Coupled Wave Theory and Waveguide
Applications

By S. E. MILLER
(Manuseript received February 2, 1954)

Some theory describing the behavior of two coupled waves is presented,
and it 1is shown that this theory applies to coupled transmission lines. A
loose-coupling theory, applicable when very little power s transferred be-
tween the coupled waves, shows how to taper the coupling distribution to
minimize the length of the coupling region. A tight-coupling theory, appli-
cable when the coupling is uniform along the direction of wave propagation,
shows that a periodic exchange of energy between coupled waves lakes place
provided that the altenuation and phase constants (a and B respectively)
are both equal, or provided that the phase constants are equal and the dif-
ference between the attenuation constants (o — az) s small compared to the
coeflicient of coupling c. Either (an — asz)/c or (By — B2)/c being large
compared lo unaly s sufficient to prevent appreciable energy exchange be-
tween the coupled waves. Experimental work has confirmed the theory. Appli-
cations include highly efficient pure-mode transducers in multi-mode sys-
tems, and frequency-selective filters.

INTRODUCTION

This paper describes some theoretical relations in coupled transmission
lines, and the use of coupled lines as circuit elements. In order to illus-
trate the points of interest in the theoretical material, several applica-
tions will be stated first. Detailed discussion of experimental models
will be given after the theoretical sections.

The theory of coupled transmission lines may be used to determine
many properties of a multi-mode transmission system in which there is
distributed coupling between modes. In round pipe, for example, the
individual modes of propagation can be considered as separate trans-
mission lines which in the perfect waveguide are completely independent.
Geometric imperfections in the waveguide, if distributed over many
wavelengths, cause a transfer of power between modes which in general
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form is predicted by coupled transmission line theory. As a consequence,
analysis of the mode-conversion effects associated with circular-electric-
wave transmission in commercial round pipe has been aided materially
by applying the coupled-transmission-line concept.! In another problem,
the transmission of the circular-electric waves through bends? the
coupled-wave theory of subsequent sections has also provided valuable
insight.

Coupled transmission lines can be employed as circuit elements to
exchange power between one mode of a multi-mode line and a designated
mode of another transmission line. Consider Fig. 1, which shows a rec-
tangular waveguide having entries 1 and 2 coupled through a series of
apertures to a parallel round waveguide having entries 3 and 4. The
rectangular guide may be made single mode for convenience, and for the
configuration shown may be made to couple to any TE mode of the round
guide. Input power at entry 1 may be transferred in whole or in part to
the selected mode at entry 4, the remaining portion of the power appear-
ing at entry 2. Very little power in any mode will appear at entry 3 for
excitation at 1, and very little power in undesired modes will appear at
entry 4. Thus the structure has the hybrid property in addition to being
mode selective. A matched impedance is presented at all entries to all
modes over a very broad frequency band.

Recently, coupled transmission lines have found use as input and out-
put circuits for travelling-wave tubes. In this instance a helical input
(or output) line was electromagnetically coupled to the travelling-wave-
tube helix, with conditions adjusted for complete energy transfer be-
tween the helices. The result is an input-output circuit requiring no
metallic connection to the tube helix and requiring no connection through

COUPLING
APERTURE

Fig. 1 — Coupled transmission line transducer.



COUPLED WAVE THEORY AND WAVEGUIDE APPLICATIONS 663

the vacuum seal. R. Kompfner conceived this form of connection to
travelling-wave tubes while working with the Admiralty in England,
and demonstrated the usefulness of the idea here at the Laboratories.
Similar work was done by the group at the Electronics Research Lab-
oratory at Stanford University, and was described by S. T. Kaisel at
the August, 1953, West Coast I.R.E. Convention. Both groups re-
quested pre-publication copies of this paper for use in their research.

LOOSE COUPLING THEORY

On the assumption that negligible power is abstracted from the driven
line of two coupled transmission lines, the magnitude and mode content
of the forward and backward waves in the side line may be written. With
reference to Fig. 2, there is assumed coupling between two uniform lines
in the interval —L/2 to +L/2 along the axis of propagation, and no
coupling elsewhere. On the basis of loose coupling a normalized voltage
wave on line 2 may be written

—1 Ag 2
E12 = 1.0e 1(27/Na) (z+L/ )’ (1)

in which the phase reference is taken as = —L/2. The forward current
I; in the side line at the point @ = L/2 is

L
I, = KFM [ ¢@)e s g, @)

where

—irL(1/A1+1/Ag)
€
F =
Zu

#(z) = a coupling function. More precisely, 1/¢(z) is the ratio of the
voltage on line 2, Ea(x), to the equivalent voltage generator in series with
line 1 at z.

K = fraction of the transferred current which travels in the forward
direction.

M = the transfer constant for the various modes which can propagate,
relative to the mode for which ¢(z) is defined. The backward current I
at the point x = —L/2is

L
I = (1= K)FM [} o)W gg, 3)
T3
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If the coupling mechanism is non-directive (sending equal waves forward
and backward) and has the same value for all modes, then X = 14 and
M = 1.0. For simplicity these values are assumed in writing the remain-
der of the expressions. However, the theory is applicable if the coupling
mechanism is mode selective and/or directive provided that these proper-
ties do not change over the length of the coupling interval.

The mode discriminating property of the coupled lines is the ratio of
the forward current for A; = Az to the forward current for A; # Az . This
ratio is

L
f : ¢(x) dx
e e e aa Iy (M= N) T
Discrimination = m = —;_“T, (4)

fb 4)(.1:)6"3" dx

where 8 = wL(1/M — 1/A2) = L(B1 — B2)/2 and the §’s are the phase
constants of the two transmission lines.

The directivity of the coupling arrangement is defined as the ratio of
the forward current for A\; = X, to the backward current; this ratio is also
given by equation (4) provided

1 1 L

Thus, in the loose coupling case, the critical performance characteristics
are given by the discrimination function, equation (4), for appropriate
values of the parameter 6.
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Fig. 2 — Schematic of coupled transmission lines.
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A simplified example will illustrate the application of these relations.
Suppose the coupling function ¢(z) is constant in the interval —L/2 to
L/2 and zero for other values of . Then the discrimination function is,
from (4) ’

[/}
sin 6

Uniform Coupling Discrimination = (5)

Let us further assume, in the hypothetical example, that line 2 (Fig. 2)
is a single-mode line having a guide wavelength X\ equal to 1.2\, , and
that line 1 is the three-mode line having guide wavelengths A;, A2, and
Az equal to 1.1xo, 1.2\, and 1.3\, respectively. Assume the coupling
length I equals 20X, . For equal coupling to all modes in a differential
unit of length, the relative current waves travelling in the forward direc-
tion in the three modes of line 1 are obtained from (4). For the ratio of
the \; forward current to the A, forward current,

1 1

0 = #20M (1.1;\.) T 12n

)= 1.527
for which (5) gives a discrimination of about 13.5 db. For the ratio of
the A; forward current to the A\; forward current

1 1
= 7200~ — —— ) = 1.28
6 = 720h (1.2:\n 1.37\[,) g

corresponding to a diserimination of about 14 db. For the ratio of the X,
forward current to the A\ backward current,
1 1

8 = WQO)\D(— +

1.2\ 1.2)\[,) = 333m,

corresponding to a discrimination of about 43 db. The backward currents
in modes A\, and A; can similarly be verified to be very small compared to
the forward-travelling A2 current.

Thus, directivity and mode purity in a simplified case have been shown
to be of the desired form.

It may be noted that the denominator of (4) is the Fourier transform
of the coupling function ¢(z). Since the numerator of (4) is independent
of 8, the discrimination is maximized by minimizing the denominator.
An analogous problem exists in the time versus frequency domain rela-
tions, and experience with the latter can be used to predict the diserim-
inations to be expected using various coupling distributions.

In the simple example cited above, a length of coupling interval of
20X, yielded a discrimination between the desired versus undesired for-
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Fig. 3 — Discrimination versus 8/x for linear taper coupling.

ward wave components of about 13 db. How can this discrimination be
improved? If the difference between the wavelengths of the desired and
undesired wave types is increased, the value of 6 is increased and greater
discrimination results. In practical cases, however, there frequently is
very little that can be done about the wavelength difference because it is
inherent in a structure which is fixed by other considerations. By increas-
ing the length of the coupling interval L the value of @ is also increased;
in the case of uniform coupling, (5) shows that a value of 8/7 equal to
about 8 is required to get 30 db discrimination. In the above example
this corresponds to L approximately equal to 125X, . The latter coupling
length is probably impractical, and is certainly inconvenient. The final
alternative is to alter the distribution of coupling between the lines, and
considerable can be done in this manner.

Suppose a linear taper of the strength of coupling is used, as sketched
in Fig. 3. Then the discrimination becomes

: o 0/2 Y
Linear Taper Discrimination = (sin s /2) . (6)
which is plotted in Fig. 3. The first peak in discrimination occurs at 6/
equals two, compared to a value of 8/7 equals one for the first peak using
uniform coupling; however, for all values of 6/ greater than about 3,
the linear taper provides superior diserimination. This illustrates a gen-
eral trend; tapering the coupling distribution improves the discrimina-
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tion for large 6/m values at the expense of an increased 8/7 value for the
first discrimination peak.

