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This paper analyses the nature of wave propagation along a cylindrical
electron beam, focused in Brillouin flow by means of a finite axial magneltic
field. Two different types of conducting boundaries external to the beam are
treated: (1) the concentric eylindrical tube, forming a drift region; and (2)
the sheath helix, forming a model of the helix traveling-wave tube. The field
solution of the helix problem is used to evaluate the normal-mode paramelers
of an equivalent circuit seen by a thin beam, thereby permitling computation
of the gain constant of growing waves. The gain constant of the cylindrical
beam with Brillowin flow is found to exceed that of a similar beam with
rectilinear flow, presumably because of the transverse component of electron
motion in the former.

INTRODUCTION

The theory of the helix traveling-wave has been treated in previous
papers,” " for cases in which the electrons move along straight lines paral-
lel to the axis of the helix, as though immersed in an infinitely strong
magnetic field. In practice, however, the electron beam is focused by a
magnetic field of finite intensity,” * such that the electrons follow spiral
paths about the common axis. The purpose of this paper is to extend
traveling-wave tube theory to the case of such focused beams, and to
compare the gain constants for the two types of electron motion. The
motion of the beam in an infinite field is usually deseribed as rectilinear
flow that in a finite focusing field, as Brillouin flow.

The gain constant of the dominant mode in a traveling-wave tube
may be computed from the field solution for the electron beam in the
presence of its circuit structure. This procedure, however, requires the
solution of cumbersome transcendental equations for each particular set
of dimensions and operating conditions. A more flexible method of anal-
ysis has been provided by Pierce,' based on an expansion in terms of
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normal modes bagatlon For any particular fype of beam and cir-
cuit, three circ tameters must be evaluated from the field solution.
The performanﬁ fhe traveling-wave tube is then described quite ac-
curately by a t‘f il equation containing these parameters, over a wide

range of dim btis and operating conditions. The usefulness of this
normal-mode #iéthod has been further enhanced by publication of a
nomograph’ f¢f the calculation of the gain constant.

In its initial form, the normal-modes solution for a helix traveling-
wave tube was greatly simplified by the assumption that the electron
beam is so thin that the electric field acting on it is constant. Employing
the field solution for a beam of finite thickness in a helix, Fletcher' was
able to compute the circuit parameters for the solid and hollow cylindri-
cal electron beams, respectively, confined to rectilinear flow.

This procedure will now be extended to cylindrical beams in Brillouin
flow, in which transverse electron motion occurs. First, it will be neces-
sary to solve the field equations for this type of beam in a helix. As a
by-product of this computation, the solution of the field equations for
the beam in a concentric drift tube will briefly be given. Finally, with
some restrictions, the helix parameters will be evaluated, and the gain of
helix amplifiers with such beams compared with that obtained with
otherwise identical rectilinear beams.

FIELD EQUATIONS IN THE ELECTRON BEAM

When a small ac field is impressed upon a short length of electron beam,
the electrons respond by executing small ac excursions about their steady-
state trajectories. These ac motions of charged particles constitute a
transverse distribution of ac currents, which in turn excites an ac field
distribution. The propagation of an ac signal along a beam depends upon
the reciprocal action of these currents and fields.

To find the propagation constants for a particular configuration of
electron stream and enclosure, we must therefore solve Maxwell’s equa-
tions in the presence of the ac driving currents in the beam, subject to
the external boundary conditions. When the fields and currents possess
circular .symmetrv, these equations may be formally separated into TE
and TM groups.” In addition, as we are concerned only with “slow”
waves, the equations may be sunphﬁed by neglecting all terms of rela-
tive magnitude %*/y°, where k is the wave number in free space, and v
the propagation wave number.

TM WAVE
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Here (r, 0, z) are the polar cylindrical coordinates, w the angular driving
frequency, e the dielectric constant and u the permeability, of free space,
in MKS units. The ac amplitudes of the electric and magnetic fields, and
the convection-current density, respectively, are represented by the
components of E, H, and J. All ac quantities have been assumed to vary
as exp j(wt-yz).

