =) R 9

For the mean free time case this number equals 2.50. Hershey® in his
work assumes this number to be 1.000.

A comprehensive list of velocity averages is attached in Table II. As
a comment I may add that the obvious mode of constructing such a
table, namely by computing the column » = 0 from (90) and then using
the recursion system (86) for the others, runs into some difficulty. First
of all, a series of cancellations reduces the accuracy as v increases;
finally, at the positions marked “impossible” we find the missing third
members of the truncated relations. These elements cannot be com-
puted by recursion at all, but would require an explicit solution of the
equation system (47) for h,41(c). In the table, this more arduous path is
not followed. Instead, the recursion method is used for the numbers in
italic type and a few numbers are added by extrapolation. The numbers
so obtained will be needed in Section IVB.

The calculations on the hard sphere model are immediately applicable
to the experimental data of Figs. 3 to 7, which exhibit the drift velocity of

22'See below, equations (147) and (165).
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the noble gas ions in the parent gas as functions of the parameter a/N.
These data have a high field range in which the drift velocity varies as
the square root of a/N. This is the variation for a model with constant
mean free path, as seen from the dimensional formula (26b). It was
indicated furthermore in the Section IA that we have good reason to
think of the scattering between an ion and an atom as nearly isotropic.”
These two features characterize uniquely the hard sphere model whose
treatment we have just completed. To the extent that they are verified

TasLe II

Dimensionless high-field velocity averages (s, ») for the hard sphere model
and mass ratio unity.

v 0 1 2 3 4
s
0 1.0000 0.7845 impossible
1 1.3923 1.1467 0.8022 impossible
2 2.3534 2.0000 1.4769 0.990 impossible
3 4.6868 3.9853 3.0578 2.134
4 10.0000 8.83563 6.992 5.0602 3.474
5 23.912 21.405 17.330 12.84
6 61.847 55.97 46.177 35.36
7 171.241 166.3 130.91
8 503.7 462.81
9 1563 1445
10 5090.9 4750

the model is applicable to the experimental data. The formula to apply
is (92) in combination with (85):

_ 2
(c;) = 1.147 1/N0'

In the logarithmie plot of {c;) vs a/N the intercept of the straight line of
slope 1/2 which fits the high field data thus equals

1.147
log \/; .

The values for ¢ which result from this are shown in Table III. For
comparison are shown the corresponding atomic cross section as deter-
mined from viscosity data.* It is interesting to observe that the ratio of

(100)

2 A quantitative discussion of this point for the polarization force will follow
“in Section ITIB.
2t Landolt-Bornstein, 1950 edition, Vol. I, part 1, page 325.
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the two retains very nearly the constant value 3 throughout the table.
The fact that the ratio is substantially larger than unity is explained
by the resonance feature of the ion-atom scattering process as discussed
in Section IA. The fact that it is constant is perhaps an indication of
the fact that both processes are governed by overlap conditions of
essentially the same wave functions.

I would like to point out in connection with the calculations of this
section that the method developed is potentially of very wide applica-
tion. One question that comes up, for instance, is whether a careful
kinetics calculation is necessarily restricted to certain models or whether
an ion-atom cross section known numerically could be used to derive
therefrom kinetic properties. This is indeed possible. Suppose, for
instance, that the cross section o(c) were available as a function of ¢ for
collision of Het-ions and He-atoms and suppose that this cross section
were to satisfy the condition of isotropy II(x) = 1 to a good approxi-

TasLe I1I
Cross sections for ion-atom and atom-atom collisions for the noble gases.

Gas jon-atom cross section X 101 cm? | atom-atom cross section X 101 cm?
He 54 15.0

Ne 65 21.0

A 134 42.0

Kr 157 49

Xe 192 67

mation; we may then derive for this eventuality conditions on hq(c)
which are more general, respectively, than (79) or (87), (80) or (88), (81)
or (89). Since we are outrunning here the experimental evidence we shall
limit ourselves to the derivation of the first of these relations. The first
truncated relation is exactly (50a) which, for isotropy and equal masses,
reads
&\ _

<W ) =2 (101)
The reduction of this formula to a condition on ho(c) requires the rela-
tionship » = 0 of the set (46). This relation is always integrable to
yield hi(c) in terms of ho(c), as was pointed out early in this section.
For the special circumstances assumed the integrated equation is
equation (74)

o [T h(v)
h(c) = 3 . a_—(:y—)d'y (102)
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The elimination of ki (c) is achieved by forming the average (101) on the
function (102). This leaves the required condition on he(c); it may be
given the following form

o (6) i 4 Gﬂ

7O [ ary =2 &, (103)
The equations (79) and (87) are manifestly special cases of this more
general relation. Adaptations of this procedure to other cases are clearly
possible whenever the need arises.

The calculations of this section are meant to suggest that it is possible
to compute reliably average values from a Boltzmann equation without
solving it completely. The method employed here for this purpose
resembles a Ritz method in that it works with trial functions which must
be guessed at, and like that method it is capable of indefinite improve-
ment. The numerical results suggest strongly that we are converging
toward a definite answer; however, a mathematical proof of this fact has
not been presented. The method will be applied once more in the section
on diffusion.

