Diffraction of Plane Radio Waves by a
Parabolic Cylinder

Calculation of Shadows Behind Hills

By S. O. RICE
(Manuscript received April 3, 1953)

Ezxpressions are given for the diffraction field far behind, and the surface
currents on, a parabolic cylinder. Approximate values for the field strength
and current densily are given when the radius of curvature of the cylinder is
large compared to a wavelength. The formulas may have value in predicting
the shadows that are cast by hills in microwave propagation. The idea of
representing hills by knife-edges has been used successfully by a number
of investigators. The theory of the parabolic cylinder indicates thal such a
representation is valid even for gently rounded hills when the angle of diffrac-
tion is small. On the other hand, when the angle of diffraction is so large
that the knife-edge calculaiions do not apply, the results presented here may
be used.

1. INTRODUCTION

A number of investigators have studied the effect of hills on the
propagation of short radio waves. Experiment has shown that the field
far behind a hill may be computed, to a reasonable degree of accuracy,
by assuming that the hill acts like a knife-edge (half-plane)’. The ques-
tion naturally arises as to the conditions under which such an assump-
tion is permissible. Here we attempt to throw some light on this ques-
tion by taking the hill to be a parabolic cylinder.

Our results indicate that, for small angles of diffraction, even gently
curved hills act like knife-edges. However, for larger angles correspond-
ing to points deep in the shadow or to points high in the illuminated re-
gion, it may be necessary to use the more exact formulas which take the
curvature of the hill into account.

! See, for example, Ultra-Short-Wave Propagation, J. C. Schelleng, C. R.
Burrows and E. B. Ferrell, Proc. I.R.E., 21, pp. 423-463, 1933.
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As an application of our results, a brief study is made of the hypo-
thesis that very short radio waves are transmitted far beyond the hori-
zon by successive diffractions over hills or ridges. The ridges are as-
sumed to be of equal height, to be 40 miles apart, and to have a radius
of curvature of 100 meters at their crests. At the frequencies considered
(30 and 300 mec) and at the small angles of diffraction required to go
from one crest to the next, the ridges act like knife-edges.

At 30 me and a distance of 280 miles the caleulated field is in fair
agreement with the observed field”. At 300 mc and at the same distance
the calculated field is about 50 db below the observed field. This sug-
gests that the 30 mc long distance propagation may possibly be ex-
plained by successive diffractions. The discrepancy at 300 me may be
due to any one of a number of reasons. For example, it may be due to
the effect of the non-uniformity of the atmosphere, or to the roughness
of our approximations (for one thing, we neglect reflections from the
ground between the ridges).

The first theoretical work on the diffraction of plane electromagnetic
waves by a parabolic cylinder apparently was done by P. 8. Epstein.?
His work makes use of a series of parabolic eylinder functions. When the
eylinder is large many terms are required for computation. By “large”
we mean that the radius of curvature at the vertex of the cylinder is
large compared to the wavelength of the radio wave.

An entirely different approach was used by V. Fock"® in 1946. In the
first paper Fock sketches the derivation of an integral for the current
density on a large paraboloid of revolution. In the second paper he re-
derives this integral by considering the form assumed by the field equa-
tions when a plane wave strikes a gently curved conductor at grazing
incidence. His result gives the change in current density on a large and
highly conducting parabolic eylinder as we go from the illuminated
region into the shadow.

In 1950 K. Artmann® examined the diffraction field far behind a large
circular cylinder. He showed that, for small angles of diffraction, the

2 A summary of experimental data is given by K. Bullington, Radio Trans-
mission beyond the Horizon in the 40-400 Megacycle Band, Proc. I.R.E., 41, pp.
132-135, 1953.

3 Dissertation, Munich (1914). A more accessible account of this work is given
in the Encyklopiedie der Math. Wiss. 5, Part 3 (1909-1926) Phys. p. 511. Sec also
H. Bateman, Partial Differential Equations of Math. Phys., (Cambridge Univ,

Press 1932) p. 488.

1 The Distribution of Currents Induced by a Plane Wave on the Surface of a
Conductor, J. Phys. (U.8.8.R.), 10, pp. 130-136, 1946.

5 The Field of a Plane Wave Near the Surface of a Conducting Body, J. Phys.
(U.8.8.R.), 10, pp. 399-409, 1946.

& Beugung polarisierten Lichtes an Blenden endlicher Dicke im Gebiet der
Schattengrenze, Zeitschr. fiir Phys. 127, pp. 468-494, 1950.
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diffraction pattern is shifted by an amount proportional to the 14 power
of the radius of curvature. Whether the shift is towards the shadow or
in the opposite direction depends upon the polarization of the incident
wave.

In this paper we derive some of the results given by Fock and Art-
mann by starting with Epstein’s series. In addition we investigate the
diffracted field at a great distance behind the cylinder. The cylinder is
assumed to he a perfeet conductor in all of our work except for a few
equations given near the ends of Sections 4, 6, and 7. The procedure is
similar to that used in the smooth-earth theory.” The series is converted
into an integral and then the path of integration is deformed so as to
gain as much simplification as possible. As might be expected, the results
for a large parabolic eylinder are similar in some respects to those for a
smooth earth. Much of the work requires a knowledge of the behavior
of parabolic eylinder functions of large complex order. Although several
studies of this hehavior have been published, the results are not in the
form required. For this reason, and for the sake of completeness, several
sections dealing with the properties of parabolic cylinder functions have
been included.

Incidentally, W. Magnus® has studied the field produced by a line
source located at the focus of a parabolic eylinder. However, his problem
is somewhat different from the one with which we are concerned.

T am grateful to Prof. Erdélyi of the California Institute of Tech-
nology and to my colleagues at Bell Telephone Laboratories for helpful
discussions and references which resulted in a number of improvements
throughout the paper. I am also indebted to Miss Marian Darville for
performing the rather laborious computations upon which the various
curves and tables are based.

2. DISCUSSION OF RESULTS

Various expressions are given later for the electromagnetic field in
terms of parabolic cylinder functions. In this section we shall confine a
good share of our attention to the case in which the eylinder is very
large compared to a wavelength so that the ecylinder functions may be
approximated by Airy integrals. As in the remainder of the paper, we
shall he concerned chiefly with the field behind the cylinder and the
current density on the cylinder.

" By “Smooth-earth theory’ we mean the formulas for the field produced by a
dipole near a large sphere. A complete discussion of the theory is given in the
book by II. Bremmer, T'errestrial Radio Waves (Llsevier, 1949),

8 Zur Theorie des zylindrisch-parabolischen Spiegels, Zeitschr, fiir Physik,
118, pp. 343-356, 1941.
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Tt turns out that the results for the parabolic eylinder are closely
related to those obtained by Sommerfeld® for the diffraction of a plane
wave by a perfectly econducting half-plane. In fact, the two fields are
surprisingly similar in the region of the shadow houndary. More pre-
cisely, the fields are similar for values of the angle ¢, defined in Fig. 2.3,
such that (roughly)

wavelength 1/
radius of curvature of eylinder at its crest_ '’

| ¢ in radians | <i|:

where the coefficient 14 has been selected somewhat arbitrarily. For
larger values of |y | the difference between the fields becomes pro-
nounced. As we go deeper and deeper into the shadow, i.e. as ¢ becomes
more and more negative, the field behind a cylinder ultimately decreases
exponentially with . On the other hand, the field behind a half-plane de-
creases roughly as 1/| ¢ |. Since the exponential function decreases more
rapidly than does 1/| ¢ |, the shadow behind a hill is darker than the one
behind a half-plane. High in the illuminated region the field consists of
the incident wave plus the wave reflected from the illuminated portion
of the cylinder. For the half-plane this reflected wave is negligibly small
until ¢ reaches 180°. ‘

First we shall review the situation pictured in Fig. 2.1. An incident
wave comes in from the left and strikes a perfectly conducting vertical
half-plane which casts a shadow as shown. The electric and magnetic
intensities are proportional to exp (iwt) where ¢ is the time and « is
the radian frequency. The unit of length is chosen so that A, the wave-
length, is equal to 2r. This is done in order to simplify the expressions
we have to deal with. For example, a plane wave of unit amplitude
traveling in the positive z direction, as shown in Fig. 2.1, is represented
by exp (—iz).

Sommerfeld’s exact expressions, for the special case of horizontal
incidence shown in Fig. 2.1, may be written as

(hp) E = (€ 4 8) + S:(0), (2.1)
(vp) , H= ("4 8) + 80), (2:2)

where (2.1) holds when the electric intensity Z is parallel to the edge,
and (2.2) when the magnetic intensity H is parallel to the edge. From

» Math. Annalen, 47, p. 317, 1896. Sommerfeld’s results have been described in
a number of texts on optics. The book, Huygens’ Principle by Baker and Copson
(Oxford 2nd edition, 1950) deals with this and many similar problems. See also
Chap. 20 of Frank-von Mises, Die Differential-und Integralgleichungen der Me-
chanik und Physik, 2nd edition, Braunschweig: F. Vieweg and Sohn (1935).
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the analogy with the radio case, these two polarizations will be termed
“horizontal polarization” (hp) and ‘“‘vertical polarization” (vp), re-
spectively. The incident plane wave for hp is assumed to have an E of
unit amplitude. This is indicated by the exp (—iz) in (2.1). For vp the
incident wave is assumed to have an H of unit amplitude. The S’s
are defined by the Fresnel integrals

s 9 . ‘l -
e+ 8 = (i/:r)”'e_“[ ¢ dt,

o (s)\V2 iz p—
8 = —(/m)" f;le dt, @s)

Su0) = —85(0) = —(i/m)"2e+e f e

L= (2n"? sing, tr = (2r)'" cosg, % = exp (in/4),
where (7, ¢) are the polar coordinates shown in Fig. 2.1 [S; and S:(0)
= —8,(0) for an arbitrary angle of incidence are given by Equations
(5.3), (5.6), and (5.20) of Section 5]. We use the notation S:(0), S;(0) to
indicate that these functions are special cases of the functions S.(h),
Ss(h) which appear in the analysis for the parabolic cylinder.

The principal part of the field far to the right of the half-plane, where
x is positive, is given by exp (—iz) + S; whose absolute value is plotted
in Fig. 2.2. The function S; almost cancels the incident wave in the
shadow, and then drops down to small values outside the shadow.
The function S,(0) is always small in the region we shall consider. It
becomes large only when ¢ exceeds . It then corresponds to the wave
reflected from the front (left-hand side) of the half-plane.

When we are far enough away from the shadow boundary to make

Y
INCIDENT WAVE SHADOW
. ~BOUNDARY
e-L¥ o ’
"\ N— 1 X

TRACE OF __ -7
HALF-PLANE

Fig. 2.1 — Diffraction of a plane wave by a half-plane.
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Fig. 2.2 — The approximate value | e=® + S, | of | £ | for hp and of | H | for
vp at a great distance » behind a half-plane. Here, as in all of our work, the wave-
length X is 27, For an arbitrary wavelength replace r by 2xr/x, ete.

@'r >> 1, exp (—izx) + Si has the asymptotic expressions [see Equations
(7.7) and (7.8)]

c(r)/2sin ¥, ¢ < 0 (shadow)
6_‘.JE + Sy ~ (2-4)
e 4 o(r)/2sin ¥, >0
e(r) = 23 2m) e (2.5)

These expressions lead us to picture the field to the right of the half-
plane as the sum of the incident wave and a wave, ¢(r) /g, spreading out
from the diffracting edge' (for the small ¢’s of interest, 2 sin ¢/2 ~ ¢
even though ¢'r 3> 1). In the illuminated region these two waves inter-
fere with each other to give the oscillations around unity shown in Fig.

10 See, for example, R. W. Wood, Physical Optics, 3rd edition, p. 220 (Mac-
Millan, 1935). Curves of equal phase and amplitude have been computed and
plotted by W. Braunbeck and G. Laukien, Einzelheiten zur Halbebenen-Beugung,
Optik, 9, pp. 174-179, 1952.
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2.2. In the shadow only the edge wave is present and there is no inter-
ference. S; is not the edge wave in the shadow.

The edge does not radiate uniformly in all directions. The ¢ in the
denominator of ¢(r)/¢ indicates that the edge sends out its strongest
wave in the direction of the shadow boundary where ¢ = 0. This ac-
counts for the decreasing size of the oscillations in Fig. 2.2 as ¢ becomes
more and more positive. It likewise accounts for the steady decrease as
¢ becomes more and more negative.

That S2(0) is small in comparison with exp (—iz) + 8; follows from

S2(0) ~ ¢e(r)/2 cosg (2.6)
and the fact that this is small compared to the ¢(r)/2 sin (p/2) in
(2.4) when ¢ is small.

So far, we have been discussing a special case of Sommerfeld’s results.
Now we turn to the case of the perfectly conducting parabolic cylinder
shown in Fig. 2.3. Here, as in Fig. 2.1, the incident plane wave exp (—1ix)
comes in from the left. The fields for the two kinds of polarization are
given by

(hp) E = (% 4+ S) + Su(h), (2.7)
(vp) o= (74 8) + Si(h), (2.8)

I

where, just as in the half-plane case, the fundamental vectors & and H
are perpendicular to the plane of Fig. 2.3 and the incident waves are of
unit amplitude.

The [exp (—iz) + S in (2.7) and (2.8) is exactly the same Fresne]
integral (2.3) as for the half-plane. Sy(h) is a rather complicated integra]

INCIDENT WAVE Y
e-lx 0
~u—
(0,h) [ r
777777,
SHADOW
h
- i
~_PARABOLIC CYLINDER (2h,0)—" X
= x2=4h (h-y)

Fig. 2.3 — Coordinates used in the discussion of the parabolic eylinder. The
coordinates such as (0, k) refer to (z, y). The origin 0 of coordinates is at the
focus of the parabola and k is the height of the vertex or erest, above the origin.
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(obtained by setting the angle of incidence 6 equal to =/2 in equation
(5.4)) involving parabolic cylinder functions. When # = 0 the parabolic
eylinder reduces to a half-plane and S:(h) reduces to the value S.(0)
appearing in (2.3). The symbol S;(h) represents an integral much like
Sy(h) except that it contains derivatives of the parabolic eylinder func-
tions. As we might expect, Ss(h) and Si;(h) behave in much the same
way as does S3(0). In particular, they are small compared to exp (—iz)
4+ 8; at the shadow boundary, and their asymptotic expressions anal-
ogous to (2.6) hold as ¢ and ¥ pass through zero.

Sp(R) and S3(h) have been put in a form suitable for computation in
two cases, (1) when h = 0, which is the half-plane case already discussed,
and (2) when h and r/k* are very large. In the second case it is conven-
ient to introduce new polar coordinates (p, ¥) with their origin at the
crest of the parabola as shown in Fig. 2.3. In these coordinates a circular
eylindrical wave spreading out from the crest is asymptotically pro-
portional to

elp) = i 2mp) e, (2.9)

In Section 8 it is shown that

E~le™ 4+ 8 — “—ifl c(p)h'"® [‘I’('r) + %] exp (¢7°/3), (2.10)

T = h”su’/

is an approximation which gives the field (for horizontal polarization) in
the region of the shadow boundary far behind a large cylinder. Our 7 is
an approximation to the g used there. Here the subseript p on [exp (—1x)
4+ 8], means that the quantity within the brackets is to be computed
as though it corresponded to a half-plane with its edge at the crest of
the parabolic eylinder, so that p, ¢ are to be used in (2.3) instead of 7, ¢.
Also,
® Ai(w) exp (7 ur) du
Ai(u) — 1Bi(u)
Ty f ® Ai('u) exp ('z'u'r) du
o Az(u) + iBi(u)

where Ai(w) and Bi(u) are Airy integrals defined by equations (13.12)
and (13.16), and tabulated in reference.” In this paper we find it con-
venient, to use the Airy integrals instead of the related Bessel functions

¥(r) = 2"
0
(2.11)

11 The Airy Integral, Brit. Asso. Math. Tables, Part — Vol. B (Cambridge,
1046).
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of order 14. As in (2.3), the fractional powers of 7 are made precise by
taking 7 = exp (ir/2).

Three kinds of approximations have been made in the derivation of
(2.10), namely those associated with the assumptions (1) that the angle
y is small, (2) that & is large, and (3) that r/h” is large. The terms in 1/¢
and 1/r do not cause trouble at ¢y = 0 because their infinities cancel
each other.

The counterpart of (2.10) for vertical polarization is obtained from
(2.10) by replacing E by H and ¥(7) by ¥,(r), where the subscript v
stands for “vertical’; and ¥,(7) is given by (2.11) when Ai(u) and Bi(u)
are replaced by their derivatives with respect to w.

Series for ¥(r) + 1/7 and ¥,(7) 4+ 1/7 which converge for negative
(shadow) values of = are given by Equations (7.31) and (7.53), respec-
tively, with ¢ in place of r. Table 2.1 gives values of ¥(7) and ¥,(7)
which were obtained from the series for 7 negative, and from numerical
integration of (2.11) and its analogue for + = 0.

When 7 is large and positive Equations (7.35) and (7.55) show that
¥(r) + /7 ~ (iw7)" exp (—i7'/12), (2.12)
V(1) + /7 ~ (irr)"* exp (ir — i7°/12). '

When 7 is large and negative the leading terms in (7.31) and (7.53)
give

V(r) + 1/7 ~ — " 2.03 exp [(2.025 + 7 1.169)1],
W, (r) + 1/7 ~ — * 3.42 exp [(0.882 + ¢ 0.509)7].

Now that we have expressions for the field what do they tell us? For
one thing, they may be used to show that the field near the shadow

TaBLe 2.1 — VaLuss oF ¥(r) AND ¥,(r)

T | ()] | arg. ¥(r) | ¥olr) | arg. ¥y (r)
3 3.13 —93.5° | 3.16 +104.3°
2 2.21 —1.8° | 2.80 192 .4°
1.5 1.945 +21.6 2.4 211.3
1.0 | 1.715 +32.5 1.985 219.5
0.5 | 1.486 34.2 1.522 218.6
0 | 1.254 30.0 1.089 210.0
—0.5 1.030 | 22.9 0.724 193.7
—1.0 0.823 [ 15.2 0.459 167.8
—1.5 0.648 | 8.48 0.317 130.6
—-2.0 0.511 +3.79 | 0.281 92.0
—3.0 0.338 +0.12 [ 0.288 45.1
—-4.0 0.250 —0.12 0.264 [ 22.3
—5.0 0.200 —0.02 0.221 9.71




426 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1954

boundary is almost the same as for a half-plane. Away from the shadow
boundary, the field in the shadow can be interpreted as a ‘“‘crest wave”
which reduces to the “edge wave” for a half-plane. The crest wave de-
creases as an exponential function of ¢ in the shadow instead of as 1/¢
in the case of a half-plane. In other words it is much darker behind a
parabolic cylinder than behind a half-plane — and the larger the cyl-
inder the darker it is. (A glance at Fig. 2.8 shows that this statement
must be qualified for vertical polarization by requiring the observer to
be deep in the shadow.) As Figs. 2.7 and 2.8 show, deep in the illuminated
region the crest wave behaves like the wave reflected (as computed by
geometrical opties) from the illuminated portion of the cylinder.
Now we consider expressions for the surface currents. Let J and J, be
the densities of the conduection currents which flow on the surface of the
perfectly conducting parabolie eylinder for the cases of horizontal and
vertical polarizations, respectively. J is parallel to I/ and is perpendicular
to the plane of Fig. 2.3 while J, flows in the plane of the figure. J, is
positive when the current flows in the direction of increasing x. In Sec-
tion 6 it is shown that when h is large, J and J, are given approximately

by

J o~ &P (— iz — iy"/3) fm [%--2:3 exp (— ' "uy)
Sl ~ TS b L Ai(u) — Bi(u) (2.14)
exp (— 7uy) —j|du )
Ai(w) + iBi(w) |
7~ iexp (— iz — iv"/3) fm ':_ exp (— 7 Puy)
v T o Av'(u) — iBi'(u) 2.15)

exp (— 7uy)
T A + @ Bi’(u)]du'

These expressions are obtained when the relations (13.17) for Airy
integrals are used in equations (6.16) and (6.23). Here {; is the intrinsic
impedance of free space. In the rational MKS system which we use
{o = 1207 ohms. The factor {; appears in (2.14) but not in (2.15) because
we assume the incident wave for vertical polarization (H = 1, F = {H
= 1207) to be 1207 times stronger than the one for horizontal polariza-
tion (£ = 1). The primes on Ai(u) and Bi(x) denote their derivatives
with respect to w. The parameter v depends upon the coordinate x of
the point at which the eurrent is being observed:

v = x/2h"", (2.16)
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Equations (2.14) and (2.15) hold only in the region of the crest of
the cylinder and for large h. Under these conditions x + +°/3 is very
nearly equal to the distance along the surface measured from the crest
of the eylinder.

