A Study of Non-Blocking Switching
Networks

By CHARLES CLOS
(Manuscript received October 30, 1952)

This paper describes a method of designing arrays of crosspoints for
use in telechone switching systems in which it will always be possible to
establish a connection from an idle inlet to an idle outlet regardless of the
number of calls served by the system.

INTRODUCTION

The impact of recent discoveries and developments in the electronic
art is being felt in the telephone switching field. This is evidenced by
the fact that many laboratories here and abroad have research and
development programs for arriving at economic electronic switching
systems. In some of these systems, such as the ECASS System,* the
role of the switching crossnet array becomes much more important than
in present day commercial telephone systems. In that system the com-
mon control equipment is less expensive, whereas the crosspoints which
assume some of the control functions are more expensive. The require-
ments for such a system are that the crosspoints be kept at a minimum
and yet be able to permit the establishment of as many simultaneous
connections through the system as possible. These are opposing require-
ments and an economical system must of necessity accept a compromise.

“In the search for this compromise, a convenient starting point is to study
the design of crossnet arrays where it is always possible to establish a
connection from an idle inlet to an idle outlet regardless of the amount
of traffic on the system. Because a simple square array with N inputs,
N outputs and N? crosspoints meets this requirement, it can be taken
as an upper design limit. Hence, this paper considers non-blocking arrays
where less than N? crosspoints are required. Specifically, this paper
describes for an implicit set of conditions, crossnet arrays of three, five,

* Malthaner, W. A.,and H. Earle Vaughan, An Experimental Electronically
Controlled Switching System. Bell Sys. Tech. J., 31, pp. 443468, May, 1952.
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NON-BLOCKING SWITCHING SYSTEMS 407

etc., switching stages where less than N? crosspoints are required. It
then deals with conditions for obtaining a minimum number of cross-
points, cases where the N inputs and N outputs can not be uniformly
assigned to the switches, switching arrays where the inputs do not equal
the outputs, and arrays where some or all of the inputs are also outputs.

SQUARE ARRAY

A simple square array having N inputs and N outputs is shown in
Fig. 1. The number of crosspoints equals N? and any combination of N
or less simultaneous connections can exist without blocking between
the inputs and the outputs. The number of switching stages, s, is equal
to 1. The number of crosspoints, C'(s), is:

C(l)y = N? (1)

N ouTPUTS
0O 0 0 0 0 0 0

NUMBER OF
CROSSPOINTS =N

N INPUTS
OTOO??G

Fig. 1 — Square Array.

THREE-STAGE SWITCHING ARRAY

An array where less than N? crosspoints are required is shown in
Tig. 2. This array has N = 36 inputs and N = 36 outputs. There are
three switching stages, namely, an input stage (a), an intermediary stage
(b), and an output stage (¢). In stage (a) there are six 6 x 11 switches;
in stage (b) there are eleven 6 x 6 switches; and in stage (c) there are
six 6 x 11 switches. In total, there are 1188 crosspoints which are less than
the 1296 crosspoints required by equation (1).

Of interest are the derivations of the various quantities and sizes of
switches. In stage (a) the number, n, of inputs per switch was assumed
to be equal to N'*, thus giving six switches and six inputs per switch.
In a similar manner stage (c¢) was assigned six switches and six outputs
per switch. The number of switches required in stage (b) must be suf-
ficient to avoid blocking under the worst set of conditions. The worst
case occurs when between a given switch in stage (a) and a given switch
in stage (¢): (1) five links from the switch in stage (a) to five correspond-
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ing switches in stage (b) are busy; (2) five links from the switch in
stage (c) are busy to five additional switches in stage (b); and (3) a
connection is desired between the given switches. Thus eleven switches
are required in stage (b). The remaining requirements, namely, eleven
verticals per switch in stages (a) and (¢) and six by six switches in stage
(b) are then easily derived.

The number of crosspoints required for three stages, where n = N'*,
is summarized by the following formula:

C(3) = (2N** — 1) (3N) (2)
= 6Nz — 3N (2a)

In Table I it may be noted that the number of crosspoints is less than
N2 for all cases of N = 36.

