Topics in Guided Wave Propagation
Through Gyromagnetic Media

Part II—Transverse Magnetization and the
Non-Reciprocal Helix

By H. SUHL and L. R. WALKER
(Manuscript received March 30, 1954)

Propagation through a gyromagnetic medium in a direction normal to a
uniform magnetizing field is considered. Geometrical arrangements which
make this propagation mon-reciprocal are described. A few illustrative
examples are discussed briefly. The non-reciprocal heliz, of importance in
traveling wave tube work, is treated at length.

1. INTRODUCTION
1.1. General Remarks about Non-Reciprocal Propagation

Part I of this paper began with a brief discussion of some of the micro-
wave properties of two gyromagnetic media; the gas discharge plasma
and the ferrite. The remainder of Part I was devoted to the analysis of
the mode spectrum in a cylindrical waveguide filled with one of the
media and placed in an axial magnetic field. It was demonstrated that
the natural modes in such a guide areright- and left-circularly polarized
waves which travel with different phase velocities. Accordingly a plane
polarized mode, which to some approximation can be regarded as the
sum of right and left circular modes, will, in traversing a section of the
guide, undergo Faraday rotation, just like a plane wave in the un-
bounded medium. It is true that the presence of the guide wall has a
drastic effect on the course of the rotation with magnetizing field, chang-
ing it, sometimes beyond recognition, from that prevailing in the un-
bounded medium. Nevertheless the principle remains the same; confine-
ment of the wave to a guide merely modifies quantitatively the Faraday
effect for plane waves. In optics, where practically plane waves are
almost always employed in this connection, the non-reciprocal nature
of this effect is so familiar that it hardly requires restatement here.
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By contrast, Part II of this paper deals with devices whose non-
reciprocal operation depends in principle as well as in numerical detail
on the disposition of the boundary, or, more generally, on geometrical
configuration. These devices employ magnetizing fields transverse to
the propagation direction. Some electromagnetic field configurations are
unaffected by such a de field, but, whenever the rf magnetic field in the
case of a ferrite (or the rf electric field for a plasma) has a component
normal to the de magnetic field, this is no longer the case. For, now, the
magnetization (or the charges) will be caused to precess about the dec
field, giving extra terms in Maxwell’s equations and a resultant change
in the propagation. This change may be simply an alteration in phase
velocity, the propagation remaining reciprocal. This is the case, for
example, for the propagation of plane waves in an infinitely extended
medium [Cotton-Mouton effect]. Here, since every direction of propaga-
tion normal to the de field is physically equivalent to any other and, in
particular, to the opposite direction, no non-reciprocity can arise.

For reciprocity to be preserved in the presence of the dec magnetic
field is, however, exceptional and requires a certain amount of geo-
metrical symmetry in the system. That non-reciprocity may be expected
in asymmetrical systems may be foreseen if we consider a system, typical
of those to be treated in this paper, in which all the rf fields are inde-
pendent of the coordinate along which the de magnetic field is pointing.
The relevant conducting boundaries and any interfaces between ferrite
(plasma) and air are all surfaces parallel to the direction of propagation
and lying in the dc magnetic field direction. Suppose the system to be
divided into two parts by another surface of a similar kind and examine
the surface impedance of one of the parts (which should contain some
gyromagnetic material). If the propagation direction be reversed it is
necessary to reverse the magnetic field to retrieve a situation in the
part considered geometrically equivalent to the original. But, since the
precession of the magnetization (or charges) about the dc magnetic
field has a definite sense, the magnetic or electric current associated
with this precession will be reversed when the dc field is reversed. Thus,
the properties of the medium are altered and the surface impedance will
be different for the two directions of propagation. In general, the surface
impedance of the other part of the system will not compensate for this
distinction between the two directions and we shall find different propa-
gation constants for opposing directions. An exception will oceur if the
system contains a surface about which it has geometrical symmetry, for,
then, compensation clearly takes place about this surface and the system
is reciprocal.
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An example of a simple non-reciprocal system is indicated in Fig. 1(a).
Here a slab of ferrite is inserted into a rectangular waveguide parallel
to the narrow walls and closer to one of them. Several workers have
demonstrated that this arrangement and a similar arrangement in a
circular waveguide are non-reciprocal for what is essentially the dom-
inant mode." * * When the slab is centered in the guide we have a plane
of symmetry and the non-reciprocity vanishes.

Another configuration of the transverse field type is represented by
the system shown in Fig. 1(b). Here a hollow ferrite cylinder is mag-
netized circumferentially and propagates a TEq,-mode. It is clear that
any arrangement of this sort, which might, in principle, include conduct-
ing sheaths, internally or externally, or might have the ferrite extending
to an indefinitely large or small radius, cannot have any symmetry
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Fig. 1 — (a) Rectangular waveguide and ferrite slab. (b) Circumferentially
magnetized ferrite cylinder.

* Tt is expected that an article on this subject by 8. E. Miller, A. G. Fox and
M. T. Weiss will appear in a forthcoming issue of the JourNAL.
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about a cylinder coaxial with the ferrite. Thus, the internal and external
impedances of such a system at any coaxial cylinder can only com-
pensate accidentally (perhaps at a single frequency) and non-reciprocity
is the rule.

It is frequently asserted without qualification that for non-reciprocity
a further condition upon the relevant rf field is that its projection upon a
plane normal to the magnetizing field be elliptically or circularly polar-
ized in the limit of vanishing magnetization. The argument is based on
the consideration, in itself correct, that the effective material constants
are different for right- and left-circularly polarized field vectors. Suppose
that the magnetization direction is y. Then the tensor relating B to H
is (see Part I, Section 2.1):

In 0 —JK
0 Ho 0
w0 I

For right- and left-circular fields with H, = =jH. , therefore, the medium
is isotropic in the plane transverse to the dc field yith permeabilities
p + &, p — « respectively. Since opposite circular polarizations accom-
pany opposite propagation directions, (see for example, Fig. 2) the per-
meabilities, and hence the propagation constants, are different for oppo-
site propagation directions. It is then argued that the field must already
be circularly, or at least elliptically polarized to start with, if non-
reciprocal effects are to result from application of the magnetization.
However, the argument is true only for effects of first order in the mag-
netization. For general values of magnetization, the rf field, even if
linearly polarized to begin with, will become elliptically polarized, and

Fig. 2 — Magnetic lines of foree parallel to the broad side of a rectangular
waveguide.
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non-reciprocity will occur. It is understandable that this double function
of the magnetization (conversion to elliptic polarization plus creation
of differences in permeability) leads to higher order effects. However,
inasmuch as for the ferrite and plasma the magnetization can produce
large changes, the requirement of elliptic polarization in zero magnetic
field cannot be regarded as essential in practice. These considerations are
demonstrated by a simple example in Section 2.2.

The devices considered in this paper actually are such that the electric
or the magnetic field vector in the plane normal to the field is elliptically
polarized even in the absence of the gyromagnetic medium. For example,
the magnetic lines of force of the TEy, mode in a rectangular waveguide
form two sets of closed loops in a plane parallel to the wide sides (see
Fig. 2) and repeating every wavelength. This pattern moves bodily
down the guide with the phase velocity of the mode, so that an observer
stationary at any point not at the center or at the narrow walls of the
guide sees a magnetic field rotating at the signal frequency and tracing
out a generally elliptic path. The sense of the rotation is opposite on
opposite sides of the center plane, and depends on the propagation direc-
tion. The conditions outlined in the previous paragraph are therefore
satisfied; introduction of a ferrite slab magnetized as in Fig. 1(a) will
yield first order non-reciprocal effects.