An expression equivalent to the one for J, in (2.15) has been derived
and tabulated by V. Fock.*

Series for {pJ and J, which converge for positive (shadow) values of
~ are given by equations (6.17) and (6.24). When v is large and negative
the application of the method of steepest descent te integrals (6.16)
and (6.23) leads to

f & =@/ [+ i/ +

. (2.17)
Jo= 21 — i/ + -],
in which z/h = 2vh™""

Table 2.2 gives values of W] exp (iz) and J, exp (iz). The values
of J for y > 0 were computed from the series, and the ones for y = 0
were obtained by numerical integration of (2.14). The entries for J,
were taken from the more extensive table given by Fock.' In order to
express his results in our terms it is necessary to use the fact that the
radius of eurvature at the vertex of the parabola is 2k. A change in the
sign of 7 is also necessary because the time enters Fock’s work through
exp (—iwt) instead of exp (iwt). The values shown were checked for
v > 0 by the series and for v < 0 by numerical integration of (2.15)

Fock’s table shows that by the time v has reached —2 the value of J,
exp (iz) has become 1.982 at an angle of 4-1.45 degrees. This is close to
the limiting value of 2 predicted at v = — e« by (2.17).

It will be noted that, for large values of h, J is smaller than J, by

TaBLE 2.2 — SURFACE CURRENT DENSITIES

Inf3gel exp (ix + iv3/3) Ty exp (ix 4 iv3/3)
v _
modulus |Argu.ment in degrees mod. Arg.

—-1.0 2.16 —25.9 1.861 —15.43°
—0.5 1.38 —16.8 1.682 +1.52

0.0 0.77 —30.0 1.399 0.00

0.3 0.515 —44.8 1.197 —6.06

0.6 0.327 —62.9 0.991 —14.23

1.0 0.167 —90.1 0.738 —26.63

1.5 0.066 —125.9 0.488 —42 .57

2.0 0.025 | —161.6 0.315 —57.98

3.0 0.0033 | —230.7 0.130 —87.57

4.0 0.00043 ‘ —208.0 0.054 —116.75
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the order of A~ when v is of moderate size. It will be shown later that
the current density decreases exponentially as one moves into the
shadow, and that its rate of decrease is related to that of the field as
shown in TFig. 2.6.

We now take up the detailed discussion of the expressions for the field
and the current density. It is convenient to consider the current density
first. When a plane wave strikes a perfectly conducting plane, the sur-
face current is proportional to the tangential component of H in the
incident wave, and flows at right angles to it. In the rational MKS units
we are using, the surface current density is two times the incident
tangential H. When we consider the illuminated side of a large parabolic
cylinder and calculate the current density by doubling the tangential
component of the incident H we obtain the approximations

fo &~ —2z(4h* + 2B e,

. (2.18)
J‘;; ~ 26_":,

which hold when z is large and negative. When & is very large but z/2h
small these formulas agree with the leading terms of (2.17) which were
obtained from our integrals for the current density.

Expressions for the current density deep in the shadow may be ob-
tained from the leading terms of the convergent series by letting
become large and positive. The exponential decrease is found to be

| ¢od | & 1.4307" exp (—1.013zh~*"),

(2.19)
| J, | =~ 1.83 exp (—0.44xh™"),

where the numbers appearing in these equations are associated with the
smallest zeros of A7(u) and Ai'(u), respectively. These formulas for a
large cylinder are roughly similar to those for propagation over a smooth
earth. The radius of curvature at the crest of the cylinder is 2h. Setting
this equal to the radius of the earth gives an exponential rate of decrease
for J and J, which is the same as that over a smooth earth for the
two polarizations. Of course, the coeflicients multiplying the exponential
functions are different. This agreement is not surprising since the Airy
integrals are closely related to the Hankel functions of order 14 used in
the smooth earth theory.

The surface current densities as a function of the distance h — y
below the erest for & = 1000 and for A = 0 are shown in Fig. 2.4. The
equation of the cylinder shows that h —y = z’/4h so that, from (2.19),
toJ and J, decrease in proportion to A" exp [—2.0257"° (b — y)"}
and exp [— .88V (h — 'Y, respectively, far down in the shadow.
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Fig. 2.4 — The surface current density is plotted as a function of the vertical
distance below the crest or edge. The curves for A = 1000 and & = 0 are obtained

from Table 2.2 and equations (2.20), respectively. Here, as always, the units are
such at A = 27 = 6.28 . ..

The equations used to compute the curves marked & = 0 are

tod = (4mr)™? I:('_'.r F 2i'* f (’_“2(“] ,
ESve

. (2.20)

T, = 2(i/7)""* f et
vy

where the upper signs are for the shadow side and the lower ones for
the illuminated side. The computations are made easier by the relations

(tod)- — o)y = 2
(Jo)- + (Jo)+

b

2,
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where the subscripts “—"" and “+”’ denote opposite points on the il-
luminated side and shadow side, respectively, of the half-plane. These
relations follow from (2.20).* The radius vector » from the origin is equal
to —y on the half-plane. Equations (2.20) follow quite readily from (2.3).
The values of J and J, for an arbitrary angle of incidence and h = 0
are given by expressions (6.6) and (6.22), respectively.

All of the curves in Fig. 2.4, even | toJ | for b = 1,000, eventually
approach the value 2 far down on the illuminated side. It may be
shown that | J, | and | &/ | for the half-plane decrease like (rr)™"* and
1/ (Zarmr:”z), respectively, deep in the shadow. Hence as we go to the
right in Fig. 2.4, the dashed curves will eventually cross over and lie
above the solid curves, which decrease exponentially. The larger h,
the lower and flatter is the curve for | {o/ |.

Now we turn to the diffraction field at points far to the right of the
cylinder. When | ¢ | < 1, so that we are not too far from the shadow
boundary, and h is large, the field is given by (2.10), or by its analogue
for vertical polarization. In order to get acquainted with (2.10) we first
examine the field when | ¢ | << 1 but ¢’p > 1.

When we are so far behind the cylinder that ¥'p > 1 even though
| ¢ | < 1, the asymptotic expressions (2.4) show that

_ clp) /¥, ¥ negative (shadow)
[ 4 il ~ ( (2.21)
— iz c P) )
e+ v
Substitution of (2.21) in (2.10) gives

: c(p)h'’® (‘If('r) + %) exp (z°/3), v <0
B~ - (2.22)
c(p)h'?® (‘I’('r) + %) exp (ir*/3) + ¢ 7, v >0

¢ positive

The presence of c(p) shows that the total wave may be regarded as the
sum of the incident wave and a wave spreading out from the crest. The
crest wave is the analogue of the edge wave, ¢(r)/p, for the half-plane.
In fact, when we are in the region where the 1/ in (2.22) is the most
important term, the crest wave is approximately

c(p)/¥ (2.23)

* They also follow from superposition and consideration of the symmetry of
the currents produced on the half-plane y < 0,z = 0 when — A is impressed. Here
A denotes the system of currents which flows in the upper half-plane 3 > 0,z = 0
when the incident wave falls on a complete plane at z = 0.
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Fig. 2.5 — The amplitude of the crest wave may be obtained from these curves

and expressions (2.24), Here + = h!/% ¢ where ¢ is small. However p must be large
enough to make y% > 1.

and this corresponds to a half-plane with its edge at the crest of the
cylinder.  may be small even though we are considering | ¢ | to be large
enough to make (2.21) and (2.22) hold, i.e. large enough to make
| ¢ ipm > 1. Indeed, multiplying by 2" gives | 70" > h"* which may
be achieved for small values of = by making p large enough.

It follows from (2.22) and its analogue for vertical polarization that
the amplitudes of the crest waves are

(hp) @mp) " R W (r) + 1/7,

—1/2 ;1/3 (2'24)
(vp) (2mp) " R [ (r) + 1/7],

where the expression (2.9) for ¢(p) has been used. The last factors in
(2.24) may be computed from Table 2.1. They are plotted in Fig. 2.5.
When we go deep down into the shadow where 7 is large and negative



432 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1954

we see from (2.13) that
| W(r) + 1/7] ~ 2.03 ¢,

2.25)
| W, (7) + 1/ | ~ 3.42 ™%, (
so that the absolute value of the field is
(hp) |E | ~ (2xp)™"* 1 2.03 exp (2.025 h'"*y), (2.26)
(vp) | H | ~ (2mp)™"* 1" 3.42 exp (0.882 h'"y). '

where the angle ¢ is negative. Thus, as Artmann® has pointed out, the
field decreases exponentially as we go into the shadow. The larger A is,
the more rapid is the decrease. This supports the statement made earlier
that it is darker behind a large cylinder than behind a half-plane.

Comparison of the expressions for the current density and field
strength for the shadow regions shows that there is a simple approxi-
mate relation between them. Near the crest of the cylinder, where v is
small, the radius of curvature is nearly 2h. Hence the tangent to the
parabola drawn from the point P (located at (p, ¥) deep in the shadow)
touches the parabola at T where x is approximately —2hy. This is
shown in Fig. 2.6. Replacing x by —2hy in the expressions (2.19) shows
that the current density at T' is proportional to the field at P as given
by (2.26). It follows that ,

(hp) | Ef¢od | ~ 1.41 h** (2ap) ™"
(vp) | H/J,| ~ 187 h'"* (2mp)™"

This leads us to picture the field at P as being produced principally
by the surface currents around 7. The effect of the stronger currents

(2.27)

¥ P

(»¥)

Fig. 2.6 — The field strength at point P (deep in the shadow) specified by the
polar coordinates (p, ¢) is nearly proportional to the current density at the tangent
point 7" specified by the rectangular coordinates (z, y).
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closer to the crest is perhaps blocked out by the curvature of the cylinder.
For comparison with the horizontal polarization case we note that E
at (p, ) for an infinitely long current filament at the origin p = 0 is
given by

|E/6d | ~ 5(2mp)"" (2.28)

where I is the current carried by the filament and the frequency is
is such that A = 2. There is some difficulty with the picture for vertical
polarization because the current element at T’ points directly towards P
and hence should produce very little field there. This is perhaps as-
sociated with the fact that the (vp) ratio in (2.27) is smaller than the
(hp) ratio by approximately the factor h'"°.

We now leave the shadow region and consider the field at points well
inside the illuminated region. Fig. 2.5 shows that for large positive
values of 7 the amplitude of the crest wave tends to increase with r.
The asymptotic expressions (2.12) show that when 7 is large and positive

| ¥(r) + 1/7| = | W (r) + 1/7 | ~ (xr) = (x)"h°, (2.20)

and hence the amplitude of the crest wave deep in the illuminated
region is, from (2.22) and its analogue,

(hp) |E — ™| ~ (2mp) ™" (b)),

: 2.30
(vp) [ — e |~ ()™ ()™ >0

Since (2.30) is derived from the general expression (2.10) it is subject
to the restrictions mentioned just below equation (2.11). In particular
the angle ¢ should be small (but we must still have ¥°p 3> 1 as assumed
in (2.22)). When ¢ is positive, an application of the laws of geometrical
optics to determine the reflection from the curved surface of the para-
bolic eylinder leads to the expressions™

(hp) |E — | ~ [MT sec (0/2), ¢ >0
\ (231)
1/2

(vp) |H — ¢ *| ~ [’i“a‘—“p(—‘@} sec (¥/2), ¢ >0

for the reflected wave. When ¢ is small these expressions reduce to
(2.30) as they should.
Expressions (2.31) may also be obtained from our analysis by start-

12 Tn our two-dimensional case the calculation of the required radius of curva-
ture, etc., is not difficult. General theorems dealing with problems of this sort
and references to earlier work are given in the paper, A General Divergence
Formula, H. J. Riblet and C. B. Barker, J. Appl. Phys. 18, pp. 63-70, 1948.
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ing with equations (7.36) and (7.56). Furthermore, it may be verified
that the phase angles of the reflected waves as computed from (7.36)
and (7.56) agree with those computed from geometrical optics when
reflection coefficients of —1 and +1 are assumed for hp and vp, re-
spectively.

The amplitudes of the crest waves for A = 1,000 and 2 = 0 are shown
for hp in Fig. 2.7 and for vp in Fig. 2.8. Of course, when i = 0 the crest
wave reduces to the edge wave from a half-plane. The curves for h =
1,000 were computed from equations (2.24) and the curves of Fig. 2.5
(or their equivalent when 7 is small). The curves for & = 0 were com-
puted from

~ —1/2 1 L
| B~ @)™ | 5 ¥/2) * 5 eos w/2)1 vt
(hp) |
I i ~ —1/2 1 !
(B =~ O s T ¥
(2.32)
—172 ! L
| H | ~ (2mp) 2sin (4/2)  2cos (/2) |’ V<o
(vp)
i ~ —1/2 1 - 1
(=~ ) s s O

which follow from (2.1), (2.2), (2.4) and (2.6).

From equation (2.21) onward we have been discussing the field for
values of ¢ and p such that py” 3> 1. For these values the concept of the
crest wave is helpful in visualizing the behavior of the field. Now we
consider the field at points close to the boundary of the geometric shadow
far behind the cylinder. This is the region in which Artmann® was es-
pecially interested. His results for the shift of the field may be obtained
from (2.10) and its analogue by taking | ¢ | to be very small.

At the shadow boundary ¢ = 0 and [exp (—izx) + Si|, = 4. Hence
the region of interest at present is in the neighborhood of the point
point &, = 0, | exp (—ix) + Si| = 13 of Fig. 2.2. A magnified view of
this region showing the shift of the field is given in Fig. 2.9. The figure
shows that, for a given value of py, | E | for hp is less than | H | for vp.
As Artmann has pointed out, this is to be expected since the reflection
coefficient for E (hp) is roughly —1 and the reflected wave therefore
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Fig. 2.9 — Behavior of | ¥ | and | H | on the shadow boundary far behind the
half-plane or parabolic eylinder. This is a magnified view of the region around
{1 =0, |exp (—ixr) + Si| = 24 in Fig. 2.2,

tends to cancel the direct wave when ¢ is very small. On the other hand,
the reflection coefficient for H (vp) is 41 and the reflected wave tends
to add to the direct wave.

The distances 1.71h"* and —1.49h"" appearing in Fig. 2.9 are the
amounts, measured in units for which the wavelength is 2, by which
| E| and | H| are shifted by the curvature of the parabolic cylinder.
If 4/ — h'is the shift in meters for | £ | and if the radius of curvature
of the crest is @ = 2k meters, Fig. 2.9 gives 8(y' — I') = 1.71 (8h")""* =
1.71 (Ba/2)""* where 8 = 2r/N. Thus y’ — b/ = 0.399) (a/M)"* meters.
The corresponding shift for | H | is —0.346M(a/\)""* meters. Artmann
gives the values 0.39 and —0.20 for the respective coefficients. The
discrepancy between —0.346 and —0.20 is cause for worry because it
seems to indicate either a mistake in our work, which I have been un-
able to locate, or a shortcoming in the approximations made by Artmann
for the case of vertical polarization.

As h approaches zero the parabolic cylinder becomes a half-plane
and the curves d and e should approach curves b and ¢, respectively.
According to Fig. 2.9 both d and ¢ approach curve a. This failure is an
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indication of the errors introduced by the approximations used in the
derivation of (2.10) and its analogue.

3. RADIO PROPOGATION OVER A SUCCESSION OF RIDGES ON THE EARTH'S
SURFACE

The results mentioned in Section 1 concerning propagation over a
succession of ridges may be obtained from the expressions and curves of
Section 2 as follows: Consider the situation shown in Fig. 3.1. Let a
radio wave start out from a transmitter at 7. We assume that by the
time it arrives at the first ridge at P it has become equivalent to a
plane wave of amplitude A/f traveling in the direction TP, where 4 is
a constant depending on the strength of the transmitter. For the sake
of simplicity the waves reflected from the ground are neglected. In a
more careful study they would have to be included.*

In order to calculate the strength of the wave at the second ridge,
we assume it to be a crest wave coming from P. Let @ denote the value
of | E | (we assume the case of horizontal polarization since the reflection
coefficient of physical materials approaches —1 for almost grazing in-
cidence) at @ corresponding to a plane wave of unit amplitude incident
on P. From Fig. 3.1 we see that the values of ¢ and p to be used in com-
puting G are ¢y =~ —{/R, p = 2xl{/\, A = wavelength, £ = radius of
earth. The value of h depends upon the radius of curvature of the ridge:
2h = 27 (radius of curvature)/A.

P/‘\vwz_l/R Q

0

Fig. 3.1 — Diagram showing ridges at P and @ which diffract the radio wave
starting from 7 so that a portion of it is received at S.

* A method for doing this (for one hill) is given in Reference 1, page 417.
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The amplitude of the wave striking the ridge at Q is AG/{~/2. The
/2 comes from the horizontal sidewise spreading of the wave in going
from £ to 2¢. If we were dealing with the energy instead of the amplitude,
the factor would be 2 instead of /2. When this wave is assumed to be
plane and traveling in the PQ direction, similar reasoning shows that
the amplitude of the disturbance at the receiver S is AG*/{+/3.

If, instead of two ridges at P and @, as shown in Fig. 3.1, there are N
ridges between the transmitter at 7 and the receiver at S, the amplitude
of the radio wave at S is AG~/fy/N + 1. The distance between T and S
is approximately (N + 1)¢, and the free space amplitude at S is A/
(N + 1)¢. Hence

Actual Amplitude at S
Free Space Amplitude at S

The actual field at S is therefore
20 N logy (1/G) — 10 logyw (N + 1) (3.2)

db below the free space field.