PRINCIPLE INVOLVED

The principle involved for determining the number of switches re-
quired in the intermediary stage is illustrated in Fig. 3. The figure is
for a specific case from which one can generalize for n inputs on a given
input switch and m outputs on a given output switch. In the figure it
is desired to establish a connection from input B to output H. A suf-
ficient number of intermediary switches are required to permit the
(n — 1) inputs other than B on the particular input switch and the
(m — 1) outputs other than H on the particular output switch to have
connections to separate intermediary switches plus one more switch
for the desired connection between B and H. Thus n 4+ m — 1 inter-

mediary switches are required.

TasLE I — CROSSPOINTS FOR SEVERAL VALUES OF N

N Square Array N? Three-Stage Array 6N3/2 — 3N
4 16 36
9 81 135
16 256 336
25 625 675
36 1,296 1,188
49 2,401 1,911
64 4,096 2,880
81 6,561 4,131
100 10,000 5,700
1,000 1,000,000 186,737
10,000 100,000,000 5,970,000
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Fig. 2 — Three-stage switching array.

FIVE-STAGE SWITCHING ARRAY

A five-stage switching array is illustrated in Fig. 4. The analysis of
this array can be made in the following manner, Each input and output
switch is assumed to have n = N'* inputs or outputs, respectively.
Connection between a given input switch and a given output switch

SWITCHES

1

m OUTPUTS
ON A PARTICULAR

3 QUTPUT SWITCH
\___-- D
--E

N INPUTS
ON A PARTICULAR
INPUT SWITCH

N, /
N SWITCHES REQUIRED
N\ i (n-1)+(m-1) +1=n+m-1
v 7 ¥ WHEN N=m, ABOVE=2N-1

Fig. 3 — Principle involved.
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is made via levels, a level consisting of three intermediary switching
stages. The number of levels required is (2N"* — 1). Each level has
N*% inputs and the same number of outputs. The number of crosspoints
for a three-stage non-blocking array for N** inputs and N** outputs
can be obtained from equation (2) by substituting N*® for N in that
equation. The total number of crosspoints required for the five-stage
array is:

(2N — 1)* 3N*® + (2N'® — 1) 2N (3)
= 16N"" — 14N 4 3N*"* (3a)

C(5)

The number of crosspoints required for several sizes of the five-stage
array is given in Table II. The results are compared to the square and
three-stage arrays.

SEVEN-STAGE SWITCHING ARRAY

A seven-stage switching array can be analyzed by considering paths
requiring five intermediary switching stages as paths via switching
aggregates. The number of such aggregates is (2N'* — 1). Each ag-
gregate has N*'* inputs and a like number of outputs. From equation (3)
the crosspoints for each aggregate can be obtained by substituting

1
INPUT QUTPUT
SWITCHES SWITCHES
¥y -
A

1 1

n
—

/

¥
n
)

SWITCHING LEVELS
3 (EACH LEVEL CONSISTS 3
OF THREE STAGES)

5 2n-2 5

2n-1

Fig. 4 — Five-stage switching array.
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TaBLE Il — CROSSPOINTS FOR SEVERAL VALUES OF N

N Square Array Three-Stage Array Five-Stage Array
64 4,096 2,880 3,248
729 531,441 115,911 95,013
1,000 1,000,000 186,737 146,300
10,000 100,000,000 5,970,000 3,434,488

N** for N in that equation. The total number of crosspoints required
for the seven-stage array is:

C(7) = @N" =1’ 3N"* + @N"* — 12N + N — 12N (4)
= 36N"* — 46N + 20N** — 3N'? (4a)

GENERAL MULTI-STAGE SWITCHING ARRAY

Equations (1), (2a), (3a) and (4a) are herewith tabulated as a series
of polynomials together with the next polynomial:

Cc(1) = N? (1)
(3) = 6N** — 3N (2a)
C(5) = 16N*® — 14N + 3N** (3a)
C(7) = 36N** — 46N + 20N°*"* — 3N'" (4a)
C(9) = 76N*° — 130N + 86N*° — 26N*"° 4 3N*/ (5) -

These polynomials can be determined for any number of switching
stages from the following formula where s is an odd integer:
s+1 2k 2 s+3

sl 2k 2 st8 _ A 2 =t
C(S) — 22};:22 Na+l 2Na+1 -1 2 + Na+1 (2Na+1 _ 1) 2 (ﬂ)
An alternative expression equivalent to equation (6) has been sug-
gested by S. O. Rice and J. Riordan. The recurrence relation used in
individually deriving the foregoing polynomials can be used to directly
derive the following formula:
n(2n — 1)

— [(Gn — 3)(2n — ' — 2nf] (6a)

C@t+ 1) =

wheres = 2t + 1
N = n't!