When the assumption is made that the convection current density in
the beam is of the same order of magnitude as the displacement current
density, equations (2) and (6) reduce to the following:

] aEZ
E, =;’—y - )
_ jwndH,
Ba= — 5 %5 (8)

In order to evaluate the components of J in the beam, it is necessary
to determine the velocity and charge distributions, first in the unmodu-
lated, and then in the ac modulated beam.

The focusing of long cylindrical electron beams by axial magnetic
fields of moderate strength has been fully described by Brillouin® and
Samuel®. This type of electron motion, called “Brillouin flow”, can be
established when a parallel electron beam abruptly enters a suitable
magnetic field. The electrons thereupon acquire an angular velocity
component which leads to a balance of radial forces in the beam.

The equations of motion of electrons in an axial magnetic field B, are
as follows:

Il

r— 18 n(aVo/or — TéBo) 9)
0 + 216 = nrBo (10)
z = n-9Vy/dz (11)
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In these equations (r, @, z) is the position of an electron at time ¢; dots
indicate differentiation with respect to ¢, following the electrons; 3 = ¢/m,
where —e is the electronic charge and m its mass; and V7 is the potential
deseribing the steady, axially symmetric electric field. Relativistic ef-
fects and the magnetic field resulting from electron motion have been
neglected, as our interest is confined to beam velocities which are small
compared to that of light.
It is readily verified that a solution of the above equation is:

',;‘ = 0, 9 = 90 = TIBn/Z, z =1 (12)
n aVy/ar = réy, aVe/dz = 0 (13)

Thus all the particles in the beam have the same angular velocity, equal
to the Larmor angular frequency, and the same axial velocity w4, . From
Poisson’s equation, we find the charge density:

M= — 26902/n (14)

It is convenient to introduce the angular plasma frequency w,, de-
fined by:

w, = —npo/e = 260 (15)

In steady-state flow, an electron with initial position (ro, 8, 20) ha8
the position (ry, 6 + 6ut, z0 + o) at time ¢. When the beam is mod-
ulated by a small ac signal, the electrons suffer small ac displacements
from their steady-state trajectories. If we assume that the signal propa-
gates along the axis of the beam as exp j{w! — 7v2), we can write the
perturbed electron coordinates in terms of the Lagrangian coordinates
(ro, 60, z0) as follows:

r =1y + F(m)-exp Jlot — (20 + wt)] (16)
8= 0 + 6t + 0(ry)-exp jlot — v(zo + uet)] (17)
z = 20 + wt + Z(ro)-exp jlut — v(z0 + wol)] (18)

where the tildes indicate ac amplitudes, and the dots indicate, as before,
time differentiation at fixed »y, 6 , zo. Thus the dots are equivalent to
multiplication by j{w — ~yuy), when applied to ac quantities.

The equations of motion for the ac modulated beam differ from the
steady-state equations (9) — (11), in that the particle coordinates are
now given by (16) — (18), and there are ac fields present in addition to
the de fields —aV,/dr and B, . As is usual in small-signal theory, only
first-order ac quantities are retained in any equation. To this approxi-
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mation, the ac fields can be evaluated at the unperturbed particle
position.

Not all of the ae fields need to appear in the force equations, however.
Reference to the field equations shows that the contributions of the ac
magnetic fields to the force components are smaller than those due to
the electric fields by a factor of the order of (u0/¢)* or smaller (where ¢ is
the velocity of light), and hence may be neglected. In addition, the force
exerted by I is of the same order as that due to H, , and may be neg-
lected too.

