Theory of Magnetic Effects on the Noise in
a Germanium Filament

By HARRY SUHL

(Manuscript received October 10, 1952)

A magnetic field will influence the current noise in a germanium fila-
ment. This fact bears out the hypothesis that at least part of the noise arises
from minority carriers emitted in random bursls and recombining at the
surfaces. A quantitative theory of this effect is given.

INTRODUCTION

In a series of fundamental experiments, H. C. Montgomery' has es-
tablished that minority carriers play an important part in the current-
noise associated with semiconductors. He found that on the one hand,
the noise voltage is usually proportional to the biasing current, suggest-
ing fluctuations in the conductivity, and hence the carrier concentration.
On the other hand the spectrum of the noise suggested a rather coarse-
grained time variation, not likely to be caused by fluctuations in the
normal carrier density. One might conclude, therefore, that the noise
is caused by a distribution of sources emitting or absorbing minority
carriers in random bursts. Such carriers would be subject to the same
laws of motion and of recombination as intentionally injected carriers.
Montgomery was, in fact, able to verify that the noise along a filament
showed marked correlation over a distance roughly equal to that through
which minority carriers could drift in the biasing field before recom-
bination.

W. Shockley has pointed out another corollary of this theory: A mag-
netic field transverse to the filament should have a pronounced effect
on the noise. This conclusion, too, Montgomery was able to verify
experimentally.' His results are in good qualitative agreement with
theory. Complete quantitative agreement was perhaps not to be ex-
pected, since technical difficulties prevented attainment of the idealized
conditions assumed by the theory. This paper gives an account of that
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theory. On it are based the computed curves in Montgomery’s paper
showing the change in noise power with magnetic field.

To see how such a change comes about, we imagine the magnetic
field applied normal to one pair of the long faces of a rectangular fila-
ment. This field, and the longitudinal drift current used to measure the
noise, yield a sidewise thrust on the carriers, directed at right angles
to the other pair of long sides. As a result the density distribution over
the cross section is distorted, the minority carriers tend to accumulate
near one of those sides, while the neighborhood of the opposite side is
depleted. But for the usual conditions the recombination of carriers
occurs mainly near the surface, and is proportional to thelr density
there. Hence the magnetic field will change their lifetime.” * Clearly the
amount of noise is dependent on the length of time carriers are able to
contribute to the change in conductivity, that is, dependent on their
lifetime. Therefore, the magnetic field should change the noise power.
In simple extreme cases one can even make a semiquantitative argument
for the maximum variation to be expected on the basis of such
considerations.'

FORMULATION OF THE PROBLEM

In order to make an exact calculation, we require a few preliminaries:
The conductivity g is supposed to undergo a small time-dependent
fluctuation Ag(f) about its mean value.

The fluctuation arises from certain sources each of which, for macro-
scopic purposes, may be considered to emit a noise-current J(¢) of minor-
ity carriers. Thus in a small time-interval d¢’ near ¢’ the excess charge
injected is J(#') d¢’. This charge decays by recombination. Let r(t — t') de-
note the fraction of carriers left over at time #(>t). Then at time ¢
" there remains a charge r(t — &) J(¢') d¢’ of the original injection. Now
provided the excess density is small compared with the mean denmty,
Ag(t) is proportional to the excess charge at time ¢, due to all the previous
emissions added together. Therefore

Ag(l) = L r(t — t)J(¥) dt. 1)

In practice we do not literally plot Ag(f) as a function of ¢, but rather
its frequency component Ag(f) in a narrow range df of frequencies near f.
In other words, we single out for observation the contribution to Ag
from that part J(f) of the injected current J(') which varies as e "'
Suppose now that 1/f is large compared with the time over which »(¢)
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is appreciably different from zero (that is, let 1/f be much greater than
the lifetime). Then, in the integral (i), r({ — t') will have gone from
unity to zero long before J(f)e ***/* has changed appreciably from its
value at ¢ = {. Therefore, for purposes of observation at frequencies
much smaller than the reciprocal lifetime, we can rewrite (1) as

Ag(t) « J(1) [ r(t — ) dt
w (2)*
= J(f) j; r(t) dt.

