Magnetic Resonance

PART II — MAGNETIC RESONANCE OF
ELECTRONS

By KARL K. DARROW
(Manuseript received December 24, 1952)

Magnetic resonance of electrons is the analogue of magnetic resonance of
nuclet, treated in the first part of this article. Though the analogy 1s close
and the fundamental laws are identical, the two topics are remarkably dif-
ferent in detail. Though electrons are the commonest of particles, they display
magnetic resonance only in somewhat exceptional cases. In many free atoms
and most solid and liquid substances, magnetic resonance is suppressed by
what s known as the “anti-parallel coupling” of electrons two by two. The
exceptional cases are those of certain free atoms, ferromagnetic substances,
and a resiricled class of strongly paramagnetic substances; the resonance
has also been observed very lately for the conduction electrons in melals. In
the cases in which it does occur, resonance s likely to occur at a frequency
or frequencies very different from that which the elementary theory predicts.
This is sometimes because of the orbital motions of the electrons, oftener
mainly because of the electric and magnetic fields existing in solids, and the
deviations of the observed cases from the ideal case shed light upon these
flelds.

The subject of these pages is the magnetic resonance of electrons
— “glectron resonance’ for short. Electrons being everywhere, one might
expect it to be found in every substance; but for a fundamental reason
it is a rare phenomenon, and this magnifies its interest. Those who search
the literature for it under this its proper name will seldom find it, for
it is frequently called ‘“paramagnetic resonance” or, in appropriate
cases, ‘ferromagnetic resonance.” These are lengthy names which tend
to veil the similarities between electron resonance and nuclear resonance,
which latter was the theme of Part I of this article (in the January issue
of this Jour~aL). I will introduce electron resonance by making use of
all these similarities.

Magnetic resonance in general is due directly to the magnetism of
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subatomic particles: nuclei and electrons. These, apart from the nuclei
that are non-magnetic, may be visualized as minuscule barmagnets.
The laws of resonance are determined by the fact that in a steady mag-
netic field, the magnetic moments of these particles may not point in
any and every direction: instead, they are constrained to a finite and
small number of what are called “permitted orientations.” To each of
these corresponds a special value of the energy of the little magnet in
the field: thus the energy also is constrained to a finite and small num-
ber of “permitted’’ values. These are often called “Zeeman levels” or
just “levels”’; and the word ‘““level” should be well known to those who
are going to delve into the literature.
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Fig. 1. — Scheme of the apparatus for observing magnetic resonance. The high-
frequency circuits are omitted. The arrows within the sample may be taken as
portraying the magnetic moments of either protons or electrons: their orientations
are as given by the old quantum-theory.

Consider two orientations or levels of different energy-values. It will
take work to turn the tiny magnet from the one of lesser energy to the one
of greater energy. Magnetic resonance — and now I ought perhaps to
speak specifically of magnetic resonance absorption — is such a turning.
The agent of the turning and the source of the work is an alternating or
oscillating magnetic field. The simplest cases are those in which the
particle in question has only two permitted orientations. Many nuclei,
among them the proton, belong to this class, and the electron belongs
to it also. It is the analogy between proton and electron which I will
develop.

Fig. 1 of this part is also Fig. 1 of Part I. The central rectangle depicts
the sample, which for the study of proton resonance must be hydrogen
or a compound thereof. The big arrow on the left represents a big mag-
netic field, of the order of several thousand gauss, which pervades the
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sample; it is vertical and its strength is denoted by #. This is the field
with respect to which the protons are oriented. These magnetic particles
are represented by small arrows within the rectangle, the point of each
arrow corresponding to the north pole of the corresponding proton.
Slightly more than half of them are pointed in what I call the “up”
orientation, which is that of lesser energy. The rest are pointed in the
“down’ orientation, that of greater energy. Magnetic resonance absorp-
tion of protons is the turning of “up”’ protons into the “down” direction.

The field which does the turning is an oscillating magnetic field with
frequency (denoted by ») in the radio-frequency range. It is horizontal,
thus at right angles to the big field. It is produced either in a solenoid
(the usual method for nuclear resonance) or in a resonant cavity (the
usual scheme for electronic resonance) which encloses the sample but
in Fig. 1 is left to the imagination of the reader.

Magnetic resonance occurs when the quantum-energy hv of the oscil-
lating field is equal to the work required to turn the proton from the up
orientation to the down one:

hv = work of turning (1)

i standing for Planck’s constant. In Part I it was shown that the “work
of turning” or energy-difference between the two orientations is equal
to 2u,H : here u, stands for the magnetic moment of the proton, soon to
be more carefully defined. Thus:

hv = 2u,H (2)

When » and H are related by this equation one finds prolon resonance
absorption, which manifests itself by a splendid peak in the curve of
absorption versus H for constant » or the curve of absorption versus »
for constant H. For the frequency 42.6 megacycles the peak is found at
H = 10,000 gauss.