Omitting the factor exp jle! — v(z0 + wt)] for brevity from all ac
terms, we can write the equations of motion as follows:

F— (n+ D)+ 0 = —al—aVe/ar + E. + (o + 76 + 0)BJ (19)
(ro +7)0 + 26y + 6) = 77 By (20)
(21)

Il

These equations may be simplified with the aid of (12):
p aVo/ar = (re + 7)6; (22)

and by recalling that the dots may be replaced by multiplication by
i{w — yuy). We obtain, finally:

7= k(v — yg)® (23)
=0 (24)
: = gl (e — yuw) (25)

Although the foregoing equations deal with the dynamices of individual
electrons, the assumption that the beam behaves like a smoothed-out
“fluid” of charge, with a single velocity at each point, enables us to
assign values of velocity and all other ac quantities, to fized positions in
space, (r, 8, z). In these coordinates, the de velocity is given by:

v = (0, ?'éu, o) (26)

and the ac velocity by:

v = (r, 16,

)
= 7(‘-" - 'Y“O)[(F; Téa é)]

w

Although the ac quantities are defined at 7, , they may be taken to be the
same at r, to a linear approximation.
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The same result, (27), might have been obtained by stating the
equations of motion in terms of Eulerian coordinates, in which the per-
turbed variables are the components of fluid velocity at any fixed point.
In this procedure, the “material” or total time derivative would be used
in the expressions for acceleration.

The ac space-charge density p is found with the aid of the continuity
equation:

2 (oot ) = =div [(p + P20 + )] (28)
p = w%"m div v (29)

From (23)-(25) and (27), the ac velocity may be written:

v = il (Er ) 0: Ez) (30)
w — Yo

Combining these with Poisson’s equation, we find:

2
Wp

P o W o @y

There are two possible solutions to (31):
(@ — yu)* = o} (32)
p=20 (33)

Solution (32) represents two longitudinal space-charge waves of arbi-
trary amplitude distribution, with plasma-frequency oscillations about
the average beam velocity:

y =22 (34)
Uo Uo

The second solution, (33), however, permits us to evaluate the compo-
nents of the ac convection current density J, and thereby solve the field

equations (1) — (8):

J = po¥ + plo (35)
2 oF
J. = popy = ——2p€ 9%
pot v(w — yuo) ar (36)
Jg=0 (37
- 2
Jo = pws = — —2%_p, (38)

w — Yo
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The wave equations (1) and (4) for E, and H, now reduce to the

following.
19 ( 0B\ _ o, _
;5(? ar> '}’E; =0 (39)
1o ( ol o
FE-(' ar> vH: =0 (40)

These equations have solutions for K. and H., which are finite at r = 0,
of the form A -Iy(yr), where A is an arbitrary constant and I the modi-
fied Bessel function of zero-th order.

It is not without interest to remark that the same pair of solutions,
given by (32) and (39) — (40), has been found by L. R. Walker for a
beam of arbitrary cross-section, with the same longitudinal velocity and
space-charge density at every point, in the absence of any impressed dc
magnetic field.

Due to the radial component of electron motion, the beam surface is
rippled. For a steady-state radius b, this rippling can be expressed, in a
linear approximation, by the perturbed radius:

r(®) = b + 7(b) exp jlwt — v2) (41)
The rippled beam is equivalent to a uniform cylindrical beam with an ac
surface charge density poF, or a surface current density whose components
are:
Gz = P()Fuﬂ (42)
Gy = pofleh (43)
The total ac convection current may be written in a form which applies
equally well to the cylindrical beam with purely rectilinear flow:
b
1. = f J.2rr dr + 2abpoue(b)
0

= —jwe-R-2wb-A-I(vb)/v

b
—jweR j; B. 2nr dr w

where R is a beam propagation function which will prove convenient:

_ C'J‘_:J _ ('pr)Z
k= (w — yw)?  (vb — B.D)? (45)

and
Be = w/uo, Bp = wp/us (46)



406 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1954

Thus we note that wave propagation along a cylindrical beam with
Brillouin flow is accompanied by swelling and contracting of its boundary,
with constant space-charge density, rather than by space-charge bunch-
ing. The second interesting result is that the dynamics and field equa-
tions for the focused beam are identical with those for a beam with zero
de magnetic field, except for the angular component of surface current
density Gy .