The integral in (2) can be interpreted as the average lifetime of car-
riers. For, by definition, the rate of recombination at time ¢ is — dr(t)/dt,
so that — (dr/dt)dt is the number of carriers recombining between time
i, t 4+ dt. Hence the average lifetime is

r= —-f:td;—iﬂdt -—[tr(t)]:+j:1‘(i)dt

= [ ryae
0
since ir(f) — 0 ast — o,

If 1/f is not large compared with r one cannot simplify the integral
(1) in this way. One then has to consider separately each frequency
component Ag(f)e *"/* due to the current J(f)e ***/*. Then

Ag(f)e™ = J(f) [ r(t — ) ay

I

J(f)e—h'iﬂ j;w T(t,)ezﬁﬂ- dt}

or

Ag(f) = J(F)=(f)

where
() = [ e ar.
0

The calculation of =(f) is more complicated than that of r = 7(0), and

* From here on the equality sign will replace the proportionality sign. The
resulting change of units is of no consequence in the final results which are only
concerned with ratios of conductivity modulations.
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at the present time the experimental situation does not call for refine-
ments of this kind. Therefore we shall restrict ourselves to the calcula-
tion of 7.

To evaluate 7 it is not necessary to consider a time-dependent case
at all. In our experiment, it is the mean square conductivity fluctuation
which is actually observed. Hence from (2)

<Ag> = <J)> T

If the emission processes are stationary in time, <J*t)> is time in-
dependent::

<Ag> = <Ji> T

Now r can be written as
t
[ r(t — 1) d,

which is simply the total concentration at the present time ¢ due to a
constant injection from time — < to the present.

Therefore the problem is reduced to finding the total carrier concen-
tration in the filament due to a distribution of sources of constant
strength 4/ 2-]?

Let w(zx, y, 2; 1, Y1, z1) denote the carrier concentration at z, y, 2
due to a steady unit source at @1, 1, 21 . Then the total carrier con-
centration is

(X, 1, 2) = f’tU(x,T,z;ml,yl,zl) dz dy dz.

The reason for the dependence on 1, y1, z1, is that the recombination
process takes place largely on the surface. Therefore a source near the
surface will yield a smaller concentration than one well inside the fila-
ment. (Volume recombination will be neglected throughout this paper.)

The mean square conductivity modulation due to many statistically
independent sources at x,, ¥,, z, (r = 1,2 -+ ) is then

<(Ag)2> = 272(3:!' b y" ) z!') <']2($r ] .Tj.- 3 5r)>-

The behavior of w is governed by the diffusion equation, subject to
the boundary conditions expressing the recombination process, and sub-
ject to a suitable singularity at x,, y., 2., expressing the injection of a
unit current. But in two and three dimensions the solution is not avail-
able in closed form, or at any rate not in terms of the elementary trans-
cendental functions. The infinite series for the solution is not easy to
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handle computationally. It is therefore desirable to simplify the experi-
mental conditions to a point where the problem becomes almost one-
dimensional. A solution for w can then be found in closed form.

Consider a very long uniform rectangular filament with one pair of
sides very much wider than the other pair. Suppose that the y and 2z
directions are respectively parallel to the wide sides and to the length
of the filament (Fig. 1).

Consider sources located anywhere on a plane x = £, which is parallel
to the wide sides of the filament. If the recombination properties of the
filament are uniform in the y — z directions, the lifetime due to a unit
source anywhere in that plane is independent of the location of the
source on that plane, and depends only on {. Hence the conductivity
modulation due to sources of strength

J(E!yr:zr) (T=1’2-..)
in that plane is simply
. T(E) Z J(E: Yr zr)

Tl ST DUE
H ON HOLES
ELECTRONS _~HOLE
e FLOW
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1
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Y2 b
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Fig. 1 — Geometry of the filament, and disposition of the fields.
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and is the same as that due to an infinite source of strength

; J(E: Yr s Z;)

uniformly distributed over the plane 2-£.

But the density w due to such a source will be a function of x and
only, and will be the solution of the one-dimensional diffusion equation.
Hence for a geometry approaching that of figure 1 sufficiently closely,
the problem is one-dimensional.