The first two lines of Fig 4 give the diserimination functions for two
forms of cosine taper; Fig. 5 shows a plot of the first function and Fig. 6
shows a plot of the second function for a particular case. These figures
illustrate the importance of the slope at the ends of the coupling distri-
bution. Comparing Fig. 5 with Fig. 3, Fig. 5 has a larger end-slope, shows
a lower value of 6/ for the first peak in discrimination, but provides
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Fig. 4 — Discrimination functions corresponding to certain coupling distribu-
tions.
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Fig. 5 — Discrimination versus 8/ for the cosine coupling disbribution.

poorer discrimination at values of 6/ slightly above the first peak. In a
similar way Fig. 6 shows better discrimination than Fig. 5.

Linear superposition of forward or backward currents may be em-
ployed to advantage when designing a coupling distribution. The second
line of Tig. 4 gives the discrimination for a coupling function composed of
a raised cosine plus uniform coupling. For a value of ¢ = 224 and & = 1,
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Fig. 6 — Distribution versus 6/= for the raised cosine coupling distribution.
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Fig. 7 — Discrimination versus 8/= for two uniform couplings superposed.

the discrimination is greater than 38 db for /= between 1.95 and 3.0,
and is greater than 50 db for /7 larger than 3. Below 8/ = 1.95 the
diserimination is similar to that shown in Fig. 6.

Linear superposition of two uniform coupling distributions yields a
structure which is easy to fabricate and, in cases where the requirements
are not too complex, may provide satisfactory diserimination. The third
line of Fig. 4 gives the general relation, and Fig. 7 shows the diserimina-
tion plot for a case of interest. Diseriminations on the order of 30 db are
available in a broad region between 6/7 equal to 1.3 to 2, an attractive
abscissa value compared to the /7 = 8 required for simple uniform
coupling.

Linear superposition of a linear taper and uniform coupling also yields
a structure which is easy to fabricate, and the theoretical discrimination
plot for an interesting set of conditions is shown in Fig. 8. High discrim-
inations are provided over greater ranges of 8 than for the case of two
uniform coupling functions superposed.

The general relations involved in the superposition of coupling func-
tions may be summarized as follows: Let ¢1(z), ¢a(x) -+ *ba(x) be known
coupling functions and let

br = ¢1+ o+ - Pn. (7

Let the maximum length of the coupling interval be L. Then, designating
the transforms of ¢ , ¢o- - *@, by Fy and Fa- - - F,, respectively, where

L|2 .
Fr = ./:m $u(2)e P da, (8)
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Fig. 8 — Discrimination versus 6/= for a linear taper and uniform coupling
superposed.

and letting
Fr=F1+F2+"'Fn’ (9)

the diserimination function for the composite coupling distribution
¢r(x) is given by

Discrimination = ET(B;O) . (10)
Fy

Another useful theoretical approach to the employment of multiple
distributed coupling functions is illustrated in Fig. 9. The top sketch
represents any coupling function ¢:(z). The lower sketch shows a new
coupling function ¢:(z) formed by locating a ¢:(x) at 4d/2 on the “z”
axis. Using F, to denote the transform for ¢:(z), and F: to denote the
transform corresponding to ¢q(x),

Fs = 2F; cos ¢/, (11)

wherein
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for the forward wave discrimination and

’ 1 1
o =g+ =
(5 +5)

for the directivity as defined earlier in connection with (4).
The disecrimination function for the composite coupling funection
o) is

Fa(60=0,00=0) _F@6=0 1
F, Fy cos @8’

Diserimination = (12)

The factor 1/cos 6’ is the discrimination function associated with two
point couplings, and the overall discrimination is the product of that
discrimination and the diserimination associated with a single distributed
coupling funetion ¢y(z). This line of thought may be extended to show
that use of the same destributed coupling function in place of each point
coupling in the multi-element distributions deseribed in the following
section results in multiplying the discrimination of the multi-element
coupling function by the discrimination associated with the distributed
coupling function.

In many cases of interest it is either inconvenient or impossible to use
absolutely continuous coupling between transmission lines. In the wave-
guide case illustrated in Fig. 1, for example, a continuous slot cut in the
common wall would not provide coupling of the distributed form due to
a wave which would oscillate back and forth in the slot itself. We know,
however, that the effects of the continuous coupling distribution can be

#1(x)
X=0 x
éa (%)
,¢. x+ ,525‘( )
/ . 1 1 )
4 : 3

Fig. 9 — Schematic of multiple distributed coupling functions.



672 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954

simulated closely by using closely spaced point couplings. In order to do
this intelligently we need a theory for multi-element point couplings.
The most general symmetrical point coupling distribution for parallel
coupled lines is illustrated in Fig. 10. The letters ao, a1, @2+ - -a, desig-
nate the strength of the couplings, and dy, ds, -+ L represents the
spacings between them. The transform for the total coupling distribu-
tion is
L{2
Fr = $re’ ™" da. (13)

—L/2

Fr = ay + 2a; cos v1 + 2as cos y2 + 2a3 cos vz + --- 2a, cos 6in

which
11 1 1)
YM—TFCE;‘()TI M)OTde(?\;_i_ Xg ’

1 1 1 )
0= xL(— -
L (7\1 7\2> or =L (7& + Ao/’

depending on whether forward wave discrimination or directivity is re-
quired. The discrimination function is then

FT('YI: = 0,9 = 0)
oy )

and

(14)

Discrimination =

Let us take as an example the familiar 1-3-3-1 binomial distribution
of amplitudes for equally spaced couplings. In the terminology of equa-
tion (13),ap = 0,a1 = 3,a2 = 1, @ = Ofork > 2,d; = L/3,and d» = L.
Then (14) yields

8 1

Diserimination — _ _
iScrmnation 6cos0/3 + 2cosf  cos®8/3 (15)
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Fig. 10 — Schematic of point coupling distributions.
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which is the relation given by Mumford.® The approach is perfectly gen-
eral, and henceforth the coupling distribution only will be given with
the understanding that the corresponding discrimination function ecan
be obtained from (13) and (14).

For the case of tapered amplitudes and an even number of equally
spaced couplings, (13) can be simplified to

0
2n — 1

e = 24y cos( 7

) + 2a» cos (30) + ---2a, cos 6. (16)
2n
This case is of interest because a solution has been worked out for the
analogous antenna problem to bring the spurious responses (the peaks
of the side lobes in the antenna case, or the peaks of the undesired mode
responses in the wave selector case) to the same level relative to the de-
sired response. This makes the total length of the coupling array a minimum
Jor a given required degree of diserimination. The solution® includes specifi-
cation of the Tchebysheft distribution of coupling strengths a, , as , az- - -
a, that are required to achieve various levels of spurious response, and
the resulting increase in total array length required to place the first null
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in undesired mode response at the same value of

1 1\ (1,1
(x ”x) . (iﬁxg)

as for uniform strength couplings equally spaced. Fig. 11 shows the latter
relation, a very useful yardstick with which to evaluate the extra coupling
length required by less ideal but more easily constructed coupling distri-
butions.

An important practical question is “What is the smallest number of
point, couplings which will satisfy requirements in a given stiuation?”,
for it is time-consuming and expensive to fabricate the coupling holes or
probes in some circumstances. The large range of possible mode condi-
tions and diserimination requirements makes it difficult to give an answer
in closed form, but the general restrictions involved may be stated. In
the case of n equally spaced couplings (of any amplitude taper) the dis-
crimination vanishes at 8/ = (n — 1). This is illustrated by the dis-
crimination plot of Fig. 12.

Moreover, it is found that equally spaced couplings produce discrimina-
tions which are periodic in 8/7 on the interval (n — 1), and which are
symmetrical about §/r = (n — 1)/2.

The implication of the discrimination zero at ¢/ = (n — 1) is that a
large number of point couplings are required to get good directivity and
good forward wave discrimination. In the simple case cited above in
which L = 20N\, the &/7 value for directivity was shown to be 33.3.

50 maiion
O
VAU

ém \\/\} \/\/\ \_

o] ! 2 3 4 5 6 7 8 9

Fig. 12 — Discrimination for 8 equal-strength point couplings equally spaced.
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Thus, something on the order of 50 or 60 equally spaced couplings might
be needed.

Simulation of continuous coupling functions with equal strength
couplings may be carried out as follows: the coupling amplitude versus
distance plot may be divided along the distance axis into a number of
intervals of equal area, and a point coupling placed at the center of each
interval. The more efficient continuous eoupling functions require more
point couplings to get a good simulation in this manner. For example,
the function of line 2, Fig. 4, with ¢ = 22.4 and k = 1 has been simulated
with 12 and 40 equal strength couplings (as described above) and the
exact diserimination plotted using (13) and (14). The results are given
in Figs. 13 and 14. The original continuous coupling function yields dis-
criminations greater than 38 db for all values of 8/r greater than 2; the
40-point simulation approximates this well in the region of §/7 = 1.7 to
4.5, but thereafter begins to fail. The 12-point simulation (Fig. 13) never
matches the original but does best in the region of small /7.