Table ITI gives comparative numbers of crosspoints for various num-
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TaBLE IIT — CRrOSSPOINTS FOR VARIOUS NUMBERS OF SWITCHING
STAGES, 8, AND VALUES oF N

N s=1 . s=3 s=35 s=1 s=09
100 10,000 5,700 6,092 7,386 9,121
200 | 40,000 16,370 16,017 18,898 23,219
500 250,000 | 65,582 56,685 64,165 78,058
1,000 1,000,000 186,737 146,300 159,904 192,571
2,000 4,000,000 530,656 375,651 395,340 470,292
5,000 | 25,000,000 | 2,106,320 | 1,298,858 | 1,295,204 | 1,511,331
10,000 | 100,000,000 | 5,970,000 | 3,308,487 | 3,159,700 | 3,625,165
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bers of switching stages and sizes of N. The data of Table III are plotted
on Figure 5. The series of curves appear to be bounded by an envelope,
representing a minumum of crosspoints. The next section dealing with
minima indicates that points exist below this envelope.

MOST FAVORABLE SIZE OF INPUT AND OUTPUT SWITCHES IN THE THREE-
STAGE ARRAY

The foregoing derivations were for implicit relationships between n
s+1
2
number of erosspoints a more general relationship is required. For the

three stage switching array this is:

and N, namely, n being the ( )th root of N. To obtain minimum

€@ = @n—1) (2N +Y 2) @

n?
When n = N equation (7) reduces to equation (2).

For a given value of N, the minimum number of crosspoints occurs
when dC'/dn = 0 which gives:

2n8 —aN + N =10 (8)
This equation has the following two pairs of integral values:
n = 2, N =16 and n =3, N =27
As N approaches large values equation (8) can be approximated by:
N = 2n* (9)

Graphs of equations (8) and (9) are shown in Fig. 6. In Table IV the
numbers of crosspoints are based on the nearest integral values of n for
given values of N.

Where comparisons can be made, Table IV indicates fewer crosspoints
than does Table I. This fact can be realized in another manner. By
eliminating n in equations (7) and (9), the result for large values of N
is: ‘

C3) =4 (2)*N*® — 4N (10)

Equation (10) indicates fewer crosspoints than does equation (2).

MOST FAVORABLE SWITCH SIZES IN THE FIVE-STAGE ARRAY

If n be the number of inputs per input switch and outputs per output
switch, and m be the number of inputs per switch in the second stage
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TABLE 1V — CROSSPOINTS FOR SEVERAL VALUES oF N

Nearest Integral Number of Crosspoints
N " Value of »
N2 Equation (7)
16 2 256 288
27 3 729 675
40 4 1,600 1,260
44 4 1,936 1,463
55 5 3,025 2,079
60 5 3,600 2,376
65 5 4,225 2,691
78 6 6,084 3575
84 6 7,056 4,004
98 7 9,604 5,006
105 } 7 11,025 5,655




Hr— N

TN

NON-BLOCKING SWITCHING SYSTEMS 415

and outputs per switch in the fourth stage, then the following equation
gives the total number of crosspoints:

2
() = @n — 1) [2N + @m —1) (??l’ + ’;"_2)] (11)
n nim
The partial derivative of this equation with respect to m when set
equal to zero yields:

n=N(m—1)

2m3 (12)

The partial derivative of this equation with respect to n when set
equal to zero yields the following equation:

N = nm*(2n’ + 2m — 1)
2m — 1)(n — 1)
Equations (12) and (13) can be solved for n and m in terms of given

values of N. For example for N = 240, we obtain n = 6.81 and m =
3.56.

(13)

SEARCH FOR THE SMALLEST N FOR A GIVEN 7 FOR THE THREE-
STAGE ARRAY

For a given value of %, equation (7) furnishes a means for locating
that size of three-stage switching array which has N? or fewer cross-
points. This can be done by setting equation (7) equal to N*:

g N*
N =(2n—-1) (2N + —2) (14)
n
and solving for N in terms of n. The solution is:
2n*(2n — 1)
> 7/ 15
Nz (n — 1) (15)