SPACE-CHARGE WAVES
We now consider the given beam, of radius b, in a concentric conduct-
ing tube of radius @ > b. The boundary problem consists of matching
the TM wave admittances inside and outside of the beam, at its boun-
dary. (The TE fields are of no interest in the drift-tube problem, as
they are not excited at the ends of the tube, and are not coupled to the
TM fields.) Let I refer to the beam region 0 < r < b, and II to the space
between beam and conductor b < r < a. Then, at r = b,
Hy + G. _ Hy
Ef = EIF
The beam admittance on the left is evaluated with the aid of (3), (7),
(36), and (42):

(47)

_ .E - ,I 1(h)
Y. = - (1 —R) oy (48)

In region IT,

Il

E. B -Tyyr) + C-Kolyr)
H, = J%G{B-Il(vr) — C-Ky(yr))

where K, and K, are modified Bessel functions of the second kind. The
wave admittance at » = b in II is therefore:

y, = o [Il(vb) - (C/B)-K1('yb):| (49)
v LL(yb) + (C/B)- Ko(yb)
Atr =a, B\ = 0or:
C/B = —Iu(ya)/Kalya) (50)
Equating beam and circuit admittances (48) and (49), we obtain:
_ Ly(vya)
B = Ky(va) 51)

’Yb'Il(Tb)‘ [Iu(')’b) - IQZ(&Z})'KQ(T())]
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This equation must be solved simultaneously with each of the follow-
ing:

mb = Bb + Bb/VR:
'Yﬂb = l‘grb - .pr/\f R2

Thus, for a given beam and frequency, the solution consists of two un-
attenuated waves, one faster and the other slower than the beam velocity.
The wavelength of the interference pattern is given by:

4ar

A = (53)
Y — Y2

(52)

For a cylindrical beam,

B,b = 174/P (54)
where P = I/V** amps/(volts)’*, the perveance. In practice, P and
hence 8,0 are usually so small that we can gain a fair estimate of A, by
assuming Iy = Ra:
v~ 2TVER

B,

Fig. 1 shows the variation of R"* with vb for several values of b/a.
(The “intrinsic” solution (32) is included as a line at R"* = 1.) The
ordinates of these curves are approximately proportional to the space-
charge wavelength, and the abeissae to the frequency, as vy >~ 8, = w/ug
for small perveance.

Space-charge waves propagating along a cylindrical beam with ree-
tilinear flow have been treated by Hahn® and Ramo’. In Fig. 2, their
computations have heen reformulated in the same way as in Fig. 1, and
compared with the results for Brillouin flow, for two values of b/a. The
space-charge wavelength is always greater in Brillouin flow, for the
principal pair of waves and the same b/a and yb.

(55)

HELIX PROBLEM

In place of the drift tube at radius a, we now have a helically conduet-
ing sheet of zero thickness and pitch angle ¢. In addition to T (0 < r
< b)and IT (b < r < a), we shall use IIT to identify fields in the region
(a < r < ). The boundary conditions at r = b are:

Hﬂl LG — Hg” _
El — g —
H:r — G, — H;” _
ﬁ‘ﬂ, _ EgII —

o o o <
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At r = a, the boundary conditions are:
E” + E," cot ¢ =
EZIII + EaIH cot ‘I’ _
EJ’I _ EIIJ’ —
HZII + Hﬂ]’l’ COt ‘P _ Hzl.”' _ HaIII COt w — 0

Inasmuch as cot ¢ ~ v/k, the contribution of F; to the field at the
helix can conceivably be comparable to that of £,. The TE fields are
coupled to the TM group, in addition, through the angular surface cur-
rent Gy , which depends on E, . All 8 equations must therefore be solved
simultaneously.