The problems considered here are such that the electromagnetic
fields do not vary in the direction of magnetization. Under these condi-
tions the field can be split into a TE and TM field satisfying different
wave equations. In general, the two fields are coupled through the bound-
ary conditions. Most of the paper is devoted to the analysis of the non-
reciprocal helix, a problem that has recently gained importance in
connection with high power traveling-wave-amplifiers." The conventional
amplifier suffers from a limitation on its maximum useful gain; waves
reflected from the output end will make the tube “sing’ above a certain
critical gain. Ferrites offer the possibility of preferentially suppressing
these backward waves and so of increasing the permissible gain by a
large amount.* In section 2.3 the “flat” helix (one of infinite radius) is
considered. For the slow waves employed in practice a rather complete
treatment is possible in this case of planar geometry. In Section 3 the
cylindrical helix is treated. Inasmuch as the solutions involve functions
for which no extensive tables exist, the treatment has to be more sketchy.

* More specifically, in high-power traveling-wave tubes the large beam cur-
rent employed may be above the critical value required for backward wave os-
cillations due to spatial harmonics of the helix structure. In such cases the larger

attenuation of backward waves will permit a higher beam current and therefore
stable amplification to higher power levels.
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Thus the loss is neglected and only the non-reciprocal phase charac-
teristic is considered. The losses have then to be determined approxi-
mately by differentiation of the phase characteristics.

A few further problems were considered as illustrations of the general
principles. One case, that of the plasma filling the space above an im-
pedance sheet can actually be solved analytically and provides a par-
ticularly clear demonstration of the non-reciprocity. The case of the
rectangular waveguide with a ferrite slab has already been considered
extensively elsewhere, and only the results for a thin slab are given here.
A problem with cylindrical symmetry is taken up in Section 3.3: a
cylindrical waveguide fitted with a circumferentially magnetized cylinder
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of ferrite. Again the discussion had to be sketchy in view of the scarcity
of information on the functions that solve the problem.

2. PLANAR GEOMETRY

2.1. Fields and I'mpedances

In this section we consider planar transverse field problems which are
characterized by the following conditions. The de magnetic field is of
uniform strength H, within the gyromagnetic medium and points along
the y-axis. All rf field components are independent of the y coordinate.
We discuss the ferrite case first, then indicate how the results are to be
translated for the plasma,.

For the orientation of the dec magnetic field which has been chosen the
permeability matrix is of the form:

m 0 —JK
0 Ho 0 ’
g0 u

w and « are, in general, even and odd functions of Hy; the permeability
of unmagnetized ferrite is taken to be o as in free space. Following the
procedure of Part I we shall assume specifically for u and « the formulae
given by Polder’s treatment of the dynamies of the medium. Thus, we
have the expressions (for the case of no loss):

2

b _1—po—o
Mo 1 — 0'2 ’
% = ]_—La'z ’ and (1)
T e 1 —=pc—a’
where ¢ is the ratio of the precession frequency, |_2’I_| Hy, to the signal
m

frequency and p is the ratio of a frequency, m Mo/ uo , associated with
™

the saturation magnetization, M, , to the signal frequency. It should be
noted that p and o have always the same sign. The behavior of u and «
as functions of ¢ was shown in Fig. 1(a) and (b) of Part 1. py is shown as
a function of ¢ in Fig. 3. The dielectric constant of the ferrite is taken to
be e. For reasons given in Part I, | p | is assumed less than unity.
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When the condition, 8/(8y) = 0, is put into Maxwell’s equations the
latter are found to be separable into two sets:

— ‘% = juel,, (2a)
‘%,Iig = jwel,, (2b)
'3£= K ‘?6_% = — joucH, , (20)
and '
. ‘% = — joluH, — jH, (3a)
‘% = — juljeH. + uH), (3b)
% _ f’;i S jwell, . (3¢)

Tt is to be stressed that such a separability is possible only when the rf
fields do not vary along the dc magnetic field. The sets of equations (2)
and (3) correspond to the separate equations for H. and E, which arise
from (13) of Part T when 8 is there set equal to zero. The first set de-
scribes a TM field of the familiar type, whose propagation through the
medium is unaffected by the magnetic field. The second set describes
a TE field whose components, because of the presence of x, are con-
nected by different relations from those which exist in an unmagnetized
medium. The separability of the two fields is equivalent to saying that
they are not coupled by the medium itself, but they may, of course, be
coupled at the boundaries.
We may write (3a) and (3b) in the form

. OB, OF
— jo(u® — &)H, = Jx-éaf - #5", (4a)
— jolt — O, = w22 + 0, (4b)

and upon eliminating H. and H, , the wave equatlon for E, is found tobe:
2 2
aEy, , O°E,
Era + dz2
where E, (and also the H’s) are evidently propagated in the ferrite as

2 __ .2
+ ot - "Ey=0r (5)
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though the latter had an effective permeability, (u* — &*)/i = peg . This
permeability may assume any value from + = to — « as may be seen
by writing it in terms of ¢ and p. From the Polder formulae, in fact,

2
per = (0 — &)/p = o i—_g‘—t—ﬁ, . (6)
As it should be, this is an even function of magnetic field. g.z/u decreases
from 1 — p* to 0 as | ¢ | rises from 0 to 1 — | p |; it decreases from 0 to
— as | o | runs from 1 — |p| to v/1 + p*/4 — | p|/2 and finally
decreases from « to 1 as | ¢ | increases indefinitely above v/1 4 p*/4
— | p |/2. Its behavior is indicated in Fig. 4. It should be recalled from
Part I that “oc = 0" is an abbreviation for the very small magnetic field
necessary to saturate the ferrite.

A brief examination of the propagation of plane waves shows the more
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significant features of transmission in this medium. Since no direction
in the z—z plane can be a preferred one, the plane wave may be assumed
to travel in the z-direction with variation, ¢ ", Then, from equations

(4) and (5)
B = oetter
and
_ B
H. = w(u? — k) By,
_ Bk
H, w(p? — «?) B

Since ey is negative between [¢| = 1 — [p|and [¢ | = /1 + p*/4
— | p |/2, the medium is cut off for plane waves in this range of magnetic
field (at a fixed signal frequency). H is elliptically polarized when the

medium is magnetized and | H, |/| Hz| = |«|/|#| = | pz |- We may
also put
, —BE,
H.+ jH. = —,
T wlp — «)
: —BE,
H, — jH, = P2
J w(p + «)

But | H, + jH. | and | H, — jH. | are proportional to the amplitudes of
the left-handed and right-handed circularly polarized components of
the magnetic field. The medium may thus be considered to exhibit the

permeability,
#—K=un(1—lgg),

for left-handed components and the permeability,

e (it )

for right-handed components. The effective permeability is essentially
a parallel combination of these two permeabilities and the medium may
propagate (ug > 0) even when p — « is negative, as will happen for
V14 p¥/4 — [pl/2 <o <1

Since the medium itself has no non-reciprocal properties it is clear
that if the latter are to arise they must do so as a result of interaction
between the medium and its surroundings. The boundaries of the ferrite
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at which matching will be necessary are surfaces parallel to the y-axis
and here we need an expression for H,,,./E, where H;.,, is a tangential
magnetic field at the surface. For the moment we will consider the
admittance looking into the ferrite and take tangential components in
the counterclockwise sense. From equation (4), then,

. 1B,  13E,
Hune _ "B, v B, o (7)

E, ol —#) oW -’
where 8/(dv) is a normal derivative (outward) and 8/(ds), a tangential
derivative. It is possible, although by no means essential, to interpret
the terms of (7) in the following fashion: the first term is just the admit-
tance of a normal TE mode propagating in the interior of the ferrite
(which is to have the permeability, p.g); the second term is to be ascribed
to an independent surface current,

aE’
60
w(p? — «?)