Minimum values of N for given values of n are listed in Table V.
This table also lists the next highest N exactly divisible by n. From
this table it appears that when N = 24, we have the smallest switching
array for which it may be possible to have less than N? crosspoints.
However for N = 25, as shown in Table I, equation (2) gives more than
N? crosspoints. The problem is one of finding an array for N = 25 with
fewer than N* crosspoints. For this and all cases beyond, the next sec-
tion indicates that it is profitable to consider situations where N is not
exactly divisible by n.
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CASES IN THE THREE-STAGE SWITCHING ARRAY WHERE N = r(MoD n)

Table I indicated that for N = 25 and n = 5 a total of 675 cross-
points were required. A square array requires only 625. Fig. 7 shows a
layout of switches where N = 25 and » = 3. In this case one input is
left over when 25 inputs are divided into threes. The lone input requires
three paths to the intermediary switches. This is in accordance with
Fig. 3. The lone output also requires three paths to the intermediary
switches. Also from Fig. 3, the lone input to the lone output requires
only one path. Hence there must be one switch capable of connecting
the lone input to the lone output. The number of crosspoints required
is 615 which is less than the 625 required by the square array. This
scheme can be extended to any case where N = kn + r, where the re-
mainder, r, is an integer greater than zero but less than n. The formula
for the number of crosspoints where k input and & output switches of
size n and one input and output switch of size r are used is:

C=22n—-1)(N —» +2n+r— 1)7'-!-('rfz—r)(]\rn_r)2
N (16)

2

+(n+r—1J( n‘”+1) —n4r

I. G. Wilson has pointed out that for a lone input the crosspoints in
the intermediary switches can be used to isolate its possible connections
hence no crosspoints are required in the input stage. This likewise ap-
plies for a lone output. With this modification the array in Fig. 7 requires
six fewer crosspoints. For this case, when » = 1, the number of cross-
points is:

C=2Q2n—-1DWV -1+ (n-1) (N—’:-l)z
) (16a)
+n(£n;!+ 1) —aw

TABLE V— MiniMuM VALUES oF N FOR GIVEN VALUES OF n

n N per Equation 15 N = 0 (mod n)
2 24 24
3 22.5 24
4 24.9 28
5 28.1 30
6 31.7 36




NON-BLOCKING SWITCHING SYSTEMS 417

J. Riordan has found a more efficient arrangement for cases where
N = kn + r. In place of using k switches of size n and one switch of
size r, he proposes that (k + 1 — n + r) switches of size n and (n — )
switches of size n — 1 be used. For this case the number of crosspoints
181

C=22n—1Dk+1—n+rn+22n—2)(n—1rn—1)

(17)
+@n =3k +12+2+1D)Ek+1—n+71)
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Fig. 7 — Three-stage array. 25 =1 (mod 3). An equivalent arrangement is to
provide two 8 x 8 and three 9 x 9 intermediary switches. Two of the 9 x 9 switches
need only 80 crosspoints.
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TABLE VI — CROSSPOINTS FOR VARIOUS VALUES oF N AND n

Three-Stage Array
N Square Array
n=2 n=3 n =4 fn=23
23 529* 540 530 556 —
24 576 576 560* 588 —
25 625 625 609* 633 —
26 — 663 643* 667 —
27 - 716 675* 701 —
28 — 756 730* 735 —
29 — 813 766* 788 —
30 — 855 800* 824 864
31 — — 861 860* 911
32 — 899 806* 951
33 — — 935* 957 991
34 — — 1002 995* 1031
35 — e 1042 1033* 1071
36 —_ — 1080 1071* 1128
37 — — 1153 1140* 1170
38 — — 1195 1180* 1212
39 — — 1235 1220* 1254
40 — — 1314 1260* 1296
no=4 #o=35 n==0 n=17 n=28
50 1819 1800* 1879 — —_
60 2415 2376* 2420 — —
70 3164 3024* 3056 — —
80 3920 3744% 3764 — —
90 r— 45636 4455* 4499 —_
100 — 5400 5201* 5315 —
110 — — 6199 6100 6156
120 — — 7040 7044 6975*
130 e — 8076 7923* 7947
140 — — —_ 8840* 8860
150 —_ —_ — 9968 9811*
160 —_ —_ — 10979 10800*

* Minimum values.

Equation (17) is identical to equation (16) when »r = n — 1. There
are two cases, namely, when n = 2 and n = 3 where equation (16a)
gives fewer crosspoints than does equation (17).