Parr IIT — Morion or UnirorM IoN STREAMS IN INTERMEDIATE FIELDS

IITA. A CONVOLUTION THEOREM

Whenever we deal with the motion of a given type of charged particle
in a gas of given composition, then there exists a wide range of densities
n and N as discussed in Section TA in which the motion of these particles
depends only on a/N and kT'. For this range the motion is governed by
equation (13). Since deriving that equation, all our efforts were dealing
with the “high field” equation (34) or (40), in which the gas temperature
is taken to be zero and the electric field often scales out, as in (26), (75)
and (85). The accomplished solution of this restricted problem, together
with the low field solutions available in the literature, brings us back to
the more general equation (13) and the question what can be done with
it. The topic of Part III so defined is definitely inferior in importance
to the one in Part IT. For we are studying here an intermediate range
of variables which can be handled qualitatively, both in concept and
practice, by some sort of interpolation between the high and low field
regimes. For precise measurements, conditions can always be chosen so
as to satisfy one or the other of the two extremes. For this reason the
intermediate field case will only be pushed as far as it will go con-
veniently, without appeal to numerical methods.

In this Section IITA we shall give a complete solution of the inter-
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mediate field problem for the mean free time models discussed in Section
IIB. This solution is achieved by the following theorem: Given the
general equation (13) for constant mean free lime

w 3f(°) + flo) = lw ff M(C)f(e)M(x) d2, dC (104)

and the “high ﬁeld” equation derived from it by setting the gas temperature
equal zero

ah(c) + he) = 11r ff 3(CR(cHTI(x) d2, dC - (105)

and the Maa:wellwn equation derived from (104) by dropping the field
term

m(c) = 31; ff M(CYym(HTI(x) d2,r dC (106)

then the solution f(c) of (104) is the convolution of the solution h(c) of
(105) and the solution m(c) of (106):

fle) = f h(w)m(c — u) du (107)

We carry through the proof by constructing explicitly the equatlon
satisfied by the convolutlon We replace the running variables c, ¢, C,
C' in (105) by u, u’, U, U" and multiply in m(c — u). We get

ar — ah(u) (c

e u) + Au)m(c — u) =

- %—r ff (UNAYm(c — u)I(x.) d2, dU

We now define f(c) by the relation (107), and integrate the above equation
over u. The second member on the left comes out to be f(c). For the
first member, we carry out an integration by parts:

j‘ah(u) m(c — u) du = —-f h(u )am(c )

=+ f h(u) a“(m(zc— ) gy

'z

= % f h(uym(c — u) du

= ()
dc,
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For the right hand member we observe that we have the eightfold
integration

dQ, dU du,

that is an integration over the collision angles and all final velocity
components. By a general principle of kinetic theory™ we can invert in
this integration the final and the initial quantities and write

dQ, dU du = dQ, dU’ du’ (108)

This puts us in a position to eliminate the §-function by integration.
We find

Bf((:) + fle) = — ff h(u)ym(e — w)I(x,) dQ, du’ (109)

with the side condition that u, U, u’, U’ form a quadruple of vectors
in the sense discussed in SECtIOH 1B for which in addition

U'=0

If we substitute (107) into (104), denoting the dummy variable by u’
instead of u, then the two equations (104) and (109) take on a very
similar look. A proof of their identity hinges upon proving the identity
of the integral terms:

[ by aw’ [ me — wntw) de,
(110)
- f h(u') du’ f f MCYm(c’ — w)I(x) d2,. dC

The form of this relation suggests the assumption that the expressions
are identical before integration over u’; this assumption is proved by
the events below. The complicated function h(u’) thus disappears from
the problem. The other, such function, namely II(x) disappears then also;
for it is by assumption arbitrary, hence could be replaced by a s-function
for a fixed, but arbitrary x. The two sides of (110) must therefore be
equal before we integrate over x, or x., and the two x’s are to be taken
equal and fixed. Defining angles as shown in the spherical diagram Fig.
15 we thus get (110) in the form

fm(c — u)de = f M(CYm(c" — u’) d¢ dC (111a)

2 See Reference 4, Section 3.52.
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This is to be true with the side conditions

¢ = fixed (111b)
u’ = fixed (111¢)
U =0 (111d)
Xe = Xu = x = fixed (111e)

Equation (111) is an identity involving only elementary functions.
Thus the relation itself is in a sense elementary. Those who wish to
believe it, may consider the theorem proved; for completeness, however,
the proof of (111) will now follow.

Call the left side of (111a) X, the right side ¥. To determine X, we
substitute from (7) and (111d) '

M
M-{-mn

m

u +

u

=M'—I-m

with

Fig. 16 — Definition of the angles occurring in the proof of the convolution
theorem.
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because of (9). This yields with the angles as shown on Fig. 15

or 3/2
X = f m(c — u) de = (@) exp [— Bme’
0 ™

172 2
— M 4+ m + 2Mm cos x + 28men m + M cos x cos n.b:|

(M + m)? M+ m

2r
. fu exp [2,8 Mm—i{m cu’ sin x sin ¢ cos e] de

The integral is evaluated by a formula known from the theory of Bessel
functions

2x
f ¢ de = 2lo(z2) (112)
0

and yields

1w M® + m® + 2Mm cos x
(M + m)?