As an example, let us assume a distance of 280 miles between the
transmitter and receiver, and a distance of 40 miles between successive
ridges. This gives N = . For a wavelength of 10 meters and a radius
of curvature of 100 meters for the diffracting ridges, the formulas of
Section 2 show that the ridges behave like half-planes and that ¢ =~
0.227. Equation (3.2) then says that, for a distance of 280 miles and a
wavelength of 10 meters the actual field should be about 69 db below
the free space field. Although this is in fair agreement with the ex-
perimental results, caleulations for other distances indicate that the
field strengths predicted by (3.2) tend to be smaller than the ones
observed.

When the work is carried through for A = 1 meter and a distance of
280 miles, (3.2) says that the field is 120 db below free space. The ob-
served fields are 70 + 15 db below the free space value.

These figures suggest that the roughness of the earth’s surface might
possibly account for transmission far beyond the horizon for wavelengths
of the order of 10 meters. For wavelengths of the order of 1 meter either
the approximations leading to (3.2) break down or some other explana-
tion is required.

=GN + D'~ (3.1)

4, SERIES FOR THE ELECTROMAGNETIC FIELD

Here we set down series for the electromagnetic field when a plane
wave strikes a perfectly conducting parabolic cylinder. Since Epstein’s



440 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1954

classical work deals with the general case of finite conductivity, the
series we use are special cases of the ones discussed by him.

The parabolic coordinates (£, ) which we shall use are related to the
rectangular coordinates (x, i) and polar coordinates (r, ¢) as follows:

z+iy = (¢ +n)/2 = re¥,
x=1fn=rcosg, y=I(n—¢§)/2=rsing,
r=("+4)" = &+ 1)/2,
da* + dy* = (€ + ) (€ + dn’) = 2r(dE’ + dn),
£ = (2r)" cos(p/2 + 7/4),
7 = (20" sin(eg/2 + n/4).

The lines 7 = constant are a series of downward-curving confocal
parabolas having their focus at the origin. The parabolic cylinder T =
4h(h — 7) is given by n° = 2h. This special value of 7 will be called »,:

m=2h"*=z0 k= n/2 (4.2)

(4.1)

When 5, = 0, the cylinder reduces to the half-plane x = 0, y = 0. The
lines £ = constant are halves of upward-curving confocal parabolas
having their common focus at the origin. Outside the cylinder n > 7o = 0,
so 7 is always positive in our work. £ is positive in the half-plane x > 0
and negative in @ < 0.

For much of our work we shall assume the incident wave to come in
at the angle 6, 0 < 8 <, as shown in Fig. 4.1. As mentioned in Section

INCIDENT WAVE Y ¢
=CONSTANT

£=o0

o
) =CONSTANT
/r: \
0 - X

2h

n=0

n="o
Fig. 4.1 — This diagram shows the angle 8 of the incident wave and the surface
of the perfectly conducting eylinder z* = 4h(h — y) (or n = n0).
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2, the field quantities are assumed to depend upon the time through the
factor exp(iwt) where o is the radian frequency.

The wave equations for horizontal and vertical polarization are,
respectively,

OE

2
e + 27 By @+ nE - (4.3)
2 2
"af H+(s Y H =0 (4.4)

where, as explained in Section 2, the unit of length has been chosen so
that the wavelength A = 2x. On the surface of the perfectly conductmg
cylinder, i.e. for 5 = 7, we must have E = 0 and dH/d3 = 0. When
E and H are known the remaining components of the field may be
computed from Maxwell’s equations.

Special solutions of (4.3) (and (4.4)) are

exp [i(n* — £)/2 Un(&"™) Un(ni™"), (4.5)
exp [i(n’ — £)/2] Un(&") W), (4.6)
where "% stands for exp (ir/4) and U,(z), W.(z) satisfy the equation
2
ATwE) o, dTnE) o o) = (4.7)
dz? dz

Another solution of (4.7) with which we shall be concerned is V.(z).
These three solutions are defined by contour integrals of the form

(2md) " f exp [f(0)] dt where ity = =+ 22t — (n + 1) log t.

The path of integration for U,(z) comes in from — = where argt = —,
encircles the origin counterclockwise and runs out to — = with arg
t = . The path for V,(z) runs from — « wherearg{ = = to + « where
arg t = 0, and the path for W,(2) runs from + « to — « where arg
{ = —. The integrals are written at greater length in equations (9.1)
and the paths of integration are shown in Fig. 9.1. Since the paths may
be joined to form a closed path containing no singularities of the inte-
grand it follows that

U’n(z) + I’rn(g) + TV"(Z) = 0‘ (48)

When n is a non-negative integer
(_)11 22 d" —z2

2 = y / f = 2 1
U.(2) = H.(2)/nl — ¢ o ¢ (4.9)
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where H,(z) is Hermite’s polynomial. When z becomes very large the
leading terms in (9.17) and (9.16) give

Ua(2) ~ (22)"/nd, (4.10)

Walni %) o i@ /)" e f20 ", (4.11)
" In order to obtain a series for the incident wave
exp [—ix sin 8 + 7y cos 4§
shown in Fig. 4.1 we consider the special case § = 0. In this case the wave
is simply exp(zy) or exp [i(n" — £/2] and may be obtained by setting
= 0 in (4.5). This suggests that the incident wave may be expressed
as the sum of terms like (4.5). The series turns out to be

exp [— 4z sin 0 + 7y cos 6]
= exp [— ity sin 0 + 4 cos 0(n* — £9)/2]
= exp [— 122 sin 8 — cos 8(z" + 2%)/2] (4.12)

Il

e sec (8/2) Z al(— tw/2)"U,(2) U, (2"
n=0

where
w = tan (8/2),
z = &' (4.13)
=y

This series has been studied by a number of writers. It goes back to
Mehler” who obtained it by evaluating the integral

S f exp[— (t — )’ — (v + dat)’]dt
first in closed form, and then as a series (by using the generating func-

tion exp [— (—iat)’ + 2(—iat)z] for H.(z) and integrating termwise).
This leads to

Gyrry 2y 2
(1 _ ag)_uz exp [Z:Lya (.’L + ?j)ﬂ.]

1 — a?

3 (4.14)
= > H,(x)H,(y) a"/2"n!
0

which is equivalent to (4.12). Since (4.14) converges when |a| < 1,
(4.12) converges when |w| < 1or [8]| < =/2.

13 Reihenentwicklungen nach Laplaceschen Functionen hoher Ordnung, J.
Reine Angew., Math., 66, pp. 161-176, 1866,
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When the incident wave strikes the cylinder the reflected wave has
some of the characteristics of a wave spreading radially outwards. Such
a wave contains the factor exp ( —ir) = exp [—i(8 + 5°)/2]. Consideration
of the exponential factors in (4.6) and (4.11) suggests that the reflected
wave may be expressed as the sum of terms of the form (4.6). The co-
efficients in this series are to be determined so that £ = 0 or dH/dn = 0
at the surface n = no, the incident wave being represented by (4.12).

For the case of horizontal polarization this procedure gives

E = ¢" sec (6/2) i n!(— 1w/2)"U.(2) [U.(z") (4.15)

- ]Vn(z’) Un(zq;)/nfn(z:l)]
E = exp [— iz sin 6 + 1y cos 6]

e (0/2) 3 mi(— 1w/ U QWL U/ Walzp)  H19

for the complete field. These are special cases of Epstein’s results. Here
2 is the value of 2’ which corresponds to the surface of the cylinder:

2 =1 ny = (2h/D)"* (4.17)

The entries for regions IT and II” (these are regions in the m-plane
(m = n + 1) which, as Figs. 11.2 and 12.2 show, contain the large posi-
tive values of n) in Tables 12.2 and 12.4 of Section 12 may be used to
show that as n — o=

Valet)/Walet) ~ " exp [2n(2in)'"),
Une) /W(et) = =1 = Valed)/ W),

exp [— iy — n(2n/1)""]
4T F n/2)]2

fexpl— £(2n/D)"] + " exp [£(2n/9)"""]}.

(4.18)

U2 Wa(Z) ~ —

Since
n!/IT(1 4+ n/2))* ~ 2" (xn/2)7"?

the series in (4.15) and (4.16) converge if | w | = | tan 6/2 | < 1.

Series for H similar to those of (4.15) and (4.16) may be obtained for
the case of vertical polarization. The boundary condition at » =
is now 8H /oy = 0. It is convenient to introduce the functions "I/, (2),
"Vu(2), "W (2) defined by

"Ua(z) = —2U(2) + aU.(2)/0z (4.19)
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and the two other equations obtained when U is replaced by V and W.
The prime is placed in front of U instead of behind to avoid mistaking
'U,(z) for aU,(2)/9z. The function 'U,(2") makes its appearance when
dH /o7 is calculated for the boundary condition. Since iy = — (2 + 2*)/2
we have

E%ﬁa@0=rmﬂwuﬂ. (4.20)

The analogues of (4.15) and (4.16) for vertical polarization are (as-
suming now that H for the incident wave is of unit amplitude).

H = " sec (8/2) i: n!(—iw/2)"U.(2) (4.21)
[Un(z’) - Wn(z’)lUﬂ(z;)/’Wu(zé)])

= exp [—1iz sin 6 + 17y cos 6]

. = . , , (4.22)
— ¢ sec (8/2) ; n(—1w/2)" U)W, (") U, (20) /' W,(z0),

and these series converge if |w| < 1.
If the parabolic eylinder is merely a good conductor, instead of being

perfect, the boundary conditions at g = no are approximately™ £ =
—¢H,, E; = ¢H. Here E; and H; denote the £ components of the elec-

tric and magnetic intensities and { is the intrinsic impedance
¢ = [iwn/(g + iwe)] " (4.23)

of the cylinder material. ¢ is assumed to be small compared to the
intrinsic impedance {y = (uo/ )" = wuo (since A = 2r) of the external
medium. In these expressions p, €, g are the permeability, dielectric
constant, and conductivity of the cylinder; and uo and e refer to the
external medium.

When we set

= 7 + 20)" o/t (4.24)
=7 + )" ¢/,
the boundary conditon for hp becomes oF = —adE/dz' at 2’ = z;. When

¢ is assumed to be constant we obtain

E = ¢" sec(8/2) i ! (—1w/2)"U,(2)
5 (4.25)

(U2 — Wa(@)eUnlz) + ' Unlzo))/[eWalz0) + 'Wolzo)]}

1 Eleciromagnetic Waves, S. A. Schelkunoff, D. Von Nostrand Co., N. Y. (1943)
p. 89. See also G. A. Hufford, Quart. Appl. Math. 9, pp. 301-403, 1952, where ref-
erence is made to the work of Leontovich and Fock.
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which reduces to (4.15) when ¢ — = . The constancy of ¢ may be achieved
by either taking the properties of the cylinder material to change in a
suitable way or, roughly, by taking 7; (and hence h) to be so large that
only the nearly constant values of o at the crest of the cylinder have an
effect on the result (assuming § = /2, and restricting our attention
to the region near the shadow boundary).

The corresponding expression for vertical polarization may be ob-
tained from (4.25) by replacing ¥ and ¢ by H and r, respectively. We
shall refer to (4.25) and its analogue later in connection with the field
in the shadow (Section 7) and with Fock’s’ investigation of the surface
currents on gently curved conductors (Section 6).

5. INTEGRALS FOR THE FIELD

When the curvature of the cylinder is small, i.e., when & is many
wavelengths, the series of Section 4 converge slowly. The work initiated
by G. N. Watson' on the smooth earth problem suggests that we con-
. vert the series into contour integrals with n as the complex variable of
integration. When this is done we get an integral with the path of in-
tegration L, shown in Fig. 5.1. Thus, for example, expression (4.16) for
E is transformed into

E = exp [—1ix sin 0 + 4y cos 0]

Biy sec *q PISANE % ( 1 (5'1)
"3 (E) L+ 1) 4 W) U (el dnd WGz,
Ly

2 2 sin mn

At first sight it seems that not much can be done with this integral
because the integral obtained by deforming L, into L, does not converge
(this is explained in the discussion of Table 5.1). However, some ex-

N-PLANE

n=-ith=-ng2/2

1-=ZEROS OF W, (Zg)

Fig. 5.1 — Paths of integration in the complex n-plane.
15 Proe. Roy. Soc., London (A) 95, p. 83, 1918.
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perimentation shows that if we set’ Ua(zo) = —Vaulz0) —W(20) in (4.16),
the series splits into two-series, one of which may be summed and the
other may be converted into an integral along the path Ls of Fig. 5.1:

E = exp [—iz sin 8 + 4y cos 0] + Sy + Sa(h),

S, = ¢" sec (8/2) i n(—iw/2)" U, (2)W,.(2"), (5.2)

I

Sa(h) = €™ sec (8/2) f) ! (—iw/2)" Un(2) Wal2") Valzo) / Walz0).

The series for S; may be summed by replacing U.,(z) and Wa(z") by
their expressions (9.19) in terms of definite integrals, and interchanging
the order of summation and integration. The resulting series may be
summed and the integrations performed. The result is Sommerfeld’s
integral for a diffracted plane wave:

Il

w0
—('L./Tr)lj2[’7 ir sin §+1iy cos @ f P*ilﬁ d!’,

T

Sy
(5.3)

. 0 2 . —
T, =n COS% — £sin 3 = (27‘)”' sin ("?—2—6 + Z)
The inversion of the order of summation and integration may be
justified when | w| = | tan(6/2) | < 1 (in which case the series in (5.2)
converge) by using (1) the result that | Ry | < |a"/N! | when ais real in

N—1 ('lﬂ'«) i

o n!

— em _ RN‘,

and (2) the inequality

2

[ f ¥ exp [— + 2'%bt] dt:|
1]

<f (;—2(]—:1){2{23\' d{f exp[_QatE + zafﬂbt] di
0 — o

< A2V pTVENTYENT exp(20N1*)

This inequality holds when N >> b” and at the same time N >> 1. The
value of A is independent of N and b is a number which exceeds | £ |.
In this work the parameter a has been arbitrarily introduced; and has
then been chosen so as to make the product of the two integrals a mini-
mum when N is large. This value of a is bN -

When the series (5.2) for Si(h) is converted into a contour integral
taken along the path L, by the procedure used to obtain (5.1), it is
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seen that L; may be deformed into L. and we obtain

iy

0
€’ sec - . N '
Su(h) = 7@2[ (%) Kt 0w vt dn e O

2 sin wn

Whether a particular integrand, such as the one shown in (5.4), con-
verges at the ends n = 7« of L, can often be decided from Table 5.1.
This table gives a rough idea of the behavior of the various functions in
terms of powers of 7. For example, if the integrand should turn out to
he proportional to " = exp(imn/2) at n = i, the integral will con-
verge like exp (—m | n | /2).

TasLe 5.1
Order of Magnitude — Rough Approximation
Function —
near # = i near # = —i%

" 0 @

i i 0

sin mn I’*En 42n
T(n + 1) " i
U.(z) g—dnl2 qanl2
Valz) 7-8nl2 gnlz
Wﬂ(z) inf2 ganlz

The approximations for T'(n 4 1) follow from its asymptotic expres-
sion, and those for the parabolic eylinder functions come from Tables
12.2 and 12.4. The entries for the cylinder functions may also be sur-
mised from expressions (9.4) which hold for z = 0.

Table 5.1 may be used to show that the integrand in (5.1) is of the
order of " as n — —iw. Hence there is no hope of deforming L, into
L, in this case. On the other hand, the integrand in (5.4) is of the order
of i" asn — i and of ©" asn — — i=, and therefore (5.4) converges
exponentially. In fact, it converges for all real positive values of w =
tan 6/2. This enables us to obtain an expression for the field which
holds for 0 < § < = (i.e. it is not subject to the restriction | w | < 1 re-
quired by (4.16)). This expression, which is fundamental for our work,
has the form

E = exp [—dxsin 8 + dy cos 6] + S; + S: (h). (5.5)

Here S; and S.(h) are given by (5.3) and (5.4), respectively.
In working with (5.5) it is sometimes convenient to use the expression
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exp [—iz sin 6 + @y cos 8] + Sy

ST . T (5.6)
= (¢/7)""* exp [—dz sin 8 + 7y cos 8] f e dt
which follows from (5.3) and
f exp (—il) di = (x/D)" (5.7)

The development leading to (5.5) shows that is satisfies the boundary
condition £ = 0 at 5 = n for 0 < w < 1. That (5.5) also satisfies the
condition for the extended range 0 < w < = follows immediately from

: [/}
e sec = C N7
ﬁﬁ____z (Lw) E(n_-FI) U.(2) V(&) dn
2 La \ 2 sin wn

7, (5.8)
= —(i/m)"* exp [—ix sin § + 2y cos 6] f exp (—it*) dt

= —exp[—izsin @ + iy cos 6] — S,

when we note that setting 2’ = zo reduces S»(h) to the left hand side of
(5.8) (with 2/ = z).

Equation (5.8) is due to T. M. Cherry'® who obtained it by expressing
the cylinder functions as integrals and interchanging the order of in-
gration (he works with the function D,(z) of our equations (9.2)). Sub-
stituting the integrals (9.19) for U,(z) and V,.(2") in (5.8) and inter-
changing the order of integration leads to a similar derivation. Equation
(5.8) may also be obtained by deforming I into L, when 0 < w <1
and into L; when 1 < w < =, This leads to the two series

e sec % > (—iw/2)"n! U, (2) V. (2), (5.9)

n=0

—sec ) 3 (—iw/2)' (M + DUEWLE)  (310)
n=—1
which may be summed in much the same way as was (5.2) for Si.
An expression for E which is useful in the study of the current density
on the surface of the cylinder may be obtained from (5.5) by combining
expression (5.8) for exp [—ix sin § + 7y cos 6] + S, with expression (5.4)

18 Expansions in Terms of Parabolic Cylinder Functions, Proc. Edinburgh
Math. Soc., Ser. 2, 8, pp. 50-65, 1948,
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for Sg(h) H

]
e sec — .
B 2 iw\" T'ln 4+ 1) ,
E= 2 fn (E) sin wn Unl2)Wale") (5.11)

[Vn(zé) _ Va(?) ] g
7 n

Wealzo) W2

When w exceeds unity (or whenw = land £ > 9 = 7, = 0) in (5.11),
it may be verified with the help of Tables 12.2 and 12.4 that L; may be
deformed into L3 4+ Li. When n is a negative integer the quantity within
the brackets in (5.11) vanishes because of (4.8) and because U,(z) = 0.
The contribution of Lj is zero since it encloses no poles. The contribution
of Ls is equal to the sum of the residues at the poles given by W,(z) = 0.
Hence, when w > 1,

B = —ro' sec g i |:(1w)" T(n + DU.RW.E)V, (zo)] ) (5.12)

2 sin wnaW,(z0)/dn

=~

where n = n, is the sth zero of lI"n(z(;). This series also converges when
= land £ > 7 = n 2 0 (which is roughly the shadow region). The
preceding inequality does not necessarily specify the complete region
of convergence.
Cherry'® has also pointed out that the expression for a plane wave
given by A. Erdélyi", namely (in our notation)

exp [—ix sin # + 1y cos 6]

iy 6
e sec -
2 I'(n + 1) o (5.13)
-2 (Y ULV

2 sin

+ Un( —Z) Vri( —2’)] dnr

may be regarded as the sum of the negative of (5.8) and a similar ex
pression with £ and 5 replaced by —¢ and —x5. In informal discussions
with the writer, Prof. Erdélyi has pointed out that the work leading to
our expression (5.5) for the field may be considerably shortened by
starting with some known integral for the impressed field, such as (5.13)
or a related result. One way of doing this is to take

exp [—ix sin 8 + 4y cos 6] + Sy,

17 Proc. Roy. Soc Edinburgh, 61, pp. 61-70, 1941.
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as given by the left hand side of (5.8), to be the impressed field in the
equation

E = impressed field + reflected field

From the form of (5.8) and the discussion of expression (4.6) (given
between equations (4.14) and (4.15)) we are led to assume the reflected
field to be an outgoing wave of the form

U sec — 2 f (zw) T(n+1) U (2)W,(2)a(n) dn

Slll ™

where a(n) must be chosen so as to make E vanish on the surface of the
cylinder. This gives a(n) = V o(20)/Wa(z) and leads directly to the
expression (5.11) for K.