It is more efficient to seek high discriminations by tapering the
strength of equally spaced couplings than by tapering the spacing be-
tween equal strength couplings. However, when low discriminations are
acceptable, the relative efficiency of tapering the spacing between con-
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Fig. 13 — Discrimination for 12 equal-strength point eouplings arranged to
simulate the continuous distribution of Fig. 4, line 2.
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stant strength couplings is much greater than when high discriminations
are required. Fig. 15 shows a distribution which produces about 20 db
diserimination from /7 = 1 to 3.25. Eight couplings arranged with the
Tchebysheff amplitude taper for 20 db discrimiuation would produce
that discrimination from 6/x = 1.05 to 5.95.

It is possible to obtain directivity or mode discrimination at smaller
6/7 values than made available with uniform coupling. This situation is
analogous to the superdirectivity problem in antenna design, with similar
results — the lobes of spurious response are increased. In particular, if
the coupling near the ends of the third array of Fig. 4 is made larger than
the coupling in the center region, making “c” a negative quantity, the
first peak in discrimination occurs at 6/ less than one, and the first
minimum in discrimination becomes less than 13 db.

By implication, emphasis has been placed on obtaining both mode dis-
erimination and directivity simultaneously. However, by employing a
relatively short coupling length it is apparent that the discrimination

associated with
1 1
6 = - — =
L (?\1 ?\2)

may be kept small when the directivity associated with

11
8 =L 4+ =
T (x1+>\2)

is in suitable range for good discrimination. Consequently, one can de-
sign a directional coupler with little mode discrimination. Conversely,
when using a relatively small number of point couplings, the mode dis-
crimination in the forward wave may be good when the directivity is
poor.

TIGHT COUPLING THEORY™*

We now consider the case in which a significant amount of power is
taken from the driven transmission line by the line coupled to it. To
simplify the problem the coupling is assumed uniform along the length

* An analysis of coupled transmission lines was given by W. J. Albersheim "
and the effects of coupling between waves on certain particular forms of trans-
mission media were analyzed by Meyerhoff? and Krasnushkin and Khokhlov.!
The treatment given here is intended to be more general and is believed to de-
seribe the effects of wave coupling under a greater variety of conditions.
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axis. The space variation of the wave amplitude may be written

L

(—;—xl _ _(1-‘1 + kn)E: + korlis (17)
and

(ff_ﬂ;‘z = kpl, — (Fz + ku)Eh (18)

in which ky; , ke represent the reaction of the coupling mechanism on
lines 1 and 2 respectively
kay , kys represent the transfer effects of the coupling mechanism
I'y2 are the uncoupled propagation constants of line 1 and 2
respectively;
F, ; are the complex wave amplitudes on lines 1 and 2,
and are so chosen that | B [* and | E: |* represent the power carried by
lines 1 and 2 respectively at the input or output of the coupling region.
The usual transmission-line equations are of this general form, except
for second derivatives in place of the first. The first derivatives appear
here because we deal only with the forward travelling waves, which the
preceding section has shown are the only significant waves when small
coupling per wave length is employed. Limiting our interest to the cases
for which reciprocity holds and noting that there is always a transverse
plane of symmetry midway between the ends of any pair of uniformly
coupled lines, we may transform the wave amplitudes to make k12 =
ks, = k. We may further simplify the equations without loss of essential
generality by submerging the differences (k;; — k) and (k22 — k) into a
modified propagation constant for lines 1 and 2 respectively, yielding

d,

0 (1 + KBy + kB, (19)
dx
and
%ﬂ = kE; — (12 + K)Es, (20)
in which

yvi=T1+ kn — [k, and
v = Is + ke — k.

For some cases ky = ke = k and for all cases of interest here v, differs
very little from T', since we are concerned only with loose coupling per
wavelength.

(20)
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-1
=]

The solution, for E; = 1.0 and E; = 0at & = 0, is

B = |:1 _ (v1 — 72) } T
T2 2V — )t AR

(21)
+ |:1 + (1 — 'Y?)ﬂ___] o
2 2V — )+ 4
and
By — Ik e k e (22)
Vi — )2+ 42 Vin — )+ 4
where
rn=—BCEk+ v+ v) + BV — 1) + 482 (23)
re= =%k + v1+ 7)) — YUV (i — 72?2 + 42 (24)

The nature of the coupling coefficient £ is the first thing to investigate.
Assume no dissipation in either the transmission line or in the coupling
mechanism. Then it follows that for any value of z,

| By |* 4+ | E2|* = constant (25)

on the basis of energy conservation. It may be determined that (25)
leads to the requirement that the coupling constant & be purely imagin-
ary. This is a very important result. In all of the following discussion %
is taken to be purely imaginary. Even where dissipation in the trans-
mission lines themselves is important, it is still assumed that the coupling
mechanism is non-dissipative.

The simplest case is y1 = ¥2: = ¥, coupling between identical trans-
mission lines. Then (21) and (22) reduce to

By = cos ex ¢ " (26)

bl

and

Ey = §sin ey ¢ ote

) (27)

where k = ic. The exponential of (26) and (27) shows that the coupling
modifies the average phase constant, and that the attenuation in the
driven line (#,) is the same as in the uncoupled case for cz (coupling
length times coupling strength) equal to nr radians. The amplitude and
phase variations due to the coupling are plotted in Fig. 16. Complete
power transfer between lines takes place cyclically, with a period of
cx = m, and with suitable choice of the product cz, an arbitrary division
of power between the lines may be selected.
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Fig. 16 — Wave amplitude and phase factors versus the integrated coupling
strength ex for tightly coupled transmission lines having identical propagation

constants.

Let us now assume that the phase constants of the two lines are un-
equal, but the attenuation constants are the same. Then

ap = o = @, and
(v1 = 72) = (B — Be), (28)
and equations (21) and (22) reduce to
El — e—[ﬂ+i(c+(ﬁ1+ﬁg)f2)]ﬂf El* (29)

where

E* = cos [1/ M)E + Ic:c]
4¢?

(B — B2) 1 (B — B) } (30)
2¢ 1/(31 — Ba)? |:1/ : 4c? T lex
4¢?
B

sin
+1

= Eﬂju+i(c+(ﬂ1+ﬂ'2),’2)]¢E2* (31)
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where

4/(51 & 11 in [/ B ]y

The major effects of coupling in this case are represented by E:* and Es*,
which are plotted in Fig. 17 for several values of (81 — B2). As (61 — B2)
becomes different from zero, the maximum power transferred from the
driven line to the undriven line decreases, and the period of the eyclical
variation in amplitude is reduced. The latter period is the value of cx

given by
/‘/(8‘4;62‘39)2+1c.v=1r (33)

The driven and undriven-line wave amplitudes FEy* and E.* at the max-
imum power transfer point, namely, at

(Br — B2)? LT
/‘/f—-“_J + ler = 5 (34)
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are plotted in Fig. 18 as a function of the ratio (81 — B)/c. It is evident
that this maximum energy transfer may be made very small for suitably
large values of (8. — B2)/c. The behavior of £,* and F.* as a function of
coupling length z is shown with greater accuracy in the wide amplitude
range of interest in Figures 19 and 20 respectively.

Consider now the case in which the coupled lines have identical phase
constants, 8, = B = B, and unequal attenuation constants so that
(‘71 — 72) = (0!1 — Dlz). Then (21) and (22) reduce to

El — e*[drh'(c‘l'ﬂ)]x {[_1_
2

(Oil - Olz) ]
_ [(ai—a2) /24140 (a1—ag)=—1ct]s
24/ (on — as)? — de? e o (35)

1 (CEL - Ota) ] —_—
— [(o1—as)/2—140/(a1—ag) T—dct]e
+|:2+2\/(011—m)z—élc2 € i ’

El — E*[u1+i(c+ﬂ)]r El**; (35’)
and
B, = latiletz C {E[(al_al).'u:,g\/(al—ag)'«'—m]z
Vi — a)? — 4¢2 (36)
_ E[(arua)fz—l/éx/(u1—az>=—4vﬂ]x}, or

By, = ltietPlz gk (36")
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The amplitude factors Ey** and E-** have been defined in such a way as
to reflect the principal effects of attenuation difference in the two lines;
for the case in which the driven line attenuation constant e, is negligible,
note that E,** and F.** contain all the amplitude variations of E; and
E, respectively. In general, Ey** and E.** are the ratios of the wave am-
plitudes actually present in lines 1 and 2 respectively to the wave am-
plitude which would exist in line 1 at the same value of z in the absence
of coupling,.
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Fig. 19 — Driven line wave amplitude versus cx with unequal phase constants
and equal attenuation constants. The curves are periodic for larger values of cz.
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Fig. 20 — Undriven line wave amplitude versus cz with unequal phase constants
and equal attenuation constants. The curves are periodic for larger values of oz,

We consider first the case of (e — a») negative, i.e., a lower attenua-
tion constant inthe driven line than in the undriven line. The effects of
unequal attenuation constants may be illustrated at the integrated
coupling strength ¢x = /2 which, as Fig. 16 shows, results in complete
transfer of power to the undriven line when ¢; = az and g, = 8. . Fig. 21
shows that the driven line wave amplitude Ey** is very small when
(y — ap)/c is small, but is only 14 db below unity when (@ — a2)/c is
about 55. Fig. 22 illustrates the way the undriven line wave amplitude
E.** decreases as (a; — a»)/c increases.