Using this picture one may see how non-reciprocity arises in a simple
case. If the ferrite be bounded by the planes = x, andz = x;, and the
z-variation is of the form ¢ ™, the admittances due to the surface cur-
rents are +jxB8/w(u’ — «°). If B reverses its sign the surface currents are
interchanged. If now the external admittances on the two sides of the
slab are unequal (and, of course, themselves reciprocal) for given values
of w and | 8|, there is no reason why 8 and —§ should simultaneously
solve the matching problem.

Almost all the above considerations may be taken over to the case of
the plasma. Here the TE fields will be undisturbed by the magnetic field
(but the dielectric constant is altered by the presence of the charge
from its free space value). Equations (4) and (5) are now replaced hy

ju(e — B, = + a;—;’ (8a)
. oH 0H
ju(e& — 7")E. = —zy + e 3;, (8b)
2 9
H 2#0 ¢ k H, =0 (9)

dx? 622

for the TM fields. Here e and # are the diagonal and off-diagonal terms
of the dielectric matrix which is of the same form



950 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1954

€ 0 —Jn
0 €@ 0
m 0 €

as the permeability matrix of the ferrite. The equations of motion for
the plasma* lead to the expressions

€ = € (1 - qz),

2
q
fﬂ(l'i"o_z_ 1):

Il

(10)

. Eg—nﬂze(l“_qﬂ}g_O‘Q
o ¢ A=) — o’

where ¢ is now the ratio of the cyclotron resonance frequency;

1 |e|po
% m

0,

in a field Hy, to the applied frequency and ¢ is the ratio of the plasma
frequency to applied frequency; e behaves with magnetic field in much
the same way as pog - It is a constantly decreasing function of ¢ and is
negative between | o | = 1 — ¢’ and | o | = 4/1 — ¢?, going to infinity
at the latter value. The left and right handed dielectric constants,
¢ — nand e + naregivenby &l — ¢"/(1 — o)]and e[l — ¢/ + o).

2.2. Examples of Non-reciprocal Systems

We now discuss briefly three examples of non-reciprocal systems as
illustrations of particular points. As an example of a system which can
be analyzed very easily and completely we consider a plasma occupying
the region, z > 0 and bounded at z = 0 by a sheet of constant impedance.
This impedance is to depend upon frequency but not on the propagation
constant. It will be written as jv/uo/eZ(w) where po and ¢ are free space
values. A practical realization of such a sheet might consist of a very
large number of similar fins of negligible thickness and separation,
parallel to the y-axis and attached normally to a conducting plane x =
constant. The fields between separate fins are uncoupled and E, is uni-
form between fins. For such an arrangement, Z(w) = tan wv/epu’oxo »

* See Section 2.2 of Part I.
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where =, is the depth of the fins. If the z-variation of the fields is ¢~
and the waves are guided, the z-dependence in the plasma must be

as exp — V/? — wugeer ¥ From equation (8b)
jol€ — n)E, = [18 — eV/B* — wPuoeer |Hy .
Matching at x = 0 gives

nﬁ — €V 62 — wzﬂﬂeeﬂ" — J "/f:: Z(w)

Jo(eé — 1°)
This yields
[B — 1w 1/’:—00 Z(M):I2 = wpe + o° ’:—;’ €7 (w)
or
B i N
w\/,mﬂ_uz(“’):‘%/?ﬁ';ﬁzﬂ(‘”)' (11)

The non-reciprocity is clearly exhibited, since the two values of 8 are
not equal and opposite. The solution (11) is valid only if 8° > w’ueee ,
corresponding to guided waves.

In the second example we assume that the region between conducting
planes at * = 0 and x = wis filled by a plasma. When no magnetic field
is present I, is supposed to vanish and E, is uniform across the gap.
The unperturbed field is then plane polarized (TEM). The magnetic
field is now applied parallel to the y axis to that part of the gap between
z = 0and ¥ = 2; . F. in the magnetized plasma is now given by

E. = Eysin v/ oupees — BT

since it must vanish at * = 0. The z variation is again exp — j8z. I,
may be found from equation (8b) and is

'wEu .
H, = —23—2 ["’1.8 SIN V wipeey — B2 0
wiee — B
— € Volues — B2 €08 Voluen — B° ).

The admittance of the magnetized section at x = =z, , is thus,

H w
e R L - 718 — € Ve uer — B8 cot Vwlugeenr — B2 24,

. oue — 3
and, analogously, that of the unmagnetized part is

H .(l) 9 E]
- = 24'7* [—e Viatue — B2 cot Vialue — B (w0 — )],
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where ¢ = &(1 — ¢°). Suppose now that the applied field is weak, so that
w'ige ~ w'moer ~ B°. Then, the cotangents may be expanded and by
equating admittances one obtains

_Je I: 8 — i:l . Jwer
wluge — (2 " T (w’roer — B (w0 — 1) ’
or

€ — €1

.62
w2y061 - 1 + € ’
—a + (nﬁ - E) (T — @)

(12)

Since € — ¢ is of the second order in ¢ this equation may be solved by
substituting the unperturbed value of 8, & @v/ue, in the right hand
side. It is clear that although the system is non-reciprocal, it will be
so only to third order in ¢. This system, therefore, illustrates the fact
pointed out in Section 1.1 that even when the fields are plane polarized
in the absence of a d¢ magnetic field, non-reciprocity may arise, although
it may be very small in weak fields.

The third example to be considered is one which has been referred to
in Section 1.1, namely that in which a strip of ferrite is placed across
the short dimension of rectangular wave guide, see Fig. 1(a). In view
~ of the fact that this problem has been discussed with great thoroughness
by Lax, Button and Roth, we shall, after deriving the characteristic
equation, consider only the case of a very thin strip. Let the thickness of
the strip be 2z, and the distance from its two faces to the nearest guide
wall be z; and z; respectively. The admittances at the two faces are then

'i‘cot V ﬁuz — ﬁ2 T
Wit
and
‘—:IJ cot \/ By — % 2
0

respectively, where B = w'meeo . Inside the ferrite

9* 2 2
e = —[w €lleff — ,3] = _(-sz - Bz)a

and

. aE
—jo(p’ — OH, = u a—; + «BE, .
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Thus, immediately within the ferrite,

Ey ax s Ey external pap:
If the two faces of the ferrite are + = —ap and * = x, we then have
(léi_E,,) = BT oot v/Be — B a1 — pu = 4,
Ey 0T Jz=—x, Mo

and

(L @) = M oot v/Bo* — B2 22 — puB = B.
T=z

Ey ox Mo

If we write

1 0B, _ \VBE — g tan (\/B2 — B2 x),

Eax

and make use of the boundary conditions we obtain

tan 2 \/B2 — B a = B — 8 (4 — B) . (13)

87 — 8" — AB

The non-reciprocity is clearly contained in the odd power of 8 in A
and B.