When the incident wave is vertically polarized, integrals for  may
be obtained from the series of Section 4 in much the same manner as
were the integrals for E. The analogues of the earlier results are

H = exp(-—z'a; sin # 4 iy cos f)

(5.14)
e sec —
_ : (W‘) T+ 1) g W) Un(l) dn/' Wz,
2% L, \ 2 sin mn
H = exp (—1ix sin 8 + 7y cos 8) + Si + Ss(h), (5.15)
e sec - .
_ 2 iw\" I'(n + 1) / -
S;;(h) = 2 Iy (?) m Un(Z)Wn(z) (316)

,VJI(ZS) d’n/’ ]’Vn (Zl;)!

iy

1}
e" sec —
B 2 w\" I'(n + 1) .
H = 24 fL._ ( ‘2) sin Un()W(#) (5.17)

Valzo) _ Val@)
[’Wn(z[')) Wn(Z’):I

/2"[‘ +1)U Wn V(20

In these formulas ‘U,(z), etc. are defined by (4.19); w, 2, 2’ by (4.13),
2o by (4.17). In (5.14) w is restricted to 0 < w < 1. In (5.15) Sy(h) is
given by (5.16), and w may be anywhere in 0 < w < «. In (5.17) w
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may also lie anywhere in 0 < w < o, but in (5.18) it is restricted to
1 < w < = except when ¢ > 7 (roughly the shadow region) in which
case w may be unity. In (5.18) n = n, is the sth zero of "W,(z): The
zeros of 'W,(z;) interlace those of U’n(zé) shown in Fig. 5.1.

When h = 53/2 = 0 the parabolic cylinder degenerates into a half-
plane and our solutions reduce to Sommerfeld’s expressions for waves
diffracted by a half-plane. It may be shown that if

v (/] . 0_ 1/2 - (p+0 ™
72—qcos§+£sm§—(2r) sm( 3 +i)’ (5.19)

we have

8:(0) = —(i/m)""* exp [ix sin 8 + iy cos 6] f e,
e (5.20)

S;(0) = —8.(0).
When this expression for S»(0) is added to (5.6) we obtain Sommerfeld’s
result for the case of horizontal polarization. :

One may verify that the series (5.12) leads to Sommerfeld’s result as
z, approaches zero. By neglecting 0(z*) terms in (9.3) and setting n, =
—2s + p, for the sth zero of I-'l-’,l(zé) we may obtain the following rela-
tions which are needed in the course of the verification

pe = —4izD(s + 1/2)/71(s) + -+ -,

W, (z20)/on at n, = T(s)/4 + -+~ ,
Valzo) at my = —2izT(s + 1/2) /7 + -, (5.21)
[ Va(z0)

sin maW,,(zé)fan],,ﬂ' =2mA e

6. SURFACE CURRENTS ON THE CYLINDER

As shown in Fig. 6.1, the surface ecurrent J on the perfectly conducting
cylinder n = 7 is parallel to the crest of the eylinder (and to the elec-
tric intensity I2) when the incident wave is horizontally polarized. We
have from Maxwell’s equations in parabolie coordinates

J = [—Hdymy = (@)™ 2r)7"" [9E/37) o (6.1)

Here H; is the component of magnetic intensity in the &-direction.
{0 is the intrinsic impedance of free space given by ¢, = (/&) = wuo
where the second part of the equation follows from 2r/A = w(pe)'’?
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and A = 2r. The E, and the H, of the incident wave are related by
Ho = Ey/to = 1/¢osince E; = 1. In rational MKS units { = 1207 ohms.

The derivative in (6.1) may be obtained by differentiating expression
(5.11) for E and then setting 1 = no. Use of the Wronskian (9.9) for
Va(z), Wa(z) then takes (6.1) into

ol = My [ 2 () UL/ Wa(el) 6.2)

L., SINn TN

where w = tan (8/2), L. is shown in Fig. 5.1, z and zo are given by (4.13)
and (4.17), and

. 2 i i}
M, = (i/87)"%¢ " sec =,
! 2 (6.3)

r=(+m)/2

In this Section 7 will be restricted to mean a radius vector drawn to the
trace of the cylinder on the (z, y) plane of Fig. 6.1.
Closing L on the right and on the left gives the two series

fof = 2iMy 2 (—iw)"Ual@)/Waler), 0 <w <1, (6.4)
e [ W) UnE) -
o = —2im M, );1 [sm o AW /an]n_h, 1 <w< =, (65)

where n, is the sth zero of W.(20) regarded as a function of n.
For the half-plane case 5, = 0, and (9.4) gives

W.(0) = —i"/2T(1 + n/2).

In this case the series (6.4) may be expressed as an infinite integral

Fig. 6.1 — Relationship between surface current density J and electromagnetic
field when incident wave is horizontally polarized. E and J are normal to the
plane of the paper.



DIFFRACTION OF RADIO WAVES BY A PARABOLIC CYLINDER 453

when the integral for T'(1 4+ n/2) is inserted and the sum (9.22) [i.e.,
the sum for the generating function of U,(z)] used. Integrating part of
the result gives

G = (2/inr)'"* cos g [e_"

. (6.6)
. . 0 —qr cos 2
— 2tsin-e f exp(—ft)dt:I.
2 £ sin (8/2)

In (6.6) r is the distance along the half-plane as measured from the
edge: r = £/2 = | y|. Positive values of £ correspond to the shadowed
side of the half-plane and negative values to the illuminated side. With
this interpretation (6.6) agrees with the current density obtained from
Sommerfeld’s expression for the field.

Although (6.6) has been derived from (6.2) on the assumption that
0 < w < 1it also holds for 0 < w < = as may be shown by analytic
continuation. Again, (6.6) may be obtained from (6.5).

Since the factor #~'* comes from the multiplier M, in (6.4), it is pos-
sible that (6.6) may give one an idea of how the current density behaves
near the crest of a thin cylinder which is almost, but not quite, a half-
plane. Of course, r would have to be interpreted as shown in Fig. 6.1.

In order to study J when the radius of curvature of the cylinder is
large compared to a wavelength we consider the case § = 7/2,ie.w = 1,
in which the incident wave comes in horizontally. In this case most of
the variation of the current density occurs near the crest of the cylinder
where, as it turns out, £ is of the order of n'", 10 being large.

At the beginning of the investigation rough caleulations of the inte-
grand in (6.2), based on the asymptotic expressions of Section 12, sug-
gested that for small £ and large »:

(a) Most of the contribution to the integral (6.2) comes from the
neighborhood around point C shown on Fig. 6.2 where m = n + 1 =
2°/2 = —in'/2 = —ih. Point C is a critical point associated with the
asymptotic behavior of Walz).

(b) The path of steepest descent for (6.2) roughly corresponds to the
line ACD of Fig. 6.2, C being the high point of the path. Along this
path Im [[(t) — f(#)] = 0 where f(1) = — 4+ 22t —mlogt,m =n + 1,
is the function entering the definition (10.1) of the parabolic cylinder
functions, and #, t; are the saddle points of exp [f(f)]. This path in the
n-plane separates the regions in which W .(z0) has different asymptotic
forms. It is the boundary of region II1” in Fig. 12.2 and has been studied
in Sections 11 and 12.

Once (b) is verified the truth of (a) follows almost immediately since
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the path of integration L, may be deformed into ACD without passing
over any singularities of the integrand of (6.2).

In order to verify (b), we note that the entries in Table 12.3 for Wa(z)
show that along ACD

Walze) ~ Ag =~ exp [f(t)]. (6.7)

Here the expressions for W (z0) along ACD are taken to be those cor-
responding to the regions I'b and IT’ shown in Fig. 12.2. In making the
last approximation in (6.7) we have neglected the slowly varying co-
efficient of the exponential function in the expression (12.9) for Aj.
Since | £ | << n we set § = 0in U,(z). Then upon using the values (9.4)
for U,(0), (6.7) for W,(z), and unity for w, we see that the integrand
of (6.2) behaves like

i" exp [—f(t)]
2 sin (wn/2)T(1 4+ n/2)" 68)
On ACD we have, in dealing with W,(z,), —37/2 < argm < — =/2.
Hence, from t, + &, = 7 "5 and from f(t,) + f(t) as calculated from
(12.9), we have

exp [f(t)] = exp (3(f(t) + S(t)] + 3[f(t) — ()]

' (6.9)
~ 0 (/) e (= T 45w — 100))
where we have used the second of expressions (12.10) to evaluate
exp [m(l — log (m/2))/2]. Substitution of (6.9) in (6.8) shows that the
integrand behaves roughly like

epC“ [ma—ﬂmﬂ 6.10)

The truth of statement (b) then follows from the fact that the lines of
steepest descent of (6.10) in the n-plane are given by Im [f(t) — f(&)] =
0. To see that C is the high point of ACD we use (12.9) to show that
near C we have
Jlte) — f() = (2/3z) (2" — 2m)™

where m = n + 1. Consequently, f({,) — f({) is real and positive on
AC [where, near C, arg (z° — 2m) = —=/6] and on CD [where arg
(20" — 2m) = —3m/2, m being in region 11’ according to the convention
used in (6.7)]. That C is the high point now follows from (6.10).

In accordance with statement (a), we must study the form assumed by
the integrand of (6.2) when n is near point C.
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When (1) n is near C, (2) n, is large, and (3) | £ | < no we havefor the
various terms in (6.2)
i"/sin wn ~ 27"

T(1 + n/2)W.(20) ~ (no/4)"*(2m)"*" exp [—ins/2]Ai(a),

. i om\ "2 Ea( g )uz:|
where A7 (a) denotes the Airy integral defined by (13.12), m = n + 1,
arg m is near —=/2, and

(6.11)

@/in)" (m + in/2), L (613)
(2/ing)"* dn.

[

da

Expression (6.11) comes from (13.21) and expression (6.12) comes
from region Ia of Table 12.2 (strictly speaking, region Ib should be
used but point C is so close to argm = —/2 that the simpler expression
for Ta may be used). In obtaining (6.12) it is necessary to use the terms
shown in the expansions (12.5) of #, and log t;/4. It may be shown that
(6.12) also holds for negative values of £.

We now set w = 1 in (6.2) and change the variable of integration
from n to a. Substituting for m in (6.12) its expression in terms of «,
expanding in powers of « and neglecting higher order terms, converts
the argument of the exponential function into

iE/2 — itny — iv'/3 + ayi”’ (6.14)
A B Loo
N = PLANE
n=m-i

0o 1 2
—-—-——'__"r-d—.---.-/.E
Cis AT n= -1-ih
D -ioo

Fig. 6.2 — Paths of integration used in studying the current density and diffrac-
tion pattern when h is large. Path BCD is equivalent to path L, of Fig. 5.1. AC
and CD are houndary lines which mark a change in the asymptotic behavior of
W, (z¢). Far out towards A the line A( tends to become parallel to BC.
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where
y = &/@m)" = z/21"" (6.15)
When our approximations are set in (6.2) we obtain

cof 22 (1/2n0)"*r " exp [—itne — /3]

% exp (—i27/3)

[ exp (e da/Ai(e). O
o exp (i27/3)

Here we have taken the path of integration in the complex a-plane to be

the transformed version of the path of steepest descent in the n-plane.

That the path for (6.16) is still the one of steepest descent when v = 0

and e is large follows from the asymptotic expansion (13.19) for Ai(a).

It is interesting to note that near the crest of the cylinder £, + /3 is

approximately the distance along the cylinder as measured from the

crest.

The expression (2.14) for {pJ is obtained from (6.16) when Ai(a) is
transformed by the relations (13.17).

When v is positive the path of integration for a in (6.16) may be closed
on the left to obtain a convergent series, the terms of which arise from
the zeros of Ai(x). These zeros lie on the negative real a-axis starting
withe = a, = —2.338 -+, @z = —4.087 - - - The first fifty values of a,
and the corresponding values of the derivative A7'(a,) have been tabu-
lated*. Thus, when v is positive,

L 1/3
~ - 2N 1/3 —ifng—iv3/3 exp (7" va,)
g—ﬂ' ~ (2/?7?0) e ; fli’(a-x) (6-17)
The leading term in this series leads to the approximation (2.19) when
we use Az'(a;) = .701 - - Expression (6.17) gives the form assumed by
‘6.5) when w = 1 and h — . For large values of s*

a, ~ —[3x(4s — 1)/8]*"
Ai'(a,) ~ — (=)' (—a)"

When v is large and negative an asymptotic expansion for {,J may
be obtained by setting the asymptotic expansion (13.19) in (6.16) and
using the method of steepest descent. It is found that the saddle point
isat @ = a = 47

(6.18)

" and the slope of the path of the steepest decent
through it is given by arg (da) = —5x/12. This leads to the expression
for {oJ which appears in (2.17).

When the incident wave is vertically polarized the magnetic intensity

* Reference 11, page 424.
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H is parallel to the crest of the parabolic cylinder. Since the cylinder
is a perfect conductor, the current density J, on the surface n = n,
is equal in magnitude to H and its direction is that of increasing &.
Thus setting 2’ = z, in expression (5.17) for H and using the Wronskian
(9.9) gives

J,=N f I ) U)W,
L. SIN TN
(6.19)
—ir ) 1/2 2 2
N=c (Sec 5)/2” , o or=(m+£)/2

where 'W,(z;) is defined by (4.19).
Closing L» on the right and left leads to the analogues of (6.4) and
(6.5):

gy

2N X (—iw)"Un(2)/"W(z). 0 <w < 1, (6.20)

n=0

e (1w)" U.(2)
J, = —2ixN ; |:Sill ma’W,.(z.;)/an:L_,,; , l <w< w, (621)
where 7} is the sth zero of ‘W, (z). The zeros of both ‘W, (z;) and W, (z})
are enclosed by the path of integration L; shown in Fig. 5.1,

The current density on a half-plane is obtained by setting z; = 0 in
(6.20), using 'W,(0) = W,/(0) = —i""/T(n/2 + 1), from (9.4),
and the generating function series (9.22) for U,(z):

o0

Ju = 2(?:/1'_)11'2'2—#00:9[ B—it3 di (6.22)
£ sin (0/2)

where r has the same significance as in (6.6). This agrees with the ex-

pression obtained from Sommerfeld’s result for the half-plane.

When w = 1 and h is large, the path of steepest descent for (6.19)
becomes the same as that for the case of horizontal polarization, namely
ACD of Tig. 6.2. This follows from the fact that, as may be seen from
(12.2), the controlling exponential functions for "W,(z) and W,(z)
are the same. The analogue of (6.16) is obtained by using the approxi-
mation (13.24) for 'W.(z):

Ty & (1/2xi) exp [—itm — iv'/3]
w0 exp (—i2x/3) (6_23)
f exp (iya) da/Ai'(a)

@ exp (i2x/3)

where Ai'(a) denotes dAi(a)/de and v is given by (6.15).
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For positive values of v (6.23) and d’Ai(a)/d’a = adi(a) lead to

=, exp (i"va,)

~ — — 1 — v/ 7 7 .
J, & —exp [—im — v"/3] ; o Aia) (6.24)
where a; = —1.019, as = —3.248, ---, etc. are the zeros of A7'(a).*

When we use Ai(a;) = 0.5357 the leading term in (6.24) gives (2.19).
For large values of s*

a, ~ —[3w(4s — 3)/8]*",
Ai(al) ~ — (=) (—a)™ "

The expression (2.17) for J, when v is large and positive may be ob-
tained by applying the method of steepest descent to (6.23). The asymp-
totic expression for A4’(a) is obtained by differentiating (13.19).

When the cylinder is a good conductor, but not perfect, the expression
for H analogous to (4.25) leads to an integral for J,, obtained from (6.23)
by substituting A+’ (a) + fA7(e) for Ad’'(«), which is equivalent to one
given by Fock.t Here £ = — (¢h)"*¢/¢, is assumed to be small compared
to unity and ¢/{ is the ratio of the intrinsic impedance of the cylin-
der material to that of free space. Horizontal incidence, 8 = /2, is as-
sumed.

The analogue of (4.25) for H has the same form as (4.21) except that
now 'U,(z) is replaced by 'U.(z,) + +U.(z), ete. The development
leading from (4.21) through (5.15), (5.17), (6.19) to (6.23) may be car-
ried out just as before. The work is also related to that given at the end of
Section 7 where the effect of finite conductivity on the diffracted wave
is briefly discussed.

A series corresponding to (6.24) may be derived from the integral.
The exponential terms in this series are approximately exp [i'‘y(a,
— {/a})], and are similar to those in (7.63). Since {o = (1o/ €)' is real
and t & (iws/g)"* when g 3> we (the notation is explained in connection
with (4.24); the g denoting conductivity should not be confused with
the g defined by (7.20)) the quantity —4'¢/a) has a positive part. Thus,
the attenuation of J, in the shadow is decreased slightly when the con-
ductivity g of the cylinder is reduced from infinity to a large finite value.

7. FIELD AT A GREAT DISTANCE BEHIND THE PARABOLIC CYLINDER

The field at any point, for the case of horizontal polarization, is
given by expression (5.5) with S,(h) given by (5.4). Since Si(h) is the

* Reference 11, page 424.
T Reference 5, page 418.
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only troublesome term in (5.5) most of this section will be devoted to
its study. Far behind the cylinder £ and n are large and positive, and the
corresponding terms in the integrand of (5.4) are

P(n + DULW.E) = Qig/n) "™ (1 + /20, (1.1)
where the asymptotic expressions (9.16) and (9.17) give

L+ =1+ in(n — )+ itn + I)En + 2)
4 Ay’
In writing the “order of”” term it is assumed that ¢ and » are both O(r
with r > n".
When (7.1) is put in (5.4) we obtain

Su(h) = M, f B Valz)A + 1)

L. sin mnW,(z0)

+ o'/, (7.2)

1,'2)

dn (7.3)

where, from the expressions (4.1) for ¢ and =,
M, = [(i/m)"e"" sec (6/2)]/4n, (7.4)
= tw/q = ttan (8/2)]/n = cot (¢/2 + =/4) tan (6/2).

Although it is not proved here, there is good reason to believe that
(7.3) can be written as
8"V (20
Sa(h) = M, j; ‘ﬁmf—(’;%) dn + O(R*/r*"™) (7.5)
when r becomes large and we restrict ourselves to the region | ¢ | < 7/2
in order to get 0(£") = 0(¢") = 0(r). The first term contains  only through
the factor M, and is of order  *. The “order of”’ term assumes h to
be moderately large compared to unity but B < r. When h < 1 the &
is to be replaced by unity.