The Evaluation of 7

We now have to write down the one-dimensional diffusion equation
in the presence of a magnetic field along 0, , which combines with the
drift velocity of the carriers so as to force them towards one of the
surfaces © = == a. If F'; is the effective field arising in this manner, and
D is the diffusion coefficient, the equation is
dw dw
Dé; —“F’EE =0, (3
which expresses the fact that the diffusion current —Dg dw/dx plus the
drift current quF,w must be constant since the carrier density cannot
build up indefinitely. pu is the mobility of the mmorlty carriers: u, for
electrons, g, for holes. As is shown elsewhere® the effective field F, is
given by

F.= (8. + 0,) E. = 0E,,

where E, is the biasing field causing the drift current, 6, , 8, are the Hall
angles for electrons and holes, respectively. If u,, u, are the electronic
and hole-mobilities, and if the magnetic field is not too large,

=0 + 0, = 10 "(ua + pp)H,

where H is in oersteds, and the mobilities are in em’/volt-second, and 8
is in radians. (Strictly speaking, the diffusion current is not in the direc-
tion of the density gradient when a magnetic field is present.' As the
result mixed derivatives
a'w
dx dy

oceur in the diffusion equation. But in the reduction to one dimension
these terms integrate out. All that remains is a small correction to D,
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negligible for ordinary values of H.) It is convenient to specify a dimen-
sionless parameter in the same notation as H. C. Montgomery.

b = 2aukF . _ 2a0E,
D D/u
By the Einstein Relation D/p = kT /g this may be written
_ 2abE.
"~ kT/q

where ¢ is the absolute value of the electronic charge. ® is the ratio of
the voltage corresponding to the transverse field to the thermal voltage
kT/q. In terms of ®, equation (3) can be rewritten

9

dw d dw

7 %adz )
The integral of this equation has the form
w = A" + B (5)

where A and B are two constants. Because of the existence of a singu-
larity at @ = x,, say, the constants A, B take on different values for
T <x, and x>, . To see what these values are, we first write the solu-
tion (5) in the form

wy = A ¥ LBy x> g,

wy = A" 4 B, T < a.
At © = x, the density w must be continuous. Hence

Av+ By = Ay + B, (6)

Further, the discontinuity at x, must be such that the difference of the
currents on the two sides is just unity, the strength of the injected
current. Now the total current is

dw b
‘D(a - ?w)

(i.e., the diffusion current plus the drift current), and w is continuous
at z, . Hence the difference between the current on the two sides of x, is

. de dw:!
—D —_ -\
I {J_l.?] (( dz )zu+h ( dx )Ia—k)

> D(A, — A)).
2a

1

Il

(7)
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So far we have two relations (6) and (7) between the four constants
Ay, Ay, By, By. To determine these constants, we need two more
equations. These are supplied by the boundary conditions. We assume
that the recombination rate is proportional to the density at the bound-
aries (zx = =a). The recombination then has the formal appearance of
a current through the surface, the factor of proportionality s playing
the part of a “recombination velocity.”” ® That current through the
surface must equal the current arriving at the surface from the interior
of the filament, under steady-state conditions. The boundary condi-
tions are thus:

—-D (c-lE} - -i w;) = 8111)("‘0;),
z=ta

dz 2a
dw: ® . o
—-D (E — 5 w,)z.__‘I = —sw(—a),

where s; , s, are the surface recombination velocities of the faces z =
+a, —arespectively. The minus sign on the right-hand side of the second
of these equations is due to the fact that the recombination current at

z = —a is along the —z direction. Defining the recombination param-
eters
Y1,2 = 8—-—-1b2a

and substituting the solutions w; , w: in the last two equations we obtain

B1§ = Y1(4:e®"” 4 By)

(8)
Bag = ¥a(ds > 0" 4 By)
Equations (6), (7) and (8) suffice to determine A,, A2, B:, B,. We

easily find that

Ay = _e—‘l'(l—zolu)fz 2_G al(l _ a’e@(H—zuIn)IE)
' &D A
_ LBzl 2 _22— a2(1 + alg—-@(l—-zola)lz)
As = +e 3D A
R ‘9’
! &D A
B E 21‘.1 (1 + ale-—@(l-—znla)[z)
g = ——

®D A
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Tig. 2 — Noise change for a filament with equal surfaces as a function of @ for
various ¥. Surface generation.

(; - 4’1)/% ; o =(§ +¢=)/\\"z ;

A = ale—i’(l—zc.’ﬂ)ﬂ + aze‘l'(l-l-zuln)ﬂ.

where

Il

oy

Now we are in a position to calculate rz(zp), the life-time in a magnetic
field H (contained in @), due to an emission at x,:

Il

TH(ID)

ET +a
[ e,z dz + [ weay d

— (B, + Ba 4 (B: — By + 3{‘; (4y —A)) 10

2a [A,20—=0/) _ g o= t0taalalizy
3 .
Special Cases
With the help of (9) and (10) we can now examine special cases.
1. Surface Emission
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When only the surface x = +a is emitting, we set zp = +a in (10)
and get

