Working Curves for Delayed Exponential
Calls Served in Random Order

By ROGER 1. WILKINSON

(Manuseript received December 19, 1952)

Working curves of delays for waiting calls served at random are given
for a considerable range of loads and group sizes. Exponential holding time
calls are assumed originating at random, and served by a simple group
of paths. Resulls of a number of throwdown tests are given to illustrate
the effect on call delays of several modes of service, and particularly of
service on a random basis. For random service, these results verify the theory
recently developed by J. Riordan; perhaps more interestingly they show
the effects on delays of certain blends of queued and random service which
approximate methods of handling delayed calls in practical use (such as
gating and limited storage circuits). The use of random and queved delay
theory is tllustrated by a number of examples. To remind the reader that
these results are not limited to telephony, department store and vehicular
traflic problems are included.

A theory for predicting the delays which telephone calls (or other
corresponding types of traffic such as vehicular, aireraft, people waiting
in line, ete.) having exponentially distributed holding times would en-
counter when the delayed calls are served in a random order was pub-
lished in a recent issue of this JournaL* by John Riordan. Mr Riordan’s
mathematical analysis involved a determination of the first several
moments of the delay distributions. He then devised a method of com-
bining elementary exponential eurves in such a way as to satisfy the
moments previously calculated.

Since a limited number of moments were used in the above determina-
tions the curves derived are approximate only, but at the same time they
are believed to be good approximations. The critical cases are those of
paths carrying very heavy loads, in the occupancy ranges of a = 0.80
or higher.

* Bell System Technical Journal, January, 1953, pages 100-119.
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Fig. 1 — Distribution of delays. Theory versus throwdown, delayed ealls han-
dled at random, ¢ = 2 paths, @ = 0.90, 3000 throwdown ealls.

THROWDOWN CHECKS

Before calculating a field of curves for working purposes it was thought
desirable to make at least a modest throwdown test, or traffic simulation,
at these high occupancies to observe the agreement of theoretical delays
with those determined by a trial in which the theoretical assumptions
would be closely followed. This has now been performed at two trunk
group sizes, ¢ = 2 paths, loaded by approximately a = 1.8 erlangs or
an occupancy of & = 0.90, and ¢ = 10 paths at an occupancy of ap-
proximately & = 0.80.

For these throwdowns, random origination times were obtained
through use of Tippett’s Random Numbers. An hour was visualized as
being composed of 100,000 (or, as in one case, 1 million) consecutive dis-
crete intervals, numbered serially. Choosing 5 (or 6) digit random num-
bers then provided the start times of the subscribers’ bids for service.

Likewise holding times were chosen by random numbers from an
exponential universe by dividing it into 100 equal probability segments
and assigning each a number from 00 to 99. A central value of holding
time was chosen to represent the range of cases within each segment.
The last segment, number 99, on the long tail was further subdivided
into 100 parts in order to give more definition in the long call lengths
which are believed to be eritical.
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A comparison of the proportion of traffic expected to suffer delays
beyond various multiples of the average holding time as given by Rior-
dan’s theory for delayed calls served in random order, and by the throw-
down results, is given in Figs. 1 and 2. As discussed below, the cases
studied are considered to give satisfactory assurance as to the adequacy
of the approximations involved in the theory.

The two trunk case based on 3000 calls submitted shows fairly good
agreement with the theoretical distribution out to delays as large as 50
multiples of an average holding time which includes more than 99.5
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per cent of all the calls delayed. The 10 trunk case based on 1500 calls
at 0.8 occupancy also shows good agreement to 99.5 per cent of the calls
delayed.

In making throwdown tests of this sort, the criterion for deciding when
one has proceeded long enough is rather vague. The usual practice is to
summarize the delays at regular intervals and observe at what point
it seems likely that making additional tests would not change the results
by a sensible amount. For the ¢ = 2 trunk case, six runs of 500 calls
each produced the several very different broken line curves of Fig. 3
shown superposed on the theoretical delay distribution for a = 0.90.
Clearly no one of these by itself could be given much weight.