To arrive at the basic formula for electron resonance we simply take
(2) and substitute into it u,, the magnetic moment of the electron, for

Hp *
hy = 2u.H (3)

The magnetic moment of the electron is about 660 times that of the
proton. Therefore if one works with such a field strength as brings the
proton resonance into the radio frequency range, the electron resonance
is to be sought in the microwave range. One might think that now I
‘have said all that there is to be said about electron resonance; but this is
only the beginning.
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Much was said in Part I about the magnetic resonance of nuclei
having more than two permitted orientations. We may seem to be wan-
dering off the course if we revert to these, but this case is very pertinent.

There are nuclei with three, four, . . . up to ten or maybe more allowed
orientations. One would expect them to display a multitude of peaks;
but there is never more than one. This is for two reasons, which I give
after introducing the symbol (27 + 1) for the number of orientations.
First, it is impossible to turn a nucleus from any orientation to any
other except the nearest to the original one. This reduces the number of
possible peaks to one fewer than the number of orientations. But second,
all of these 27 possible peaks are of the same frequency for given H, or
at the same field strength for given », so that they all coalesce into a
single peak.

The formula for this apparent single peak which is strictly 2/ coinci-
dent peaks has been derived in Part I, and this is it:

h = (u/I)H (4)

Now it is necessary to interpret / and p; and the interpretation is dif-
ferent according as one uses the old quantum theory or the new quantum
mechanics. The old quantum theory deals more simply with these prob-
lems, and would be preferable if this field could be isolated from all the
rest of physics; but the new quantum mechanies is worth the extra
trouble that it causes.

In the old quantum theory, there are two definitions of / that reduce
to the same thing. First, 7 is the angular momentum of the nucleus in
terms of the unit h/27; that is to say, the angular momentum of the
nucleus is 7h/2wx. Second, [h/27r is the maximum possible projection,
upon the field-direction, of the angular momentum of the nucleus. This
is because, among all of the allowed orientations of the nucleus, the
one which is most nearly parallel to the field-direction is exactly parallel
to the field-direction. So it was shown in Fig. 1.

In the new quantum mechanics, the second of these definitions re-
mains valid and the first does not. This is because the orientation which
is most nearly parallel to the field-direction is not exactly parallel
thereto. It is inclined, in fact, to the field-direction by the angle
arc cos I/A/I(I + I ), and the angular momentum of the nucleus is

VI + 1)(h/2m).

Thus there is one definition of I which is valid under both theories,
and that is, that I is the maximum possible projection upon the field-
direction, of the angular momentum of the nucleus in terms of the unit
h/2w. Similarly it is always correct to say that p is the maximum pos-
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sible projection upon the field-direction, of the magnetic moment of
the nucleus. But since these phrases are intolerably long, one avoids
them by saying that I is the spin and u the magnetic moment of the
nucleus. In this sense, which to the users of quantum mechanics is a
distorted one, the words “magnetic moment” shall be used hereafter.

The spin of the proton is 1/2, and so is the spin of the electron. Equa-
tion (4) degenerates into (3) for the electron and into (2) for the proton.
These we had already; what was then the point of introducing here the
general case?

Well, the point is that two, or three, or several electrons may col-
laborate in what is known as “parallel coupling,” though in the new
quantum theory it is not quite parallel. They behave as though. they
formed a rigid unit, of which the spin is the sum of their spins and the
magnetic moment is the sum of their magnetic moments. Thus if there
are N of these electrons welded together (metaphorically speaking) it
comes to the same as though there were a single particle of spin N times
1/2 and magnetic moment N times p,. On putting these values of I and
u into equation (4) we find ourselves right back at equation (3), which
is that for the individual electron. There is a single peak of magnetic
resonance composed of N coinciding peaks, and it is just where the
peak for a single electron would be. Thus in the ideal case, N electrons
coupled parallel behave just like one electron by itself.

Such a conclusion may seem hardly worth the trouble of arriving at
it; but note the stipulation “in the ideal case.” This refers to what has
been tacitly but obviously assumed till now, to wit, that no force acts
upon the electronic magnet except the big field H. But there are also
what T will call “local forces,” forces due to fields within the sample
arising from other particles in the sample. These forces may, and they
often do, separate the N peaks which in the ideal case coincide. Often
one finds a flock of resonance lines where, or near where, there should be
only one; and if this is the explanation (which is not always the case,
for there are other causes of “splitting’’) then the number of lines in the
flock is the number of electrons coupled parallel.

This illustrates one of the great contrasts between the electronic
resonance and the nuclear. Nuclear resonance is a “textbook phenom-
enon.” The ideal case and the actual case are close together; the devia-
tions due to the local fields are neither trivial nor useless, but they are
not large enough to distort the simple laws, and it is quite permissible
to leave them out of a first presentation. But the phenomenon of elec-
tronic resonance is liable to be distorted almost beyond recognition; and
if one were to present only the cases in which the local fields are negli-
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gible in effect, one’s story would be relatively short and it would be
grossly inadequate. But here the physicist, true to the tradition of his
science, turns hindrance into help, and analyzes the distortions for the
knowledge they are capable of giving about the fields prevailing in the
sample. Thus whereas nuclear resonance is largely used for getting light
on nuclei, the electronic resonance is largely studied for the information
that it yields about the solid state.