2
X = 7; (8m)*"* exp [— Bme* — Bmu
(113)
cu’ sin x sin yb)

+ 28men’ ™ + M cos x cos IP]-Io ( 28Mm

M+ m M+ m

Passing now to the right hand side of (111a) we may replace in' the
first place dC by dy, because of (111b). ¢ and C’ are then replaced by
the expressions

C’ =c — M + M ’
M+m " MF+m?”
C.r —c J{ .[1.[ ’

T MAmY T MFmY
With the angles defined in Fig. 15, we thus get for ¥

32 32
Y = (@{) (@) exp [— BMc* — Bm(c — u')’

™ ™
ffff'yz dy sin 0 db ds do

epr:— BM~* + BMey (cos ¢ cos 6 4 sin ¢ sin 6 cos 8)

mM

_'2BM-}-m

u'y (cos @ — cos 6 cos x — sin 0 sin x cos q':):l
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Integrations over 8 and ¢ again go with (112). Beofore writing down the
result we shall pass over to a cylindrical coordinate system defined by
¥ = v cos 6 y1 = ysind
v dysin@dd = y. dyL dys

The result of the first two integrations then reads

= %ﬁa(M m)*"* exp [— BMc* — Bm(c — u')’]

+o0 !
[m dvy)| exp |:—- BMﬂyﬁ + 28My (c cos y — Mm_:f p- (1 — cos x)):l

f v dy. exp [BMy1]-Io(28Mcy . sin ¢)-To (2,6 _Mm_ u'y. sin x)
0 M+ m

The first of these two integrals is elementary, the other is Weber’s second
exponential integral® which equals

L] 2 2

j; exp (—p 1) Io(at) Io(bt)t dt = 2—; exp (9—4%'2—3) I, (2‘%’2) (114)
This yields for ¥ exactly the expression (113). The identity (111) is
thus proved, and with it the convolution theorem.

The theorem just proved reduces the velocity distribution for arbitrary
field and temperature to two components, one containing the field, but
not the temperature, the other the temperature but not the field. In each
of these components, in turn, the variable parameter scales out; thus the
general distribution reduces to two basic ones one of which is the
Maxwellian one: the other is worked out partially in the calculations of
the Sections IIC and IID. The special case of heavy ion mass has been
published independently by Kihara® without any apparent knowledge
of this theorem which was available in the literature without complete
proof.! Kihara’s form of the theorem is that heavy ions in a light gas
have an off-set Maxwellian distribution, with the gas temperature as
parameter if the mean free time condition is obeyed for their collisions.
Such a function is indeed the convolution of a Maxwellian distribution
and the s-function discussed in the Sections ITB and IIC.

The general distribution function resulting from (107) cannot be
written down explicitly because this goal was never achieved for h(c).
However we do find a result which is almost a full substitute for this,

20 Watson, G. N., A Treatise on the Theory of Bessel Functions. Cambridge

University Press, Sectmn 13.31, 1922,
27 Kihara, Taro, Rev. Mod. Phys., 24, p. 45, 1952.
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namely that all averages of products of integer powers of the Cartesian
velocity components, which were shown to be computable in the high
field case, can be computed for the intermediate and low field range as
well. The caleulation proceeds as follows. Suppose we wish to compute
the velocity average

(cregely = f c:"¢,"c."f(c) de (115)
for m, n, p integer or zero. We apply the convolution theorem (107) to
J(c), decompose the three factors into

cr = {us + (ez — ua)}™
e = {uy + (e, — w)}"
e’ = {u. + (es — u)}”

and expand each of them by the binomial theorem. We find

aler) = ,.26 %2 ( ) ( ) (;) (116)
fh(u) TR TRE TN/ fm(v Ty, ", dy

The second integral is a thermal average, the first a high field average
computable by the method of Section IIB. Thus the average (116) is a
finite sum of products of computable averages and is itself computable.

When formula (116) is applied to the averages (52), (53), (54), (57)
and (59) very simple results are found because of the symmetry of the
function m(v). For the drift velocity {c.) we get from (52)

M4+ m //1 — cos x\
e =50/ =) )

This is the same formula as (52) which is thus proved to hold inde-
pendently of the gas temperature. In the energy formulas we find simple
addition of the thermal and high field values because the middle term in
(116) drops out by symmetry. Inserting (53), (54), (57) and (59) we find

3
(mety = 367 + M + m) //1 — o x\ (118)
’ 3 /M sin® x + 4m(1 — cos x)
(M + m) \ p ,

(me) = kT + (119)

e /3M sin® x + 4m(1l — cos x)\/1 — cos x>
\ ar / \ ar
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(mel) — mic.)' =

2 /M sin® x + 2m(1 — cos )™\

- /3M sin® x + 4m(1 — cos x)\/1 — cos x\*
M\ ar N "ar
3 /sin2 x\,
(M + m) .
(me) = kT + = M ;4
M /3M sin® x + 4m(l — cos x)\<1 — cos x\
\ ar / ar /

The interpretation of these formulas is implicit in the discussion of the
high field formulas given earlier. In particular the combination of the
equations (55) and (116) can be given the elegant form

m(c®) = M{C*) + mic.)’ + M (c.) (122)