The procedure follows that of Chu and Jackson® for the field solution

(57)

o © o
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Fig. 1 — Space-charge wavelength A, for cylindrical beam with Brillouin flow,
in a concentric drift tube. Here b and a are the beam and tube radii, respectively;
RY2 ig a dimensionless parameter; and the waves propagate as exp j(wt — v2). To
compute A, =2 2zRV2/8, , use f,b = 174P"?, where P is the beam perveance. The
abscissae are approximately given by v ~ Be = w/uo . (Equations 52-55.)
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Fig. 2 — Comparison between space-charge wavelengths for eylindrical beams
with Brillouin flow and those with rectilinear (confined) flow, respectively.

of the rectilinear beam. The 12 independent variables of (56-57) are re-
duced to 6 by expressing Hy and Ey in terms of E, and H. , respectively.
The latter, however, require 2 arbitrary constants for a complete descrip-
tion in region 1I, making a total of 8 constants to be determined.

The eliminant of the 8 boundary-value equations can be written as a
TM wave-admittance equation at the beam surface:

E (1 —R) Li(yb)  jwe Ii(yb) — 6-Ki(yb)

” L)~ v Lab) T3 Kb (58)
where
b+ RF
KO 5 (59)
1 To(vb) RF

1 ka cot ¥\’ _
8o ‘—' ‘1?3(7—’1) I:(-'YT) I(I(TG)II('YG) I{O(TG)IO(T‘]’)} (GO)
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c K(]('Y{l)

In (61), ¢ is the velocity of light.

The right side of (58), which is the admittance Hy/E. looking away
from the heam surface, contains a term & which depends on the helix
geometry and the amplitude of the TE fields excited by the surface
current (5 . Thus, although the TTE fields do not affect the electron paths,
they are excited by the beam, and coupled to the TM fields at the helix.
If G, were zero, 8 would reduce to & , and the circuit admittance in (58)
would then be the same as for a eylindrical beam with rectilinear flow.
In (59), 8 is expressed in terms of § and the product, RF, where R is the
heam propagation function, and F a factor dependent on the magnetic
field and the geometry.

This is the complete field solution of the problem. Equation (58) has
four roots: two complex and two real propagation wave numbers, one of
the latter representing a backward wave. In addition, there are two un-
attenuated space-charge waves, given by (34); or a total of 6 waves in
all.

I = (kb cot ) (

EQUIVALENT THIN-BEAM SOLUTION

Pierce' has expressed the admittance equation for an ideally thin
beam, interacting with an arbitrary distributed circuit, as follows:

q JBe 1y ( 27y I: T 2.3"(2])_1
— = N D T = — I‘ " o . [1‘
£~ (jg. — D)2V, Klp— et (62)

where ¢ = total convection current

I = longitudinal electric field

I' = propagation constant = — 4 =k
Iy = dec beam current
Vi = de beam potential

I'v, K, ) = normal-mode circuit parameters.

For slow waves, I' >~ jy. For moderate values of perveance, the ac-
celerating voltage may be replaced by the beam potential at the axis:

Uy == \/271 Vo

JBe !

G, — v, el ()
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Then, dividing both sides of (62) by 2xb, we may rewrite it as a wave-
admittance equation:
. >N =1
_dee b p (o[ Ty 29 ;
R = (_whr K [r? St ) (64)

With the aid of (59), we can solve the admittance equation (58) for
R, and re-write it as follows:

Yo = Ya (65)
with
v, = 220p (66)
Y 2
I) — i T [ﬂ('yb) ED _
T 2 Lhivb) FL(yb) | (67

- Lo(yb)o(yb) + &0 Kolyb)] — 708

The solid-eylindrical Brillouin beam in a helix is thus equivalent to a
thin beam whose circuit admittance 1s Y5 . By equating Y to the right
side of (64), we can evaluate the normal-mode parameters for this ad-
mittance, and thereby use all the results of previous thin-beam calcula-
tions."” The equivalence of the two circuit expressions, however, requires
that we replace the transcendental expression (67) by an algebraic one,
with no more than three arbitrary constants. This can be done very
effectively, in the region of interest, by means of the approximation:*

a aY - .