Another of the great contrasts is due to what are called the ‘“anti-
parallel couplings” between electrons, Generally speaking (and this
means: conceding an occasional exception) any type of nucleus of non-
zero magnetic moment will display a detectable resonance if there are
enough of them in the sample. Were this so with the electron, every
substance whatsoever would display electron resonance. Experience
shows that electron resonance is rare, usually conspicuous by its absence.

This is because electrons may, and not only may but usually do,
pair off with one another in such a manner that the spin of such an
“anti-parallel” pair is zero and so is the magnetic moment. There is no
resonance for such a pair; and the customary absence of electron reso-
nance signifies that in most solids, all the electrons are joined two by
two into antiparallel pairs (this was known before magnetic resonance
was first produced). I will call such electrons “compensated”; in this
language, the substances in which magnetic resonance is to be sought
for are those with uncompensated electrons. Mostly these belong to
one or the other of two classes: the ferromagnetic bodies including the
anti-ferromagnetic, and the “strongly paramagnetic salts.” But there
are a few other cases, and among these are those which are closest to the
(unattainable) ideal of the perfectly free electron subjected.

THE NEARLY IDEAL CASES

Nearest of all to the ideal case are presumably the atoms which con-
tain uncompensated electrons and are available for study by the molecu-
lar-beam method. Outstanding among these is the hydrogen atom, whose
single electron must remain uncompensated because there is no other in
the atom. About or quite as good are the atoms of sodium, potassium,
and the other alkali metals, each of which contains a single uncompen-
sated electron not to speak of several which are compensated. Moreover,
these atoms are normally in a “ground state” in which the uncompen-
sated electron has no orbital angular momentum. This hints at a
complexity which is not always without influence on electron resonance,
and must be mentioned here at the price of a detour.
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Going back to ancient theory, let us imagine an electron revolving
with frequency f in a circular orbit of radius r. It is equivalent to a cur-
rent ¢f running continuously in the circular loop. According to the old
theorem of Ampere, its magnetic moment is equal to the area of the
circle multiplied by the current-strength; but the current-strength is
to be expressed in electromagnetic units, so that the magnetic moment
u equals (¢/¢)frr’. The angular momentum p is mr times the speed of the
electron, and therefore equals 2rmrf. For the ratio of the two we find:

p/p = e/2me (5)

This is what has lately been miscalled the “gyromagnetic ratio,” a
name which was originally applied and ought still to be applied to its
reciprocal. Tt would be good to follow Gorter’s suggestion of calling it
the “magneto-gyric ratio.”

I now state equation (5) in another fashion so as to introduce a symbol
which is really a word, and is the technical word of this field of physies:
it ought to be a word all spelled out, but it is just the letter g.

(.uorh/pcrb) = g(e/?mc), 7 = 1 (6)

Thus g is the ratio of magnetic moment to angular momentum given in
terms of ¢/2me as unit, and its value for the orbital motion of an electron
is one. Note also that though we have arrived at (6) in a very
old-fashioned way, it is one of the results that have stood firm through
all the mutations of quantum theory.

The study of what are known as “multiplets” in optical spectra led
some thirty years ago to the conclusion that for the spin of the electron
the magneto-gyric ratio is such that g = 2:

(nuspin/pupin) = g(e/QmC), g = 2 (7)

This belief was substantiated by the “Dirac theory,” and was not upset
until measurements were made of the magnetic resonance of electrons
in atoms by the molecular-beam method. The first such measurements
were made upon atoms containing uncompensated electrons which had
orbital motion as well as spin. I pass them over, and come direct to the
most recent experiments on hydrogen atoms in their ground state,
where there is no orbital motion of the electron to complicate matters.
These are so recent that they came into print as these words were being
written. ‘

The hydrogen atom is a good example to take, not only for the reasons
that I have given already, but also because it may be compared with
the hydrogen molecule H.. The two electrons of the hydrogen molecule
compensate one another, and there is no electron resonance. The two
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nuclei — protons — of the molecule compensate one another in some
of the molecules, enter into the parallel coupling in others. There are
always some of these last in a beam of hydrogen molecules, and they
produce the proton resonance of which so much was said in Part I.
The atoms produce the electron resonance.

Look now again at equation (4), and remember that p is Ih/27r — and
remember that p is to be interpreted as the maximum permitted com-
ponent, along the field-direction, of the angular momentum.

Consider now the experimenter with molecular beams of hydrogen
molecules and hydrogen atoms at his disposal. In a magnetic field of field
strength H he finds the proton resonance of the former at frequency
vy, and ascertains (g/I) of the proton by putting his data into equation
(4):

W/ D) = hvy/H (8)

In the same field he finds the electron resonance of the latter at fre-
quency v, , and ascertains (u/f) of the electron similarly:

(W/D)e = hve/H ©)

Now he has both values; but the accuracy of both is contingent on the
accuracy of the measurement of F, and this is not so good as he desires.
However he can dispense with the measurement of H at a price — the
price of getting his value of the magnetic moment of the electron in
terms of units other than c.g.s. units. This is not a great sacrifice; Nature
does not share our affection for c.g.s. units; there are others which are
more suitable to the enterprises of the theorist.