For small thickness we replace the tangent by its argument, and, sub-
stituting for A and B on one side of the equation, obtain

%ﬁ [cot VB — B2 x4 cot v/ 3,2 — B2 3;2] = on[ﬂf — 32 — AB),
0
or
sin VB2 — 52 (21 + 22)
- 2:::(,;:‘—" sin /By — B a1 sin /B — B2 x:l8” — 8° — ABL
eff

Since the guide is almost empty, we may write

vV B — 52(-751 +a) =7 — 8,

where 6 is small. Or,

(14)

276
+ 31(3?1 + 172)2 ’
where B = B — 7/ (2 + z)

B =5
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Writing 8 = B in the right hand side of equation (14) and noting that if

/a2 _ B2 — TL1 =8
Bo B T+ T2

then v/B? — B2 22 = m — 0, we have
220 L2 sin® @ l:ﬁf — B — (‘ueﬁ cot 8 — P551)('(% cot 8 — pgﬁl):l s
0

Heff Mo

)

Il

2
20 f—o I:(.Bﬂ —(1+ pﬂ2)ﬂ12) sin® 8 — (_&Ef_f) cos 0 15
ff

el Mo

+ 2 Felt prf1 cos 8 sin 0:[ .
o

The non-reciprocal part of 8 is thus 4mwxe(z: + 22) “pg sin 26. This has

a maximum value for § = =/4 or 3r/4 and, hence, z; = (2 + x2)/4 or

3(z; + 2)/4. This result may be understood qualitatively by con-

sidering the fields in the guide before the ferrite is inserted. We then have

E, = E,sin (rx/a) where a = x; + x; and consequently,

.
J —
. T a T
H, = -Esm— and H, = —cos —.
Wit a Wi a

The amplitudes of the left- and right-handed components of circular
polarization at a point are then proportional to

. T ™ L . T m™ T
—fsin — — —cos — and —B sin — 4+ — cos —.
a a a a a a

The difference in the squares of these amplitudes is 28(w/a) sin (rz/a)
cos (wx/a) and this is proportional to the difference between the energy
stored at x in the left-handed wave and in the right-handed wave. It
is plausible that this should be a measure of the non-reciprocal effect
produced by a thin piece of ferrite at x.

2.3. The Plane Helix

In dealing with transverse field problems with cylindrical geometry
we shall consider non-reciprocal propagation along a helix which is
surrounded by circumferentially magnetized ferrite. The analysis of this
problem is rather cumbersome and it is advantageous to study first an
analogous plane problem. The simplicity thus gained allows us to
examine somewhat more complicated problems. The ‘“plane helix,”
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to be treated here, is a sheet of negligible thickness, lying in the plane
# = 0, which conducts only in a single direction making an angle
with the y-axis. In this direction it will be supposed lossless. In addition
we assume that the regions, + < 0 and 0 < = < 2, are empty, while the
space xi > &g is filled with ferrite. As usual the magnetic field is along
the y-axis and the fields are independent of 3. The problem is clearly
the limit for very large radius of that of an empty, helically-conducting
cylinder, surrounded by an infinitely thick shell of ferrite, circumferen-
tially magnetized, the whole system carrying fields with no angular
variation.

We first consider the boundary conditions for the plane helix, after
noting that it is evident that both TE and TM fields will be required.
The tangential electric field on either side of the sheet must necessarily
be at right angles to the direction of conduction since the conductivity
isinfinite. Further, the tangential electric field must be continuous through
the sheet. Hence, if the field normal to the direction of conduction is

E, (omitting here and elsewhere the factor ¢ ), we have

E," = E; = E,cos v,
Ey+ = Ey_ = “"EO Sill "’:

where the symbols 4+ and — refer to z > 0 and < 0 respectively.
Again, since current cannot flow normal to the direction of conduction,
the tangential magnetic field along the latter must be continuous
through the sheet or

(Ht — H ) sing + (H,W — H ) cos ¢ = 0.

The boundary conditions may be combined into a single equation, by
introducing admittances, in the form

H;+ Hs_ =2 _ (Hy+ Hy_ 2
(E?“ — E,ﬁ) sin® ¢ = o @o ) o8 . (16)

The left-hand side refers to the TE fields and the right to TM fields.
In the empty regions surrounding the sheet

[..‘?f — (8 - wﬂenpu)] H, = [‘?2 - (8* - 602)] H, =0,

ox? dx?

1 94,
Jwey oz’

and
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9 2 2 ] —1 9E,
— — — E, =0 H = — -
[31:2 (ﬁ I'SO) ¥ ’ Jw.l-to o ’

with Bo° = w’euo . If the waves are to be guided, B8 > B¢, and, then, for
z < 0, we have 4/dz = /g — B2 Thus

HS _ _ Jee
Eﬂ— «\/]32 — .302’
and
H. _ VB — !30
By~ Jewmo

If the admittances at the surface of the ferrite are H,,f /E,"r and H,//E/,
then H,*/E," and H,*/E," are given by the impedance transformation:

VB — B | _ \/ﬁﬂ tanh\/m%
and
H' _ VB - B¢ —%f — tanh V8 — 8¢’ %o

5 o 1—[\/_63%11;]%@@%
Within the ferrite the TM-fields fall off as exp — /8% — w?eu,r and the
TE-fields as exp — V/B? — w’eues®. We then have

H,,.f — jwe
E,‘f ‘\/ B8 — wleup

b

H

and
{f_i = Jwper
B /B — oewer — Br/n
These results may now be collected and substituted in equations (16).
The equation of condition so obtained is
A+1

2
(8" — 60) A + tanh /g2 — B2z,
1—-B

a2 .2
= Bo ot ¥ I B anh VB — By’ (17)
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where

I-‘eﬁ \/E — Bo’
B0 /B2 — weper — Bpu

and

B— _& VB — B
o VB = ot
We shall assume that we are dealing with slow waves (8 large). This
is the case of greatest practical interest and is usually ensured by making
cot ¢ large. Assuming that the waves are slow we simplify the equation
(12) and find certain values for 3. We may then ascertain in what ranges
of o and p the simplifying assumptions and the results are consistent.
In equation (17), then, we replace all square roots by | 8 | and 8° — B’
by #°, obtaining

8 = B cot’ y A +f1mil‘1ﬁ | s —Blt;nfiﬁ EX
with
A= Me/wo _ ptxsgnp
1 — pusgnB Ko ,
and
B = —¢/q

where sgn 8 = 1 for 8 > 0 and sgn § = —1 for 8 < 0. Taking first the
simplest case of no separation (z; = 0), this becomes

Ba*(1 + €/eo) cot’ ¢ _ Bo'(1 + e/e) cot’ ¢
1 — pusgnp 1 Ko '
1+ pet /Ko T v+ xsgn B

g =

Substituting the expressions (6) and (1) for pess/po and py we are led to*

By = Ba cot Y- 1/ 1+ ¢/e) 4/ A IER ++11 ++ 1}2 (183)

B = —Bacot ¢ 4/ (1 + ¢/e) 1/ 11++ L (sv)

* Since reversal of the magnetization is equivalent to interchange of the
propagation directions, we are at liberty to consider ¢ and p always positive, and
to deal with the two cases g8 >0 and B < 0 separately.
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1
The 8, mode propagates for all g, ;—:_1——:_1%5 declining steadily from

1 . .

14-:_71;2 to unity. The 8_ mode on the other hand is cut off, with =0
at ¢ = 1 — p and then reappears with 8 = « at ¢ = 1 — p/2. The
behavior of the two modes is shown in Fig. 5. Self-consistency requires
that 8° > w'emo or w'e | pers |, whichever is the greater. The condition
8" > w'e | per | fails to be met near

or:oo=1/£¥+l—2,

le — a0 2

4/ +1i( )<(1+e/eu)cow

The condition §° >> w’enp will fail for 8_near ¢ = 1 — p. The range for
this to occur is given by

when

p/2
% (1 4+ e/e) cot ¢ — 1

1—p—0<

The extension of the Polder formulae to the case of a lossy ferrite
was given in Part I, (Section 2.1). From the results given there one
may write

o(1 4+ o°) — sgn B + ja
o?(1 4+ a?) — 1 + 2jac

where « is a damping parameter. Substitution of these expressions in
the slow wave formula for 8° will give the effect of loss on the propagation
constant. In Fig. 6 the complex value of A is shown for @ = 0.1 and
several values of p. The imaginary part of 8+ is small and varies only
slightly with ¢. Fig. 7 shows the initial loss (¢ = 0) for three values of «
and a range of p values. From a knowledge of 8 as a function of ¢ = wy/w
and p = wu/w it is possible to calculate the loss, ITm 8_/(80 V1 + €/e
cot ¥), as a function of frequency when the magnetic field and satura-
tion magnetization of the ferrite are held constant. Fig. 8 shows the re-
sults of such caleulations. It should be noted that the horizontal scale is
linear in ¢ or 1/w and that the vertical scale implicitly contains the fre-
quency in the form of 1/8,. Both of these distortions of scale tend to

g+ xksgnf=14+17p
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Fig. 5 — The non-reciprocal propagation constants of the flat helix. The dotted
curves represent 3, , the solid curves p_ . (Loss free case).