SEARCH FOR THE MINIMUM NUMBER OF CROSSPOINTS BETWEEN N =
23 axp N = 160

The equations of the preceding sections furnish a means for search-
ing for minimum crossnet arrays. Table VI shows the results of such a
search up to N = 160. Results are indicated in unit steps from N =
23 to N = 40 and for every tenth interval thereafter. At N = 161, a
five-stage array requires the fewest crosspoints.

Table VI was computed by the use of finite differences. The equations
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were:
Cl(k + n]  — C(kn) = (2n — 1)(2n + 2k + 1) (18)
Clkn 4+ r 4+ 1) — Clkn 4+ 1) = 2(k + 3n — 1) (19)
Clkn +1)  — C(kn) = 2kn + 1 (19a)

Equation (18) was derived from equation (7) with N being replaced by
(k + 1)n and by kn as required. Equation (19) was derived from equa-
tion (17) with 7 being replaced by r 4 1 as required. This equation
applies for all values of n greater than 3 and for the particular case of
n = 3 and r = 2. Equation (19a) was derived from Equations (16a)
and (7) and is for the particular case of r = 1, when n = 2 and n = 3.

SEARCH FOR THE MINIMUM NUMBER OF CROSSPOINTS FOR N = 240

TFor a case where N is large enough to require five-switching stages,
the search for the minimum number of crosspoints should be based on
equations (12) and (13) and on the use of Table VI. The method is sug-
gested by means of Table VII. The data in a previous section indicate

TaBLE VII — CrosspoinTs FOR N = 240 AND VARIOUS
VALUES OF n

Input and Output Stages Intermediary Stages
Tatal
No. of Size of Cross- | No. of | Inputs and Cross- Crosspoints
" Switches | Switches points | Levels SutpuLS mw points
2 120 2x 3| 1,440 3 | 120 x 120* 8 | 20,925 22,365
3 80 3x 5| 2,400 5 80 x 80* 5 | 18,720 21,120
4 60 4x 7| 3,360 7 60 x 60* 5 | 16,632 19,992
5 48 5x 9| 4,320 9 48 x 48 4 | 15,120 19,440
6 40 6x11 | 5,280 | 11 40 x 40* 4 | 13,860 19,140
7 30 7x13 | 5,460 2 30x 35 3 1,826 19.360
5 6 x 12 720 | 11 35 x 35* 4 | 11,363 '
8 30 8x15 | 7,200 | 15 30 x 30* 3 | 12,000 19,200
9 | 24 9x17 | 7,344 2 24x 27 | 3 1,230 19.467
3 8 x 16 768 | 15 27 x 27* 3 | 10,125 '
10 24 | 10x19 | 9,120 | 19 24 x 24* 3 | 10,640 19,760
1 20 | 11x21 | 9,240 2 20 x 22 — 880 20.116
. 2 | 10x20 800 | 19 22 x 22 — 9,196 '

12 | 20 | 12x23 | 11,040 | 23 20x 20 | — 9,200 20,240
Crosspoints per equation (3) five-stage array..................... 20,596
Crosspoints per equation (2) three-stage array................... 21,624
Crosspoints per equation (1) square array....................... 57,600

" * See Table VI for minimum number of crosspoints.
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that a minimum should occur for N = 240, when n = 6.81 and m =
3.56. In Table VII the minimum occurs when n = 6 and m = 4. It
fails to occur at n» = 7 because 240 is not exactly divisible by 7. Except
for this situation, the minimum would have occurred as predicted.

RECTANGULAR ARRAY

Referring to Fig. 1, if there were N inputs and M outputs, a simple
rectangular array would result which would be capable of sustaining up
to N or M, whichever is the lesser, simultaneous connections without
blocking. The number of crosspoints is:

C(1) =NM (20)

N 1NPUTS AND M OUTPUTS IN A THREE-STAGE ARRAY

For the case of a three-stage switching array with N inputs and M
outputs, let there be n inputs per input switch and m outputs per out-
put switch. A particular input to be able to connect without blocking
under the worst set of conditions to a particular output will require
(n — 1) + (m — 1) 4+ 1 available paths. Thus by providing for that
many intermediary switches, a non-blocking switching array is obtained.
The number of crosspoints is:

NM] @1)

ﬂ&=m+m—nh+M+za

Differentiating this equation first with respect to n and then to m
yields two partial differential equations whose solution indicates that a
minimum is reached when n = m. Replacing m by n in equation (21),
the equation for the number of crosspoints becomes:

C@%=@n~D[N+ﬂl+%¥] (22)

Solving for the minimum number of crosspoints gives the following

expression:

3 NM NM

R v A ey T i

0 (23)

When N = M this equation reduces to equation (8).
The three-way relationships of n, N and M are shown in Fig. 8.