Vo = - ()T (69
Y /om0 Y — Yp
in which vy, and v, are the zero and pole, respectively, of Y :
50(%) =0

Iu(')’h) F -
dolye) =( — 2 0
olre) ( Kolvh) T 50 Liah) -Ku(vwl-w (70)

If we were to neglect the term containing F in (70), the error in the
magnitude of 8(y,) would be measured by:

F i 600\ T1(D) - Ki(ya)
T Loyl — WP eot¥) (?) L) Koy Y

In most low-power traveling-wave tubes, the first factor in parentheses is
usually less than 3; the second factor less than 0.01; and the last factor
always less than unity. The error in evaluating v, , moreover, is less than
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this product, for the slope of the curve & versus yb increases with vb.
Putting ' = O, therefore, leads at most to a very slight error in v, and

(%)
Y Jar=vo

Outside of the region (yo, v»), 8 grows large rapidly, and the expres-
sion for Y is hardly affected at all by this assumption.

“Physically, the negligible role played by F in the admittance equation
means that § ~ & , i.e., the TM helix admittance is not appreciably per-
turbed by the TE ﬁelds excited by Gy .

With F = 0, (67) may be re-written:

’Yb I o(’Yb)
Vo= e (72)
_ Jwe I(vb) — 8o Ki(yb) I;(‘yb)]
e Y [Iu("rb) + 8- Ko(vb)  ILo(vb) (73)

Here Y is the helix admittance seen by a thin eylindrical hollow beam,
with rectilinear electron flow. As in the case of Y, it may be replaced
in the vieinity of (vo, ¥,), by the approximation:

Y’ —_
Vi~ — (75 — 70) (3 ,,) e (74)
67 y=vo¥Y — ¥p

Fletcher! has evaluated the normal-mode parameters for Yy as fol-
lows:

= —yi — I (75)
Yo k‘.’ —1/2 1 70 .
=14+ 5 = 76
Q”ﬁe[ +7?J T 24t — (76)
1 s A’]“’ (aYH)
== — 1 il 77
%, Jmby, [ + 3 e (77)

We have used the subscript H to refer the parameters to the hollow beam,
and will use the subscript B to refer to the solid-cylindrical Brillouin

beam. A
As Y and Y5 have the same zero and pole, they have the same natural

propagation constant Ty, and the same space-charge parameter @:
Qa = QH (78)

This quantity can be found plotted in Fig. 1 of Reference 4, or in Fig.
A6.1 of Reference 1.
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From (68), (72), and (74), we find:

(E) _ (an/av) _ [Lb Io(‘Yb)] (79)
Yi/v=r Y u/0v /=, 2 i(vb) fy—v,
The impedance parameters for the two beams are therefore related to
each other by:
> - 27 1(7b):|
Kp=Ky| = 752 80
T [vb Lo(¥) Jr=s (50

Both Pierce' and Fletcher' have found the impedance parameter of
the hollow beam to be related to that of a thin beam along the axis of a
helix, K, as follows:

Ky = KIy'(4b)) 1=, (81)
The gain parameter C is defined by: C* = (2K)(I,/8Vy) (82)

Thus, for given I, and Vy, the factor by which the gain pararﬁeter of a
thin beam should be multiplied to give that of a hollow beam, is:

(Ku/Kn)'" = (1" ()] 3=y, (83)

This “impedance reduction factor” can similarly be evaluated for the
finite eylindrical beam with Brillouin flow:
1/3

Ko/ = [ 2 1) 1) | (84
'Yb T=Y0
Cutler,” who calls this quantity F., has deseribed how it and the
parameter @ can be used to compute the gain of traveling-wave tubes.
The procedure depends upon the evaluation of € and QC. The expres-
sion for (', in Cutler’s notation, is:

Cp ~ (Ko/ )" FiFo(1,/8V )" (85)

Here K,/K is a factor, of the order of 0.5, which corrects the impedance
of the ideal sheath helix for the physical dimensions and support ele-
ments of the actual helix. It is best found by measurement. The factor
Iy is plotted in Fig. 3.4 of Reference 1, and obeys the empirical relation:

Fi(va) = 7.154 exp (—0.6664 va) (86)

Finally, the factor F; is the impedance reduction factor (84), which is
plotted in Fig. 3 of this paper for various ratios of the radii, b/a.