The general idea leading to (7.5) is that (7.2) may be used over the
portion of L, where the integrand is large and important. On the portion
where (7.2) differs appreciably from unity the integrand is negligibly
small. The important portion of L, runs from n = / ton = —15 —
(approximately). In particular the variation of "Voa(z)/sin w0 W, (zo)
along Ly may be summarlzed as follows: from —14 to 4 7« it decreases
exponentially as i*", from —14 to —ih it is equal to —2i plus an oscillat-
ing funetion of or del unity, a.nd from —ih to —iw it decreases slowly
at first and then more rapidly until it goes down like ¢ " (steepest
descent behavior). This may be shown with the help of Fig. 12.2, the
entries for regions I'a and I’ in Table 12.3, and the following items [see
(12.9) and Figs. 10.1 and 10.2 for z = ¢ 1"21;0 with —37/2 < arg (ing
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— 2m) < w/2)]:
(a) Re [f(t)) — f(t)] is almost zero between —14 and —h.
(b) Im [f(t) — f(t)] is almost zero between —ih and —7 o,
(¢) t/f runs from zero to unity as n goes from —1 to —1—<h.

Ttems (a) and (b) are consistent with f(t) — f(t) & (2420) (25" — 2m)*"
which holds when # is near —th and which was mentioned in connection
with (6.10).

This concludes our discussion of the reasons for believing that (7.5)
is true for general values of k. Now we shall check it for the special case
h = 0.

When we set b = 0 (i.e. z; = 0) in (7.3), use (9.4) and close L, by an
infinite semicircle, we obtain

e 1
Sz(O)le:lam-l----]. (7.6)

This agrees with the first two terms in the asymptotic expansion of
the Fresnel integral expression (5.20) for S.(0). In expanding (5.20) we
need the first of the two asymptotic expansions (both of which hold
for T> 1)

" i N_?e_x__P(—sz)[ _ 1 ]
fT v - 1= oo + . an

i —it2 £ 1/2 T exp (—T:Tz) 1
j;m(’ d!N(Tr/?) +T l_m,-?"l""' ,(7.8)

and also the first of the relations
xsin 8 + y cos § — T; = -7,

- (7.9)
Ty = n(1 + B) cos (6/2).

In much of the following work we shall assume # and » to be so great
that we can neglect the terms denoted by 0(h*/r"*) in (7.5). We shall use
the asymptotic sign ~ to acknowledge this omission.

From (7.4), 8 is equal to unity when ¢ = § — =/2. When r is very
large this value of ¢ marks the shadow boundary. In the shadow 8 > 1
and in the illuminated region 8 < 1.

Closing Ls on the right and on the left converts (7.5) into

Sy(h) ~ 200, ZE:“ 8"V () /W), (7.10)
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= 8" Va2
S2(h) ~ 2!‘1[1 {(ﬁ - 1)#1 - z=} I:Si.ﬂ ‘.:'nﬁawn((‘:l;))/an] =n } (7'11)

It can be shown that (7.10) converges if 3 < 1 (see (4.18)) and that

(7.11) converges if 8 > 1 (see (12.13)). The term 1/(8 — 1) in (7.11)

comes from the poles of cse 7n inside the path L; shown in Fig. 5.1
From (7.7) and

—zsinf+ycosf—T) =r,
Ty = n(1 + B) cos (6/2)

it may be shown that when g > 1, so that T is negative, (5.6) has the
asymptotic expression

exp [—ix sin § + 4y cos 6] + Sy ~ 2iMy/(1 — B). (7.13)

When this is added to (7.11) the 1/(1 — ) terms cancel leaving a series
for E valid in the shadow where 3 > 1:

) © iZnﬁﬂVn(z;)
B~ —2iMr 2, [sin = aW,,(z;)/an],._,., (7.14)

(7.12)

This series may also be obtained from the more general series (5.12)
for E by using (7.1) and neglecting f.

We now take up the problem of finding the paths of steepest descent
for the integral in (7.5) when g is near unity and h is large. When g = 1
and A is large, the integrand in (7.5) may be expressed in terms of
exp [f(t:) — f(t)] by using Table 12.3. In Section 6 it has been pointed out
that the path of steepest descent for exp [f(h) — f(f)] is the path ACD
of Fig. 6.2, with C' being the high point. This suggests that the path
ACD should be used to deal with the terms in (7.5) leading to exp [f(t1)
— f(t)]. These terms are U,(z9)/W.(z;) (introduced by the use of (4.8))
for the portion of L. between B and €, and V.(2)/ W ,(z,) for the portion
between C and D. As a further argument supporting the use of the path
A( we note that when n is on AC, i.e., on the edge of region I'b, Table
12.3 gives

U(z0)/Walzg) ~ —i(1 — i ") (t/t)" exp [f(t) — f(t)]. (7.15)

Hence the variation of 7" esc mn in the integrand of (7.5) is just cancelled
by that of (1 — 7 ™) in (7.15). Consequently U o (20)/[sin 70 W (25)]
varies as exp [f(l) — f(to)] along AC (the variation of £/ is relatively
small).

These considerations lead us to write (5.4) as
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Sa(h) = Sar + Se + Sy

(4
S-_z] = —f F dn,
B

Sos

c
— f FUL2) dn/ Wz, (7.16)
A

Sa

Il

f " FVLAGL) dn) WA,

F = e"sec (0/2)(7w/2)"T(n 4+ 1)U(z) Wa(2)/2i sin 7n.
When instead of (5.4) the expression (7.5) for Ss(h) is used we obtain

[

Sn ~ —M, f 28" dn/sin mn,
B
¢ 7

Sor ~ — M, f S8 (20) dn/[sin TR a(z))], (7.17)
A

D
Sus ~ M, fc 28"V u(20) dn/[sin TnWa(z0)].

In S it is permissible to swing AC from its original position B(
because the zeros of U, (z;) cancel those of sin 7n. When 8 = 1, AC and
CD are the paths of steepest descent for Sy and Se in (7.17) because
Im [f(t:) — f{t)] = 0 on ACD.

The asymptotic expression (7.17) for S» may be evaluated by tem-
porarily assuming 8 to be a complex number with | 3| < 1 and | arg 3 |
< /2. The integral along BC is the integral along BCE minus the in-
tegral along CE (see Fig. 6.2). Deforming BCE into L, of Fig. 5.1 shows
that its contribution to Sy is —2iM,/(1 — 8). An infinite series for the
integral along CE may be obtained by expanding i*"/sin =n in powers
of exp (—72mn) and integrating termwise from n = ny = —1—ih to
n = o —ih, ie., from C to E. In this way we obtain

1
1—B+§ log 8 — 2mit

Sy ~ —2@'Ml|: >~ exp (o log § — 2“”‘)]. (7.18)
Despite the appearance of the right hand side, it is analytic around
8 = 1 and analytic continuation may be used to show that (7.18)
holds for 0 < 8 < @=.

When £ is large only the first term in the series is important and
we have

So ~ 20M[(8 — 1) — 87" /log 6]

7.19
= 2iM,(8 — 1) + iM,g ' (7.19)
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where we have introduced two quantities which will be used later:

S\ 1/2 1 1/3 . . 22/3
= 20 = () R S
g = —h'""log 8.
When 8 = 1

Sa ~ 20M,(ih’+ 13). (7.21)
When h is large most of the contributions to the integrals (7.17) for
Ss0 and Ss; come from around n = ny = —1—1h, and we may use the

approximations
Un(20)/Walzg) ~ " Ai(ai ")/ Ai(a), (7.22)
Valzg)/Wa(zg) ~ i Ai(ad*?)/Ai(a), (7.23)

a = (h)™n+1+1H), n—mn = a(ih)?
which come from (13.21). Setting these in the integrals (7.17) and using
the fact that ¢*"/sin #n is nearly 27 around n, leads to

0

San ~ — M, f exp( —iPag)Ai(ai ") da/Ai(a), (7.24)

o exp (i27/3)

o0 exp (—i2x/3)
Sog ~ —i M, f exp (—i"ag) Ai(a™?) da/Ai(e),  (7.25)
0

Ses 4 Say ~ ?.11{‘3‘11(9)} (726)
where
0
V() = Zf ., exp (—iag) Ailai™) da/Ai()

(7.27)

wi—4/3

+ & f exp (—i%ag)Ai(c*’®) da/Ai(e).
0

The expression (2.11) for W¥(g) is obtained from (7.27) by changing the
variables of integration and using the transformations (13.17) for Ai(a).
Thus, when h is large and 8 near unity, (7.19) and (7.26) give

So(h) ~ 2iMy(B — 1) + Mg + ¥(g)]. (7.28)
In the shadow, where 8 > 1 and ¢ is negative, (7.13) and (7.28) give
E = exp[—ix sin 8 + 1y cos 8] + S; + Si(h) (7.29)

~ M, [ + ¥(g)].
This and the series (7.14) for E suggest that ¥(g) + 1/¢ may be ex-
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pressed as a series in which the parabolic cylinder functions in (7.14)
are replaced by Airy integrals. One way of obtaining this series from
(7.14) is to use the Airy integral approximations (13.21). The zeros

N, Mo, - -+ of Wo(2s) go into the zeros ay, as, - - - of Ai(a) by virtue of the
relation n — np = a(ih)"* and we have
E ~ 727y, i M (7.30)

= [4i'(a)]P

s exp [ag]
¥(g) + 1/g = —i ; A (7.31)
where g < 0. Here, asin (6.17),a; = —2.338 .- and 41'(a;) = .701 - - -
In obtaining these relations we have used 7" /sin mn & 2i, and

Ai(ad") = —17"Bi(a,)/2 = i"/2xAV (a,), (7.32)

where the first equation follows from (13.17) and the second from the
Wronskian

Ai(e)Bi'(a) — Ai()Bi(a) = 1/ (7.33)

The equal sign in (7.31) holds even though the steps leading to it
indicate that ~ should be used. This may be seen from an alternative
derivation of (7.31) in which Ai(ai *'*) in the first integral of (7.27) is
replaced by the right hand side of*

Ailai ) = —"*Ai(a) — T Ai(aq®). (7.34)

In the first portion the A7(a)’s cancel and the resulting integral con-
tributes —1/g to (7.27) (g must be negative for convergence). The
second portion combines with the second integral in (7.27) to give a
contour integral which leads to the series in (7.31) when the path of
integration in the a-plane is closed on the left. The closure may be
justified by the asymptotic expressions (13.19) and (13.20) for Ai(a)
(again ¢ must be negative).

Since the integrals in (7.27), and their equivalents in (2.11), converge
uniformly for all finite values of g, ¥(g) is an integral funection of g.
When g is negative ¥(g) may be computed from the series (7.31). When
¢ is positive I have not been able to find a practicable method of ob-
taining ¥(g) other than the numerical integration of (2.11). The results
are shown in Table 2.1. Since ¥(g) is an integral function its Taylor’s
series about, say, g = —.5 converges for all values of g. The coefficients
in this series may be computed from (7.31). However, I was unable to

* Reference 11, page 424.
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obtain useful results by this method because the computation of the
coefficients becomes more and more difficult.
When ¢ is large and positive it may be shown that

T(g) ~ — g~ + (irg)'" exp (—ig'/12). (7.35)

The procedure used to establish (7.35) is much the same as that used
to establish the more general result

See 4+ S‘zs ~ —?fMug_l

_ [Ml - ﬁ)}‘” exp [—ir 4 2ih(1 — 8)/(1 + B)]
r(1 + B) sin 3¢ + 6 + 7/2) ’ (7.36)

1—p8 _sindle —0+ m/2)
1+8 sindle+0+7/2)]
which holds when k'*(1 — B) is large and positive.

When ¢ is near —x/2 + 0, (7.36) gives the same result as (7.26)
plus (7.35). For ¢ near —x/2 + 4,

g =~ K1 — B) ~ [2h'"/sin 0] sin % ((p — 9+ g), (7.37)

which shows that g is proportional to the cube root of the radius of
curvature 2h/sin 0 at the point where the incident ray is tangent to the
cylinder.

When 8 < 1, (7.36) may be obtained from

s g RARAC)
Sgg + Sgg ~ ——JII ‘[C — dn — ﬂ[] LCE sin TTTEWR(Z{;) dn. (738)

The second integral in (7.38) represents, asymptotically, the wave
reflected by the eylinder. This interpretation is suggested by the fact
that, when the expression (7.1) for T'(n 4+ 1)U.(2)W,(2") is substituted
in expression (5.1) for F, the resulting integral may be written as the
second integral in (7.38).

The first term in (7.36) is obtained when " /sin n in the first integral
of (7.38) is approximated by 27 and the result integrated. When the in-
tegrand of the second integral is examined with the help of Table 12.3,
it is found to have a saddle point* at m = h; on the imaginary axis
between m = 0 and m = —ih. Near m; the integrand is approximately

287" (/)" exp [F(m)] (7.39)

* Tt is interesting to note that a saddle point also appears in the study of re-
flection from a sphere. See page 86 of reference.”
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where F(m) = f(t) — f(t) + m log 8 and F'(m) = log (t8/t:). Here
Iy and ¢, are functions of m defined by (12.9). At m; we have {8 = 4
and this leads to

my = —4ih8/(1 + B)’,  Flm) = 2ih(1 — B)/( 1 + B),
F’"(my) = —(1 + B8)/mi(1 — B). (7.40)

When we attempt to deform the path of integration ACE of the
second integral in (7.38) into a path of steepest descent, we encounter
no trouble near m; in regions I'a and I'b. The path passes through m,
with arg (dm) = —w/4. Soon after passing through m, the path of
steepest descent strikes the boundary between I'a and II' at a point
we shall call @. At G the imaginary part of mis 2h(1 — 8)/(1 4+ 8) log 8.
The asymptotic approximation to the integrand changes its form at
this point. The choice of the path from G out to « is not important
since it contributes little to the value of the integral. However, if we
insist on following paths of steepest descent, it turns out that we must
split the path of integration at G.

When 1/*(1 — B) > 1, it may be shown that the value of second
integral in (7.38) is neatly equal to

—2M[—2a/8F" (ma)] " exp [F(m)]

and this gives the second term in (7.36).

So far, in this section, we have been dealing with the case of horizontal
polarization. Since the work for the case of vertical polarization (in
which H plays the role of-the wave function) follows much the same lines,
we shall merely list the formulas corresponding to those already ob-
tained for horizontal polarization. M,, 8 and M,, g are still given by
(7.4) and (7.20), respectively.

E-Znﬁu ’.Vn(zf:) ) .
S0 = [ S (o7 dn + 0/, (7.41)
S3(0) = —8.(0), (7.42)
Sa(h) ~ 2iMy 2 B" ' Vaulze) /' Walz), B <1 (7.43)

n=0

. » iﬂuﬁn fvn(z"]’)
. -1
Ss(h) ~ 2iM, {(,3 - = “~ l:sin Th E'IV"(ZJ)/&anH;}’

g > 1 (shadow region), (7.44)

n, = sth zero of 'W.(z),
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© 'c‘.-.)ﬂ n 117,! zf
H ~ —2iMr D [6—(")] , B>1

| sin mn @' Wo(ze)/on
Sy(h) = Su + Sp + Su,
Syt = S defined by (7.16),
Syr = Ser with "Un(z0) /' Woa(z0) in place of U,(z0)/W.(20),
Sy = Sy with 'V, (z0)/ W.(z0) in place of V,(z0)/W.(z0),

0

Ssz ~ 7" M, f exp (—i'" ag) At (i **) da/Ai (),

o exp (i27/3)
o0 exp (—12w/3)
S~ M [ exp (—iPag) Ai' (@) da/ A (c),
0

Sz + S ~ 1MaV,(g),
0

V.(g) = f”af exp (—i*ag) At (i ") da/Ad' (@)

exp (i27/3)
o0 exp (—i2n/3) ‘ .
~i [ exp (— i ag) A7 (™) da/ A7 (@),
0

H~iMg '+ ¥,(g)], g¢g<0

’ /3
.7”:] eV(p( asgl’l )
H ~ Z( iy <0
- exp (—a.gi"®)
v, D D varsra e <0
(g)+g Z( al) [41(0)] g
a' = sth zero of Ai'(e), @ = —1.019,  Ai(a) = 0.5357,
Ai'(ali™y = —i"*Bi'(al)/2 = ="/ [2rAi(al)],

Ai"(a) = adi(a).
When g is large and positive,

W (g) ~ —g ' — (irg)" exp (—ig'/12),
S;:,Q + S33 i #‘?,ﬂfggi

N [@(1 - B)]‘“g;p [—ir 4+ 2/A(1 — B)/(1 + B)]
(1 + 8) sin 3(p + 0 + 7/2) '

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

The change in sign of the second term on the right in going from (7.36)
to (7.56) comes from (12.2) and the analogous expression for ‘W (20)
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(only # contributes to U,(zy) and only #, to W,(z;) at the saddle point
m; of the second integral in (7.38)).

So far in this section the parabolic eylinder has been assumed to possess
infinite conductivity. When the cylinder has a finite (but very large)
conductivity, it may be shown that the field far out in the shadow is
approximately

?:2 ﬁn Vn(zl;) + Uﬁl ’Vn(z(;)
B~ M, fh sin mn Wa(z0) + o ' Wa(z)

Equation (7.57) is suggested by (7.14) and (4.25). The analogue of
(7.57) for vertical polarization may be obtained by replacing E, ¢ in
(7.57) by H, = so that 'V,(z,) + 7V.(2;) appears in place of V,(z;)
+ ¢ 'V(z), and so on.

When the parabolic cylinder functions are replaced by Airy integrals
according to (13.21) and (13.24), equation (7.57) may be written as

lexp (—agi™]Ail(e + k)i

dn. (7.57)

. 83
E ~ 7 M, . Aila 15 do (7.58)
where g and M, are given by (7.20), « by (7.23) and
k= —(h) ™/t (7.59)

| k | is small compared to unity. Lj is a path of integration in the « plane
which encloses the zeros of Ai(a + k) in a clockwise direction. Changing
the variable of integration in (7.58) to ¥ = a + k enables us to con-
clude that

E for finite | _, &y F for infinite
[conductivity] ~ ':exp ( a)] [conductivity] ’ (7.60)
Since we have assumed § = 7/2, the relation (7.60) holds in the region

where the angle y defined by Fig. 2.3 is negative.

The analogue of (7.58) for vertical polarization is obtained by re-
placing £ by H, omitting the i*® and replacing the ratio of the Airy

integrals by
A (e + ¢/a)i")/Ad (o + t/) (7.61)
where
= —(@Eh) /5. (7.62)

Even though £ is large, ¢/¢o is assumed to be so small that £ is small
compared to unity. The path of integration Li must now enclose the
zeros of Ai'(a + {/a) which are close to those of A7'(e) at « = ai,s = 1,
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2, - -+ . It must not pass close to & = 0 since the work leading to (7.61)
assumes {/e to be a small number. Changing the variable of integration
to v = @ + {/a, approximating /a, {/a’ by {/v, {/v", and evaluating
the integral by considering the residues of the poles at v = a; gives

JUEPTTE _ t\ Vexp [—igla, — t/a)))
H o~ i "M, ; (1 a?) A (7.63)

This shows, to a first approximation, how the expression (7.52) is
modified when the eylinder is a very good, but not perfect, conductor.
Of course g must be negative in (7.63). Since £ in (7.62) varies as h'°
while k in (7.59) varies as h"* it appears that the field for vertical
polarization is much more sensitive to changes in the conductivity
than it is for horizontal polarization.