Consecutive runs were paired to form three runs of 1000 calls each,
as shown in Fig. 4. As one would expect, their spreads have narrowed
appreciably. Combining these three runs yielded the dotted curve of
Fig. 1, which, of course, has a correspondingly smaller likelihood of
sampling error in it. On the basis of such a succession of narrowing
spreads, one can, with some feeling of assurance, estimate within what
narrow band about the observed curve the true unknown curve (ap-
proachable by many more tests) must lie.

On Figs. 1 and 2 the shapes and positioning of the total throwdown
and theoretical curves seldom differ more than 20 per cent on the
probability scale down to the P = 0.005 probability level. The dis-
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parities measured along the delay axis in the higher ranges of the variable,
are, of course, considerably less. A comparison of the theoretical and
observed proportions of calls delayed, and the average delays on all calls
is shown in the following table:

Average Delay on All Calls

[ .
[ Proportion of Calls in Multiples of Average

Tr“é'il';f;o“p Occupancy a !.}Y.?l'ng:(ﬂ;‘,il;‘ | claye Hold Time
Theory Throwdown Theory Throwdown
2 0.9 3000 0.853 0.855 4.30 4.71
10 0.8 1500 0.409 0.444 0.205 0.254

These differences between theory and observation are well within the
variations which would be expected with the lengths of throwdown
runs made.

Further reassurance that the traffic submitted in the two throwdown
tests originated in a manner reasonably similar to that assumed in the
theory was obtained by making “switch counts” at regular intervals
during the throwdowns from which frequency distributions, f(z), of
the number x of calls simultaneously present were constructed. These
are shown in Figs. 5 and 6 for the two throwdown cases. The solid
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line spikes correspond to observations when all calls in the system were
being served, that is # < ¢. The dotted spikes show those proportions of
observations when one or more calls were waiting, that is > ¢. The
theoretical values of f(z) are indicated by the smooth curves where
they pass over discrete values of z. The theory and observations are
seen to be in quite good agreement.

Referring again to the theoretical delays (and the throwdown checks)
on Figs. 1 and 2, very much larger delays can obviously be obtained
when delayed calls are handled at random than when they are handled
in a strict first-come-first-served, or queued, order, the latter distri-
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butions being shown by the straight lines which start at nearly the same
ordinates at delay 0 as the random handling curves, and cut down across
the lower part of the charts.* Although fewer very short delays occur

* Delay curves for exponentially distrubuted holding time calls in systems
where delayed calls are handled in order of arrival, are given by E. C. Molina in
<Application of the Theory of Probability to Telephone Trunking Problems,”
Bell System Technical Journal, Vol. 6, p. 461, July, 1927. They are calculated from
the Erlang equation

ace® ¢
¢!l c—a
P(>0) = P(>0)eot = ——— gl ()
= ! ¢l e—a

where the delay ¢ is expressed in multiples of the average holding time. Values of
P(>0) = C(c,a) can be read approximately from Figure 21.
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with this method of handling than when a random selection of the wait-
ing calls is followed, the very long delays are markedly reduced, and on
this account the queueing procedure is generally preferred. These effects
are particularly evident at the higher occupancies. As illustrated in
Tig. 1, the “queued” and “random’ delay curves at an occupancy of
“a = 0.4 show little difference down to the P = 0.001 delay level.

IMPERFECT QUEUEING

Interest has often centered in questions as to what form the delay
curves might take in a system in which queueing of the calls is main-
tained to a limited extent, and beyond which the record of order of
arrival would be lost. Such an instance might occur with a team of toll
recording operators who were able to keep well in mind the order of
arrival of signals up to a certain number waiting, whereupon they would
lose track and not regain this ability until the number of waiting calls
had again dropped below some small number. Other situations with
actual or equivalent limited delay storage arrangements can readily be
imagined.