If we divide (8) into (9) we get rid of both H and k. This means that
if the experimenter measures », and », in one and the same applied field,
he can evaluate (u/I) for the electron in terms of (u/I) for the proton
without bothering about the values of H and h. Since [ is the same for
both particles, he obtains the ratio of the magnetic moments of electron
and proton. The value of this ratio would be precious in itself, even if
one had not the faintest idea of the value of either moment in ec.g.s.
units. It is 658.2288 + 0.0006.

It is also feasible to get the value of (u/I) for the electron in terms of
the “unit” eh/4rme. This entity is so important that it has a name of
its own: it is called ‘““the Bohr magneton.”

There is also a combination of experiments by which (u/I). may be
evaluated in terms of the unit (eh/4wme). This unit is so important that
it has a name of its own: it is called ‘‘the Bohr magneton.” The reader
can easily show for himself that (u/I) in terms of this unit is none other
than the quantity g, of which this is a second definition (not identical
with that of ¢ in Part I).
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The frequency of the proton-resonance, »,, is compared in a special
experiment with what is known as the “cyclotron frequency,” ., of the
electron. A free electron, projected at right angles to a magnetic field H,
describes a circle in the plane perpendicular to the field. The frequency
with which it makes the tour of this circular orbit is given by the equa-
tion:*

ve = 2(He/4mmc) (10)

If this frequency is determined in the same field as has served or is to
serve for the location of the proton-resonance, we have:

/D)y = 2(eh/4mme) (vp/vc) (11)
and consequently:
(w/I)s = 2(ve/vy) (eh/4mme) (vp/ve) (12)

So here is the value of (u/I) for the electron expressed in terms of the
Bohr magneton, determinable by measurements on ratios of frequencies
only! At this point the reader may well wonder why I did not eliminate
v, from (12) by simply dividing it out. The reason is that one group of
experimenters has determined (v./v,) at one fieldstrength and another
group of experimenters has determined (v,/v.) at another fieldstrength,
so that », does not have the same value in the two brackets: this is
trivial.

The old belief, as I remarked above, was that (u/I) for the electron
amounted to exactly two Bohr magnetons. But the combination of two
experiments which I have just so sketchily described has led to the
following result for the electron in the hydrogen atom:

(u/I)e = g(eh/4mme), g = 2.002292 == 0.000024 (13a)

But is this truly the ideal case? Defining the “ideal case” as that of the
free electron, remembering that the electron in the hydrogen atom is
bound even though lightly bound, and making what is deemed the
appropriate correction, one elevates the foregoing value of g by 35 parts
in a million, and obtains:

Ideal (u/I)e = g(eh/4wmc), g = 2.002327 + 0.000024 (13b)

Thus the old belief was wrong by about one part in a thousand. Be it
mentioned in passing that the Dirac theory which led to g = 2 has been
modified in the meantime by what is known as “quantum electrody-
namies”, which gives a good account of this result.
* To be derived by equating the force Hv(e/c) exerted bi the field upon the
t

electron to the ‘‘centrifugal force’ mv?/r; here v stands for the speed of the elec-
tron and r for the radius of the circle.
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Since I is 14 for the electron (as it is for the proton) the magnetie
moment of the free electron is:

pe = (M)g(e/4mme) = 1.001146 =& 0.000012 Bohr magnetons (14)

This is the value which is 658.2288 times the moment of the proton.

Anaother case very near to the ideal is afforded by the electrons of
such atoms as manganese widely dispersed in a phosphoreseent solid.
Thus, there exists a measurement of ¢ made upon “zinc sulphide phos-
phor” containing manganese atoms in a concentration of 0.001 per
cent. The value is 2.0024 =+ 0.0004. It must be said that the resonance
in question is complicated both by fine structure and by hyperfine strue-
ture, terms to be explained in following sections. It is therefore neces-
sary to use theory to locate, among the complex of peaks, the frequency
which corresponds to the appropriate value of g.

Still another case which is close to the ideal is provided by the “F-
centres” in colored erystals, mention of which was made in Part I.
An F-centre is a cavity in a erystal lattice occupied by a free electron
batting around, as I said in Part I, like a wild animal in a cage. Several
physicists have found their resonance, present when the crystal is colored
and absent when the crystal is bleached. One, who produced the colora-
tion by neutron-bombardment, located the peak at g = 2.00. Others
report 1.995 =+ 0.001.