It may be verified that the change in the exponential terms in the
series (7.30) and (7.52) produced by finite conductivity, namely

a, changes to a, — k

(7.64)

a, changes to a, — £/a;,

agrees, to a first approximation, with the change produced in the cor-
responding series (given, for example, by the series (27) and (28) on
page 45 of Reference 7) for the propagation of radio waves over the
earth’s surface.

8. FIELD AT A GREAT DISTANCE BEHIND THE PARABOLIC CYLINDER WHEN
§ = w/2 AND h IS LARGE

In the work of Section 7 the angle of incidence 6 may lie anywhere
between 0 and x. Here we take § = 7/2, which corresponds to the case
shown in Fig. 2.3 and described in Section 2. Some simplification is ob-
tained thereby. For example, the incident wave is now simply exp (—1z).
We shall write the expressions for the horizontal and vertical polariza-
tion cases as

E = (% + S + Su+ (S2+ Su), 8.1)
H = (" + 8), + Su+ (Sz + Sa), (8.2)
respectively. Here Su, - - - are defined by (7.16) and (7.46) in which
6 = /2, w =1,
B=t/n=cotle/2+ /1) =1—¢+¢/2—¢/3+
Throughout this section 8 will be defined by (8.3), i.e., by (7.4) with

(8.3)
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0 = /2. Also, from (5.3) and (5.6)

Ty
_,12

(€% + 8), = (i/m)"% ™ j: 3 a, Ti=2"(-9 (8.4)

= (2/)"* sin (¢/2).

The subseript r is used to denote correspondence to a half-plane with
its edge at r = 0.

When h is large, physical reasons lead us to expect a similarity be-
tween our field and the one behind a half-plane with its edge at the
crest of the cylinder where p = 0 (see Fig. 2.3). The main part of this
field is the analogue of (8.4):

Ty
(€ + 80, = @/m)"% ™ f di, Ty = (20)"sin (/2), (8.5)
shere the subscript p indicates that [exp (—z) 4+ 8i|, corresponds to
liffraction behind the half-plane just mentioned.

In order to make use of the similarity between the field behind the

cylinder and the half-plane with its edge at the crest of the cylinder,
we change the polar coordinates from (r, ¢) to (p, ¥). From

pe” = re" — ih (8.6)

it may be shown that, when A*/r is small,

T Y
(4 8, — (8D, = /m e [

8.7
— 23‘M1 [ ihsin ¢ ( )

B—1

where M, is obtained by putting 8 = #/2 in (7.4).
When we combine (8.7) and the expression (7.19) for Sy the
2iM,/(8 — 1) terms cancel leaving

—1] + O(R*/¥*"*)

21—M1 l.’a sin ¢ J.1I2

+
B—1° g (8.8)
+ 0(K*/r"®) + O[M, exp (—2xh)].

(e—ir + Sl)r + SEI = (e‘_iI + Sl)p +

The sum of the terms involving M; and M, may be expressed in a
form which contains the expression ¢(r) defined by (2.5) and the quan-
tity b defined by



DIFFRACTION OF RADIO WAVES BY A PARABOLIC CYLINDER 471

b= —log =10gtan(g+£)=¢p+qa3/6+

s 89)

- bl

tanh b = sin ¢.

Replacing ¢(r) exp (ih sin ¢) by c(p) plus a correction term then con-
verts (8.8) into

(9—“ + S + Sy = (@_l'r + Sl)"’

c(p)[1 4+ exp (2b,,)]”2[ 1 exp (thb — ih tanh b)]
o1/2 1 — ¢ + b B (8‘10)
+ O(h-:;/?"wz) + O(r—lf.‘ze—‘brh),

where the subscript p on the square brackets indicates that b is to be
replaced by b, defined by

b, = log tan (y/2 + =/4) = ¢ + ¢*/6 + --- (8.11)

The quantity within the square brackets in (8.10) is continuous at
b = 0 where it behaves like (neglecting 0(b) terms but retaining 0(hb*))
lg + ihb*/3 = 14 + ih'"’¢/3. (8.12)

Expression (8.10) is to be used with (S:2 + Ss3) and (Sz + Sis) ob-
tained from (7.17) and (7.46) (with # = =/2 and w = 1), respectively.
When y is small, expression (8.10) becomes
((’-7{: + Sl)r + So = (37"; + Sl)n
1, K exp (i'ga/S):I . (8.13)
p

+C(P)|:;_$+ g

The subseript p on the square bracket indicates that g is to be replaced
by g, defined by

7o = B, = R + 06+ - ). (8.13)

+

When, in accordance with (8.1) and (8.2), we add to (8.13) the ap-
proximations (7.26) and (7.49), namely

Sae + 8oz ~ 1M ¥ (g),

. (8.14)
Ssa + Sz ~ MY, (g),
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we obtain
B= (@4 S0+ e[ T {5 ¥ b exp ig/3) |
2 q 1o (8.15)
+ e
—1iT 1 1
H=(L’ +Sl)p+c(.a)[§_$
(8.16)

+ {g + \I'w(g)} h''? exp (z’g“/3)} + -

The terms neglected in (8.15) and (8.16) are the “order of”” terms in
(8.10), plus those neglected by virtue of ¢ being small, plus the errors in
(8.14) The errors in (8.14) are of two kinds namely those of 0(h®/r"")
and those due to approximating the parabolic cylinder functions by
Airy integrals.

It is interesting to observe the forms assumed by (8.15) and (8.16)
when h = 0 even though they are not supposed to hold for small values
of h. In this case p, ¥ go into r, ¢ and the right hand sides of (8.15) and
(8.16) become the same, namely

(6™ + 8y)r + c(r)/2. (8.17)
The half plane results given in Section 2 become, for small values of ¢,

7= S, 2 ol (8.19)
where the upper sign corresponds to F and the lower one to H. Com-
parison of (8.17) and (8.18) shows that (8.15) for E reduces to the proper
value but (8.16) for H fails to do so because the signs of ¢(r)/2 do not
agree.

The discrepancy is apparently related to the approximations we have
made in obtaining the expression (7.19) for Sy from (7.18) and to the
errors introduced by approximating the parabolic cylinder functions
by the Airy integrals. As we let & — 0 in the more complete expression
(7.18) for S, the value obtained for Sx — 0. This is explained by the
fact that the upper limit of integration —1 — 4h (at point C) approaches
the pole of the integrand of (7.17) at n = — 1. This large value of Sy tends
to be cancelled by the large value of Se; (for horizontal polarization).
On the other hand our approximation (7.19) yields via (7.21) the value
1M, for Ss and Sz when 2 = 0 and 3 = 1. The factor 1M in M, makes
our approximations for Sa, Sa;, Sis, Siin terms of Airy integrals vanish
when b = 0.



DIFFRACTION OF RADIO WAVES BY A PARABOLIC CYLINDER 473

Incidentally, if, instead of taking the point C of Fig. 6.2 to be at
—1 — h, we take it to be at —14 — 7k (a choice which receives some
support from the Airy integral representation obtained from the view-
point of the differential equations discussed in the first part of Section
13), the approximate integrals of (7.17) and (7.46) may be integrated
directly when h = 0 and 8 = 1. It is found that

S~ =Mog o Su~Miggo M oo iy,
T T 2
2 ) .
S;ﬂ ~ —ﬂ—{l log 2, S;ﬂ ~ Il IUg 2 — % 3 Sag ~ —'11111/2,
T T 2

and these add to give the values S:(0) ~ M, S3(0) ~ —iM, required
by the half-plane case.

It is seen that a rather thorough investigation of the errors introduced
by our approximations would be required to resolve the discrepancy
between (8.17) and (8.18). Since we do not intend to go into this subject,
and since the errors we have made may be as large as the 14 which ap-
pears within the square brackets of (8.15) and (8.16), we shall “split
the difference’” between the two polarizations and omit the 14 alto-
gether. This is done in Section 2 where 7 = g, .

9. tae vunNcrions U, (2), V.(z), W,.(z)

The functions U,(z), ete., are defined for all values of z and » by the
integrals

Ul(z) = % fU [ gy

Vi) = L[ e dt, (9.1)
271 Jy
N ]. —n—1 —t242z¢
Wa(e) = = | (" dt.
2m Jw

where the paths of integration U7, 7, W in the complex ¢-plane are shown
in Fig. 9.1. The cut in the i-plane runs from — % to 0 and has been
introduced in order to make the function " one-valued. In some of
the later work the paths of integration will cross this cut. Of course,
this requires close attention to arg .

The initial and final points of the various paths (denoted in Fig. 9.1
by the subseripts 7 and f) are located at infinity. Arg ¢ = —= at U;
and W, and + 7 at U; and V.

We shall give a summary of the properties of the functions (9.1)
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which will be needed in our work. These functions are related to the
parabolic cylinder function D,(z)"*'* through the equations
Un(z) = 2" " D,.(2"%2)/T(n + 1),
Vaz) = —i " 2" e D_,y (—i22'%)/(2n)"?, (9.2)
Waz) = —i" 2" & D_,y (122"%)/(2m)"".

We use the functions U,(z), ete., here instead of D,.(z) because they
seem to be more convenient for the particular problem we have to
deal with.

From the definitions (9.1) it follows that U,(2), V.(z), Wa(z) are one-
valued analytic functions of z and n. By expanding exp (2zf) in (9.1) and
integrating termwise it may be shown that

U.(z) = 24 cos (mn/2) + 4zB sin (7n/2),
Valz) = —AT" —22i ""'B, (9.3)
Wa(z) = — A" —22"'B,

O / n
R
_ l—ﬂ.§_2 / 1+ﬂ
B—IFI(““‘_Z ,2,.2) 2P( 2 ).

When z = 0 and U,(2) = d U.(z)/dz, ete.,

_ cos (7n/2) _ =it
Un(0) = (1 + n/2)’ ¥20) = 21(1 + n/2)’
—"
sy 2sin (mn/2) e 9.4
[]n(o)_ I‘—Wiﬁ, Vﬂ(o) fr—',rTl)) ( )
( 2 ) ( 2
W) = -

P(n + 1)

2

18 See I8, T. Whittaker and G. N. Watson, Modern Analysis, Fourth Edition
(1927) Cambridge Univ. Press pp. 347-354.

1 W. Magnus and F. Oberhettinger, Formeln und Sitze fiir Speziellen Funk-
tionen, 2nd Ed., Springer, 1948 Chap. 6 Section 3, and p. 227. A comprehensive

acecount of D,(z) is given in the forthcoming work, Higher Transcendental Func-
tions, compiled by the staff of the Bateman Manuseript Project.
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Let T.(z) denote any one of U,(z), V.(z), Wa(2), let primes denote
differentiation with respect to z, and let asterisks denote complex con-
jugates. Then we have the following relations

Th(z) — 22T,(2) + 2nT.(2) = 0, (9.5)
g;zit’f:zT:.(Z)] + 2ne ' To(2) = 0, (9.6)
dil—z; PT(] + @n + 1 — 2P Ta(2) = 0, 9.1

Tu(z) = 2T.(2),

nTu(z) = 22T,(2) — 2T, a(2),
Un(2) Vale) — Unlz) Vilz) = 2" /7" T(n 4 1),
Vi) Waz) — Valz) Wiiz) = 2"/ T(n + 1),  (9.9)
Wh(z) Ua(z) — Wal2) Un(z) = 2% /=" T(n + 1),

(9.8)

Il

Ua(z) + Va(z) + Wa(z) = 0, (9.10)
IVn(z)]* = ]‘V"-(Z*), “Vﬂ(z)]* = Vﬂ’(Z*)J
(9.11)
[Un(2))* = Uns(z¥),
Va(=2) = " Waz), Wa(—2) = " Va(2), 0.12)

U(=2) = =i Va(z) =7 " Walz),
Vopaliz) = —i""KUL2),  W_ana(iz) = —i ""KU.(—2),

ti 1-PLANE

" / -N\_ .
/

ur \J t
%

TIITITITIITITITII T g T

Ui

—_— |
" \/— "

Fig. 9.1 — Paths of integration used in the integrals of equations (9.1) which
define the funetions [7,(z), V,(z) and W,(z). The subseripts 7 and [ stand for the
“initial’”’ and “final”” points of the paths.
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U_paliz) = i@ — T EWa() = —(20) "% " W.(2)/T(—n),
U_na(—iz) = "7 @ — i ")KV.(2),
K = e T(n + 1)/="%2""

Equation (9.5) may be obtained from (9.1) by forming Th(z) — 22T"(2)
and integrating by parts. Equation (9.10) follows from (9.1) upon
joining the paths U, V, W to obtain a closed path of integration. From
(9.11) it follows that when we have an e\presswn for V,(z) which holds
for all values of z and n, replacing ¢ by —% (or ¢ ') gives the correspond-
ing expression for W,(z). Equa.tlons (9.13) may be obtained by using
the fact that U_,_1(iz) exp (z°) etc. are solutions of the differential
equations (9.5) and (9.7).

The relations (9.11) and (9.13) enable us to compute the values of

Un(2), Valz), Wa(2) for z = i p and z ="

(9.13)

" p and all n when the
values of any two are given for z = i%p and Re(n) = — 4.

It may be verified that as z becomes large and n remains fixed the
differential equation (9.5) has the asymptotic solutions

o nl=n_ .
Sl(ﬂ,z)ﬂmﬂpo( 2,-2—,, 1/2),

~n152 (9.14)
sa(n, 2) = : on/a 2P0(ﬂ+1’n_+_2”1/ )
where
|arg z | < 7 and sy(—n—1iz) = i"Ksi(n,z2),
K being given by (9.13). In terms of these functions we have
Va(z) ~ —isi(n, 2), O<arge <
~ —si(n, 2) —isy(n, 2), —7/2 < argz <0 (9.15)
~ —si(n, 2) =1 " sa(n, 2), —r <argz < —7w/2
W.(z) ~ ise(n, 2), —r<argz <0 (9.16)
Un(z) ~ si(n, z), —r/2 < argz < /2. (9.17)

The first expression for V,(z) in (9.15) follows when we note that the
leading term may be obtained from (9.1) by choosing the path of in-
tegration V to be t = z + 7 where 7 runs from — to 4, and | z |
is supposed to be large. (9.17) follows from the first of (9.15) and the
relation (9.13) between V_, 1(iz) and U,(z). Asymptotic expressions
for W,(z) may be obtained by taking the conjugate complex of those
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for V.(z). The second and third expressions for V,(z) follow from the
other asymptotic expressions and (9.11), (9.12).
When R(n) < 0, the theory of gamma functions and (9.1) lead to

I'(n + DT(=n)Us(2) = —x ese mnU.(2)

w (9.18)
= f " Lexp (=7 —2r2) dr.
0
By expressing \/7 exp [—(z — )] as the integral of
exp [—7 + 2i(z — D)1
taken from 1 = — o to + « and substituting in (9.1) it may be shown
that, when R(n) > —1,
Unz) = Fi" f U
Vi) = =B [ (9.19)
0

Walz) = —Fi" f ¢TTHE 2
0

F = 2"¢"/T(n + 1'%

When 7 is not an integer the path of integration in the integral (9.19)
for U,(z) is indented downward at the origin. Equations (9.19) mav
also be obtained from (9.1) by using (9.13) and (9.18).

When # is an integer

Udl=2) = (=)"Uulz), Vul(=2) = (=)" Wal2),  (9.20)

and when n is a positive integer

!I

Uﬂ.(z) = 31(7’1-, 2) = ( )B n‘ dz“ B ]
U—ﬂ(z) = 0) (9.21)
. i d7h
Voa(z) = —W_u(z) = —is(—n,2) = — W%g
From Maclaurin’s expansion and (9.21),
> "Un(z) = exp [—1F + 22t]. (9.22)

n=0
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10. FORMULAS FOR THE SADDLE-POINT METHOD

Much of our work involves the behavior of the parabolic eylinder
funections as functions of n when n is a large complex number. Although
this subject has been studied by several writers,” *** their results
are not in the form we require. As the work of Sections 6 and 7 shows,
the paths of steepest descent for the integrals in our electromagnetic
problem are intimately connected with the function f(4) — f(4). In
turn, this function is closely related to the saddle point method of evalu-
ating U.(2), ete., for large values of n. For the sake of completeness,
we shall outline this method. We shall pay special attention to the rela-
tive importance of the two saddle points as n moves about in its complex
plane.

When we write the integrand of the integrals (9.1) as exp [f(f)] we
obtain expressions of the form

Uue) = 5 [ ewis@ra,

fly = = 4+ 221 — mlog |, m=n -+ 1

(10.1)

The saddle points of the integrand are at the points ) and ¢ in the com-
plex t-plane where f'(f) is zero:

U — 22ty +m =0, 5 —aly = —m/2,

1/2

z -+ (2% — 2m)
2 b

7 — (22 _ 2m)l!2
2 7

Let the path of integration U/ of (10.1), for example, be deformed so

as to pass through a saddle point, say #, along a path of steepest descent.
Let

ly = fh+ 10 = 2

(10.2)

Hh = 2!‘01‘1 =m

J) = flte) — 2 bt — 1)*/k!. (10.3)

Then, if b, is not too small, the contribution of the region around #

20 Nathan 8chwid, The Asymptotic Forms of the Hermite and Weber Functions,
Amer. Math. Soc. Trans. 37, pp. 339-362, 1935. References to earlier work will be
found in this paper. Sechwid’s work is based on R. Langer’s study of the asymptotic
solutions of second order differential equations.

2t 0. E. H. Rydbeck, The Propagation of Radio Waves, Trans. of Chalmers Univ.
of Tech. 34, 1944.

22 (3, N, Watson, Harmonic Functions Associated with Parabolie Cylinder
Functions, Proc. London Math. Soc. (2) 17, pp. 116-148, 1918.
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to the value of the integral is exp [f(t)] times
.i f exp |:— Dbt — to)k/lr!] dt
2 2
~ (2rb2) 1 + [ —biB: + 1003B;) (10.4)

+ [ —beBy + 350 + 56bybs) By — 2100b3b,B5 + 55(280)b3B5)
+ ]

where B; = (2b,)*/k!. The sign of (27wby) ™" is chosen so that the argu-
ment of the right hand side of (10.4) is equal to arg (dt) at t = & on
the path of steepest descent. The derivatives of f(t) at & give

by = 2(°s — 4)/1, by = 44/15 by = —12h/t)

il(l“l + 9'0) (10'5)

2 —_
WB: + 1003y = 53 T

The values of these quantities at the saddle point ¢ may be obtained by
interchanging # and 4. If more terms of (10.4) are desired they may be
obtained from the formal result

[ ew [— 3 cx;(tk/k!j| !
4T J—w k=2
(10.6)
~ (2‘1T0!2)7”2 |:1 + E }TZL'(O-) 0: Ay, —ay, ‘aEk)/k!(QC"Z)k]
=
where Y, (ay, as, . . ., a,) is the Bell exponential polynﬂmial.23 It is neces-

sary to rearrange the terms given by (10.6) in order to get them in
groups having the same order of magnitude. A more careful treatment
of the terms in the asymptotic expansions for D,(z) has been given by
Watson.™ His method is similar to that used by Debye for Bessel fune-
tions.