0.6

produce an appearance of sharpness in the variation of the loss at
higher frequencies.

If the slow wave assumption be made again it is possible to obtain
solutions for the ease in which the ferrite does not touch the helix and
the latter is lossless. With the slow wave approximation, (17) becomes

8.2 l—l—Z— E;'_—:—I@B+ta.nh].&l'lauo
— 0 0
2 2y :
Ba® cot® ¥ 1+Z—tanh|B|-’Eo w+1
0 Mo

If we write | B | g = u, then the above equation expresses 38, in terms
of u. At the same time 7, = /| B(w) | and we evidently have a para-
metric representation of 8, and x,. The results of such computations
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I'ig. 6 — Real and imaginary parts of the reverse propagation constant g_
of a flat helix versus ¢ for various p and for @ = 0.1 (the parameter ¢ is marked
along the curves). The forward propagation constant has a very small imaginary
part which hardly varies with o,

are shown in Figs. 9(a), (b) and (c), where @8 is plotted against x, for
various fixed o for two values of p. It is to be noted that the introduction
of any characteristic length or scale into the problem, such as is provided
here by the distance x, immediately produces a great complication in the
mode spectrum. The plane helix with the ferrite in contact may be
thought of as a highly degenerate problem.

To carry out loss calculations using the appropriate expressions for
u + & sgn B would be very tedious in the separated case. However, it
was pointed out in Part 1 that to order a the expressions for p and «
are given correctly if we put ¢ + ja in place of ¢ in the lossless formulae
and that, in consequence, for small «, the imaginary part of the propa-
gation constant is approximately given by

aaB
do

In Figs. 10(a) and 10(b) the loss calculated in this way for the cases
considered in Figs. 9 is shown.
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3. CYLINDRICAL GEOMETRY

3.1. Impedances

In this section we consider systems with cylindrical symmetry about
the propagation direction. All boundaries, those of the circuit as those
of the medium, are coaxial circular cylinders, and the medium is as-
sumed to be magnetized circumferentially. The practical means for
bringing about such a magnetization — for example, thin wires threaded
through a ecylinder of ferrite and carrying a de current, Fig. 1(b) — are
assumed to effect the electromagnetic field to a negligible extent. As
in the case of planar geometry, we restrict ourselves to fields which have
no variation along the magnetizing field; that is, in the azimuthal direc-
tion. Only the ferrite is considered here; the results for a plasma are
obvious corollaries. The magnetizing field and the de¢ magnetization

17 -
16 1.85 [ I e . S N AN N A AN A S A
1.8
5 Pa NG L
- 7’
Ae20
1.4 ———
3 7=+ [tp+1-jlpl et [ e
! tp+2-]|plee 0L=0.1
1.2 P= SATURATION MAGNETIZATION N—T Tt
PARAMETER MARKED ALONG CURVES 18
1.1 0= DAMPING CONSTANT i
1.0 Z= /5/( 1+ épocmw) ———
1.5
0.9
z s | \
LX) M S S S S S S— —.__ - WS S S S W S
- ol &=0.3 1.4
o7}b——+—+++ S+ S e
p=2.0 iu
48 0=0.5 ——
os BACKWARD WAVE p I l E?RWARD WAVE |
" 1.2
0.4 p=2.0 \ - W
1.0
|.o! 14 |
0.3 ,
0-53 '-°d/ VARIATION IN PHASE
0.2 i AND LOSS OF FORWARD
.,_7/ //"-" %/ WAVE 15 SMALL |
ol 0.4 8 I .
p=0 T
o oo -1 1 L [ 1
0.2
-0 —
-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -04 -0.2 0 0.6
RLZ

Fig. 7 — Real and imaginary parts of 8, and p_ for a flat helix at the very small
magnetizing field required to saturate the ferrite.
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Fig. 8 — Attenuation of reverse wave versus frequency at a fixed magnetic
field and saturation magnetization for various values of wg/wm = (uwoH)/M.

The curves for 0.5 and 1 are discontinued when p reaches unity.

are supposed to be independent of radial distance from the cylinder axis.
For the geometries employed in practice, this will be a reasonably good
assumption. Thus it is possible to relate the components of B and H
in cylindrical coordinates (r, ¢, z) through the tensor

g 0 —jk
0 0,
k0 I

where p and « are given by the Polder relations (1) and are independent

of position.
Written in cylindrical coordinates, Maxwell’s equations in the ferrite

are therefore



GUIDED WAVE PROPAGATION THROUGH GYROMAGNETIC MEDIA. IT

jBH, = jwal,,

. JH. .
- J.BHr - ar = JmﬂE‘P H
10 .
5 rH, = jwe k.,
JBE‘, = —J-CIJ,U(Hr - jPHHz):
. ak. .
—JBE, — ar = —jomH,,
19 @, = — jop(jeeH, + H.).
rar

963

(20a)
(20b)
(20e)
(20d)
(20e)

(20f)
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0.7 | | | | | ] | 1 | | | ] 1 |
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Fig. 9 — Propagation constants for a flat helix separated from the ferrite by a
distance z, for various values of . (Loss-free case) (a) B_ and B+ for p = 0.2, (b)

B_forp

= 0.8, (¢) B, forp = 0.8. In (a), above, the dotted lines bound all o values.
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Fig. 9(b) — See Fig. 9.

0.3 04 05 06

As in the case of planar geometry, the field-components can be grouped
into TE and TM parts; only the TE part will depend explicitly on the
gyromagnetic properties of the medium. Equations (20a, 20¢) and (20e)
determine the TM field. E, and H, can be eliminated from them, yield-
ing the familiar wave equation

] g
; 5" 93‘5,, + (8" — BYE, = 0; B = w'poer, (21)
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Fig. 9(c) — See Fig. 9.

whose solutions are zero order Bessel functions (or linear combinations
thereof) of a kind depending on the region under consideration. Thus
if 8 > B1, and the region occupied by the medium includes the cylinder
axis, the modified Bessel function I, (rv/82 — B8:2) has to be chosen if
the field is to be finite at » = 0; if the medium extends from a finite r
to infinity, the function K, (r4/82 — B,?), regular at infinity, is se-
lected. Correspondingly, if 3 < ;, the Bessel and Hankel function
Jo(rv/Bi2 — gYand Hy' * (r 4/8,* — %) replace I, and K, respectively.

In terms of the appropriate solution of (21), the remaining field com-
ponents are

. B dl, Jwey  OH,
r = —f —— H,= — .
B J B:* — B or ¢ Bt — B or
The tangential admittance for the TM field is thus
_ Mo jee 9
YTM = Ez .612 — .ﬁ2 ar log Ez . (22)
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Fig. 10 — Ratios of reverse attenuation for a flat helix separated from the
ferrite by a distance z, to the reverse attenuation at zo = 0. Computations made
from the approximate slope-formula for the loss, where applicable. (a) p = 0.2
(b) p = 0.8. In (a) all applicable ¢ values lie in the shaded region.