‘To study a case of limited queueing, a short subsidiary throwdown was
next run on the ¢ = 2 case, using the 1000 calls of Runs 1 and 2 of Figs.
3 and 4 (which comprised the 1000-call sequence most closely approach-
ing the theoretical distribution). Three rules for delayed call handling
were tested:

(1) Delayed calls are served in random order.

(2) Delayed calls are queued (served in order of arrival).

(3) Delayed calls are queued until more than w are waiting at which
time their arrival order is lost and they are served at random. When the
number waiting again drops below w, newly arriving calls are queued
behind those randomized calls still waiting. Note that case 1 corresponds
tow = 0, and case 2 to w = =.

The comparative results are shown on Fig. 7, with w given successively
values of 0, 8, 20, 25, 30 and «. The w = 0 curve, of course, is taken
directly from Fig. 4 for Runs 1 and 2 combined. Although this curve
does not agree particularly well with theory (Curve A), its movement
with changes in w is nevertheless instructive. As seen, queueing as far
as w = 8 waiting calls produced practically no improvement in the
delay distributions. (Perhaps with the occurrence of such large numbers
of waiting calls, reaching a maximum of 35, one could not expect queueing
of so few as 8 to have much effect.) The next selection of w = 20, how-
ever, still showed only a relatively slight improvement, particularly in
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the long delays occurring on a few of the more unfortunate calls. Even
choosing w = 25 moved the delay curve hardly more than half way from
the completely random to the fully queued curve of w = . The w = 30
selection shows the accomplishment of nearly fully queued results, the
latter being given by curve C (w = ). Thus one would apparently
find little value in instructing a team of two operators working at an
occupancy of 90 per cent to try to remember the order of arrival of
waiting calls unless they could keep track of an unexpectedly large
number.

Electrical storing circuits have long been used to assist the ordering
of waiting calls. They have the especial advantage of not becoming
confused and losing the order of the calls which have engaged them up to
the limit of their storage capacity. In the Bell System two methods of
approaching true queueing are in common use. In one method, such as
found, for instance, in the No. 3 Information Desk, a number of storage
circuits are provided so that as a waiting call is served from the number
one storage position, all the others waiting on storage circuits drop down
one position. If s such circuits are provided, and more than s calls have
been waiting, one of the excess will then be chosen at random to oc-
cupy the newly vacated sth storage circuit.

The second method used widely in both local and toll systems is
known as gating. In its simplest form a gate opens into a “corral”
where the operators or other serviece media are located. So long as calls
simultaneously demanding service do not exceed the number of operators
(trunks, markers, etc.) the gate is ineffective. As soon as one call has to
wait, the gate closes until that call obtains service, and then admits to
the corral all calls which have accumulated on the outside. The gate
again closes until all calls within the corral are served; and so on. Thus
the calls are admitted in bunches to the corral. Between bunches there
is striet queueing but within bunches when they get inside the gate the
calls are substantially served at random. As long as the bunches are
small the effect of true queueing is approached. In any event a strong
safeguard against excessively long delays on a few unlucky calls is in-
troduced. In the Bell System, a variety of gating plans are found such as
double gates, gates with additional preferences for certain types of calls,
and schemes for placing calls outside the gate again if they cannot be
served immediately. Each of these must be studied with its own peculiar
characteristics in mind.

To illustrate the effectiveness of the storage circuit type of automatic
queueing arrangement, the 1000 calls of Runs 1 and 2, for the two path
case, were processed by a throwdown through a two operator, 20 storage
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Fig. 8 — Delayed traffic served in random order, exponential holding times,
c=1.

circuit system. The resultant delay distribution is shown as Curve B
on Fig. 7. (It is appreciated that this hardly represents a tolerable
normal operating situation, but rather illustrates what the performance
might be under extremely heavy traffic conditions.) The results are very
close to those obtained with perfect queueing (Curve C) and show in
striking fashion the gains in service to be made in certain delay situations
by providing a limited storage apparatus with a memory not subject
to confusion during moments of heavy overload.