In our work we shall deal with two different complex planes, and the
reader is cautioned against confusing them. One is the complex ¢-plane,
shown in Fig. 10.1, which contains the paths of integration for integrals
such as (10.1). The other is the complex m-plane, shown in Fig. 10.2,
which is introduced because we are often more interested in U7, (2), ete.,
as funections of m = n 4+ 1 than as functions of z. In the earlier sections

23, T. Bell, Exponential Polynomials, Ann. of Math. 35, pp. 258-279, 1934,
The polynomials are tabulated up to n = 8 by John Riordan, Inversion Formulas
in Normal Variable Mapping, Annals of Math. Stat. 20, pp. 417-425, 1949,
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we have spoken of the complex n-plane, but this is essentially the
m-plane shifted by unity. ‘

Since we are going to deal with a fixed value of z (z'” *tori " q) but
with a variable value of m, we make f, and #; one-valued funections of m
by cutting the m-plane as shown in Fig. 10.2.

It may be shown that #, and 4 lie in the opposite half-planes in-
dicated in Fig. 10.1. This restricts arg & to lie between arg z — =/2 and
arg z + w/2. Arg t, is restricted to lie between arg 2 — rand arg z + =
by the cut shown in Fig. 10.1. It may also be shown that

E to ! g ! 151 |, | arg tn — arg 11] g . (107)
tL to
N :
LY
LY
le"f—am
t, REGION to REGION
|z
2
-L\z2-2m
AY
A}
\.>o X tr
CUT FOR t,\)y‘}k Y\
S Y
9 A}
9 0 \‘
> t BOUNDARY BETWEEN
Lo HALF-PLANE AND

ty HALF-PLANE

Fig. 10.1 — Diagram showing the half-plane regions to which the saddle points
fo and t; are confined in the {-plane.

One might wonder why cuts in the m-plane are required since it has
already been pointed out that U.(z), etc., are one-valued functions of
m = n + 1. The trouble is that the asymptotic expressions for U,(z)
are many-valued functions of m even though U,(z) itself is not.

Now that we have considered the saddle points f, and #;, we turn to
a consideration of the paths of steepest descent in the t¢-plane which
pass through them.* The path of steepest descent which passes through
fo, for example, is that branch of the curve

Im[f(t) — f(t)) = 0 (10.8)
for which t; is the highest point (i.e., Re [f(tf) — f(t)] = 0 on it). The

* Watson?? has studied paths corresponding to Re(n) > 0 when z is any com-

plex number, and has given curves which are related to some of those shown in
Section 11.
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paths of steepest descent may be shown to have the following prop-
erties:

1. Let t = {, + it; = r exp (¢6). Then the paths of steepest descent
either run out to &, = + o with{; —» Im zorspiralintot = Qasr =
(constant) exp (—m.0/m.).

2. The steepest descent path through ¢ may be computed by a graph-
ical method based on*

arg (dt) = argt — arg ({ — &) — arg (t — ). (10.9)

mg

Vz2-2m

ARG(z2-2m)

cuT

Fig. 10.2 — Diagram showing the cuts in the complex m-plane, m = n + 1.

If we draw the triangle £ 0 ¢, and bisect the interior angle at , by the
line byt then

arg (df) at {, = angle titoho. (10.10)

If one goes clockwise in traveling from the side fof; to &b then arg di is
negative. Likewise, arg (dt) at & (on the path through f#) is the angle
hetween the side f;fy and the bisector £,b; of the interior angle at #.

3. When m has the critical value z°/2 the saddle points coincide:
to = &, = z/2, and the paths of steepest descent start out from ¢ = z/2
in the three directions arg ({ — z/2) = (arg z)/3 + & where § is 0, 27/3,
or —2r/3.

4. Some of the paths of steepest descent change their character as m
goes from one region of the m-plane to another. This is illustrated in
Section 11 for the case z = p exp (iwr/4) where it is shown that the

* A similar method was used in 1938 by A. Erdélyi in an unpublished study of
the asymptotic behavior of confluent hypergeometric functions.
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boundaries are given by
Im [[(t) — f(t)] = 0, (10.11)

or a similar equation involving another pair of saddle points, e.g., & and
# exp (i2x). In this equation z is regarded as fixed and {, ¢ are functions
of m defined by (10.2). It should be noted that although (10.8) defines
a path of steepest descent in the ¢-plane, (10.11) defines curves (bound-
aries of regions) in the m-plane.

5. If m is such that the path of integration for a particular function,
say U.(z), passes through both f and f;, each one will contribute to
the value of U,(z). Furthermore, if m is such that

Re [f(t) — f(t)] = 0, (10.12)

{o and #; have the same height and the two contributions have a chance
of cancelling each other and giving a value of zero for U,(z). Thus
(10.12) or some similar equation defines the lines in the m-plane along
which the zeros of U,(2), ete., (regarded as functions of m) are asympto-
tically distributed.

6. The lines in the m-plane defined by (10.11) and (10.12) may be
obtained by substituting the values (10.2) for 4 and £ in

flt) — f(t) =t — 0" — 2tt1 log (b/h), (10.13)

and setting the imaginary and real parts, respectively, to zero. How-
ever, instead of dealing with m directly it is easier to use w = u + @
defined by

w = log (tb/tr) = log |t/ti| + iarg to — arg &), (10.14)

m = 2*/(cosh w + 1), (10.15)

where (10.15) follows from (10.14) and (10.2). Then (10.13) becomes
f(ty) — f(t) = misinh w — w)

_ Z(sinh w — w) (10.16)
" ecoshw + 1

The inequalities (10.7) show that
uz0|v| =
7. For the special case z = p exp (¥w/4), (10.16) gives
(cosh w + cos v — v sin ») sinh v = (cosh w cos v 4+ 1) u, (10.17)

(cos v + cosh u + u sinh u) sin » = (cosh u cos v 4 1) v,
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respectively, for Im[f(t,) — f(t)] = 0 and Re [f(t) — f(t)] = 0. These
equations are plotted in Fig. 10.3. It will be noted that a curve is shown
for v > = even though this puts w outside the allowed rectangle. This
is done because one of the paths of integration, W, passes through both
t and £, exp (—i27) when m is in a certain region, and the correspond-
ing zeros of W,(z) lie on the curve defined by

Re [{(t) — f(texp {—22x})] = 0.
It may be shown that a curve corresponding to
J(t) — f(tr exp {—127})

with —7 < » < 7 may be obtained from the curve corresponding to
f(to) — f(tx) with 7 < » < 3= by simply subtracting 2= from v. This is
done on Fig. 10.3.

— BOUNDARIES
Im[fito)-fltd=0

LINES OF ZEROS (EXCEPT CURVE (a))
Re [f(to)-fity)] =0

w
4
Z
-
o
I
£
z ARG M =90° m=—0 |90°
=0
5
o |
1
@ |
< _ |
X _
.
> |
|
|
2+ ‘
I Re [f (to)-F(tje-t2m] =0
|
| —a@
-3 ARGM = 270° m=—0|270°
D . |
0 1 2 3 4 5
w
Fig. 10.3 — Boundaries of the regions shown in Fig. 11.2 and lines of zeros

shown in Fig. 12.1 as they appear on the w = u + 7» plane when z = 7'/2p.
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3. m = (054953 ...)p" ~ 0.550". Fig. 11.1 (b). This value of m
marks the change in type of path. Since Im f(t)) = Im f(#) is satisfied,
the paths through f and & have the same equation [see (11.2)], and
there is a chance for a situation like that at f in Fig. 11.1 (b) to occur.
The high point of the path U is at &, and it goes continually downhill
on either side of t; although its direction changes sharply by 90° at f.
The point m = 0.55p" is just one point on the boundary between regions
in the m-plane corresponding to various types of paths. The boundary
lines are obtained by solving condition (10.11) for m as outlined in
Items 6 and 7 of Section 10. Mapping the boundary lines

Im [f(t) — f()] = 0

from the auxiliary w-plane (shown in Fig. 10.3) to the m-plane with the
help of m = ip°/(cosh w + 1) gives the boundaries between the regions

mi

L13

Fig. 11.2 — Regions of different types of paths of steepest descent, and hence
different types of agymptotic expansions, when z = 71/%p. Points numbered 1, 2, 3,
are values of m corresponding to the paths of Figs 11.1 (a), (¢), (b). Points desig-
nated hy 5, 6, 7 correspond to Fig. 11.3(b). Points 4, 8, 9 correspond to Fig. 11.5
and points 11, 12, 13, 14 to Figs. 11.6 (a), (b), (e), (d).
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I, II, III shown in Fig. 11.2. It may be verified that for large negative
values of m; the boundary lines in Fig. 11.2 are given approximately by

my = =+ 2% | mi | M (11.4)

There was a period, while these curves were being worked out, during
which it ‘appeared that the regions I, II, III told the entire story. How-
ever, when small values of m were studied it was found that region I
splits up into the two sub-regions, Ia and Ib, such that the boundary
between them is given by ’

_2 g
Im [f(t) — f(te )] = 0. (11.5)
14
Vi Lin to/o VE, Wi
Uf
Ui, Wr m =0.00502
| ™0 | tr/p
- Ty m 1
(a)
a-
lt—[/|t||
|
|
_-m= o.oosp?ei-(g‘ou)
N T
S __-m=o0.005p2el7
N
- :o.oospEE“{g‘ 0.03)
_STEEPEST ASCENT
/' TO 00 AT
f ! 5T
STEEPEST DESCENT --- ] /' t=|oojetZ
TO t e b3 S| e TR e
t'-|/| t:l T
| | te/t]
o 1
(b)

Fig. 11.3 — Paths of steepest descent for | m | = 0.005 p?, z = 7"%p. Away from
t = ¢, all paths look much like Fig. 11.3(a).
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This is of the same form as (10.11). That {; exp (—2x%) is a saddle point
follows from differentiation of the equation

fte™) = f(t) + 2mim, — 27wm.. (11.6)

Combining (11.5) and (11.6) shows that the boundary between Ia and
Ib is given by m, = 0. This is indicated on Fig. 11.2.
We now examine the paths of steepest descent when m is small. Fig. 11.3
(a) gives a large view of all the paths, irrespective of arg m, when m*/p
is small.

4. m = 0.005p°. Fig. 11.5 shows the vicinity around f,.

5. |m| = 0.0050°, arg m = =/2 —0.05. Fig. 11.3 (b).

6. |m| = 00050, arg m = =/2. Fig. 11.3 (b). After passing through
t; the path encircles the origin clockwise and runs down into the saddle
point at ¢ = & exp (—2w). Since m; is positive, (11.6) shows that
t1 exp (—2w1) is lower than #. The path for arg m = 7/2 — 0.05 sug-
gests that from ¢ exp (—2w2) the path runs out to « exp (—a%) along
the path of steepest descent which lies directly under (on the Riemann
sheet for —37 < arg t < —w) the path which runs from # to
I = =« exp (ir). It follows from (11.6) that, as ¢ traces out a path of
steepest descent through {;, ¢ exp (—2w?) traces out a path of steepest
descent through # exp (—2w¢) directly under the path through #.

7. |m| = 0.0550°, arg m = x/2 + 0.05. Fig. 11.3 (b) shows that
after passing through # the path of steepest descent spirals in to ¢t = 0.
According to (11.3), the spiral is given by

r = (constant) exp (—m,8/m;) (11.7)

when 7 is small and 6 large. Two things are to be noted. First, the type
of path is different from that for arg m = =/2 — 0.05. Hence arg m =
7/2 marks a change of type similar to that shown in Fig. 11.1 (b), except
that here ¢ exp (—2wt) takes the place of #. Condition (11.5) takes the
place of condition (10.11), and is satisfied by virtue of m, = 0 when
arg m = w/2.

The second thing to be noted is that up until now all of the paths of
steepest descent have ended at &= w and U, V, W could be deformed
into them without difficulty. How can we deform U, for example, into
a path of steepest descent when the path through ¢; spirals in to ¢ = 0?
The way to deal with this problem is shown in Fig. 11.4 where U is
continuously deformed into two portions, one coinciding with the path
through {;, as shown in Fig. 11.3 (b), and the other with the path of
steepest descent through ¢, exp (—2#¢). The second portion lies directly
“underneath’” the first portion.
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In Fig. 11.4 the dashes mean, as before, that the path of steepest descent
is on a sheet of the Riemann surface other than | arg t | < . The alter-
nate dots and dashes are used to indicate that | arg t | > 7 and that in
addition the path lies directly under the curve it parallels. Although in
Fig. 11.4 the two kinds of dashed curves are joined at about arg { =
—3r — w/4, they actually should spiral in to ¢ = 0 before they connect.

8. |m| = 0.0050°, arg m = x. Fig. 11.5. For arg m = m, (11.6) shows
that ¢ and # exp (—2wi) are of the same height.

9. m = 0.005p", arg m = 3w/2. For 7 < argm < 3w/2, {1 exp (—2w1)
is higher than # and the paths spiral into { = 0 counterclockwise. At
arg m = 3w/2 the rate of spiralling is zero and we have the path shown
in Fig. 11.5 (which is the path for arg m = =/2 rotated by 180 degrees).
Here arg t; = 5r/4.

10. m = 0.005p%, arg m = —=/2. The paths for arg m equal to —m/2

ot

Uf

t -PLANE

Fig. 11.4 — Deformation of path of integration U into path of steepest descent
through {; when m = 0.005 p? exp (ix/2 + 20.05).
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and 3m/2 have the same shape and both are highest at the saddle point
whose argument is —3w/4. In both cases the contributions are the same
and hence the value of U/,(2), for example, is the same for arg m = —x/2
as for 37/2 (as it must be since our parabolic eylinder functions are one-
valued functions of m).

Before leaving the region around m = 0 we point out that when
| m/p’| << 1 the path of steepest descent through f, is almost inde-
pendent of arg m. Also, the curves of steepest descent for

1/T(m) = 2—%_1’,‘/;6‘15_"‘ di (11.8)

—=——=—=—= PATHS SUPERPOSED
BUT ARGUMENTS OF t
DIFFER BY 27T

m=0.00502 el7

Lt/ I
-2 -1 g
[

L
_m=o0.00502e* 5" /

e

= +517/4
/Il

m=0.00502

\
\STEEPEST
v ASCENT
\ I

Fig. 11.5 — Paths of steepest descent for |m | = 0.005 p?, z = {42p, These
curves are much the same as those in Fig. 11.3(b) exeept for the values of arg m.
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behave in much the same way as those just described. The line m, = 0
divides the m-plane into two regions corresponding to different types of
paths, and the negative real axis is a line of zeros corresponding to
Re [f(t:) — f(t; exp (—2w1))] = O where {; = m is the saddle point.

11. |m | = 0.55p°, arg m = . Fig. 11.6 (a). This value of m marks a
change in the type of path.

12. |m| = p°, arg m = =. Fig. 11.6 (b).

13. |m| = p*, argm = n/2, arg (ip" — 2m) = 3x/2. Fig. 11.6 (c).
The complication of the paths in Fig. 11.6 (c) is due to the superposi-
tion of two boundaries in the m-plane. Im f(t,) = Im f(41) accounts for

tip

Ve, Wi

m=0.5522 el
L te/p.

Fig. 11.6 — Paths of steepest descent for miscellaneous values of m with 2z =
itizg,



DIFFRACTION OF RADIO WAVES BY A PARABOLIC CYLINDER 493

the path running from & to t, and Im f(t;) = Im f[f, exp (—2mi)] for
the one running from ¢ to & exp (—27). The saddle points in order of
their height are fy, t1, t exp (—2mi), fo being the highest.

14. m = ip’/2. Fig. 11.6 (d). Here ty = # and the dashed lines go
into the saddle point at ¢, exp (—2=7). The paths of steepest descent
change their directions upon passing through the saddle points.

12. ASYMPTOTIC EXPRESSIONS FOR U,(z), V.(2), W.(2)

The asymptotic expressions given here are for z = :*p and z = 7 *
ymp

[with 7 = exp (ir/4)] when = is not too close to z°/2. As mentioned
earlier, there is a close relation between our results and those given by
Schwid.* The main difference is that we regard n as variable and z
as fixed while Schwid regards z as variable with n fixed. Another point
of difference is that in place of the m = n + 1 which appears in our
expressions for { and ¢ the quantity n + 1% appears in Schwid’s work.
The quantity 2n + 1 appears to enter naturally when the asymptotic
values are obtained from the differential equations. This is seen when
the WKB method is applied to equation (9.7).

By examining the paths of steepest descent shown in the figures of
Section 11 we can determine the saddle points corresponding to U,(z),
ete., (for z = i"*) for various values of n. The contributions to the
integral (10.1) from the saddle points # to ¢ were discussed in Section
10. The contribution from the saddle point {; exp (—2xi) (which enters
when z = '%p) is, from (11.6), exp (i2rm) times the contribution from
{1

Although we shall be concerned mainly with asymptotic expressions
for the parabolic cylinder functions themselves, expressions for their
derivatives may be readily obtained. Thus U, (z) = dU.(z)/dz has the
asymptotic expression

U, (2) ~ 2t [eontribution of { to U,(2)]
+ 24 [contribution of &, to Ua(2)] (12.1)
+ 2t [eontribution of # exp (—2x7) to U.(z)]

and similar expressions hold for V,(z), W '(2). These follow when we
note that differentiation of the integrals (9.1), which define the functions,
introduces a factor 2¢ into the integrand. Of course, if the path of in-
tegration does not pass throught a particular saddle point, its contri-
bution to (12.1) is zero. Upon replacing £, and # by their expressions

* Reference 20, page 478.
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(10.2) and subtracting the corresponding expression for zU.(z) we
obtain
"Un(z) = Un(e) —2 Ual?)
~ (2 — 2m)"* [(t, contribution) — (f contribution)  (12.2)
— (e~ contribution)]

where 'U,(z) is the function defined by (4.19). The same is true for
"Valz) and "Wa(2).

Consideration of the various paths of integration shown in Section 11
leads to the results shown in Table 12.1. The leading terms of the
asymptotic expansions are listed for the various regions of the m-plane

TaBLE 12.1 — LEADING TERMS IN THE AsymMpProTIic EXPANSIONS FOR
Ua(2), Valz), Wo(z) WHEN 2 = 1'%, p > 0

Reg’i,:m=ir:‘m-pllauc Un(it/n) V(i 20) Wa(iti2p)
Ia A, A, —AD b Al
II Ay — Ay Aq —1
Ib (1 — @4m)A, o —Ag — A, + imA,
III (1 — 414, Ay — A,y —Ag + A,

shown in Fig. 11.2. If the next order terms are required, they may be
obtained from (10.4) and (10.5).
The notation used in Table 12.1 is as follows:

z=1"p, m=mn-+ 1, i = exp (iw/2),
— x/2 < argm = 37/2, — 7/4 < argty < 3v/4,
- 7/2 < arg (ip° — 2m) = 3x/2, — 3x/4 < argh £ 5r/4,
= [ + (o' — 2m)'"1/2, & =[""p — (" — 2m)""/2,
Ao = [t'"7(@p" — 2m)™*/2ix'"] exp f(t), (12.3)

4, = [llm(?:fi2 - 2m)_m/ 2'””2] exp f(f),
f(te) = 2ty + e m log ty = s logﬂ' — log 1,—0) + %,
2 2 2 i

m

— ?_’.; — o .t_l 12
2(1 log 5 log tu) -+ @ pty.

flt) = zt;-l—ﬂ—’-;—- mlog il =
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Sometimes it is helpful to use

(27) " exp l:%t(l — log %z):|

1/T (”" + 1) = 1/T(1 + »/2)  for

2

—r/2 < argm < w/2, (12.4)

Py (1 ; m)/Z?r = ’L'_"_IF(_R/Z)/Z’T:

w/2 < argm < 3w/2,

where the last line is obtained by setting m exp (—wi) for m in the
second line.