Still another case which is close to the ideal is afforded by the con-
duction electrons in a metal. These are so numerous that one might
expect that the electron resonance that they produce must be extremely
prominent. Yet the first such peak to be observed has been reported
only as these lines are being written! The reasons for its inconspicuous
character are two: most of the conduction-electrons are coupled anti-
parallel, and the skin-effect confines the oscillating field in a conductor
to a very narrow region close up against the surface. The second of
these hindrances is overcome by using a colloidal dispersion of the metal,
of which the spherules are less than 10~2 ¢cm in diameter. Data are avail-
able (though not yet all in print) for lithium, sodium and potassium.
The values of g are within a few promille of 2.000; the differences between
these and the ‘“ideal” value are small but not trivial, and in the case of
lithium have been explained.

ELECTRON RESONANCE IN PARAMAGNETIC SOLIDS

There are paramagnetic solids that display the electron resonance.
A magnificent illustration is shown in Fig. 2, belonging to an organic



394 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1953

substance of which the name and the structural diagram are included in
the figure. This is one of the strongest and sharpest electron-resonance
peaks on record. The g-value is 2.0064 4= 0.0002; it is therefore almost
an ideal case, but the difference from the ideal value is sure and signifi-
cant. It would however be misleading to suggest that such a case is
typical.

What are called the “strongly paramagnetic salts’” ferm a group with
several features in common. They tend to have long names, and they
have complex chemical formulae; crystal lattices or at any rate unit-cells
which are non-cubic; and atoms some of which belong either to the
rare-earth elements or to the elements of the “first transition group,”
iron or cobalt for instance. These atoms are likely to have two or more
uncompensated electrons in parallel coupling. I now reeall what was
said about such coupled electrons in the introductory passage.
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Fig. 2. — Electron resonance of porphyrexide. This is one of the strongest and
sharpest peaks of electron-resonance yet observed. The g-value is 2.0064 == 0.0002,
which makes it slightly but significantly different from the ideal case. In the
structural diagram, the asterisk signifies a three-electron bond. (A. N. Holden,
W. A. Yaeger and F. R. Merritt).

NORMALIZED ENERGY ABSORPTION
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Two or more electrons — N electrons, let me say — may form, in
effect, a rigid unit having a total spin § = N/2 and a total magnetic
moment Ny, . Such a unit will have (N + 1) allowed orientations in the
big magnetic field. These will engender N resonance-peaks. In the ideal
case, all of these would have the same frequency 2uH/h, and would
therefore coalesce into a single peak at the position appropriate to g =
2.0023. But in these crystals we are likely to find cases far from ideal,
because of the conjoined influence of two factors. These are the presence
of orbital motions of the electrons, and the presence of a big electric
field within the crystal.

Were the atoms in question free, we could allow for the orbital mo-
tions. There would be a single resonance-peak, corresponding to a value
of g which could be computed by a formula well known and much used
in optical spectroscopy. Incidentally, this formula was used in interpreting
the earliest molecular-beam experiments (not here described) that were
the first to show that ¢ in the ideal case is not exactly equal to 2.

Now, however, we are dealing with resonating electrons that are in a
strong electric field, and moreover, an electric field which is usually
unsymmetrical. If the asymmetry is sufficiently great, the orbital mo-
tions suffer a singular effect. This effect is known as “quenching.” It is
impossible to explain and difficult even to deseribe without invoking
quantum mechanics. One may say that the orbital angular momentum
is no longer constant in time, and the associated magnetic moment
almost but not quite disappears.

The spin survives the quenching: but it would not be right to say that
the quenching restores the ideal case. The resonance is affected by what
have been called the ‘“‘remains” of the orbital magnetic moment. These
have the following consequences:

(a) The N resonance-peaks, which coincide in the ideal case, may be
drawn apart. They then form a group of N separate peaks, which is
known as a “fine-structure pattern.” The number N tells us the number
of electrons coupled parallel in the atom, for these two numbers are the
same. Often the number of electrons coupled parallel is known from
independent evidence, and in such cases it is confirmed by the number of
lines in the fine-structure pattern. Sometimes it is not otherwise known,
and in such cases it is identified with the number N.

(b) The value of g corresponding to the centre of the fine-structure
pattern may be altered considerably from 2.0023, falling as low as 1.35
or rising as high as 6.5. This is as though a part of the orbital magnetic
moment were added to or subtracted from the magnetic moment of the
spin.



396 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1953

(¢) The value of ¢ may depend upon the orientation of the applied
magnetic field with respect to the crystal.

(d) The frequency of the resonance-peak or peaks may not be pro-
portional to H. In fact, it may deviate so far from being proportional to
H that extrapolation to H = 0 will indicate that even in the absence of
ar applied magnetic field there would be a separation of the levels. Thus
the asymmetric electric field within a strongly paramagnetic crystal may
by itself produce the effect, which hitherto we have been ascribing en-
tirely to the applied magnetic field. This is called “zero-field splitting.”

One sees only too well that the interior of a strongly paramagnetic
salt is no place to look for the ideal case, and that resonance in such a
salt is a theme for deep study and not for facile interpretation. As a
matter of fact, electron resonance in paramagnetic salts is valued for
its contribution to our knowledge of the electric fields in these crystals;
which is to say, that it is a part of solid-state physics, the details of
which lie beyond the scope of this article.