When the 1000 calls of Runs 1 and 2 are submitted to the 2 paths
through a simple gate in order to produce approximate queueing, the
resultant delays are shown by Curve D on Fig. 7. Large improvements
again occur in reducing the very long delays found with random handling.
In fact by use of this simple (and usually relatively inexpensive) gating
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Fig. 9 — Delayed traffic served in random order, exponential holding times,
c =2

scheme, delay results are obtained nearly as good as those realized by
the provision of 20 storage circuits (Curve B).

WORKING CURVES

The adequacy of the Riordan theory when delayed exponential calls
are served at random is believed to have been established and that it
may be used with confidence to solve those practical problems where
the underlying assumptions are well satisfied.

For working purposes, curves showing distributions of delays expected
for occupancies up to « = 0.90 and for group sizes of ¢ = 1, 2, 3, 4, 5,
6, 8, 10, 20, 50 and 100, are shown in Figs. 8 to 18. These are plotted in
the customary fashion with delay in multiples of average holding time
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Fig. 10 — Delayed traffic served in random order, exponential holding times,
c=3.

as abscissa, and P(>1{/h), the probability of a random call meeting a
delay greater than ¢/h, as ordinate.

Estimates of average delays, ¢ (which are the same for queued and
random service), are also commonly desired, and these are shown in
Fig. 19. They are calculated from the equation

t/h = P(>0)/(c — a) (2)

If one wishes instead the average delay, {, on calls delayed, it may be
obtained from

i/h 1
P(>0) “c—a (3)

ih =
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Fig. 11 — Delayed traffic served in random order, exponential holding times,
c =4

ILLUSTRATIVE EXAMPLES
Ezxample No. 1

A 20-trunk toll route carrying exponentially distributed holding time
calls with average length of 5 minutes, is loaded with 16.0 erlangs of traf-
fic, and any ealls delayed will be served in random order. What per cent
of all calls will be delayed? What per cent will be delayed more than 5
minutes? More than 10 minutes?

16
Solution. Enter Fig. 16 (the ¢ = 20 chart) and read on the a = 20 =

0.80 occupancy curve. At {/h = 0, the per cent of all calls delayed is
found to be 26 per cent. At {/h = 1, the calls having delays exceeding 1
holding time, or 5 minutes, are 1.2 per cent, and at ¢{/h = 2, the calls
with delays exceeding 10 minutes are 0.2 per cent.
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c 5.

Example No. 2

How many operators will be required at a department store telephone
order desk to handle 225 calls per hour with an average delay not
longer than half a minute, and with no more than 20 per cent of the
calls delayed over 1 minute? Assume the average operator work time
per call is 100 seconds, and waiting calls are handled in indiscriminate
order.

Solution. The load to be carried is @ = (225)(100)/3600 = 6.25 erlangs.
The average delay, 1, is not to exceed 30/100 = 0.3 holding time. Read-
ing on Fig. 19, opposite an ordinate of 0.3 we select several trial values
of trunks (operators) e, versus occupancy a, and form Table I, cal-
culating the last column from the first two:



DELAYED EXPONENTIAL CALLS SERVED IN RANDOM ORDER 375

1.0 1
aéf c=6
61\
A1
NN
N
oAV
PR &
A s PN
- ~
A (1}
N \
6 =2
N \ \\ N
=
2 oo g \ N \
< 8 1 1\ A AY ‘\q.
o & A N\ \\0
e \ AN ~29,
o LA \ N\, N
1] 1\ \‘ \‘ \‘
£ \ AN \_\
> \[Y AN -
£ \ N Ne, Yy
0.00! T N N ——
8 iy Y AN
s flaf \ e N
e e —X
olel\2
G Y N
2
AN ~
0.0001 || \ \
0 2.5 50 7.5 10.0 12.5 15.0 7.5 200 225 250

t/h = DELAY IN MULTIPLES OF AVERAGE HOLDING TIME

Fig. 13 — Delayed traffic served in random order, exponential holding times,
= 6.