O



NON-BLOCKING SWITCHING SYSTEMS 421

5000

4000

3000

I

2000

1000

[
fo"1
I

800

600

500 \ \
400 \ \ \
{1

\
N

100

|
——'——-
/"/
/ //
——

\n=12

T

TOTAL INPUTS

L
a/§
/7
[ [/ A

L1/

|

—
—
/

[

/1
//

/

/

71
NN

60

s \ \ ~
40\ N AN

e\ N\ D

20

v
1,

10 | 1 | |
10 20 30 40 50 60 80 100 200 300 400 600 1000
M= TOTAL QUTPUTS

Fig. 8 — Relationship of n to N inputs and M outputs for a minimum in cross-
points in a three stage array.

TRIANGULAR ARRAY

If a case exists where all inputs are also the outputs, then an ar-
rangement such as is shown in Fig. 9 can be used. The crosspoints in
the intermediary switches permit connections between all switches on
the left hand side. For connections between two trunks on the same
switch it is assumed that one of the links to an intermediary switch can
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be used to establish the connection but without affecting any of the
crosspoints on the intermediary switch. The number of crosspoints for
this case is:
T T
C=0Cn -|TH+ = — — 24
(2n )( + 53 Zn) (24)
where T' = number of two-way trunks.
By differentiation, conditions for obtaining minimum numbers of
crosspoints can be determined. The arrangement can also be extended
to cases where extra switching stages are required.

ONE-WAY INCOMING, ONE-WAY OUTGOING AND TWO-WAY TRUNKS

A combination of the triangular array of Fig. 9 and of unequal in-
puts and outputs is shown in Fig. 10. In this figure, one-way incoming,
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one-way outgoing and two-way trunks can be freely interconnected
without blocking. The number of crosspoints for this case is:

NT  MT T T] (25)

+ ot os— 5

n? n? 2n®  2n

C=(2n— I)I:N-%- T+ M+
The comments concerning the triangular array also apply for this case.

COMPARISON WITH EXISTING NETWORKS

Few existing crossnet arrays are non-blocking. An example is the four-
wire intertol] trunk concentrating system. In one of its standard sizes
4,000 crosspoints are required for 100 incoming trunks and 40 outgoing
intertoll trunks. From Fig. 8, for N = 100 and M = 40 it may be noted
that the nearest integral value for n is 5. By substituting this value in
equation (22), a non-blocking three-stage switching array of 2,700 cross-
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points is found which could be used for the concentrating switch. In this
case the new approach to the switching network problem may prove to
be of value.

Comparisons with existing arrays having blocking are likely to be
unfavorable because the grades of service are not the same. For in-
stance, a No. 1 crossbar district-to-office layout of 1,000 district junctors
and 1,000 trunks requires 80,000 crosspoints. This layout can handle
708 erlangs with a blocking loss of 0.0030. The minimum number of
crosspoints with a non-blocking array is slightly less than 138,000. This,
however, can handle 1,000 erlangs without blocking. By introducing
blocking into the design methods deseribed in this paper, a more favor-
able comparison with existing arrays having blocking can be made.
This can be done by omitting certain of the paths. If done to an array
requiring 1,000 inputs and 1,000 outputs a layout can be obtained re-
quiring 79,900 crosspoints with a blocking loss of 0.0022 for a load of
708 erlangs. For this example, at least, it appears that the new design
methods may prove to be valuable especially for use in the development
of electronic switching systems where the control mechanism may not
be dependent upon the particular switching array used.

CONCLUSION

In present day commercial telephone systems the use of non-blocking
switching networks is rare. This may be due to the large number of
crosspoints required. With the design methods described herein, a wider
use of non-blocking networks may occur in future developments. For
the usual case of networks with blocking, new systems have generally
been designed by an indirect process. Several types and sizes of switch-
ing arrays are studied until the most economical one for a given level
of blocking is found. With the new design methods, a straightforward
approach is possible. Fig. 5 indicates that a region of minimum values
exists. By first designing a non-blocking system with a reasonable number
of switching stages and then omitting certain of the paths, the designer
can arrive at a network with a given level of blocking and be very close
to a minimum in crosspoints. The possibility of the adoption of this
direct design method is important,.
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