HYPERFINE STRUCTURE OF ELECTRON RESONANCT

One of the most beautiful phenomena in this province of physics
— and, I venture to say, not in this province only but in the whole of
physics — is the “hyperfine structure” or “hyperfine splitting” of the
electronic resonance. Here we see the spin and the magnetic moment of
the nucleus collaborating with those of the electron to produce an ex-
quisite and lucid joint effect. It is still the electronic resonance, and must
never be confused with the nuclear resonance; but the single resonance-
peak of the ideal case is split into a group of peaks, the number of which
is determined by the spin of the nucleus.

Fig. 3 relates to neodymium — not however to the metal, but to
neodymium atoms in a salt of neodymium, diluted with a salt of another
metal so that the neodymium atoms may not influence one another
through undue proximity. Neodymium is an element with two ‘“odd”
isotopes — that is to say, isotopes of odd mass-number — and several
“even” isotopes. The even isotopes have non-magnetic nuclei, and so
do not perturb the electron resonance. Each of the two odd isotopes has
a nucleus of spin 7/2 and non-zero magnetic moment. Such a nucleus
will have eight permitted orientations in the big magnetic field. It will
produce a local magnetic field in the region of the resonating electrons,
and the strength of this field will depend on the orientation. The reso-
nance-frequency depends on the big field compounded with the local
field (we met with instances of this rule in the study of nuclear reso-
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nance). Therefore there are eight resonance-peaks for the electrons in
the atoms of the isotope 143, and eight more for the electrons in the atoms
of the isotope 145. This is the key to the remarkable pattern shown in
the curve at the bottom of Fig. 3.

In the middle of the pattern is the stump of a tall peak. This is the
unperturbed peak due to the electrons in the atoms of even isotopes,
those of which the nuclei have no magnetic moment. Whether it is at
the position corresponding to ¢ = 2.00 will depend on whether the dis-
placement due to electric fields in the crystalline salt of neodymium,
with which these data were obtained, is negligible or is not. Then, there
are eight much shorter peaks. These are due to the electrons in the atoms

Nd EVEN I

Ndws[ T T T T | | |
Nd 145 17 7 17 17T 1 11

Fig. 3. — Hyperfine-structure pattern of the electron resonance of neodymium
in a salt of the metal, showing that the nuclei of each of the odd isotopes of neo-
dymium have eight orientations and therefore a spin of 7/2, and that the even
isotopes do not affect the resonance. (Courtesy of B. Bleaney).

of the more abundant of the two odd isotopes. Then, there are eight still
shorter peaks (provided we count one which is merged with one of the
other group of eight). These are due to the electrons in the atoms of the
less abundant of the two odd isotopes. This is beautifully confirmed by
the fact that the statures of the two groups of peaks stand to one another
in the ratio of the abundances of the two isotopes! Further, the spacings
within the two groups stand to one another in the ratio of the magnetic
moments of the nuclei of the two isotopes. As for the two combs that
stand above the curves, they are markers to identify for the onlooker
the members of the two groups of peaks.

Ohservations on the similar pattern of a (rare) isotope of vanadium
— vanadium 50 — have led to the inference that this nucleus possesses
a non-zero magnetic moment and a spin equal to 6 (the highest value
so far known). This may seem surprising, since I have implied that nuclei
of even mass-number have neither spin nor magnetic moment. Vanadium
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50 is however a nucleus with an odd number of protons and an odd
number of neutrons. Such nuclei, of which there are only a few stable
examples, (in Part I we met with two, the deuteron and N, are not
bound by the usual rule.

FERROMAGNETIC RESONANCE

Ferromagnetic bodies owe their distinctive feature to uncompensated
electrons. This suggests that the magnetic resonance of electrons will
be discernible in such bodies, and so indeed it is. In this case it is com-
monly known as “ferromagnetic resonance.” However, unless the sample
is in the shape of a sphere, the resonance-peak will be found in what
appears to be very much the wrong place. This is due to the magnetiza-
tion of the substance, which produces a remarkable effect upon the
location of the resonance. The field strength in the region occupied by
the sample, which would be H if the sample were not there, is changed
to a very different value; and yet in general it would not be right to take
the value of H; the “internal field strength” and put it in place of H
in equation (3). We must understand this effect and make the proper
allowance for it before we do anything else with the data (unless, I
repeat, we confine ourselves to data obtained with spheres). The effect
appears to be beyond the power of “intuition” to conceive, and we must
have recourse to the fundamental equations, which describe the pre-
cession of the electronic magnets. It will be recalled that in Part I, we
looked at nuclear magnetic resonance sometimes as the turning-over of
nuclear magnets and sometimes as an outcome of precession. Now we
are going to treat the electronic resonance as an outcome of precession.