For example, if 8 > B:, and the medium occupies all space from a finite
r to infinity

Voo = jw_q K'o(arr) . — jwe Ky (aar)
™ o Kﬂ(cll?') alKD(alr) ’

where ay = /3% — 8%

The field components of the TE field are determined by equations
(20b), (20d) and (20f). Elimination of E, and H, from these gives

16T6Hz+(,6f2—62—£;—6>ﬂz=0, (24)

rar ar

(23)

where 8/ = w’'uer (1 — pg’). The term 8, — g in the bracket is already
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familiar from the planar case; it depends on the magnetic field and on
the propagation direction in a purely reciprocal way. The term pg8/r,
however, reverses sign when either magnetizing field or propagation
constant changes sign. The solutions of equation (24) are therefore
different for opposite propagation directions (or opposite magnetiza-
tions). Thus, in contrast to the planar case, where non-reciprocity arose
only through the boundary conditions, the e¢ylindrical case is inherently
non-reciprocal.

In the absence of the last term in the bracket, equation (24) would
be solved by zero order Bessel functions, just like equation (21). In the
presence of this term, the solutions become confluent hypergeometric
functions. Different changes of variable bring these functions into forms
known by different names and notations. One such change leads to
Laguerre functions, another to Whittaker functions. We shall choose
the latter representation, since it is closely related to Bessel functions,
and numerical tables seem about equally scarce for all representations.
In equation (24), let 8* — B8;° = av’, and let axr = y. Then it becomes

1d dH, 2)(_)
-—_— — 1 —_ = Hz =
yay” dy ( Y % (25)
where x = —pBpn/2as. Further, let y = z/2, and H,(y) = h(z)/\/z;
then equation (25) becomes

d’h 1, x 1\,
Tt (mtX-Dn=o (26)
which is the standard form of the equation for zero order Whittaker

functions, Tt is a special case of the equation for ™ order Whittaker
functions:

1 2
dh (27"« 1) (27)
zz;ﬁ( 7tz g/h=0
The solution of equation (27) which is regular near zero is denoted in
the literature by M, .(x); it is proportional, in the limit x = 0, to the
Bessel function I,(x/2). The solution of equation (27) regular at infinity
is denoted by Wy .(z), and in the limit x = 0, is proportional to K,(x/2).
The factors of proportionality are found in Appendix I.
In this notation, the solutions for H, are thus

M, o0(2a0r) W, o(2aar) .

vV 20121' ! vV 2(121" '

*If B < B., both argument and suffix x are imaginary. These functions are
then related to .J, and H, respectively.
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Once the appropriate H., is determined, H, and FE, are given by

H, = Tj—z_(ﬁ a8 wzufmaﬂz),
B2 — wug or . 28)
o jwp, o, L
Ew Bz _ \'-I’2|U-€l.( 6?‘ pHBHz)-
The tangential impedance for TE-fields is thus
Bl s (3 )
Zre = H. - 7B = oue) \or log H. puf ). (29)

The reader will recall that for isotropic media (px = 0) the numerator
of the right hand side of equation (29) can always be expressed as the
ratio of first order to zero order Bessel functions by virtue of relations
like Ky (x) = —Ki(x), I'(x) = ILi(x) and so on. Analogous results
hold true in the present case. Suppose, for example, that we are dealing
with a geometry such that the correct H. is

W,o(2
H, = %) = R,0(2a0r), say
Then

1 0H.

T ar = 2esltao/ B,

and

2apop Rao + xRy
(8 — wpe) Ry ’

It is shown in Appendix I that
Ry + xRy = (x — 3) RBu.

ZTE=

Therefore

wpas(2x — 1) Rxl(zaz?‘)

71(8* — wnea) Ryo(2e0r)’

wpas(2x — 1) Wy 1(2asr)

7B — wine) Wy o(2a0r) )

A similar difference relation shows that if the region is such that

H, = Mx‘u(2a2'r)/v 20{2?',

Zyg =

(30)
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then
(14 — M, 1(2ar)
7 = w.p'aa(/li X x.1 2 . 31)*
T j(8 = wPue) My o(2a0r) 8D
In the unmagnetized case equations (30) and (31) reduce to
_ wmo Ki(arr) _ _ wpKi(arr) (32)
7(8? — wiuoer) Ko(aur) JouKo(aur) ’
and to
Wilo Il(aﬂ‘) (33)

e To(aur)

One might be led to believe that the search for solutions of Maxwell’s
equations with angular dependence ¢’ will lead to »** order Whittaker
functions (just as in the isotropic case this dependence leads to n'™
order Bessel functions). Such is not the case, however. Unless n = 0,
one is led to two simultaneous second order equations for K, and H. ,
and the character of the problem is changed completely.

3.2. The Cylindrical Helix

We are now in a position to derive the characteristic equation for a
close wound eylindrical helix and approximated by a helically conducting
sheet surrounded by ferrite. We confine the discussion to the case in
which the ferrite is in actual contact with the helix, Fig. 11; the case of
finite separation discussed for the planar helix (Section 2.3) would be
too cumbersome here. Losses are neglected. If they are not excessive, they
can be deduced from the curves for the propagation constant in the loss
free sample by differentiation, as outlined in Sections 2.1 and 4.15,
Part 1.

The boundary conditions are just the same as in the planar case. In
Section 2.3 they were stated in terms of admittances, and it is only
necessary to substitute for these the admittances just derived for cy-
lindrical geometry. Thus for H,/E. we substitute Y, and for H./E,
we write Yog = 1/Z5g .

If superfixes 7 and e refer to the inside and outside of the helix (in
Section 2.3 on the plane helix 7 and ¢ were denoted by “—"', and “+4""),
the characteristic equation is

{YTM“) — YTMCG)}T#O cotz‘f‘ = (YTEH) - YTE(B))r=fn ) (34)
where 7, is the radius of the helix.

* The appearance of different factors (2x — 1) and (14 — x?) is simply due to
the way the functions W, M are normalized in the literature,
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For waves bound to the helix, ¥z is to be derived from that solu-
tion of (24) which tends to zero ar r — . This solution is Wy o(2asr)/
v/ 2agr, and so Y™ is given by equation (30)

You® = L = 4 B = @sa Wy(ar)
ZTE W az(2x — 1) W ,1(20127')

Similarly, from equation (23), we have, for bound waves, with £, ~ K,

DIRECTION OF
CONDUCTION
1

CIRCUMFERENTIALLY (b)
MAGNETIZED

Fig. 11 — (a) Cylindrical helix surrounded by ferrite, (b) Magnetic field lines
projected onto a plane containing the axis of the helix.
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__jwq K1(a1?‘)
(s3] Ko(alf)

Inside the helix, we require the solution for an isotropic region which
remains regular as r — 0. Accordingly

Vr® = B0 Ilew) o gy,

C:’TL; Il(aof) 4

Y'I'Mm =

.302 = wz.uofo
and
- wey 1(eegro)
a I, n(aufo) g
where ¢, uo are the dielectric constant, and permeability of vacuum.
Combining these expressions in (34), we obtain after slight rearrange-
ment

YTM( ? =

(35)
I1(aofo) + alp €1 Kl(aﬂ'n) _ [ zIo(aoTn) _ yoau,@ﬂ — wz_ueg Wx|o(2a21"):l 2
—— = | ap — tan®y
Ioory) o €0 Ko(ouro) Li(aro)  wee (2x — 1) Wya(2a0r)

which determines 8.

A complete solution of equation (35) is out of the question. However,
as in the planar case, for the slow waves used in traveling wave tube
work, the equation may be simplified so that solutions may be com-
puted rather easily. For electron velocities usually employed the result-
ant 8 must be about 108, . Therefore in equation (35) it will be permis-
sible to neglect all the quantities 85°, 8;°, B2, w’ner , in comparison with
8*, except in the narrow ranges of magnetic field such that u or
u(1 — ps’) becomes very large. This will occur near =g, where oo =
—p/2 + /p*/4 + 1, and near ¢ = 1. A solution obtained by as-
suming a large 8 must be self-consistent; that is, it can be credited only
in regions where it does, in fact, predict large 8. However, in Section
2.3 it was shown for the plane helix that in any practical case the ranges
of magnetic fields so excluded are very narrow, even in the loss-free
case, and one may suppose that this is true also in the cylindrical case.