It states that the energy of an ion is obtained by adding the energy of a
gas molecule, the energy visible in the drift motion and a storage term
which is M/m times the energy in the drift motion; this term becomes
important for electrons in a gas. A low field approximation to this for-
mula (in which the second term on the right may be neglected) has been
published in the article of Kihara.*

IIIB. RESULTS FOR THE POLARIZATION FORCE AND THE ISOTROPIC
“MAXWELLIAN" MODEL

The polarization force between ions and molecules which predominates
over other forces at sufficiently low temperature satisfies the mean free
time requirement of the preceding section. It follows that the complete
theory given for those conditions applies to this force. The magnitude of
force was given in (4). Its potential equals

1é'P
V= 3 (123)
Classical theory is usually applicable to the scattering by the potential
(123) because angular momentum quantum numbers run as high as 30
or 50 in normal situations.* This classical type theory, first developed by
La.ngevin,m follows standard elementary mothods for computing the

28 Reference 27, formula 5.12.
29 Holstein, Theodore, private communication, see also Reference 11.
30 Langevin, Ann. de Chim. et de Phys., B, p. 245, 1905.
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angle of deflection x due to a potential of the type (123). The result is

du
1 ., €P(M+m) | (124)
BT Ty

x=7r—2f0ul{

Here b is the “impact parameter”, and u, is the lower of the two positive
roots of the polynomial in the denominator; if the polynomial has no
real root, the integration goes from 0 to «. The question whether the
denominator has a real root or not is tied up with the nature of the orbit.
If b is sufficiently large a root exists and the orbit looks like a hyperbola,
Fig. 2(a); for small b no root exists and the two particles are “sucked”
towards each other in a spiralling orbit as shown in Fig. 2(b). The two
regimes are separated by a limiting orbit in which the particles spiral
asymptotically into a circular orbit. This limiting orbit is found by
setting the diseriminant of the square root in (124) equal to 0. We find

46’P(M
blim = e—;m:;—m) (125)

From this value of by, a cross section and a mean free time 7,
for spiralling collisions can be derived. We find

1 { Mm 1
™= SN \OF m)P} (126)

This is indeed a constant mean free time as stated, the speed of encounter
v having dropped out.

1/7 is the dimensional quantity entering into the averages {(e(x)/7)
which occur in the Sections ITB and ITTA. In working them out in detail
as was done by Hassé’ one has to take into account hyperbolic collisions
also; for them a 7 cannot be defined or comes out to be zero in the mean.
This is due to small angle deflections which are infinitely probable.
However, any quantity ¢(x)/r to be averaged in a physical problem con-
tains a ¢(x) which vanishes for such impacts. Hence finite averages
result which do not give overdue weight to these types of collisions.
Following Hassé’, we do this in the following way for the present case.
We write (124) in the form

dv

x=r—2 ./; { o }112 (127)

2
1 —v +4—B“
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Here v equals bu and the parameter 8 equals b/bjm . It is the parameter
g introduced by Hassé. Now by the definition of 7 we have

<@> - N f yo(x) do(y,X)
=N f: ve(X)b db j:' de

= 7Nvbiim _/:o o(x) d(B)

From (125) and (126) the factor in front of the integral just equals 1/7, ;
the integral on the other hand is a computable pure number independent
of v which is obtained by inserting into it the relationship (127) between
x and B. Hence we may write

(£ = L[ o0 age)? (128)
N7/ wnlh
The three equations (126), (127) and (128) completely define the nature
of the averages appearing in previous sections. The integral (128) has
to be computed by numerical methods. It is seen in the course of the
evaluations that it naturally decomposes into two parts. The part for
which 8 varies from 0 to 1 deals with spiralling collisions and exists for
any o(x). For 8 between 1 and « we get the contribution of the hyper-
bolic collisions to the average. This part is only finite if ¢(x) vanishes for
small angle deflections.

The averages (52), (53), (54), (57) and (59), as well as (117) to (121)
contain numerous averages of the form (128) all of which satisfy the
predicted condition ¢(0) = 0. They are obtained by linear combination
of two basic types: ((1 — cos x)/7) and (sin® x/7). The first average is
given in Hassé.” Separating the parts due to spiralling and hyperbolic
collisions we find

1
f (1 — cos x) d(&) = 0.8979
0

[ @ = cos x atgh = 02073
1
‘This combines to give

<1_":ﬁ2‘.> = Tl .1.1052 (129)
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The analogous result for sin’ x was obtained by the computing group
of Bell Telephone Laboratories

1
f sin® x d(8%) = 0.511
0

f sin® x d(8%) = 0.261
1 .

which gives

-2 0™
<B‘n "> = Lo (130)
o T Ts

We may now rewrite the major results of Section IIIA for the polariza-
tion force. From equation (117) we get

_ 09048 /1 1 _E
“ =S Y utwNvE (s1)

This formula may be found in the literature.” What is new about (131)
is the realization that it is exact at high as well as low electric field.