It is of interest to compare the relative gain of beams with rectilinear
and with Brillouin flow, respectively. Pierce'” has computed a first
approximation to the impedance reduction factor for the solid-cylindrical



414 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1954

beam with rectilinear flow, by averaging K. over the beam area (with
L. for the empty helix):

(K/Kn)"™ ~ [Iab) = Lab)is,, (87)
Fletcher' has improved upon this caleulation by replacing the solid beam
with a thin hollow beam of different radius and de current. This has the
same electronic admittance Y, and derivative dY./dy when R = 1.

The impedance reduction factors for the three types of beams have
been plotted in Fig. 4, using a typical value of b/a. For the same [,
Vo, and b/a, the gain parameters C' are found to be greatest for the
hollow beam, and least for the solid reetilinear beam.

The high gain of the hollow beam is due to its concentration in the
region of greatest field strength. The greater gain of the beam with
Brillouin flow, relative to that of a similar beam with confined flow, is
probably due to transverse electron motion, in two ways:'"

(1) causing electrons to interact with the transverse as well as longi-
tudinal fields; and
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Fig. 3 — The factor (Kg/Kr)V3, or F», by which the gain parameter Cr for a
thin beam should be multiplied to give Cp , the gain parameter for a cylindrieal
beam with Brillouin flow, of the same eurrent and voltage. Computation of ('z using
this factor is deseribed in text following equation (85).
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FFig. 4 — Comparative values of impedance reduetion factor for several kinds of
beams, of the same relative radii b/a.

(2) causing electrons to move preferentially into regions of retarding
longitudinal fields, a process analogous to bunching.

CONCLUSIONS

Field solutions have been presented for the magnetically-focused
cylindrical beam, when modulated by a small ac signal. Two types of
beam enclosure have been treated: the concentric drift tube and the
ideally thin (sheath) helix.

There are two pairs of unattenuated space-charge waves in the drift-
tube: one with arbitrary amplitude distribution, and another pair which
is coupled to the external field (Fig. 1). The space-charge wavelength
of the latter pair is greater than that of space-charge waves in a similar
heam with rectilinear flow (Fig. 2).

The solution of the helix problem consists of the aforementioned two
space-charge waves with arbitrary amplitude, as well as the usual four
waves of traveling-wave tube theory, or six waves in all. In order to com-
pute the gain constant of the growing wave, the field solution has been
re-written as the admittance equation of a thin beam in an artificial
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circuit. By means of two approximations, the normal-mode parameters
of this circuit have been evaluated.

The first approximation amounts to neglecting the TE fields coupled
to the TM wave, and is valid for most low-power traveling-wave tubes.
The second approximation consists of replacing the circuit admittance
funection by an algebraic expression with the same zero and pole, and the
same slope at the zero. Although thin-beam theory predicts small devi-
ations of complex roots (of the admittance equation) from the natural
propagation wave number, it is difficult to judge whether any such roots
might occur outside of the region in which this approximation holds,
for the finite beam.

The space-charge parameter @5 is found to be the same as for a thin
hollow beam with rectilinear flow (Fig. 1 of Reference 4, or Fig. A6.1 of
Reference 1). The gain parameter Cz can be computed from Equation
(85), Fig. 3.4 of Reference 1, and Fig. 3 of this paper. The gain of the
eylindrical beam with Brillouin flow is found to be greater than that of
a similar cylindrical beam with rectilinear flow, presumably because of
transverse electron motion in the former. Tts gain, however, is less than
that of a thin hollow cylindrical beam with rectilinear flow, for the same
radius, current, and voltage (Fig. 4).
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