The asymptotic expansions for regions Ib and 711 may be obtained
from those for fa and I7 by using equations (9.11) and (9.13). However,
the work is more difficult than one might suspect at first glance.

Incidentally, the leading terms in the asymptotic expansions (9.15)
and (9.17), which hold when p — « and n remains fixed, may be ob-
tained by considering the entries for Ie and Ib in Table 12.1.

It is sometimes convenient to use the limiting forms of the asymptotic

expressions when | m | 3> p°. In this case, for z = 2,

2
2 — z + i(2m)'* ‘:1 - —2%1] + 0(m ™™,
2
2n — z F i(2m)"*? [1 — %J + 0(m™%) (12.5)

2
log t/ty — F ir + 1z(2m) ™" |:2 + ﬁir::r,] + 0(m™™"%),

where the upper signs hold when —x/2 < arg m < w/2 and the lower
ones when 7/2 < arg m < 3x/2. Substituting (12.5) in (12.3), neglect-
ing the higher order terms, and setting

B = 27 exp [”’; (1 — log g‘) + fp2/2:| :

a = exp [—p(2m/)""],
a = exp [p(2m/D)"] = 1/a,

converts Table 12.1 into Table 12.2.
In this table B, ao, ay, are defined by (12.6); m = n + 1; —=n/2

(12.6)
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TaBLE 12.2 — LEapING TeErMS IN THE ASYMPTOTIC EXPANSIONS FOR
U,(2), Va(z), Wa(z) WHEN 2 = 3°p AND |20 | 3> p°

Reglon in #-plane | Un(it'2p) Valitizp) Wi (i3/2)
Ia 1" Ba, —i"Bay B(imay — 17a))
I B(i™ay + i"ay) —1Bay —1"Bay
Ib (1 — 41)i"Bay "Ba, B(#%ray — :':'_“at)u
— 1"y
III (1 - %m}tﬂBao B(i"al s iﬂau) B('ﬁ"‘ao - ?:"0’1)

< arg m = 3x/2; and in regions fa and Ib arg m is approximately
— 7/2 and 3w/2, respectively. Gamma functions may be introduced
into the expression for B with the help of (12.4). It may be verified that
the functions do not change, except for negligible terms, in crossing
over the boundary from Ia to Ib (e and oy are interchanged and B is
changed by the factor exp (—mart)).

Since the zeros of our functions, regarded as functions of 7, occur
(asymptotically) when the contributions from two saddle points cancel
each other, we may look at Table 12.1 and pick out regions which may
possibly contain zeros. Thus, Ao may equal A, along the line | 4, | =
| A1 |, i.e. very nearly Re[f(fo) — f(t)] = 0, in the m-plane. These lines
were discussed in Item 7 of Section 10 and are plotted on the auxiliary w-
plane in Fig. 10.3 When plotted on the m-plane the lines appear as
shown in Fig. 12.1 The condition Re[f(ts) — f(t exp (—271))] = 0 gives
the line | 4o | & | 7*"4, | for some of the zeros of W.(i"’p).

Un (Z)

mr

”

-
=" " Wh (2)

Fig. 12,1 — When U,(2), Va(2), and Wa(z) are regarded as functions of n their
zeros lie on the lines indicated when z = ¢1/25, The three branches coming out from
m = 1p?/2 are lines along which | Ay| = | 4, | and the branch for W,(z) coming
down from m = 0 is a line along which | Ao | = | ¢**4, | where 4, and 4, appear
in Table 12.1.
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The location of the zeros far out on the lines of Fig. 12.1 may be ob-
tained by writing the appropriate expressions of Table 12.2 as propor-
tional to B times a cosine or sine. Examination of the trigonometrical
terms shows that

Ua(i"%p) has zeros at n ~ 2k + 14 5"*4pk"*/m,
Va(3'"p) has zeros at n & —2k + ¢ 4pk""/m, (12.7)
Wn(?:mp) has zeros at n ~ —2k + Pty | pkm /o,

where & is a large positive integer. Of course, Ua.(2) also is zero when n
is a negative integer.

So fzhr2 we have been dealing with z = 7"*p. Now we consider the case
z=1 'p.

Asymptotic expressions which hold when z = i "*» may be obtained
from Table 12.1 by using the relations (9.11) between functions of z
and of its complex conjugate z*. Thus, for example, Varan(ip) is equal
to the complex conjugate of Wain(ip). These relations, and relations

such as

M n =a—*=tlforz=1"p,n=a-ib
a — ib)* = f(t,) forz = i *p,n = a + b
(12.8)

have been used in constructing Tables 12.3 and 12.4 from Tables 12.1
and 12.2 The interchange of V.(z) and W.(z) should be noted. The

[t for 2
[f(t) for z = %, n

[
I

m
t M-PLANE
m=n+i1
Hf
mr
-[If
m=-ip2/2
~<ZEROS OF Un (2)
- =~
- ~—
Wn (2) - ~—
.-“"-— ’ h--""-..
]II, I[

Tig. 12.2 — Regions in the complex m-plane corresponding to different asymp-
totic expressions when z = i~1/2p. The lines on which the zeros of the various
functions lie are shown by the dashed lines. The corresponding information for
z = iM%p is shown on Figs. 11.2 and 12.1.
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TABLE 12.3 — LEADING TERMS IN THE ASYMPTOTIC EXPANSIONS FOR
U,(2), Val2), Wa(z) WHEN 2 = 7 5, p > 0

Reglon in m plane Un(i11%) Valiiizg) Wa(ii12)
Ia’ Al —A;—A] 0
I’ Al = A —A] 4
Ib’ (1 — i) A; —Af — (1 — i) A] 4]
I (1 — -m)A] “ Ay A A= AL

regions in the m = n -4 1 plane corresponding to the different asymptotic
expressions are shown in Fig. 12.2. The boundaries are simply those of
Fig. 11.2 reflected in the real m-axis. The lines of zeros are also shown in
Fig. 12.2, and are reflections of those of Fig. 12.1 except for the inter-
change of V,(z) and W,(2).

Table 12.3 may also be constructed by returning to the paths of in-
tegration shown in Section 11. It may be shown that corresponding to
every path of steepest descent for z = i®p, n = my there is another
path, obtained from the first by reflection in the real {-axis, which gives
the path of steepest descent for z = i %, n = ny*.

The notation used in Table 12.3 is as follows:

z=1"p,m=n+1 i=exp (ir/2),
—37/2 £ argm < /2, —3n/4 < argfy < /4,
—3r/2 < arg (—ip° — 2m) < 7/2, —br/4 < arg t; < 3r/4,
= ["p+ (=i — 2m)"/2,  t=[""p — (—ip — 2m) /2,
Aq = [t"*(—ip" — 2m)™"/(—2ix""")] exp f(k), (12.9)
A1 = ["(—ip" — 2m)™"/20"] exp f(t),

to —
flt) = =ty + %3 —mlog it = g(l — loggb — logi—l) 4+ e,

flt) = zt + ?21?' —mlogth = %n(l - log;f — log %) + V.

Sometimes it is helpful to use

(2m)™"* exp [?(1 — log g—n):l

/T (TRT-FI) = 1/T(1 4+ n/2) for —x/2 < arg m < «/2, (12.10)

~

T (1 —2 m)/21r = "7 D(—n/2)/2r, —37/2 <argm < — /2.
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TaBLE 12.4 — LEApING TERMS IN THE ASYMPTOTIC EXPANSIONS FOR
Un(z), Valz), Walz) waEN 2z = 7 *p axD | 20| 3> p*

Region in m-plane Un(i11%) Valii'2) Walit1%)
Ia’ i-nB'a; B'(iray — i~ nay) — nB'oy
Ir B (inay + 1) —i""Bla —i"B'a;
Ib’ (1 — e)inB'ay B (73 — e i Blaf
— 17"y)
Ir (1 — i #)"Blay B/ (i%ay — i ay) B (i e — i"an)

The notation used in Table 12.4 is as follows:

m=mn-+ 1,1 = exp (ir/2),

. 9
B = 27 P exp I:;f(l — log ;f) - %] ,

ay = exp [—p(2im)'"*],

—3r/2 £ argm < /2,

(12.11)
a = exp [p(2im)"] = 1/au,

B’ may be expressed in terms of gamma functions with the help of (12.10.).
Approximate expressions for the zeros are given by the complex
conjugates of (12.7). For example, if k be a large positive integer such
that 2k > p°, the zeros of W,(i *p) are at n = n(k) where i "a; = exp
(iwk) and
n(k) ~ —2k + 1 P4k /7 — 4ip’ /7", (12.12)
Here the approximation has been carried out one step further than in
(12.7) We also have for the quantities in (7.11)
[OW (i %0)/0n] acnity = (=)' T'Bilw — p(i/R)"],

[V () sin w] nnty A (=) V2B,

(12.13)

13. ASYMPTOTIC EXPRESSIONS FOR U/,(z), ETC., WHEN n I8 NEAR 2%/2

The asymptotic expressions given in Section 12 fail when n is near
#*/2. Expressions for the parabolic cylinder functions which hold for
this region have been given by Schwid.* More recent studies of this sort,
based on differential equations, have been made by T. M. Cherry* and
F. Tricomi.” Their results suggest the possibility that our expressions

* Reference 20, page 478.

24 niform Asymptotic Expansions, J. Lond. Math. Soc., 24, pp. 121-130, 1949.
Uniform Asymptotic Formulae for Funetions with Transition Points, Am. Math.
Soc. Trans., 68, pp. 224-257, 1950.

26 Equazioni Differenziali, Einaudi, Torino, pp. 301-308, 1948.
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for the electromagnetic field which contain Airy integrals may be re-
placed by more accurate, but also more complicated, expressions. In
dealing with our functions we shall work with the integrals and our
procedure is somewhat similar to that used by Rydbeck.* First however,
we point out-that when we write (as suggested by the work of Cherry
and Tricomi)

y=e""T (), ax=z—Cn+D"  2@n+ )" =1, (13.1)

the differential equation (9.7) for the parabolic cylinder functions goes
into
dy _ ay = 27%(2n + 1), (13.2)
dz?
The Airy integrals Ai(x) and Bi(z) (and also Az exp (& i27/3)])

discussed later in this section are solutions of

d*y

i ay =0, (13.3)
and therefore we expect that approximate solutions of (13.2) are given
by, for example,

y = adi(z?)[1 + 0(n~*) (13.4)
—2/3

where the 0(n™'") term corresponds to the particular integral of (13.2)
when the y on the right hand side is replaced by its approximate value
Ai(z7"). Here ¢; is independent of z (or z) but may depend on n, and v
may be 0 or +-4/3.

Since the labor of computing ¢; is considerable, we shall work out the
approximations directly from the integrals.

We shall consider the case z = i/°p, p > 0, first. Whenn 4+ 1 = m
= my = ip°/2 the saddle points # and #, coincide at t, = *p/2. Con-
sequently only those portions of the paths of steepest descent which
lie near ¢, are of importance. This is true even if m is not exactly equal
to mo. We therefore regard

fit)y = —£ + 22t — mlogt (13.5)

in (10.1) as a function of the two variables ¢ and m (linear in m) with 2z
fixed at 7"*p. Expanding (13.5) about ¢t = t,, m = my gives

2 My my My (m — my) mu:’
=g+ [? Tgley T 5 %%

— 4(t — 12)*/32 — 2(m — mo)(t — t2)/z + -+~
* Page 87 of Reference 21 cited on page 478,

(13.6)
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where we have used
ts = 2/2 = i’p/2 = (me/2)"* (13.7)

and have arranged the terms within the brackets so that they represent
the first two terms in the expansion of

m_ My ™ ve [ p(mt 1)]
5 5 log 5 log [(2#) / I‘( 5 (13.8)
about my .

The paths of steepest descent in the ¢-plane when m = my; are shown
in Fig. 11.6(d). The three branches start out from ¢ = ¢, in the directions
arg (t — t,) = 15° 135°, and —105°. In this section we take the paths of
integration to be those of Fig. 11.6(d) even when m is not exactly
equal to m, . Since we are dealing with asymptotic expressions we may
confine our attention to the region around ¢ = ¢, where the paths of
integration are essentially straight lines [the contributions from & exp
(— 2xi) are negligible].

When (13.6) is set in the integral

(1/2mi) j exp [f(0] dt (13.9)

we see that the initial directions of the branches are such as to make
(t — 19)"/z positive (arg z = 45°). Some study of (13.6) and of the Airy
integrals we intend to use suggests that we change the variable of inte-
gration from ¢ to s and introduce the parameter b where

bty =52/, b= (m—m)(2/2)" = (m — mo)/mo"”*.  (13.10)
This and (13.6) converts the integral (9.1) for V.(i'*p) into
(2/4)11’3622,’2 oo

Vi) = [
i(QTr)IfEI‘(?n “)i"' 1) ®0 exp (127/3) (1311)
exp [—bs — §'/3 + -] ds.
When we use the Airy integral defined by
Ai(z) = = f cos (xt + £/3) di
1]
w (13.12)
= (*/27) f exp [—7 "*xs — §°/3] ds,
o exp (127/3)
we obtain
e (3/4)”3(’22!2 27T e 203
Vaul(i'"p) ~ o Ai(ba™").
z'(2-.rr)1-"~'I‘(m ;— 1) i (13.13)
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In order to obtain expressions corresponding to (13.13) for Ux(2), Wa(2)
we examine Fig. 11.6(d). We have already seen that the limits of in-
tegration for s, in the integral (13.11) for V.(i"%p), are
[» exp (i27/3), =|. In the same way it follows that the limits for
U, (i) and W,(:'*p) are [= exp (— 2x/3), » exp (i2r/3)] and
[, ® exp (— 12w/3)], respectively. When we take s’ = s exp (F i27/3)
as new variables of integration (with the upper sign for U.(z) and the
lower one for W, (2)), the integrals corresponding to (13.11) go into
Airy integrals.

We can write our results for z = 1'%, when n is close to ip’/2, as
follows:

U (i) ~ Ci'°Ai(bi™),
V(i) ~ O " Ad (b, (13.14)
W (i) ~ Ci*°Ai(bi"),

where

¢ = (;:./4)”%2«)‘fi’e"ﬂ”f”/r(?i?),

b = (2/6)"*(m — ip*/2)7",

i =exp (ir/2), m=n+4+1

(13.15)

The asymptotic expansions whose leading terms are given by (13.14)
may be obtained by the method used by . W. J. Olver” to study
Bessel functions.

Ai(z) and its derivative have been tabulated for positive and negative
values of z.* Here we shall use the definitions and results as set forth in
Reference 11. These tables and (13.14) enable us to obtain values of
U.(i"*p) along the rays in the m-plane defined by arg (m — ip’/2) = 7/6
and —5r/6. Along the =/6 ray bi** is negative. Since the tables show
that the zeros of Ai(x) occur when x is negative, it follows that the
zeros of U, (i"*p) occur on the =/6 ray. In the same way it is seen that the
zeros of V,(i"*p) and W,(i'*p) occur on the 57/6 and the —x/2 rays,
respectively. This agrees with Fig. 12.1.

The Airy integral defined by

* Reference 11, page 424,
26 Some New Asymptotic Expansions for Bessel Functions of Large Orders,
Proc. Cambridge Phil. Soc., 48, pp. 414427, 1952.
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1—2,‘3 w0 exp (i27/3)
Bie) = 5 U

™ w exp (—i27/3)
-]

+ :I exp [—i zs — §/3] ds (13.16)

o exp (—i2x/3)

1 o f3 . ta
= Efo [exp (—3 + :ct) + sin (—3- + sst):| dt

is also tabulated in Reference 11 where it is shown that
Atz = #*[Ai(x) — iBi(z)]/2,
Ai(zi™®) = *[4i(x) + iBi(x)]/2.

With the help of these relations we may evaluate the expressions (13.14)
for U.(i"*p), etc., on any one of the six rays

arg (m — 1p°/2) = £5x/6, & /w/2, L£=x/6.

When b is a general complex number the expressions (13.14) may be
evaluated with the help of the modified Hankel functions hi(e), ho(a)
tabulated in Reference 27 for complex values of a. The relation needed
&}

(13.17)

1
57.% h’2( _a))
25> (13.18)

Ai(e) = -2% h(—a) +
ko= (12"
When | arg e | < 7 we have the asymptotic expansion
Ai(a) ~ 27720 (exp [— (2/3)")(1 — 5/484"* + ---)  (13.19)
and when | arg (— «) | < 27/3 we have
Ai(a) ~ 7 (= )™ sin [(2/3)(— ™ 4+ 7/4. (13.20)

Both of these expansions follow from the discussion of the asymptotic
behavior of k() and hs(a) given by W. . Furry and H. A. Arnold.”
Asymptotic expressions for U/,(i"*p), - - - valid when n is near —ip*/2

may be obtained by applying the relations U,(z*) = [U.«(2)]* - - - given
by (9.11) to the expressions (13.14) for U.(i'%), -+ :

Ua"p) ~ €A,

V(i %) ~ €1 A, (18.21)

Wa(i %p) ~ €A,

2 Tables of the Modified Hankel Functions of Order One-Third and of Their
Derivatives, Harvard Univ. Press, 1945.
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where

0" = G/ eny e e (M),

b = (2/p")"(m + p*/2)1"",
i = exp (ir/2), m=mn—+ 1.
In (13.14) b** = —b and in (13.21) b'i*® = —b' since 4i(a) is a
single-valued function of «. It is interesting to note that the factor
" in the expression for U,(:"%p) gives the direction of that one of the
three paths of steepest descent (in the {-plane) which is not traversed
in getting U.(i"?p). The same sort of thing is true for the remaining
expressions in (13.14) and (13.21).
The functions
"Ua(e) = exp (2'/2)8[Un(2) exp (— 2'/2)]/z,
defined by (4.19), may be computed from (13.21) when z = i, We
need the relations 8/9z = i*9/9p and
m = —ip’/2 + b (o*/20)"",
ab'/ap = (2/3)(2ip)""(i — m/p") = i(2ip)"* — 20'/3p,
which follow from the definition of b'. When the differentiations are
carried out we obtain :

(13.22)

(13.23)

"Ua(ip) ~ (2p)°CT AT (),
Wi ) ~ (20)PC"H AT ('), (13.24)
rWn(,i-l.’ﬂp) ~ (2p)”30’1‘”3A'£’(b’i_m),

In these expressions the prime on the Airy integral denotes its deriva-
tive:

Ad'(a) = dAi(a)/da. (13.25)