To carry the 6.25 erlangs of traffic and meet the average delay require-
ment we see that 8 operators will be needed. Will 8 operators also fulfill
the no more than 20 per cent delay over 1 minute requirement? Enter
Fig. 14 (the ¢ = 8 chart) with an occupancy of &« = 6.25/8 = 0.78. The
per cent of calls exceeding a delay of 60/100 = 0.6 holding time is about
12 per cent. A provision of 8 operators satisfies both requirements.

TasLE I
¢ -3 4 = ca
7 0.78 5.46
8 0.81 6.48
9 0.82 7.38
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Example No. 3

Suppose in Example 2, the second requirement had been that no more
than one of 1000 customers should be required to wait over 3 minutes.
Would 8 operators then suffice?

Solution. Reading on Fig. 14, with & = 0.78 and ¢/h = 180/100 = 1.8,
P(>t/k) = 0.027. Thus 27 in 1000 calls would be expected to experience
delays over 3 minutes, and therefore more than 8 operators will be
required. Consulting the ¢ = 10 curves of Fig. 15, we find that with
a = 0.625, and {/h = 1.8, P(>3 minutes delay) = 0.0012 which closely
meets the one in a thousand requirement. Ten operators would then be
needed; and this would, of course, (from Fig. 19) reduce the average
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Fig. 15 — Delayed traffic served in random order, exponential holding times,
¢ = 10,

delay on all ealls to 0.035 (100) = 3.5 seconds, an improvement in this
characteristic of 7 to 1 over the 8 operator service.*

Example No. 4

How much improvement in the delay service would be obtained in
Examples 2 and 3 by purchasing storing or gating equipment which
would substantially insure calls being handled in order of arrival?

Solution. With 8 operators working at an occupancy of 0.78, the pro-

* Had some number of operators been required other than those for which
working charts, Figs. 8 to 18, are supplied, intermediate values could be obtained
by graphical interpolation, or better still by employing the basic Riordan chart,
Fig. 20, combined with P(>0) found on Fig. 21, to obtain delay versus load for
any desired number of paths or facilities. This latter process is described in the
Appendix.
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Fig. 16 — Delayed traffic served in random order, exponential holding times,
¢ = 20.

portion of calls delayed is found to be P(>0) = 0.41 (Fig. 14). The proba-
bilities of exceeding delays of ¢{/h = 0.6 and 1.8 holding times are cal-
culated for calls served in order of arrival by equation (1), in the following

table:

t (Min.) t/h Queued P(>0) = P(>0)e~{¢~a)t/h| Random Handling
1 0.6 0.143 0.12
3 1.8 0.019 0.027

Comparing the queued and random handling of delayed calls one finds
the perhaps unexpected result that with random handling some 2 per
cent fewer calls are delayed longer than 1 minute than if perfect queueing
had been present. This is due to the characteristic shapes of the two types
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Fig. 17 — Delayed traffic served in random order, exponential holding times,
¢ = b0.

of delay distributions, random handling producing more quite short
and very long delays than does queueing. When a criterion of service is
set at a relatively short delay, one may often expect it to be met more
easily by not providing storing or gating circuits. On the other hand a
criterion of service based on relatively long delays can nearly always be
more readily met by the use of devices insuring partial or total queueing.
In the example above the per cent of calls delayed longer than 3 minutes
would be cut by a third through the use of queueing devices.

Ezxample No. 5

Automobiles are parked in a large area adjacent to a State Fair
grounds. There is one main exit through which two cars can pass at the
same time. Upon leaving, drivers pay according to their parking time;
and it requires, on the average, 20 seconds to complete the payment. If
cars wish to leave during the afternoon busy period at a rate of 5.4 per
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minute, what per cent of the cars will be delayed more than 5 minutes?
What will be the average delay for all cars?