TH("‘G)

232[!, + 2?': Az(l - 3‘4)

GQ —&
|>1—a'2$-(1‘_ﬂ)

4d*
- (1 =
oD ( + ‘11) o + 0526@

(1 — « (—L — 1))
_ 2 ~ e /.
D‘lll oy + aﬂeﬁ

Similarly, when only —a is emitting, we get

—

e —1
_20‘1_—'_1
21 P

m(=0) = = h S

But in an actua) experiment, both faces will be emitting, with mean
square strengths (J1), (J3) say. The quantity that is then measured

VARN

4
N
o 7 N
w 0
2 O N
o \ S
udl =4 //( (=] \\
z &
é /// \I\\’{O\
°

. / A
o
w -
"
o -12 e
z ’/ \

=16 // \\

_2920 -16 -12 -8 -4 0 4 8 12 16 20

MAGNETIC FIELD PARAMETER, ¢
Tig. 3 — Contribution to the noise change from a unit source at the plane
z = +a.
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is the ratio

N, = Aon _ _ {ra(ta) + (Ji)a(—a)
Agh— (JD )t (+a) + (J3)7h—o(—0)

Therefore we also need the lifetimes at zero H (that is, zero ®). But at
® = 0, the 7's are indeterminate, and we therefore have to take limits.
Expansion in powers of & shows that

. ()

_ T V2
AT Ty
2\¢1 ¥
1
- (1+g)
lt TH(_'G;) = a ‘#1

&0 Dy, 1(1 1)'
1+ (2 + =2
t 2\ T ¥

Thus we finally get

N, = A _ ( l(l _1_))2
Vi = S = a (1 5+

(73 [L(_TTI)}JFQ[ o (L:@i] (12)

(11)

¥i o1 + ase? ¥l ae”® +ay
EY AN T YA,
1 — R Ay | -
g \te) Uty

There remains one small difficulty in the way of comparing experiment,
with theory: We do not know (J1), {J3). As suggested by H. C. Mont-
gomery, we are able to overcome this difficulty as follows: We first draw
a number of curves of

7i(4-a) 72(—a)
mo(+a) o(—a)
for various sets of parameters (¢1, ¥2.) (See figures 3, 4). Then we
contrive to match a linear superposition
o r§(+a) Ta(—a)
ro(+a) (—a)

where ¢; + ¢z = 1 to the experimental curve. This will be possible only
for one particular set of values (¢, ¢2). From ¢; and ¢z = 1 — ¢, and

versus @,

+ ¢
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Fig. 4 — Contribution to the noise change from a unit source at z = —a.

from (Y1 , ¥2) we can determine the ratio of (J) {(J3), for, having matched
the experimental curve, we know that

o 1D gy malza) _ {TDru(tae) + (Ji)ra(—a)
i(+a) 73(—01) (IH)rs(+a) + (Ji)re(—a)’
which is satisfied for all ® if
C1 (J1>
Tﬁ(‘l"a) (J1>Tn(+ﬂ) + (Jz)‘rn( ﬂ)
(1—=e¢) _ (J2)

m(—a)  (JI)ri(+a) + (Ji)ri(—a)

These equations are self-consistent and give
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o _ r§(+a)(-f2) _ (Jz) (1 * %): ”‘_E
1—a n(—a)J3) (J3) (1 + vP_11) v

Thus the match of theory to experiment actually provides information
about the relative emissivities of the surfaces.

When the surfaces are equal, ¥, = ¥2 = ¢; (Ji) = (J3) and the
result 12 simplifies to

voo (L8 TG g).

( + 2—'# coth )
10 log N g for this case is plotted in figure 2.
It is interesting to see how Ny for equal surfaces varies for small

values of ®. 2/® — coth ®/2 is regular at ® = 0 and varies as — &/6
there. Hence the initial variation is as

(13)

1 P

2 ¢ 1
NHman=1+—2('—'_'_—(1+ ))
4(1+1) 9 3y v

(I)Z

2
- v G5 ()
12 (1 + —)
v
Hence the curve rises or falls initially according as

15,1 l)
3<21P(1+\b .

The noise therefore increases initially if

5 11 .
B3 > v or ¢ > 6.9 approximately
and falls initially if
¥ < 6.9,

2. Volume Generation.

At first sight it may seem that if volume generation is considered, so
should volume recombination (detailed balancing). This is not neces-
sarily so, since we are not dealing with an equilibrium situation here.
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Therefore the possibility of volume generation and surface recombina-
tion cannot be discarded.