Tor integrated coupling strengths less than #/2, the effects of unequal
attenuation constants are not pronounced at small (a; — a2)/¢, but again
for large (a1 — az)/c, E1** approaches unity and E:** becomes small.
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For integrated coupling strengths greater than =/2 the effect of small
values of (a; — az)/c is to increase the loss to Hi**, as shown by the
curve for ¢z = 3x/4 in Fig. 21. However, for sufficiently large values of
(a; — aw)/c the loss to E,** is made small.

The variation in Ey** and E2** as a function of coupling strength (cx)
is given in Figs. 23 and 24. The periodicity of E;** is removed for

-100

\
-60 -
—40 . 100 N\

-20

-10
-6 - ~] ;3—/
-4 _

i \
s \
s \\
-04
-006 |- \
-004 "

20 LOG |E2**|

-0.02
=0.01 ’

0O 05 W 15 20 25 30 35 40 45 50 55 60 &5 70 |
CX IN RADIANS

Fig. 24 — Undriven line wave amplitude versus cz with equal phase constants
and (@, — @a)/c as a parameter. The curve for (a1 — as)/e = 0 is periodic.
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(ay — a:2)/c as small as —1, but a value as large as —10 or more is re-
quired in order to reduce the loss to I;** to a moderate value for large
integrated coupling (cx) values.

When (a; — ae) is positive, the attenuation constant for the undriven
line is less than that for the driven line, and under these circumstances
E,** can exceed unity. Physically this means that the power loss line is
carrying the energy for a distance and returning it to the driven line at
a more distant point. The curves of Iig. 25 and Fig. 26 show the varia-
tion of E,** and E»** versus positive (a; — a2)/c values, at fixed values
of integrated coupling strength cz. For ¢x equal to =/4, the driven line
wave magnitude E,** decreases as the ratio (ax — a»)/c assumes small
positive values and goes through a balanced type of null near
(cy — a)/c = 3.5 (see Tig. 25). Again this is the resultant of the lower

loss undriven wave carrying power for a distance and returning it to the

driven wave in the proper phase to cause cancellation of the straight-
through component of the driven wave. For ¢z between w/4 and =/2 the

null would move from (a; — a2)/c near 3.5 toward (c; — aa)/c = 0.
Figures 27 and 28 show the variation of E;** and E.** versus the

integrated coupling strength ca at fixed values of (a1 — a2)/c. In these
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Fig. 25 — Driven line wave amplitude versus (ey — a»)/¢ with equal phase

constants and ex constant. Positive (e, — a2) indicates the undriven line has the
smaller attenuation constant.
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figures a double logarithmic scale is used on the ordinate to represent
amplitude variations from 50 db below unity to amplitudes 50 db above
unity. An arbitrary break in the scale has been made at 0.1 db which
for practical purposes will be assumed to correspond to amplitudes of
unity. With reference to Figure 27, small positive values of (ay — a2)/c
move the first null in E** from ecx = /2 toward lower values of cz.
For abscissa values greater than =/2, E** exceeds unity. For
(ay — an)/c = 1, Ey** again has a minimum in the vicinity of cx = 37 /2
but this second null has disappeared for (a; — a2)/¢ = +2 and presum-
ably also for larger positive values. With reference to Figure 28, E,**
grows at a more rapid rate as a function of ¢z when (ay — a2)/c takes on
positive values. The null in the vicinity of ez = = is still present for
(o — as)/c = 1 but has disappeared at (a1 — a2)/c = 2. For (ay — as)/c
equal to +2 (and presumably for larger positive values) the undriven
wave amplitude F,** is greater than F,** for cz larger than about 0.5.
The question comes to mind in connection with this case in which the
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Fig. 28 — Undriven line wave amplitude versus cz, for equal phase constants;
(1 — a2)/c as a parameter.
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undriven wave has a smaller attenuation coefficient than the driven
wave, “How much less is the undriven line wave amplitude than would
have existed at the same value of z if the same incident wave had been
launched in the lower loss line and in the absence of coupling to the
higher loss line?” This amplitude difference for the condition
(ay — as)/c = 1 is represented in Fig. 28 by the difference between the
curve for E-** and the curve labeled 20 log ¢™. Similarly, for the condition
(ay — as)/c = 2, this amplitude difference is represented by the difference
hetween the curve for Eo** and the curve labeled 20 log .

The Beneral case of v; # 72 is important both in interpreting undesired
mode coupling effects in multi-mode systems as well as in evaluating
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Fig. 20 — Driven and undriven line wave amplitudes versus cz with (e — a2)/c
= 0.03 and (81 — B2)/c = 0.5.
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Fig. 30 — Driven and undriven line wave amplitudes versus cx with (a1 — a2)/c

= —2and (8 — B:)/c = 2.

errors in construction of devices intended to produce y1 = v2 . To facili-
tate discussion of this case we define

El _ El***ef[a1+f(0+(ﬁ1+ﬁ2)/2)1r, (37)

and
EQ — Eg***e—[ﬂl+1(ﬂ+(ﬂ1+152}f2)]I' (38)

where E; and E, are defined by (21) through (24). The relation between
E*** and E, (or E.*** and F.) is the same as described in connection
with (35) and (36).

Small deviations from v, = 72 are represented in Fig. 29, which shows
By#** and E.*** versus ¢z for (e — az)/c = —0.03 and (31 — 3:)/c = 0.5.
At cx = 7/2 radians, the first complete power transfer point in the v, = v,
case, the above values correspond to a phase difference (8, — Bz)x = w/4
or 45°, and an attenuation difference (a; — a2)z = 0.03 7/2 or 0.047
nepers (0.41 db) for the path length of the coupling distance. In the ab-
sence of the dissipation difference, but for the same difference in phase
constants, Fig. 20 shows that E.* reaches a maximum at —0.26 db near
cx = w/2, whereas the value including the dissipation difference (Fig. 32)
is —0.46 db. The latter two values differ by 0.2 db or one-half of

(ay — az)a; when (a; — a2)/c is small compared to unity, this is a general
result.

More sizeable deviations from v, = v» are represented in Fig. 30, which
shows E*** and E.*** versus cz for (a1 — an)/c = —2and (81 — B2)/c =
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2. At cx = /2, the phase difference is therefore = radians and the at-
tenuation difference 7 nepers. The result is appreciable attenuation for
E*** and only a moderate ratio of E ***/Hy***.

Fig. 31 shows the way dissipation differences counteract the coupling
forces when there is a phase constant difference (8, — B.)/¢ = 2. This
may be compared with Fig. 21 which represents the case of (8, — 82) = 0.
Very little change in E/*** occurs until (a; — as)/c exceeds (81 — B2)/c;
this is again a general result.

Finally, we may inquire as to how much power is dissipated in the
system when attenuation constant differences are utilized to mitigate
the effects of coupling. A measure of the power preserved is

EEl*** |2 + !Ez*** E‘l
and this quantity is plotted in Fig. 32 for cases previously discussed in
connection with Tigs. 21 and 31. Either in the absence or presence of a
phase constant difference, the attenuation constant difference shows a
maximum effect in reducing the available power at (o3 — an)/c = 2.
This is probably a general result brought on by the factor

\/(‘Yl — 12)? — 4c
found in the exponent of terms describing E; and Es .
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TIGHT COUPLING EFFECTS OF MULTIPLE DISCRETE COUPLINGS

In practice it is convenient under some conditions to produce the de-
sired coupling between transmission lines using multiple discrete cou-
plings. It is then of interest to know the relation between the total power
transferred and the number and strength of the individual couplings. It
is the purpose of this section to state these relations.

We assume two transmission lines having identical propagation con-
stants, with coupling units located at intervals along the lines as shown
schematically in Fig. 33. A coupling unit may be a single point coupling,.
or an array of point couplings, but is always assumed to have the property
of low reflection in the driven line and low back-wave transmission in
the undriven line. If there are

n; couplings of magnitude o,
N2 couplings of magnitude as ,
and

n;. couplings of magnitude oy

=

located along the lines in any order whatsoever, the wave amplitudes in

Vi Va
Vo=0 —_— —_—
> ™ TT
1
il H ETC.
11 11 —_—
1l I
1 I
> 1 11
Eg=1.0 —_— —_—
E, Ez

IMg. 33 — Schematic of transmission lines with multiple point couplings.
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the driven and undriven lines respectively are
.- .- P
E = cos [nsin' a; + nesin e + -0 myosinT ' oay, (39)
and

sin [ny sin ' @y 4+ masin lap - e M sin” ay). (40)

Vv

These are amplitude factors due to coupling, and the normal attenuation
effects in the uncoupled lines must be added separately. For complete
power transfer we set the bracketed quantity of (39) and (40) equal to
7/2, which gives the desired information about number and strength of
point couplings. Other transfer losses may similarly be prescribed or
determined.