The formula for the total energy needs no discussion for a special
model; it does not involve the angular distribution law when written in
the form (122). Thus we would obtain, for instance, for an ion travelling
in the parent gas that its total energy is obtained by doubling its ap-
parent energy observable in the drift and adding to this the thermal
energy 34T,

For the partition of the high field component of the energy in the
three coordinate directions we have two formulas, formula (58) parti-
tions the entire field contribution of the kinetic energy, formula (60) only
its random component. The first formula gives

eaieyies = M:M:(M + 6.73m) (132)
Formula (60) gives
eteyies = (M + m):(M + m): (M 4+ 3.72m) (133)

It is convenient to apply the general formulas also to the case of con-
stant mean free time, coupled with the assumption of isotropic scattering.
This combination of assumptions represents, strictly speaking, an im-

31 The formula is equation (3), p. 39 of Reference 2, in the limit A = 0; or also the
last unnumbered equation on p. 919 of Reference 6.
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possibility; for we know of no mechanical force which realizes this ar-
rangement. This model was already taken as the basis of the Monte Carlo
caleulation in Section ITD. It will be seen now that it has a wider sig-
nificance than one might anticipate. The necessary angular averages are

(1—cosx)=1 (134)
(sin’ x) = 24 (135)

This yields for (117)
)= ; ™ ar (136)

As usual, the formula for the energy does not involve the law of scattering
if written in the form (122). If we choose the form (118) instead we get
in agreement with (79)

3
(mc®y = 3kT + (M%nl a’r (137)
The partition formula (58) becomes
esieyies = M:M:(M + 6m) (138)

the partition formula (60) which counts random energy only becomes
esieyier = (M + m):(M + m): (M + 4m) (139)

Comparison of these expressions with the ones for the polarization
force shows that the difference between it and the isotropic model is
remarkably small from a kinetic standpoint. We may see this by com-
paring (132) and (138) or (133) and (139). For the other formulas, we
may compare more specifically the polarization results with an isotropic
case having its mean free time 7 given by

r = 0.9048 7, (140)

Equation (136) becomes then identical with (131) and because of (122)
the same identity persists for the energy formula (137). In the light of
this we may say that it is very nearly correct to state that scattering is
isotropic for the polarization force. This qualitatively correct fact was
repeatedly made use of in the preceding sections of the paper. The
reason for it is chiefly the predominant effect of spiralling collisions.
Indeed, equation (140) shows that a modification of =, by only 10 per
cent takes into account the main influence of hyperbolic collisions.
From the discussion in Section IA it may be seen that the results
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obtained for the polarization force have a potentially wide field of ap-
plication when measurements of ion drift are extended to low tempera-
ture. In the meantime, the results apply occasionally at room
temperature, whenever we deal with a small ion and are not bothered
by special scattering mechanisms having large cross section. An example
of this are the molecular noble gas ions in the parent gas whose drift
velocities were measured by Hornbeck'® ' and Varney.'® Table IV shows
the measured mobility at standard gas density measured for these ions,
in comparison with a value obtained from equation (131). The field
range from which the observed mobility was obtained is intermediate.
There is not only good numerical agreement, but the experiments follow
the theory also in that there is little variation of the observed value

TaBLE IV

Mobilities at standard density of the noble gas molecular ions. Comparison of
the experiment with a formula based on the polarization force only.

2 . cm?
Gas Hobe. ot see wesle ot see
He 18 18.2
Ne 6.5 6.21
A 1.9 2.09
Kr 1.2 1.18
Xe 07 0.74

with the field. The discrepancy between the two columns can be used to
determine a hard collision eross section which is to be superimposed on
the polarization force, as is suggested in the so-called Langevin model.*

ITIIC. VELOCITY DISTRIBUTION FUNCTION FOR ELECTRONS

We have almost exhausted the results achieved for intermediate
field conditions. For the sake of completeness I shall mention shortly
the intermediate field distribution function for electrons whose derivation
we owe to the ingenuity of Davydov.*

The derivation does not differ in principle from the one presented in
Section IIC for the electrons in the high field case. The distribution
funetion is first expanded in spherieal harmoniecs. For group theoretical
reasons the scattering term in the Boltzmann equation is diagonal in

32 Davydov, B., Phys. Zeits. Sowjetunion., 8, p. 59, 1935. See also Reference 4,
pp. 349-350.



244 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1953

such a decomposition even in the presence of molecular agitation. Thence
a generalized form of (47) may be derived containing essentially the
same terms. Finally, all but the first two spherical harmonics are dropped
and two equations analogous to (63) and (64) are obtained. In fact, it
is found that equation (63) is maintained entirely. An extremely compli-
cated reasoning is required, on the other hand, to find the generalization
of (64). The result is

_3KT dfo m /1 — cos x\
fl(c) = {Eﬂf— dc + 3 H Gfu(C)}\-W/ (141)

Combining (63) and (141) we find

1 ST\ dfo | om . _
(/l—cosx\-l_ﬁ)gc_:-l_?ﬂcﬁ_o

\ ar(c) /
and hence
¢ cde
fole) = exp —mfo - (142)
3 M o
/1 — cos x\* T
\"arc) / J

This is the so-called Davydov distribution which is a generalization
containing within itself the Maxwellian disfribution as well as the high
field distribution (65).

The mean energy and the drift velocity of electrons may be calculated
from (63) and (142). They are obtainable from the literature and will
not be discussed here any further. Equipartition of the energy exists at
all field conditions.