For slow waves, each of the a’s reduces to | 8| ; the absolute value
sign derives from the fact that the positive square root is implied in the
definition of the a’s. Therefore

x — ;r’;ﬁ = —-%ﬂ sgn B. (36)

Now the suffix x of the Whittaker functions no longer depends on the
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magnitude of 8, and it is chiefly for this reason that further progress is
possible. For large B, equation (35) can be written

II(IB ITO) EK1(|.3| To)
2 a2 2 IDOIS |7'0) € K0(|B I?’o)
Br=Pocot ¥ riBTr) 1 WeIBlrd (B7)
Ii(| B | 7o) B (2x — 1) Wy (2|8 | 0)

Ho

where x is now given by equation (36). Equation (37) is now solved by

-7
4 p=0.2
1A ,
-6
()
U
S, —4 / o= 0.94
- - :
1} ~ /’_____QEL-
31 O 1.0
S -3 © e
e - o 1.2
S /
[ [ — w55
0
-2 0.6
0.75
0.79
0
. 1
+HE=
o
Q :'é \\.
 I's,
: phis SN g =10
0.1
3
o] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
fofBo COTY

Fig. 12 — Reduced forward and reverse propagation constants versus reduced
radius of a cylindrical helix (loss-free case) for various ¢ and p. The range o1
< ¢ < o9 where

= P” p P P
a=A4/1+E2_2_2L d =1/1 r_2
' tTyT3 Ty oo TY T2

contains an infinity of shape resonances and is not shown here. (a), above, p = 0.2.
(b) p=06. (c) p = 1.0.
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Fig. 12(b) — See Fig. 12,

the following procedure: Introduce the parameter

‘2‘=|a|n.. (38)

For a given py and u (or ¢ and p), and a given sign of 8, each value of
u determines 8 through equation (37), and then r, through equation (38).
Thus 8 can be plotted versus r, . The procedure is repeated for the op-
posite sign of 8 (and therefore the opposite sign of x). A different curve
of 8 versus r, is then obtained. Thus for a given value of 7, , the “forward”
and “backward” propagation constants are different in magnitude.
The results (computed for a typiecal ratio &/e = 10) are conveniently
stated in terms of B = B/(6o cot ¥) and 7, = refy cot ¥ and are shown
in Fig. 12(a) to (c), and again, for fixed 7 , in Fig. 13(a) to (e). We note
that for 7, in excess of about 1.5, the results are almost the same as those
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p=1.0
-6
—0.618
ol ¥ o /"'?;06"06
ol ol ©l ¥
\© L A
= Slind / o
1= =0. —
€ L \ } o
e _3 1
Q ———
= s
-2
-1
0
SU
+ =
<3 S
{=) \..
<2 s
To====i =10
3 71 =0.1
0 02 04 06 08 1.0 12 1.4 1.6

ofo cOT ¥
Fig. 12(c) — See Fig. 12.

4.5
fo = pBoCOTY

0 B =p/(BecoT )

3.5
— BACKWARD

3.0k WAVE
==== FORWARD

2.5 WAVE

Fig. 13 — Reduced forward and reverse propagation constants versus ¢ for
various reduced radii of a cylindrical helix. (Loss free case). The region
1— p <o < o is omitted. (a), above,p = 0.2. (b) p=04. (c) p =0.6. (d) p
=038. (e)p=1.0.
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Fig. 13(b) — See Fig. 13.
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BACKWARD
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Fig. 13(¢c) — See Fig. 13,
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Fig. 13(d) — See Fig, 13.
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for a flat helix. This is due to the fact that the large dielectric constant
reduces the circuit wavelength so much that the radius appears infinite
by comparison once it exceeds 1.5. In traveling-wave tube practice,
however, 7 is generally below 1.5.

The behavior of the B — 7, curves can be understood from the be-
havior of the ratio

Wx.ﬂ(u) —
Wl ~ 2

and of the coefficient 1/[u/ue (2x — 1)]. Suppose first that x is positive.
When x exceeds zero only slightly, Z,(u) behaves essentially like
Ko(u/2)/K:i(u/2). This function is always positive; it begins at 0 when
u = 0 with a vertical tangent and steadily increases to unity as u — .
Z,(u) varies in the same way, see Figs. 14 and 15, in the range 0 < x <
14. For 36 > x = 14, Wy.0, and therefore Z, , has a zero which increases
fromu = 0at x = Y4 tou = 1at x = 34. Accordingly Z,(u) in 33 >

Z)((U) —_—

Fig. 14 — Schematic behavior of the function Zy(u) = Wyo(u)/Wxa(u) in
various ranges of x.
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x

Fig. 15 — The function Zy(u) versus x for various %, in the range — 34 <y

< 33.

x > 4 starts from 0 at « = 0 with a downward-directed vertical tangent,
achieves a negative minimum, then increases, through its zero, to the
asymptotic value unity as 4 — . The minimum becomes deeper as
x approaches 35. At x = 34, W,:(u) developes a zero at u = 0, which
steadily moves to larger u as x increases further towards 54. At the
same time the zero of W, already discussed moves from 1 to 2 + /2,
and a new zero arises at u = 0, x = 34, which increases to 2 — /2
as x approaches %3, but which lags behind the zero of W,;(u). The
funetion Z,(u) now has a pole and two zeros, and behaves as shown in
Fig. 14. This process continues; each time x passes (2n + 1)/2, a
new zero and a new pole appear. (For a detailed list of poles and zeros
the reader is referred to Appendix I). To apply these results, we first
resort to the Polder relations.
In terms of &, p, we have, for 8 negative

_ P
x_}él—j!)o‘—a'2
and
1 1—0o¢

= = A, say.
m p—1+4¢

B ooy 1
#D(x )
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The characteristic equation is
I(u/2) e Ki(u/2)

B = L(u/2) ' & Ko(u/2) ; |B| 70 = u/2 (37)
LW/ _ 47 ()
I (u/2) x

and can now be discussed in terms of ¢ at a fixed p. Suppose that p < 1.
Then A is negative for ¢ < 1 — p. In the same range, x < %4, so that
Z behaves essentially as Ko/K; . Therefore both numerator and denomi-
nator are positive for all u, and the ratio tends to the planar result

142
22 _ €
F=1—4

as u — «. As u — 0, §* tends to zero along the vertical, as can be shown
by an examination of the various functions near u = 0. Foroe <1 —p,
the course of the B° versus u-curves is as shown schematically in Fig.
16(a), and it is easily seen that the B versus 7 curves run in essentially
the same way, Fig. 12(a) to (c). However, as o approaches 1 — p, the
B versus u curves steadily fall, until at ¢ = 1 — p, 8 = 0 for all finite
u, since A = — o,

* As o passes 1 — p, A changes sign and at the same time x passes }3
so that Z, acquires a zero. As o varies from 1 — pto 1 — p/2, A decreases
from 4 « to unity. Therefore, while u < u, , the zero of Z, , 1 — AZ,
is positive; however as u increases beyond ui, {Io(u/2)/I(u/2)} —
AZ,(u) eventually passes zero, since Z,(u) and Ioy(w/2)/I,(u/2) both
approach unity. On the other hand the numerator of equation (37) is

Lz
ZERO OF D = _T —AZy(U)
L (z)‘ D=0 D=0
4
L 1 3
X<3 <X<3

u=—s U =
(a) (b) (c)
Fig. 16 — Schematic variation of f_ withu. a) x < }4;b) ¥4 < x <3%;0) 34
< x < 54.
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always positive; therefore B° approaches infinity at Io(u/2)/Iy(u/2) —
AZ,(u) = 0, and no real values of B exist thereafter (see Fig. 16b).
Since this “cut-off”’ occurs at a finite value of u, the corresponding value
of o is zero. This explains the bulging of the corresponding 8 — 7 curves
in Fig. 12(a) to 12(c).