For multiple coupling units of the same coupling strength, Fig. 34
shows the overall transfer loss to the undriven line versus loss per cou-
pling units as a parameter. The shape of these curves from the complete
transfer point toward higher losses is very nearly the same. Fig. 35 shows
the loss per coupling unit versus number of coupling units, with overall
transfer loss to the undriven line as a parameter.

Il

SOME RESULTS OF EXPERIMENTS IN DOMINANT-MODE WAVEGUIDE

In a previous paper on dominant-mode waveguide directional cou-
plers,” complete power transfer between dominant-mode rectangular
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waveguides was shown to be possible in a coupling interval two wave-
lengths long, and very broad band directivity characteristics of a shape
prescribed to meet given requirements were shown to be achievable.
The following paragraphs report on experiments which have been
carried out with the objective of developing other useful devices and
with the ancillary aim of verifying other predictions of the theory.
Experimental work was done to verify the cyclical nature of energy
transfer between coupled lines, to determine the magnitude of losses
which accompany such transfer in the waveguide case, and to determine
desirable coupling distribution shapes in the tight coupling case. These
experiments were carried out by R. W. Dawson in the 3.1 to 3.5 em band
using the 0.4” x 0.9” 1.D. jig shown in Fig. 36, consisting of two wave-

—
Fig. 36 — A 0.4” x 0.9” I.D. waveguide jig used for 3 em coupled line experi-

ments. The long waveguides on one side of the coupling insert were required to
accommodate low-reflection terminations for directivity measurements.
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guides having one wall cut away to accept a coupling insert. In one set
of observations, the insertion loss in the driven-line and the transfer
loss to the undriven line were recorded for a variable number of No. 22
copper wires dividing a coupling aperture 1114” long and linearly tapered
from 0.030” height at the ends to 0.33” height at the center. The results
are recorded in Fig. 37. At 102 holes, negligible power was abstracted
from the driven line, and the transfer loss to the undriven line forward
wave | Ez | was about 18 db. Note that more coupling was observed at

18 —o 8

(b)
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16 - 7
14 @) 6
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12 5 ~_
~~o
10 4
. 3
4 2
o—
INSERTION LOSS E,
73] 73]
@2 o
g INSERTION LOSS E, o
2o I e . Qo
o a
z 8 z
- (c) = (d)
a 34 HOLES a 25 HOLES P
97 Q7
= 4
: . /
U\ INSERTION LOSS E, TRANSFER
I~ A LossE;
5 \ 5 /
. ~o R /
3 3
- O\‘
2 /sz 2 \‘{|
o INSERTION \
TRANSFER LOSS E; Loss E, ™~
1 1
0 0
31 32 33 34 35 36 31 32 33 34 35 36
Ag IN CM Ag IN CM
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increasing wavelength values, a general result for small holes in the side
wall. As the number of wires in the given aperture was reduced, markedly
increased coupling resulted. This was due to the fact that the coupling
loss per hole varied approximately as the fourth power of the hole dimen-
sion perpendicular to the electric vector, whereas the overall power loss
varied only as the square of the number of holes in the loose coupling
region. (Equations (39) and (40) describe the effects of number of cou-
pling points more precisely.) At 50 holes, the transfer loss was about 5 db
and the wave in the driven line was reduced by about 2 db; the slope of
the | E; | versus Ao plot was the same as for 102 holes. At 34 holes, the
transfer loss was about 2 db and the wave in the driven line was reduced
by about 5 db; in this case, however, the undriven line wave loss in-
creased with increasing Ao . Since coupling increases with inecreasing A,
we deduced that the total coupling was greater than required for com-
plete power transfer and the bracketed expression of (39) and (40) was
greater than 7/2. On the diagram of Fig. 16, the presumed operating
point was near ¢z = 2.2 radians. At 25 holes, Fig. 37(d), the transfer
loss was about 5 db and the wave in the driven line was reduced by about
2 db; as in the 34 hole ease, the undriven line wave amplitude decreased
with increasing Ao and hence with increasing coupling. Again the in-
tegrated coupling appeared to be in the region between =/2 and =. The
driven line wave loss was headed for a low value at the long-wave end
of Fig. 37(d), and it seems clear that periodic energy exchange is realized
in practice.

The losses associated with this energy exchange may be inferred by
comparing the total power output of the undriven and driven lines to the
input power. Assuming that the forward waves in the driven and un-
driven lines contain all the output power, (i.e. neglecting reflection, back
wave in the undriven line and waveguide losses) the following table gives
the losses observed in the above deseribed experiments:

Number of Holes Coupling Mechanism Loss
db
50 0.16
34 0.23
25 0.33

These losses may be due to circulating currents in the wires, in which

case the loss would be expected to increase with increasing coupling.
Good agreement between the observed and theoretical directivities has

been found in the loose coupling case,” but when appreciable power is
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abstracted from the driven line it is clear that the theory given above
does not apply. Dawson has obtained experimental data of interest in
this connection. For a 6\, long linear-taper aperture of the form given
above (0.33” height at the center and 0.030” height at the ends), the
loose coupling theory predicts directivities in excess of 45 db for the
wavelength band 3.1 to 3.5 em. When using sufficient number of wires
to obtain 18 db transfer loss, directivities in the range 36 to 48 db were
observed. The reason for the 36 db observation being lower than the 45
db theoretical value may be inaccuracy of fabrication (jig per Fig. 36)
or inapplicability of the loose coupling theory at 18 db transfer loss. At
3 db transfer loss, the observed directivity of a similarly shaped but 5.5
A, long coupling array is shown at the top of Fig. 38; again loose coupling
theory predicts more than 45 db directivity. The reason the observed
values are in the 24-33 db range rather than above 45 db is presumed to
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TasLE I

Transfer Loss
Array

M=315cm | X =330cm | A = 345 cm

db db db
Single 2\, array. .. ...l R 3.2 3.0 2.8
Two cascaded arrays.................... . 4.3 4.2 4.0
Single 5.50, array . . ... ... 3.5 2.9 2.4

Straight Through Loss
Array

M =315cm [ ho = 330 cm | Ao = 345 cm

db db db
Single 2\, array. ... 3.0 3.2 3.5
Two cascaded arrays. ...................... 2.6 2.8 3.0
Single 5.5 Agarray. . ... 2.9 3.6 4.3

be inapplicability of the theory. Loose coupling theory predicts better
than 35 db directivity over a broad frequency band at a coupling length
of about 2), ; therefore one might expect to obtain better overall results
by using two cascaded arrays each about 2)\, long, and each having a
transfer loss of 8.4 db to get the 3 db net transfer loss. Ohserved directivi-
ties for such a coupling array are also given in the top of I'ig. 38; in this
case values in the 32-37 db region were obtained. The destructive inter-
ference associated with addition of backward wave components is more
nearly of the form computed by loose coupling theory because the ex-
citing wave is more nearly constant over the length of one of the arrays.
The observed return loss at any one of the four waveguide entries, when
the others are terminated, is given for the 5.5\, and cascaded 2\, cou-
pling arrays at the bottom of T'ig. 38. The cascaded 2\, combination is
again superior to the single long taper. The characteristic of being in-
herently matched at all terminals makes the coupled-line type of 3 db
hybrid attractive at the very high frequencies where lumped element
matching becomes difficult if not impracticable.

Where space is at a premium, or where more constant transfer loss
ralues are to be desired a shorter array composed of larger holes is at-
tractive. A single linear taper of the shape outlined above and 2\, long
was observed to have better than 22 db directivity and better than 25 db
return loss over the 3.1 to 3.5 em band. The observed loss values of the
three coupling arrays discussed above are given in Table I. The coupling
arrays composed of larger holes have less slope in the loss versus fre-
quency characteristic for side-wall coupling.
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SOME LOOSELY COUPLED TRANSDUCERS IN MULTIMODE WAVEGUIDE

In connection with research on low-loss circular-electric-wave trans-
mission,' there developed a need for means with which to measure the
power present in any one of the modes of a multi-mode round waveguide.
In particular, it was known that the circular electric wave in round
waveguide converts readily to the TMy wave due to curvature of the
line,’ and a direct measurement of the effect was needed. The TMy, wave
will not exist in the round waveguide without the presence of at least
four other modes, and in the waveguide size used for the experiments
five other modes could propagate. In designing a transducer for this ap-
plication, therefore, it was necessary to evaluate the discrimination
function, equation (4), with regard to mode discrimination between five
different pairs of modes as well as to insure directivity. Moreover, the
TM,; wave is degenerate with the circular electric wave TIy , i.e., they
have the same phase constant. Therefore, mode discrimination against
TE,; could not be obtained through the phase difference effects described
by (4). This discrimination was obtained using geometric balance in the
individual coupling orifices, which were narrow slits on the center line
of the wide side of the rectangular guide, as shown in Fig. 39. The shape
of the coupling distribution employed was that described in connection
with Fig. 14 except that 80 point couplings were used to simulate the
raised-cosine coupling distribution (instead of 40 as in Fig. 14) in order
to assure good directivity for the very long coupling length that was
required. The round guide diameter was two inches, the rectangular guide
width 0.820 inches, calculated to produce the same cut-off frequency in
the rectangular guide as exists for the TM; wave in the round wave-
guide. The coupling length was about 17 inches.