Pagrr IV — Dirrusive MoTioN oF Ions
IVA. DIFFUSION FOR MEAN FREE TIME MODELS

It was proved in Section IC that if there are spatial inequalities in the
distribution of the charge carriers then a smoothing out process sets in
which can be deseribed as diffusion. This derivation of principle can be
supplemented for “Maxwellian” molecules by an explicit computation
of the two components of the tensor (24), that is an evaluation of the
integral (23). We shall do this by following the method of Maxwell"’
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rather than by generalizing the formal procedure of the Sections ITA,
IIB and IITA. Such a generalization would no doubt be possible, but
would increase unduly the bulk of this paper. We shall operate therefore
directly on equation (20). To get out the integral (23) we multiply the
equation vectorially with ¢ and integrate over de. This operation makes
the first term vanish completely. This is obvious from symmetry for the
components ¢ and ¢, of the multiplier ¢. For ¢, we have

afg—gzc,dc

An integration by parts brings this in the form (18) and thus makes
it equal to zero.

Temporarily, we may break the integral term of (20) into two parts,
using some artificial procedure to eliminate small angle collisions. The
first half of the integral term reads then simply

%fg(c)c dc

This is already the desired average (23). On the second half we use the
identity (108) to give it the form

- 4—11” f f M(Cg(c")ell(x) d2, dC” dc’

We now use (7) to replace ¢ by the expression
m ’ M ’ M
—M+mc +M+mc —i-M—!-m'r

Only v is affected by the integration over dQ, which we take up first.
Using ¥ as the axis of a polar coordinate system we may write

Cc

Y =Ty + e
For every value of x, ¥, has the fixed value vy’ cos x. On the other hand
the average of y.. vanishes through integration over all azimuths. Thence
we may write
1 f ' i ' M
- = C
i J o0 tusat Tirtnm

_m+ M {cos x) ¢+ M{l — cos x) ¢

M+ m M+ m
We now multiply with M (C")g(¢") and integrate over dc’ dC’. The inte--
gration of the term containing C’ obviously vanishes for two independent
reasons. The integration of the term in ¢/, finally, yields again the average

(¢ — C") (cos x)

m__ ¢
M+ m
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(23). Combining the two pieces, we find

M /1 — cosX
M+m\ T >fg(c)0dc

In this expression, the artificial exclusion of small angle scattering is no
longer necessary and can be dropped. Completing the integrating of
equation (20) we see that the right hand side gives averages over the
unperturbed velocity distribution f(c). Combining pieces, using (23)
and indices 1, 2, 3 for the z, y and z components we get

e D) = —nte ) Sk, [—M‘+ (o) — <c.-><c.>}] 143

y=1 /1 — cos x\
M\
According to (16) and (24), the square bracket in (143) is the diffusion
tensor. It has two distinet components which equal respectively

_ M4+ m (Cf) - (cx>2
Dy = M /1 — cos x\ (144)
p. = MEm () (145)

M /1 — cos x\
. —
The velocity averages entering are (120), and (121), that is the directional
components of the random part of the energy. Substituting we get finally

Do — (M + mpkT
T (X TEY
(U  20 — yO0
2 . /
T Um <3M sin? x + 4m(1l — cos x)\/1 — cos x\*
T T
D = M + m)kT
* Mm <1 — cos x\
T
4 /sin’® x\ (147)
+ az (M + M) \ T /
Mem <3M sin? x + 4m(1 — cos x)\<1 — cos x\?
T T

The diffusion coefficients have the simple property that they are ob-
tained by adding the low field and the high field limiting expressions.
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This is a consequence of the limited form of the convolution theorem
proved in Section ITTA; it probably implies also that the theorem can
be extended in some form to include the case of diffusion.

It has been mentioned in the Section ID that the Nernst-Townsend
relation (30) applies only to ions moving in a low field. We are now in a
position to examine possible extensions of it to general fields. Equations
(144), (145) and (117) suggest the form

D. 2 X mean random energy along n

mobility 6 (148)

where n stands for one of the principal directions of the diffusion tensor.
This formula contains equation (30) as a specialization to the low
field case.

Formula (148) is one of the formulas obtained in this study of ion
motion in which model parameters do not appear. It is valid (a) for all
interactions at low field and (b) for the mean free time case at all fields.
It also holds dimensionally at high field for models obeying (25); this
may be seen from (26a) and (28a). It appears a reasonable conjecture
that (148) is approximately true for any law of interaction; the question
will be taken up again in the next section.

Let us, in conclusion, write down the formulas resulting from (146)
and (147) for the two special mean free time models studied in detail
in Section IIIB: the polarization force and the isotropic model. The
necessary averages are (129), (130), (134) and (135). They yield for the
polarization force

D, = Mﬂ;f ™ 0.9057,-kT

(149)
L(M + m)*(M + 3.72m) ,

t3 M*m(M + 1.908m) @'(0.905r,)°
Di = HE 2 09050, k7 + 5 5 L m S a09057)"  (150)
and for the case of isotropic scattering
D, = MM"' m kT + 1 (Mﬂ;ﬁl@i ;‘m‘)*m) (151)
D. _Mﬂ;r kT +;ﬁ%azs (152)

Just as in the earlier study the results for _the two models do not differ
appreciably.
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IVB. LONGITUDINAL DIFFUSION FOR THE HARD SPHERE MODEL

Whenever the mean free time condition for collisions is not fulfilled,
then the computation of diffusion coefficients requires a procedure analo-
gous to that of Sectian IIE. Since this entails some numerical work the
calculation was only carried out for a case which was thought to be of
experimental interest, namely for longitudinal diffusion of ions in the
parent gas. In other words, we are extending the numerical computation
at the end of Section ITE to include longitudinal diffusion. The computa-
tion to provide us with the undetermined constant of equation (28b)
for the special case when m and M are equal; it also offers, incidentally,
a good test case for applying the method of Section IIE outside the
area for which it was designed originally.