This case is somewhat more difficult. Assuming all sources to be un--
correlated and uniformly distributed throughout the interval (—a, +a),
we have to square expression (10) and integrate it from z, = —a to z, =
+ain order to find {Agy ). (We suppose that all the sources are of equal
strength (J*)). Substituting the values of the A and B from 9 and 10,
we get, after some obvious cancellations

-ry(a;.,) = %IQD [xll + Se—‘i‘(;u,’ﬂu) + T]

where
1 1
(13- §)
S = 2 ——4 "P,l__,f"b,zi
ale"'m + aze@m !
., @
7 =20 [? e ™ o™, P B S
D | 2 aue~ '+ awet?l? ae~? + ane?? ’
Hence
te
<A9§1'> = <J>[ Tﬂ(xﬂ) dxg
_ 4!12 2 3 ) 8T8a . i (14)
= oD ga + 27%a + 5 5mh§
., P
2 h =
2aS* . 88a* [ 3" 2 ® 1
+?Smh‘b+¢. 3 —coshé-J.
2

Before proceeding with this general case, we first consider the limiting
case Yy = ¥» = o, when as = —1, s = +1. Then

a

' T=—acoth§ S =

sinh g
and
coth ®

8a" |1 2 P 2 8
_2 — - h — — JR— ——
L @) = gzt ety T T
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To find Ny = (Agn)/(Agi—) we need the limit of [12+% as & — 0.
After some tedious algebra, we find this limit to be

9 _ 4@5
TH = 15D?
so that
1'?; 3]
f 30 6 coth = -
Nidisysme = T = 3 [1 peom® 2, 8 13)
P 3 2 d P |°

In the general case we can again take the limit of (14) as ® — 0 in
order to determine Ny, but this would be too tedious. Instead, we
solve the diffusion equation directly when ® = 0. The equation is then
simply

d*w
da?

and the solution subject to the correct boundary conditions and allowing
for a steady unit injection at a, is

wl=“11(.’ﬂ—$g)+B r >

we = Aoz — ) + B < xy.
where

A4, = —}D~ 2 |:1 + a,bz(l + ?)]/(lh + Y2 + 24,

1
Ay = D 12 [1 + (1 - Z—O):I/(% + ¥2 + 2¢ya),

B = %[L + % (l ;i)] [1 + s (1 + ;;)}/(w + ¥ + 2gs).

We now have
+a Y a
TH_—_(](J'(]) = f wdy = ‘[ Wa dx =+ f wy dz
— a In

_1
2

a+
D

[2&1:0(/‘11 + As) + :I + 2aB.

From this we can compute

f TEI#](IO) dxg ,



662 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1953

-2 \ P

” \

: ) NN

i N NN -

i -8 \ \ \\ ™~

NN\ NN
AN N
g N A

-4

/
4
o /

/i
/

-16 \

o 2 4 6 8 10 12 14 18 8 20
MAGNETIC FIELD PARAMETER, §

Fig. 5 — Noise change in a filament with uniform volume generation and equal
surface recombination rates.

but the result is still rather complicated unless ¢, = ¥ = ¥. If we there-
fore restrict ourselves to that case we find

- ¥ &
At A= prrya
B=i[ﬂ_._'ﬁ_$_3]
2 ¥ 14+ y¢a®
and .
Drgo(z) = a’ (%‘i‘ i) - %
and

_Ea Ta—0(To) dzy = %‘5 (4—15 - G} + %)2) .
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(Note that as ¢ — o, this quantity tends to 4a®/15D? as before in our

limiting process.)
When y; = 2 = ¢, S and T also simplify somewhat, and the result is

. (Agx}
(AQH-O)
—+2T2+8§(——T) h;p SS h —|— smh@
=92 5
o (1 1 1
° [(w + 3) + E]
where now
141
S = v ,
(% cosh%J + sinh g)
2 + coth ®
T = (1 + l) v 2
v ® [
1+ 3 coth 5

An alternative form is
4
Ng= — =
1 1 1\2] 1 4 1\ /2 i)
s+(G+; [gaz“*asz(”z)(&, ~ coth 27)

1\* )
1—|—$ ® 2 g 2(zoth§
+W (2!}1+00th)+y_f/__¢’_

=1+ —'P coth

a result which correctly tends to (15) as ¢ — «. 10 log Nz for various
¢ is shown in Fig. 5.

(16)

where
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