One simple method for evaluating the mode content of such a trans-
ducer is to measure the azimuthal distribution of electric field at the
round guide wall using the radial probe technique described by M.
Aronoff.” If the power in a single mode is a great deal larger than the

Fig. 30 — A TE;,0 to TM;,©0 coupled wave transducer.
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Fig. 40 — Distribution of radial electric field at the guide wall for the forward
and backward waves of the transducer of Fig. 39.

power in any other mode of the multi-mode guide, the radial probe
technique narrows down the possible mode types to a very few. Measure-
ments of this type, recorded in Fig. 40, indicate that the forward wave
has the radial electrie field distribution to be expected for the TM;; wave.
However, the forward wave might have the same radial field distribution
at the wall and actually be the TI;; wave instead of TMy; . The TE,
wave is very simply generated from a dominant mode rectangular guide,
by means of a long taper transition along the axis of propagation from
the rectangular cross section to the circular cross section. Such a trans-
ducer was used to measure the output wave of the TM;; transducer and
it was found that the TE;; component was down on the order of 30 db
below the value which would be present if the radial field intensity ob-
served at the top of Fig. 40 had been due to TE;; . By a process of elim-
ination, therefore, and by virtue of the fact that we have a pure pattern
suggesting the presence of a single mode, we have established that the
mode generated is actually TM;; . Other checks can of course be made,
such as measurement of the phase constant of the output wave.

The backward wave shown at the bottom of Fig. 40 has a maximum
field more than 20 db below the maximum field of the forward wave and
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has a six-peaked variation with angle which indicates the presence
of THEg .

The transfer loss of the TM;; transducer was derived by (1) calibrat-
ing the receiving probe on a known amount of power in the TEy; wave,
(2) inserting this same amount of power in the rectangular waveguide
of the coupled wave transducer and, with the probe at the transducer
output, observing the change in the receiver response, and (3) correcting
the observed loss using the theoretical difference in the radial electric
field at the wall for the TEy; versus TMy; waves in the known waveguide
diameter. (This technique is deseribed in more detail by Aronoff.”) The
result gave a transfer loss of about 25 db to the TM,, wave. The insertion
loss for the rectangular guide of the transducer was less than 0.2 db.

Coupled-wave devices of the type shown in Fig. 39 were built for
several of the modes in 2” round waveguide. The one built for the TE;,
mode in 2” waveguide (mechanically similar to the TM;; model of Fig.
39) has several characteristics worthy of mention. Fig. 41 shows the
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Fig. 41 — Distribution of radial electric field at the guide wall for the forward
and backward waves of TE;j0 to TE; O coupled wave transducer.
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TasLe 1T
Observed Discriminations
Ratio of Forward
Traveling TMy Power to I
M = 3.1 cm | M = 33 cm M = 3.5 cm

db db db
TM,, Backward >20 >20 >20
TE, Forward 28.5 28 26
TE,, Backward 37 | 35 39
TMy Forward 46 46 41.5
TMy Backward 49 51 45.5
T, Forward 24.5 21 23
T, Backward 20.5 35 31
TE; Forward 14 26 21.5
TEy Forward 45 46 45
TEyn Backward G4 69 67

measured forward and backward wave patterns in the round guide, for
excitation in one of the rectangular guides of the transducer. Only TEg
of the six modes possible in the 2” pipe at 3.3 em has a six-lobed pattern
of azimuthal distribution of radial electric field at the wall, and hence
the clean pattern with equally spaced deep nulls indicates the presence
of a rather pure TEy; mode. The six maxima of the forward wave were
equal within #0.15 db. The backward wave had a peak electric field at
least 23 db down on the peak electric field of the forward wave.

Using coupled transmission line techniques and the familiar geometric
taper techniques, transducers were built for all of the six modes possible
in 2” diameter pipe at 3.3 em for use in the circular electric wave research
program.’ These transducers were used to measure the forward wave and
backward wave output of the TMi; transducers, as given is Table II.
In reality, imperfections in either one of the two transducers involved
in a measurement could result in the recorded values of diserimination.
For example, if the TMy transducer were perfect and the TEq output
transducer contained some TM;, . then the insertion loss measurement
involving the two transducers face to face would produce an indication
of mode impurity. Since we do not have independent information on the
mode purity of any one of the transducers at the level of the observed
wave impurities, we can only state that both transducers involved in a
discrimination measurement are probably at least as good as the number
tabulated.

Tt should be noted that very high discriminations between TEy and
TM,; were achieved, despite the fact that this one discrimination de-
pends solely on the mode-selective nature of the coupling orifice. Similar
discriminations can be employed effectively to augment the wave-inter-
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ference discrimination even in cases where there is difference between
the desired and undesired modes’ phase constants, to achieve very large
discriminations. In the TMj; diseriminations listed above, the values for
TE; are not great but are consistent with computed values for the
coupling length and the coupling function employed; longer coupling
lengths would produce better TMy; versus TEs discriminations.

A TIGHTLY couPLED TE,J To TEy,C WAVE TRANSDUCER¥

A highly efficient means of transferring power from dominant-mode
rectangular waveguide to one of the higher modes of a multi-mode wave-
guide would be essential in a waveguide transmission system." When
several modes can propagate in one or both of the guides, the problem
of achieving complete power transfer is more difficult and requires some
new techniques. This section describes these techniques and gives ex-
perimental data for a circular-electric-wave (TEy™ — TEy®) transducer.

The desired transducer was required to make the wave transtormation
between a single-mode rectangular waveguide and the circular electric
mode (TEy®) of an 0.875” round waveguide at a nominal frequency of
24,000 me. The 0.875” round waveguide at this frequency will support
10 modes of which the circular electric mode and its degenerate partner
TM;© are the fourth and fifth in order of appearance.

The minimum length of the coupling interval required to achieve mode
diserimination may be estimated using loose coupling theory (equation
4). The mode nearest to TEq® in phase constant is the TEx»® and for
this mode a coupling length of about 0.18 meters is required in order to
produce a value of 8/7 equal to unity. As shown by equation (5) for
uniform coupling, it is necessary to have 8/7 equal to unity or greater in
order to develop discrimination against the undesired mode.

The maximum coupling coeflicient permissible for a given amount of
mode impurity at the complete power transfer point may be estimated
using the tight coupling theory of the preceding sections. For example,
equations (31) and (32) show that for the ratio (81 — 8:)/c equal to 10,
the transfer loss to the undesired wave will always be greater than 14 db
(regardless of the length of the coupling interval), corresponding to an
energy loss for the desired wave of less than 0.2 db. For the TEy® and
TE:° modes the calculated values of 8; and B: lead to the conclusion
that the coupling coefficient ¢ between TE;° and TEy” must be less
" * When discussing the modes of hollow metallic waveguides of different cross-
sectional shapes, it has been found convenient to use a superscript to designate
the shape of the cross section. (See G. C. Southworth, Principles and Applications

of Waveguide Transmission, D. Van Nostrand Co., 1950). Thus, TE;" refers to
the TF;, mode in rectangular waveguide.
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than 3.45 radians per meter. If the coupling coefficient for TEy" to
TE° is equal to that for TEy™ to TE;C it follows that the total coupling
length must be greater than 0.455 meters, because complete power
transfer requires that the produect of coupling-length times coupling-
coefficient be exactly =/2 (see Fig. 17). Actually, the TE,” — TE;y;°
coupling may be greater than the TE® — TEx® coupling which leads
to the requirement for longer coupling intervals. It is evident that the
shorter coupling intervals may be employed at the sacrifice of greater
mode impurities. The preceding calculations were made for the TEy D —
TE;°© and TE,;® — TE° transfer ratios as though only one mode of the
multi-mode waveguide were present at a time, i.e., using a theory based
on coupling between two waves instead of a theory for the simultaneous
coupling between a plurality of waves. It is felt that this is probably

Fig. 42 — An experimental circular electric wave (TEy C to TEn©) transducer
for 24,000 me.

justified provided that the coupling per unit length is weak and only one
mode in each guide carries an appreciable amount of power.

Fig. 42 shows a photograph of one of the models used to obtain experi-
mental data. The coupling holes were located in the narrow wall of the
rectangular waveguide, thus avoiding coupling to all of the TM modes
of the round waveguide. The total coupling length was 0.55 meters. The
coupling orifices were spaced about 0.3 wavelengths in the dominant-
mode rectangular waveguide, which assured reasonable directivity in
the transfer of power between waveguides, provided that two or more
coupling elements were employed.