Since the equation is only to be solved in the high field case we may
apply to (20) the reduction method of Section IIA. If we introduce also
the specialization warranted by the hard sphere model and unit mass
ratio then, in analogy to equation (40), we get the following starting
equation

ag(w) 1 f" w™ sin x dx fh '
o, + wg(w) — — e A g(w') dw

(153)
= —)\k{'lUn - ('w,)}h(W)

Here the dimensionless variable w defined by (85) has been employed
instead of c.

Equation (153) is the fundamental equation of our problem; it is an
inhomogeneous version of equation (40). We solve the equation in the
same way as we did previously, namely by decomposing g(w) into spheri-
cal harmonics and forming moments. In other words we follow step by
step the procedure of Section ITA, the only difference being the presence
of an inhomogeneous term. We shall not enumerate all these steps again.
We shall only note in passing the inhomogeneous form of (47) which is

T 4
% f % g,(w")P, (cos k) sin x dx — wg,(w)
0

v dgy_1 v = 1
2 — 1{ dw w g,_l(w)}

v+ 1 Jdge v+ 2 _
%+ 3{dw T g’*‘(w)}—

o e o)+ 2T whs) — ()|

2v+ 3
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Having introduced moments in the manner described earlier we arrive
at the inhomogeneous version of (49) or (86)

s+ v+ Dis—1,v— 1) + v+ 1)(s — »)fs — 1, » + 1}
—(2v + DI = L)fs + 1, 0] = =2 + 1)(1, 1){s, ») (154)
+us+ 1L,y =14+ 4+ DE+1,0+ 1)

Here the curly brackets {s, »} are normalized moments over g(w) defined
as follows

{s,v] = kl_h f gww'P, (cos 8) dw (155)

The equations (154) show that the quantities {s, »} are numbers, the
variable density gradient nk having been eliminated by the definition
(155). The system does permit that arbitrary amounts of the pointed
averages be added to the curly ones. This indeterminacy is removed by
the supplementary condition (18) which, in the present notation reads

(0,0} =0 (156a)

The connectivity of the equation system (154) is the same as that of
(86). Hence it will have the same properties as that earlier system. We
may, therefore, reduce it in the manner followed previously and get
inhomogeneous versions of the equations (87), (88) and (89). They read

(4,00 = =34, 1) + 3 (1, 1)3, 0) (1574)

=3 @0 = 2,0 + 100, 1)

112{3, 0} — 3{7,0} = 47, 1) — 4(1, 1)(6, 0)

b6 112
+ *5”(5: 0y + T(J: 2)

168

1344 1344 (158a)
e B+ o 3,3)

+ 220, 0e,0 - 22, 1,2
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54{2, 0} — 295 2 (6,0 + g5 7 (10,0} = —-1T (10, 1) + L (1, 1)(9, 0)

165 135 135
17
— 18, 0) — 18, 2) + (D@D

+6(6, 1) — —<6 3) — ~(1 1, 0) + 7(1, 1)(5,2) (159
+2 (4 0) + — 108 (4,2) — 288 35 &9
162 — (1, 1)3, 1) +—(1 1)(3, 3)

The pointed averages over the distribution h(w) may be found in Table
II. Substituting them we get

{0,0} =0 (156b)
(4,0} = —10.494 (157b)
112(3, 0} — 3{7,0} = 647.8 (158b)

54{2,0} — 295 2 16,0} + 5z 165 7 10,0} = —5664  (150b)

The form (90) that was assumed for ho(w) will again be taken for go(w)
with new undetermined coefficients p, g, r, s and a factor kX evident from
(153) or (155):

p(w) = kpEiGu?) + Ko@) + re ™ + sw’Ki(ju")] (160)

This is a rather poor assumption because the form (90) was adopted for
ho(w) after an extensive study of the properties of the distribution
function h(w). For g(w) we know little beyond the fact that it is some
kind of distorted p-type function. The go(w) derived from this is not
likely to resemble ho(w) very closely. Thus the choice (160) is mainly
based on ignorance and convenience; this explains the slower convergence
observed here than in (91), (93) and (95). To start with, the zero order
is completely lost because (156) yields a zero coefficient. We find in first
order, using (156) and (157)

1)
:Z([) 4.8842 T(IJ _ .5‘(1) -0

I

—4.2689
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in second order, using (156), (157) and (158)

p® = —10.542
¥ = +14.993 sP =0
r® = —4.408
in third order, using (156), (157), (158) and (159)
p® = —0.8710

@ = +1.1754
r® = 41.0140
s@ = —0.5809

The longitudinal diffusion coefficient results from these numbers by the
use of (23), (24) and (160). With the notation (155) the formula becomes