The fundamental vector equation, which was given in a sort of diluted
form as equation (6) of Part I, reads as follows:

dp/dt = p. X H; (15)

Here p and u, stand for the angular momentum and the magnetic mo-
ment of the electron, and H; for the field which operates on the electron.
We have seen that u./p is written as ge/2me; we denote this quantity by
~; and we give it the minus sign because, for the electron, angular mo-
mentum and magnetic moment are antiparallel to one another. Now
we have:

dus/dt = —yue X H; (16)

This we proceed to write as three scalar equations; but first we replace
pe by M. This will help to do away with the implication that the mag-
netic moment varies in magnitude (it is the direction that changes with
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time) and will also convey the plausible suggestion that all of the resonat-
ing electrons in the substance are coupled parallel, so that M can signify
the magnetization of the substance. We have:

dM./dl = —y(M,H;. — M.H,)
dM,/dt = —y(M.H;, — M.H,.) (17)
dM./dt = —y(M.H;, — M, H,;,)

Now we are to make the following important substitutions, some of
which are approximations.

(1) Presuming that M the magnetization of the substance will not
deviate far from the z-direction, we are to write M for M. .

(2) For H;., the z-component of the field actually operating upon the
electrons, we are to write (H — N.M). Here H stands as heretofore for
the applied field and N, for the “demagnetizing factor’’ in the z-direc-
tion, which latter is a measure of the strength of the free poles on those
surfaces of the sample which face the pole-pieces of the magnet (Fig.
1). Thus —N.M is the value of the field produced in the substance by
these free poles.

(3) ¥or Hi; and H;y, we are towrite —N_ M, and —N,M, . This means
that whatever applied fields there may be in the 2 and the y-directions
are negligible, and yet the components of magnetization in these direc-
tions are not negligible, so that the free poles on the surfaces perpendicu-
lar to x and to y respectively are producing the internal fields of which
—N.M, and —N,M, are the strengths.

(4) We are to ignore terms in which the product MM, appears,
these being small.

The fourth of these conditions makes dM./dt vanish: we are left
with only two of the three equations (17), a convenience. Making the
substitutions allowed by the first three conditions, we find that the
other two assume the forms:

AM,/dt = —yMH — (N.—N,)M]
dM,/dt = —yMJ—H + (N.—N.,)M]

(18)

It

Now suppose that M, and M, are periodic functions of time, of fre-
quency . We write them as M3 exp (2rivt) and MY exp (2mivt). Substituting
into (18), we find:

2rivMy + y[H + (N, — NJOMIMS = 0 (19)
—y[H — (N. — N)M|M? + 2rivMY = 0
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These two simultaneous equations will be compatible with one an-
other — one might say that they make sense — only if they are ulti-
mately the same equation. The ratio of the coefficients of M2 and M}
in the one must be the same as the ratio of the corresponding coeffi-
cients in the other. In words more natural to algebraists, the determinant
of the coefficients must vanish. It turns out that this condition deter-
mines a specific value of », and this value is the resonance-frequency:

v = (ge/4mme) VH + (N. — N)M|H + (N, — N.)M]  (20)

For reasons deriving from the history of celestial mechanies, this pro-
cedure is known as “solving the secular equation.”

In the most common experimental set-up, the sample is a thin layer
parallel to the z-direction — so thin that by comparison with its breadth,
the free poles at the surfaces opposite the pole-pieces of the magnet may
be regarded as infinitely far away. Under these conditions N, vanishes,
and so does N, if we lay the z-axis parallel to the surface of the thin
layer; but N, does not vanish, it is in fact equal to 4. Under the radical,
the first factor becomes equal to H and the second to H + 4wM, which
latter is by definition the induction B. We have:

v = (ge/4wmec) /HB (21)

Note here that since B depends upon both H and M, one cannot use
the formula unless one knows the value of M, which is the magnetization
of the substance at saturation. This usually requires knowledge obtained
from other experiments; but we shall meet with a case in which, at least
“in principle,” the value of B may be found from the resonance-experi-
ment itself.

Equation (21) is the commonest formula for the ferromagnetic reso-
nance, for it fits the “geometry” of the original and of most of the
subsequent experiments. Yet there are other formulae corresponding to
other geometries, and two of these are particularly important.

It is feasible to orient the layer at right angles to the big applied field.
For this case we shall do well to turn the axis of z so that it remains
parallel to the big field. Now N, and N, vanish and N. becomes 4,
and the formula is this:

v = (ge/dmmc)(H — 4w M) (22)

The quantity (H — 4xM) is the internal field H;, the field strength
within the magnetized body. This is the special case in which the right
result is obtained by going back to equation (4) and putting for H the
actual field strength at the scene of the resonating electrons. In other
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words, this is the special case in which the naive approach does not lead
the student astray.

A more singular special case is that of the sphere. In this case N, and
N, and N, are all three of them equal — equal to one another but not
to zero. Nevertheless the formula is just our old formula (3), the same
as though there were no magnetization at all:

v = (u/I)(H/h) = (ge/4mwme)H (23)

One wonders how long it would have been before anyone set up equations
(18) and derived equation (21), if all experiments had been perfomde
with spheres.