The transfer loss between the rectangular waveguide and the circular
electric mode of the round waveguide was measured as a function of the
number of coupling elements, using the structure of Fig. 42 with the
addition of a movable thin-walled metallic eylinder. The latter could be
moved inside the transducer in such a way as to cover up a variable
number of coupling holes, and contained a long wooden termination so
that all the power entering the movable cylinder was absorbed. The inner
diameter of the movable cylinder was large enough to propagate the
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Tig. 43 — Transfer losses versus frequency for the transducer of Fig. 42.

circular electric wave but did cut off some of the waves which could
propagate in the round guide of the transducer itself. The measured
transfer loss under these conditions is recorded in Fig. 43. It is seen that
the TEy® — TEq® coupling was so weak as to be in the region where
power from successive coupling elements should add inphase all the way
up to 40 coupling elements. The observations show the inphase addition
for less than 30 coupling elements but show a marked deviation in the
vicinity of 40 to 66 coupling elements. This is evidence of inequality of
the phase constants for the TEy® and TEyw” waves. More will be said
about this matter presently. The transfer loss between the rectangular
waveguide and the THEy mode of round waveguide, is also recorded in
Fig. 43. As expected, the power from successive coupling elements did
not add inphase and no appreciable build-up of power in the THE;; mode
took place.

One way of evaluating the total power in all modes other than the
circular electric mode, is to measure the value of the transverse magnetic
intensity at the wall of the round waveguide. The circular electric wave
has no such field component and all other waves do possess such a field



COUPLED WAVE THEORY AND WAVEGUIDE APPLICATIONS 707

component. Thus the total value of the transverse magnetic intensity at
the round waveguide wall is a measure of the impurity associated with
the circular electric wave. (This is very similar to the radial probe tech-
nique described by M. Aronoff.”) Using this method of evaluation, the
mode impurities present at the output of the transducer were measured
as a function of the number of coupling elements, and the results are
recorded in Fig, 44. The absolute calibration of the ordinate relates the
observed magnetic intensity to that which the same power input used at
the rectangular guide would have produced if placed in the round wave-
guide in the TE;; mode. These measurements show that for all of the
modes other than the circular electric mode, the energy components
from successive coupling elements suffer destructive interference. Al-
though curves are shown only for one and for 66 coupling elements, the
patterns for intervening numbers of coupling elements were similar in
shape and never exceeded an intensity value greater than about 6 db
above that given for the 66 coupling element case; thus the mode dis-
criminating property of the coupled wave transducer was verified ex-
perimentally.

Returning to the question of TE® — TEy® transfer loss, it is clear
from Fig. 43 that the rectangular waveguide has a phase constant which
is not equal to that of the circular electric mode in the round waveguide.
One reason for this inequality lies in the fact that the coupling elements
disturb the phase constant in the two waveguides unequally, a conse-
quence of the fact that some of the power transferred to the round wave-
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guide on a single coupling element basis, appears in modes other than
TEq . Thus, the total coupling to TEy" is greater than to TEy°. The
total coupling modifies the phase constant of each line, per (20), and
since the total coupling coefficient is unequal for the TIE;~ and the
TEx° modes, the perturbed phase constants should be expected to be
unequal when the unperturbed phase constants are made equal. A method
of determining the magnitude of this phase-constant disturbance has
been suggested by S. A. Schelkunoff. In this method the reflected wave
from a single coupling orifice is measured in the dominant waveguide and
in the single mode of interest in the multi-mode waveguide. Having de-
fined the ratio of the incident to the reflected power in the same mode by
the sympol p, Schelkunoff determines that the disturbed phase constant
g, is related to the undisturbed phase constant 8 by the relation

ﬁ'=ﬁ+ﬁ, (41)

in which “d” is the distance between the coupling orifices in the coupling
arrangement which one wishes to evaluate. This relation may be used to
evaluate the change in the phase constant for the circular electric mode
and for the wave in the dominant waveguide, and the change of wave-
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Fig. 46 — Rectangular guide insertion loss for the transducer of Fig. 42.

guide dimensions required to correct this phase constant difference may
be computed as though the coupling elements were not present.

For the small phase constant disturbances which are associated with
the weak couplings employed, this procedure was found very accurate.
The reflection measurements and associated calculations for the model
of Fig. 42 indicated that the rectangular guide width should be 0.340”
for equality of phase constants instead of 0.359” as computed neglecting
coupling effects. The measured value of the transfer loss when the in-
dividual coupling holes had been enlarged and the rectangular guide
width had been altered to the 0.340” value is shown in Fig. 45. It is
evident that the theoretical value of 0 db transfer loss was approached,
and that the shape of the transfer loss versus number of coupling ele-
ments, was reproduced very well. The 0.75 db minimum transfer loss
consisted of no more than 0.3 db heat loss, the remaining loss being due
to power present in other modes.

The measured insertion loss in the rectangular waveguide is shown as
a function of the number of coupling holes at the three frequencies in
Fig. 46. Complete power transfer would, of course, correspond to an in-
finite insertion loss in the rectangular waveguide. It is interesting to note
that at 24,000 me the peak in the rectangular guide insertion loss occurred
at 85 coupling elements whereas the maximum in the TE" — TEq®
transfer loss characteristic occurred at about 96 coupling elements (Fig.
45). This difference is likely to be the result of power transferred back
to the rectangular waveguide from round waveguide modes other than
circular electric. Additional evidence of deviations due to the coupling
between a plurality of waves was obtained; the rectangular-guide in-
sertion loss as a function of number of coupling elements did not increase
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smoothly according to a cosine amplitude function as would be expected
for two coupled waves of identical phase constant, but instead exhibited
ripples. The remarkable thing about the data of Figs. 45 and 46 is that
it agrees with the theory for two coupled waves as well as it does.

The coupling per individual orifice decreases with increasing frequency
and this is verified by the observation (Fig. 46) that a greater number of
coupling elements are required to reach the maximum insertion loss in
the rectangular guide at the higher frequency.

Some indication of the overall bandwidth of this first experimental
model is given in Figs. 47, 48 and 49 which show respectively the TE;)” —
TEy° transfer loss, the insertion losses in the TE;” and TE)° modes,
the TE® — TEL® and TE " — backward wave TE;® transfer losses,
and the TE® and TE;® return losses in the frequency range 20,000 to
30,000 me. No one of these characteristics represents the degree of ex-
cellence which is achievable but they do demonstrate that good im-
pedance match, low transfer losses to the desired mode, and appreciable
diserimination against unwanted modes, can be achieved over frequency
ratios on the order of 1.5.

FREQUENCY SELECTIVITY

In the case wherein the coupling is so weak as to not affect the total
phase constant appreciably, all modes of hollow conductor waveguides
of any cross section have the same phase constant at all frequencies pro-
vided that these modes have the same cut-off frequency. This results
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in very broad band mode-selective characteristics, as has been demon-
strated.

The transfer loss characteristics are in general a function of frequency,
since the individual coupling holes are somewhat frequency selective.
There may be applications wherein less variation in transfer loss as a
function of frequency is required. One approach to this problem is to
make the coupling holes individually have less coupling variation with
frequency; since the total coupling loss between two identical transmis-
sion lines is a function only of number of coupling holes and the loss per
hole (equations (39) and (40)) constant coupling per hole will produce
constant coupling overall. Riblet and Saad® have reported on this ap-
proach.

There is another approach to obtaining flat coupling versus frequency
despite variations in the coupling per hole, and that is to intentionally
create a difference between the phase constants of the two coupled lines.
Fig. 17 illustrates the transfer characteristic when the coupled lines have
unequal phase constant, and either identical or negligible attenuation
constants. Near the maximum for the transferred wave | E2* | there is a
region wherein the transfer loss is independent of coupling strength, and
the transfer loss in this flat-loss region is under control of the ratio
(81 — B2)/c. Hence for a given transfer loss there is an optimum ratio of
phase constant difference to coupling strength in order to minimize the
overall transfer loss variation. For the distributed coupling case, equa-
tions (31) and (32) represent the transferred wave amplitude and show
that the transferred wave goes through a maximum as a function of
integrated coupling strength cz, when

/‘/-(314_0—232)‘+1cx=?—2r+mr. (42)

The transferred amplitude at this maximum point is

1
E ll‘lﬂx* = Rt 43
’ 4/«31—32)-+1 )
4c?
The integrated coupling strength at the maximum point is
T, (44)

1
Colo = -+ —
(Br — B2)? 2
/‘/ 402 +1

For the important case of an optimum 3 db transfer loss coupler, Ex*
is 0.707. Then (81 — B:)/c equals 2 and ¢exq equals 7/24/2 from (43)
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and (44). Assuming a coupling length x, of two wavelengths in the line
with the smaller phase constant, it follows that 8,/B: is about 1.18 show-
ing that a phase-constant difference of 18 ¢ is required. This phase-con-
stant difference is quite readily attainable in the waveguide structure of
Fig. 50(a). The two modes coupled together are given slightly different
cut-off wavelengths in the coupling region, and may be tapered to the
standard waveguide size outside the coupling region. The desired phase-
constant difference can also be obtained in two identical metallic guides
by inserting a piece of dielectric into one of the guides in the coupling
region as sketched in Fig. 50(b). Although rectangular waveguides are
used in Fig. 50 to illustrate the method of obtaining frequency inde-
pendent transfer characteristics, the approach is general and may be
applied to any form of single or multi-mode transmission line.