D, = —a™\¥{1, 1} (161)
The formula (154) yielding {1, 1} from go(w) iss = 2, » = 0
{1, 1} = £{3,0} + 3(3, 1) — ¥(1, 1)(2, 0) (162a)
or numerically from the Table II
{1,1} = 1{3,0} + 0.6433 (162b)
The result is
(1,1} = —0.3695 (163a)
{1, 1}® = —0.2075 (163b)
(1,1} = —0.2198 (163c)

The numbers do not extrapolate too reliably but one would guess that
(1,1} = —022
is essentially correct. Hence we have

Dy, = 0.22¢"3H* (164)

In order to gain an appreciation of the value obtained it is worthwhile
to compare it with the value that would have been predicted from the
generalized Nernst-Townsend relation (148). The mobility concept is
ambiguous for all but the cases discussed then. It would seem that the
appropriate concept here is the differential mobility because comparison
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is made between a small density gradient and a small change in the
applied field. Thus we would interpret (148) to mean

Dy~ % o) — (e (1650)

which, with (85), (92) and (96), becomes
Dy & 0.26a"*\"? (165h)
The error of formula (165) is thus 18 per cent, when compared to (164).

Partr V — ConcLupiNG OBSERVATIONS

The present article is supposed to contain the essentials of a kinetic
theory of charged particles moving through a gas in the presence of an
intermediate or high electric field. An effort was made to make the theory
general, yet many irksome restrictions will become apparent to those
who will try to apply it to their particular problem. Especially those who
have in mind application to electrons will find the article unsatisfactory.
It is true that many sections leave the masses variable; however, the
assumption of elastic collisions, which is made throughout, is almost
fatal to all but the most elementary applications. Thus most of the
material is slanted for ions. Within this domain, numerous awkward
restrictions are still found here. The most important ones are pre-
sumably the restriction to D.C. conditions, the assumption of “low”
ion density, and the omission of all magnetic effects. It is my general
impression, which I gained from the convolution theorem Section IITA
and which is confirmed by a recent publication®” that much can be done
to remove these three restrictions provided the mean free time assump-
tion is made for collisions. T'o many the adoption of the mean free time
condition will in itself appear an awkward restriction. In a rigorous sense
this is true, and calculations are made in this article for the more ap-
propriate hard sphere model when quantitative comparison with experi-
ment is contemplated (equations (100) and (164)). Indications are even
given for a treatment which dispenses altogether with the use of models
(equation (103)). However, for rapid advance and easy handling, the
mean free time assumption does appear essential. It is therefore im-
portant to point out that in a wider semiquantitative sense, the use of
this model is no barrier to application. In other words, there is in the
mean free time formulas information which suggests a wider validity.
This is particularly true for equations which do not contain model
parameters, such as (55), (56), (122) and (148). Even formulas which
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do contain the mean free time yield to judicious treatment. For example,
we have the hard sphere formula (100) for the drift velocity of an ion.
This formula happens to be limited to the high field case and mass ratio
unity. On the other hand we have formula (136) which holds for all fields
and all mass ratios, but assumes constant mean free time. We now adopt
this formula as a general guess for the hard sphere model, interpreting
T as previously as the mean free time between collisions; this quantity
is now no longer a constant, but should be taken as

A
"= Ve + @ (166)

The denominator is the root mean square relative velocity which is
familiar from other applications. The interpretation (166) yields a tenta-
tive formula for the drift for all mass ratios and for all fields. Specializing
to the high field case, we may neglect (C*) in (166) and then substitute
for {¢*) from (55). This yields the high field formula

(M + m)ll"imlﬂ

This is indeed a very successful formula. For ions in the parent gas it
differs from (100) by only 4 per cent. For electrons it checks the result
of Druyvesteyn® to within 12 per cent. Finally, for heavy ions in a light
gas, we find exact agreement with equation (71). As a second specializa-
tion we may apply (166) to the low field case. We must then set

(") + (C* = 3kT (?1; + %)

(e:) = (an)" (167)

and get from (136) and (166)
1 /1 1\Y? eBE\

All dimensional factors in this formula are correct. Numerically (168)
is somewhat inferior to (167); for the factor differs from the correct one®
by 20 per cent. Nevertheless, the combination of (136) and (166) gives
results which are semiquantitatively correct in all relevant limiting cases.
This makes it a reliable interpolation formula for intermediate field con-
ditions; for this case (¢*) would have to be substituted from (122) and
the resultant quadratic equation solved for {(c.).

From the examples given we may conclude that the mean free time
formulas contain in essence information applicable to other types of
elastic scattering.

3 See Reference 2, page 40, second equation.



254 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1953

Part VI — ACKNOWLEDGEMENTS

This article is the outcome of years of fruitful cooperation with the
gas discharge group of Bell Telephone Laboratories, and Dr. J. A. Horn-
beck in particular. At one stage of the work I enjoyed the stimulation of
Dr. R. W. Hamming who is responsible for all the details of the Monte
Carlo calculation. Further acknowledgements are due to Miss C. L.
Froelich who carried out the computation of the number in (130), and
Miss M. Murray who carried a good share of the burden in the prepara-
tion of the manuseript. Finally, I express my thanks to Dr. K. G. McKay
for his critical perusal of the manuscript.