Solution. Assume there is no traffic supervision and cars converge on
the gate from many directions. Service in random order (or worse)
among those delayed might then be approximated. Also the distribution
of times for calculating and collecting the charge might be roughly
exponential. We have then,

¢ = 2 paths
a = (5.4)(20)/(60)(2) = 0.90
_5(60) _
t/h = 30 = 15

Enter Fig. 9 at {/h = 15, read to the a = 0.90 curve, opposite which find
P = 0.069. Hence 7 per cent of the cars would be expected to have to
wait 5 minutes or more. To obtain the average delay for all cars, enter
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Fig. 19 with the abscissa of 2 paths, read to the @ = 0.90 curve and find
the average delay = 4.25 average holding times = 85 seconds. Or,
one may obtain the same answer by substituting in equation (2),

i =P(>0)h/(c —a) = (0.85)(20)/(2 — 1.80) = 85 seconds.

Example No. 6

Suppose in Example 5, an efficient corps of police had been directing
traffic toward the exit so that good queueing was maintained. What per
cent of the cars would then be delayed more than 5 minutes?

Solution. We may now refer to other published delay curves for queued
operation*, or, more generally, calculate the well known equation (1).
In the present case we can read the answer from the “queued” curve of
Fig. 1 as 4.2 per cent. Thus serving customers in the order of arrival
nearly halves the occurrence of very long delays. (Note that the average
delay for all cars remains unchanged at 85 seconds.) If a partial queueing
were maintained the improvement would be intermediate, perhaps com-
parable with one of the “limited queueing” distributions shown on
Fig. 7.

The author is indebted to Miss C. A. Lennon for constructing the
working delay curves, and to Misses C. J. Durnan and J. C. McNulta
for performing the throwdown checks.

APPENDIX

CALCULATION OF DELAY VALUES NOT FOUND ON THE WORKING CURVES
OF FIGS. 8—18, FOR DELAYED EXPONENTIAL CALLS SERVED IN RANDOM

ORDER

A master chart, Fig. 20, reproduced from Riordanf, gives in condensed
form the proportion F(u) of delayed calls delayed longer than u, where
the delay is now expressed in multiples of the h/c (v = ct/h), and

¢ = number of paths (trunks, operators, etc.) provided
h = average holding time
t = delay time

To obtain the probability P(>t/h) of any call being delayed longer than

* F. C. Molina, Ibid.
t Loe. cit.
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t/h, we have
P(>t/h) = P(>0) F(u) = C(c, a) F(u) (4)

Values of P(>0) = C(e, a) are given for a wide range of a and ¢ in Fig.
21. The application of equation (4) is quite simple.

Tllustration 1. Suppose it is desired to obtain the probability of a call
being delayed more than 3 holding times on a 10 trunk group without
storage or gating circuits, and which carries a = 9 erlangs. Here {/h =
3.0,¢c = 10, = 0.9. Then © = ¢t/h = 30, and reading on Fig. 20 with
this value of w, and « = 0.9, we find F(u) = 0.080. Fig. 21 provides
C(c, a) = 0.67 for a = 9 and ¢ = 10. Substituting in equation (4),

P(>3 hold times) = 0.67 (0.080) = 0.053,

which checks the value read directly from the ¢ = 10 curves of Fig. 15.

Tlustration 2. With an occupancy of @ = 0.65 on 15 paths what is the
probability of meeting a delay greater than one holding time when
delayed calls are served in random order? Calculate v = c¢t/h = 15.
Enter with this abscissa on Fig. 20, and interpolating between the
a = 0.6 and 0.7 curves, read F'(u) = 0.022. Fig. 21 shows for e = 0.65(15)
= 075 and ¢ = 15, C(e, ) = 0.085. Hence

P(>1 hold time) = 0.085(0.022) = 0.0019.