~
~

L
SECTION A-A

(@ (b)

Fig. 50 — Examples of structures in which flat transfer loss may be obtained
despite coupling loss variations,

In either dominant-mode directional couplers or in multi-mode cou-
pled-wave devices such as the one illustrated in Fig. 1, one may obtain
much more frequency selectivity than occurs incidentally due to the
frequency sensitivity of the coupling elements used. This may be done
by coupling two transmission lines which have the same phase constant
at one frequency, but unequal phase constants at other frequencies.
Then, as shown by equation (31), the midband transfer loss may be set
at any desired value by adjusting the integrated coupling strength ca
at midband (where 8, — 8. = 0), and at other frequencies where (8, —
B2) # 0, the transfer loss will increase. For the particular case of cx = 7/2
(fixed) for which complete power transfer occurs when 8, = 8. (and as-
suming «; = a» or both &’s are negligible), Fig. 51 shows the shape of
the filter characteristie, E»* versus (81 — B2)/2¢. This plot is valid for
any form of transmission line.

A very simple configuration for realizing such a frequency-selective
filter involves coupling between two hollow conductor waveguides, one
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Fig. 51 — Transfer loss E.* versus (81 — B2)/2c for coupling strength cz =
/2, the value required for complete power transfer.

of which is air-filled and the other of which is filled with a material of
dielectric-constant e. The phase constants for these waveguides have the
form sketched in Fig. 52, in which 8, is the phase constant in free space.
At the frequency f. the two waveguides have identical phase constants
and, in a typical case, negligible loss constants so that complete power
transfer can be obtained. For the case e = 2.55, Fig. 53 shows the com-
puted frequency characteristic on the assumption that the integrated
coupling is set for complete transfer (cx = =/2) and is independent of
frequency. (Actually the usual coupling mechanisms are somewhat fre-
quency sensitive and would increase the selectivity somewhat.) This filter

I
I
|
|
|
|
1

for foz fm
FREQUENCY =

Tig. 52 — The general form of the phase constants for two hollow conductor
waveguides, one of which is filled with a dielectric.
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Fig. 53 — The transfer loss F.* versus normalized frequency for two coupled
hollow conductor waveguides, one of which is air filled and has a guide wavelength
/2 times the free space wavelength at f,. , and the other of which is filled with a
material of dieleetric constant 2.55 with dimensions chosen for equality of phase
constant with the air-filled guide at f,, . Coupling cz assumed constant at 7/2.

characteristic applies regardless of the shapes of the hollow conductor
waveguidess (which may be dissimilar) and regardless of the modes
selected.

It is apparent that frequency selectivity in the transfer characteristic
E.* can also be obtained without requiring that the phase constants be
unequal by using coupling elements which are frequency sensitive.

DIELECTRIC WAVEGUIDE CONFIGURATIONS

The coupled-wave approach to circuit design is applicable using any
form of transmission line, the only important variant associated with
different forms of line being the physical structure associated with intro-
ducing the desired coupling between lines. In a recent publication® A. G.
Fox showed that dielectric waveguides are very attractive for use in the
millimeter wavelength range, and this section points out how dielectric
waveguides can be used in various forms of coupled wave devices. Fox
showed that dielectric waveguides arranged in the configuration sketched
in Fig. 54 are coupled by the electric field components only, and that
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periodic energy exchange of the type described by equations (26) and
(27) is observed. Moreover, he also showed that if one line were made
very lossy the energy exchange phenomena disappeared and, despite
sufficient coupling to cause complete power transfer when both lines
were loss-free, power passed through the coupling region in the low-loss
line with less than 0.25 db attenuation. This verified the predictions of
equations (35) and (36).

Other implications of the coupled wave theory can also be utilized in
dielectric waveguides. If the two lines (Fig. 54) are made of materials
having different dielectric constants and their cross-sectional dimensions
set so as to secure identical phase constants at a frequency fn , then a
frequency-selective coupled-wave filter results and the selectivity charac-
teristic of Fig. 53 applies. As an alternative to using materials having
different dielectric constants, the same dielectric may be used for both
lines by making one line solid and the other hollow.

If both lines are made of the same material and the cross-sectional
dimensions are set so as to obtain a known difference between their phase
constants, the result is a directional coupler having a region of flat trans-
fer loss (of any desired magnitude) and equations (42), (43) and (44)
apply.

Both of the preceding applications can be carried out in dielectric
waveguides having arbitrary cross-sectional shapes.

NQ2

Fig. 54 — Coupled dielectric waveguides.
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If one of the transmission lines (Fig. 54) is round and the other is
rectangular and if their cross-sectional dimensions are set for equal phase
constants, then the power in one of the two polarizations of the round
line may be transferred to any desired extent to the rectangular guide,
and power in the other polarization of the round guide will pass the
coupling region undisturbed. Two such rectangular-rod to round-rod
coupling configurations arranged in cascade along the round-rod, with
the two rectangular rods coupled in planes at 90° to each other, consti-
tutes a means for independently connecting to the two polarizations of
the round-rod. This type of device depends upon the fact that the phase
constants of the two polarizations of round-rod are identical, whereas
the two phase constants for the rectangular rod are different. Thus a
wave interference occurs in the transfer characteristic for one of the
polarizations, and for suitable values of (8; — B:2)/c (see Fig. 18) the
power transferred in this polarization can be made small.

SUMMARY

Two approaches to a theoretical description of the behavior of two
coupled waves have been presented. One, based on the assumption of
negligibly small coupling, is applicable in cases where very little power
is transferred between the coupled waves. The other, a solution based
on uniform coupling between waves in the coordinate of propagation, is
valid for any magnitude of total coupling.

The loose coupling theory shows how to taper the coupling distribution
in order to minimize the length of the coupling interval required for a
given degree of directivity and/or for a given magnitude of mode im-
purity. In particular, it is possible to shape the coupling distribution so
as to discriminate sharply against one or more undesired modes in a
coupled-wave arrangement involving just a few modes. (See Figs. 7 and
15 for examples).

The theory indicates that significant exchange of power takes place
provided that the attenuation and phase constants of the coupled waves
are equal, or provided that the difference between the attenuation con-
stants and the difference between the phase constants are small compared
to the coefficient of coupling. A suitable difference between either the
attenuation constants or the phase constants of two coupled waves is
sufficient to prevent appreciable energy exchange (equations 29-32 and
35-36).

It follows that substantially single-mode propagation is possible in a
multi-mode structure even though geometrical effects tending to cause
coupling between modes are present. A gradual transition in the boundary
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of a multi-mode waveguide will not cause an appreciable exchange of
power between modes provided that the quantity (81 — f2)/c is suffici-
ently large for the modes which are coupled by the boundary change.
Similarly, for disturbances in the coupled-wave system which takes place
over a large number of wavelengths in the direction of propagation, the
coupled-wave theory indicates that all conversion will take place in the
forward direction and very little reflection in any mode will result.

The tight coupling theory shows that for the case of identical complex
propagation constants, a periodic exchange of energy between waves
takes place along the coordinate of propagation. The only effect of the
existence of an attenuation constant for both waves (compared to the
dissipationless case) is to add the same exponential attenuation factor
(to the periodic energy exchange phenomenon) which would have existed
for a wave traveling on one of the lines in the uncoupled state.

When the phase constants of the two coupled waves are not equal (and
the attenuation constants are either equal or negligibly small compared
to the coupling coefficient), the exchange of energy between waves is no
longer complete but remains periodic (Fig. 17). The quantity (8. — 82) /c
determines the fraction of the total energy which is exchanged, and also
modifies the period of the energy exchange phenomenon along the axis
of propagation.

When the phase constants of the two lines are equal but the attenua-
tion constants are unequal, the energy transfer phenomenon differs only
slightly from that associated with equal propagation constants provided
that the quantity (es — a2)/c is less than about —0.1. For (&x — a2)/c
more negative than about —1, the periodicity of the energy transfer
phenomenon has largely disappeared (Fig. 23) and as (s — as)/c be-
comes on the order of —10 or more, the principal effect of the coupling
for the low loss line is a minor alteration of the phase and attenuation
constants. The wave amplitude for unit input on the low-loss line be-
comes [from (33) for | (a1 — a2) |[/c >> 1]

E]. — e—[al—cﬂf(u1—ag)+i(e+ﬁ)]z. (45)

Through proper choice of the phase constants relative to the coupling
coefficient in two coupled transmission lines, it is possible to make di-
rectional couplers having an arbitrary transfer loss that is independent
of frequency despite variations in coupling strength with frequency
(equations 43—44). It was also shown that the coupled-wave approach
may be utilized to create highly frequency-selective filters which may
operate between single-mode media or between selected individual modes
of a multi-mode system.
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The experimental data given for two dominant-mode rectangular
waveguides showed that the periodic energy exchange theoretically pre-
dicted for a coupled-wave system can be achieved in coupled transmis-
sion lines.

Performance characteristics were given for some loosely coupled trans-
ducers between a dominant-mode rectangular waveguide and one mode
of a six-mode waveguide. A tapered coupling distribution was used to
achieve the mode selectivity in a limited length interval.

The problems associated with a coupled-wave transducer for trans-
ferring all of the power from a dominant-mode rectangular waveguide
to the circular electric mode in a ten mode waveguide, were discussed
and the observed characteristics of an experimental model were given.

The application of coupled-wave techniques to other types of trans-
mission systems was illustrated by pointing out analogous structures
using coupled dielectric waveguides.
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