In the foregoing pages we have derived the resonance frequency by
making certain listed approximations in the basic equations (19). Among
these approximations was the neglect of the oscillating field, parallel to
the axis of . We arrive at some interesting results by introducing this
field into the equations and giving it an arbitrary frequency, while con-
tinuing to make all of the other approximations. It shall be denoted by
H, exp (2mint); H,, it may be recalled, was the symbol used in Part I
for the amplitude of this field. In this passage » shall signify any fre-
quency that the experimenter may choose to apply, while the resonance-
frequency heretofore called » shall change its symbol and become », .

On the right-hand side of the second of the equations (19) will now
appear, as the reader can show for himself, —yMH, instead of zero. The
two simultaneous equations now make sense for any value of », instead
of just the value », . On solving them for M7, one finds:

M 1
H+ (N: — N M 1 — (v/w)?

The quantity on the left, and hence also the quantity to whieh it is
equated, is the ‘“‘susceptibility”” of the substance with respect to this
oscillating field which, be it remembered, is imposed at right angles to
the big applied field.

The quantity on the right has the well-known form of an optical dis-
persion-curve. Suppose the frequency to be increased from zero. The
susceptibility rises from a finite and non-zero value at » = 0 to positive
infinity at the resonance-frequency »o ; here it jumps suddenly to nega-
tive infinity, from which value it rises asymptotically to zero as the
frequency is increased toward infinity.

In magnetics there are methods of measuring directly, not the sus-
ceptibility x itself but the sum (1 + 4mx), which is called the “per-
meability”” and is denoted by u. It is evident that while the susceptibility

MYH, = (24)
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is rising, with increase of frequency, from its negative-infinite value at
v to its asymptotic value of zero at infinite frequency, the permeability
is rising from negative infinity to an asymptotic value which is equal to
+1. Somewhere along this range of frequencies it must pass through
zero, at a frequency to be denoted by »;. For a stratum parallel to both
the big applied field and the oscillating field, it is easily shown that »;
is equal to (ge/4wmc)B. This offers a way of determining B and conse-
quently M.
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Fig. 4.— Ferromagnetic resonance in Heusler alloy (Cu-Mn-Al). “Apparent”
permeability is plotted against H at constant frequency; the resonance-maximum
(at the position corresponding to g = 2.02) is vividly aﬁown, as is the minimum
mentioned in the text. The solid curve is a theoretical curve based on a specific
assumption about damping. (W. A, Yager and F. R, Merritt).
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Next supposc that what is plotted against » is not u but |u/, the abso-
lute valuc of the permeability. The portions of the p-vs-» curve which were
below the horizontal axis now appear inverted and above the horizontal
axis. The curve has an upward-pointing peak reaching to infinity at
vo, anc a downward-pointing peak touching the axis with its tip at »;.

Such is the general aspect of the curve of Fig. 4, pertaining to a Heusler
alloy. There are superficial differences: the curve of Fig. 4 is plotted
against H for constant frequency, and the scale along the axis of ordi-
nates is logarithmic. The reader can easily make allowance for these.
There is also a fundamental difference: the curve reveals the presence of
damping or relaxation, which broadens the peaks and prevents |[u|
from rising to infinity or dropping quite to zero. The continuous curve
is derived from a theory which involves a specific assumption about the
damping; one sees that it agrees well with the data excepting in a re-
gion around the minimum. Curves such as these are likely to be in-
fluenced by anisotropy in the ferromagnetic substance, which reversely
can be evaluated from the curves.

How about the values of ¢ for ferromagnetic substances? The Heusler
alloy to which Fig. 4 pertains has a value of g which, so far as the accuracy
of the experiment permits us to judge, may be identical with the ideal
value (the most probable value is however 2.01). This is an exception
and not the rule. The range of values is rather wide, though apparently
not so wide as in the strongly paramagnetic salts. Most of them lie
between 2.22 (for cobalt) and 2.01 (for the Heusler alloy aforesaid);
but there are instances of values still higher, including one of 3.75 for
manganese arsenide. There is also at least one value lower than 2.00;
it is presented by gadolinium, a very interesting element. Below its
Churie point at 16° absolute, gadolinium shows a resonance-peak of which
the breadth interferes with a precise location of its top; the value of g
is given as 1.95 to 1.96. Above the Curie point, gadolinium is para-
magnetic, but the peak persists and is sharper; the value of ¢ is 1.95
4+ 0.03. I remind the reader that when the experiment is such that
formula (21) must be used, a g-value implies an assumption about the
value of M the magnetization of the substance at saturation.

I must not close this topic without alluding to something which there
is not space to expound. Experiments on the “gyromagnetic effect” —
something which has a much longer history than ferromagnetic reso-
nance — lead to values of a quantity which has also been denoted by g.
Until a few years ago it was supposed that this quantity must be the
same as the g of these pages; but experiment has ruled otherwise, and
theory has been successful in at least suggesting a reason. The g of these
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pages is now called the spectroscopic splitting factor; the other has been
set apart as the “gyromagnetic” g, and some people have even taken
to writing it as ¢/, which seems rather unfair to the senior g. It seems to
be a general rule that when one of the two is greater than 2.00 the other
is smaller than 2.00; and in the case of the Heusler alloy, they may well
coincide.
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