The next major change in the curves occurs when x exceeds 34, (that

is, o exceeds
__2.;_ 1/ _i_p_?_p_
7 2 , 4 3 )

For p < 2, ¢y is still less than 1 — (p/2), so that, initially at any rate,
A is still greater than unity. In addition to the infinity of 8* just dis-
cussed, a further infinity arises between v = 0, and the pole of Z,(u),
as is seen from Fig. 16(c). 8° increases from zero at u = 0 to this infinity,
thereafter it is negative, until the pole of Z,(u) is reached. Thereupon
it resumes at 8° = 0 and approaches infinity at the zero of the denomina-
tor [Lo(w/2)/1,(u/2)] — AZ,(u) already discussed. Thus there are now
two branches of the B° — w curve; their corresponding traces in the
B — 7o plane are shown schematically in Fig. 17. (The computations on
which Fig. 12(a) to 12(c) were based were broken off at ¢ = ¢, .)

A further branch is added each time x increases beyond a number of
the form (2n + 1)/2 (¢ increases beyond

S P__»p

These all resemble the two branches just discussed, until » >

njn
v
»
v

N w

fo —>

Fig. 17 — Schematic variation of A_ with ro for 35 < x < 54.
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(@ (b)

BpLANE HELIX _PrLaNe HELIX

B- | "
BRANC!
1 I \,FST /‘
TO
PPLANE HELIX
U —> g =—>

Fig. 18 — (a) A_ versus u when 1 — (p/2) < ¢ < ao. (b) B- versusro under the
same circumstances.

14 (% — 1). When this oceurs, . > 1 — (p/2), so that there will be a

value ¢ between o,_; and ¢, beyond which the denominator no longer
decreases through zero as u — =, but approaches a finite positive value,
Fig. 18(a). Accordingly 8* approaches a finite positive value, and cut-off
of the extreme right hand branch, Fig. 16(c), no longer occurs. The cor-
responding @ versus 7o branch is as in Fig. 18(b).

Asn— @ (g, — oo = \/1 + (p?/4) — p/2) the number of branches
increases to infinity. This situation resembles that in the completely
filled waveguide (Part I), where we found an infinity of modes (“‘Shape-
resonances’’) in the range oo < ¢ < 1. In the present case, however,
they are to be found in the range 1 — p < o < 9.

When ¢ = oy + 0, x is infinite and negative. The function Z,(u) is
then constant and equal to unity. A4 is less than unity, and the denomi-
nator of equation (27) has no zeros. The B versus 7, curve is now “‘nor-
mal” again, see Fig. 12(a). As ¢ increases further, the curve falls (since
A decreases steadily to —1 as ¢ — =), and no more qualitative changes
occur.

3.3 Cylindrical Waveguides

As pointed out before, the fact that the propagation problem in the
cylindrical case can always be integrated in terms of Whittaker functions
when the fields show no angular variation is an accident, and in view of
the lack of numerical tables, not a particularly fortunate one. Only in
special cases (like that of the slow-wave helix) is the text-book informa-
tion on these functions of any great utility. In general, it will be more
convenient to solve the differential equations numerically. However,
for completeness, we shall state some of the formal results for a cylin-
drical waveguide containing a cylinder of circumferentially magnetized
ferrite, and propagating a TE, mode.
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First we consider a waveguide, radius r, , into which is fitted a hollow
cylinder of ferrite, outer radius o , inner radius r; . In that cylinder, the
magnetic field H. may be taken to be a superposition A4.8,4(2axr) +
BR,(2ayr) where, as before,

M
a; = 8 — eau(l — pu'); S(x) = T/%) : R(x) = TZ)
— _.BPH
X = ng .

ap may be either real or positive imaginary. [In choosing this combination
we depart from the usual practice of taking a superposition of J, and
Ny in the isotropic case. Were we to follow this practice, it would be
necessary to define a new function R.(2jx)e’™™” + R,.(—2jz)e
to correspond to N,(x). Our choice corresponds to taking a combination
of Jo(z) and one of the Hankel functions Hy(x) in the isotropic case.
Since the functions H, J, N are linearly dependent, this will not affect
the results.]

In view of the difference relations, equation (39) in Appendix I,
and of equation (29) we obtain for the impedance in the ferrite

E,  jepes [A(4 — x)Su(2er) + B(2x — 1)Rx1(2agr)]

H, (6 — wue) [A8,0(2ar) + BRyo(2a:1)]

A and B must be adjusted so that this quantity vanishesat o, the guide
wall. This gives

E — _ _ ij.lag
Be - —ox - 004 - x) e
W (2aerg) My 1(200r) — My 1(200r0) Wy 1(20007)
(2y-) W1 Raaro) My 0(2aar) — (14 — %)My 1(20070) Wy 0(200r)

In the vacuum, between » = 0 and r = r,, H, is Iy(eor) and the im-
pedance is E,/H, = —j(wuo/ew)l1(cor)/Io(agr) Where oy = 8 — o’ue .
At r = 7y, the ferrite-vacuum interface, the two impedances must be
equal. Thus we obtain the characteristic equation

po Tr(aor) 2 oot
= (2x — 1)(14 — Gt
o Lo(aory) ( Y04 = x) B —w’ue

Wia (20!2?’.})Mx_|(2:127‘1) - Mx,1(2a2?‘u)Wx,1(2agﬁ)
(2X - 1)IVx.1(2ﬂsz'o)ﬂ'fx.0(2a2rl) - (}i - Xz)Mx.l(za'eTu)Wx.o(2a2T1) ’

(It is understood that for “normal” waveguide propagation ey will be
imaginary, and the I will be replaced by J). As a simple illustration we



082 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1954

consider the case in which the ferrite cylinder fills the waveguide com-
pletely. E, is then proportional to M «(2azr), and so B is determined from
the condition

Mxl(ZC!ﬂ‘o) = 0.

When “normal” propagation prevails (8 less than the natural propaga-
tion constant of the medium w+/eu(1 — ps?)) both as and x are imagi-
nary, equal to jez’ and jx’, say. Under these circumstances little is known
about the zeros of M. However, it is possible to say something about
the solution for large radial mode numbers. It follows from Erdélyi
et al’ 1, p. 278, formula (2), that for large argument

My 1(2jea're) = const-sin[as're + x'log aro + x'log 2 + @ (x') — w/4].
where ®(x') = arg I'(34 + jx). The zeros of this expression are at

5 .
as'ro + x log as'ry = hZ—w —x'log2 — ®(x"). n = a large integer

This equation may be solved graphically by setting as'ro = u, assigning
values to 8, pr, u (and hence to x/, a'). From a solution u one then
finds

o = u/ag’.

M also has zeros for real as, x, if x is large enough. Thus the wave-
guide will support waves with a §* greater than w'pe(l — pg’). It is
shown in Reference 2 (1, p. 289) that when x is between 34 and %4, M
has one zero, when x is between 34 and 74, M has two zeros and so on.
Suppose that py is negative, = — | pr | . Then

__h | pa |
For real positive 8, this equation has a solution for 8 if | px | < x:
g = _XB
A /xz —p n :
If 34 < x < 54, M will have a zero u(x) depending on the value of x.
Thus the equations

5=_._x._ﬂg.—. T=_&='\/x2—ﬂﬂ2
Vx: — pu*’ T AB - B | p | B2

solve the propagation problem parametrically. Similarly when x is
between 54 and 74, there are two zeros of M given by two functions

u(x)
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uy(x) and ug(x). There are now two possible modes, with the same
restrictions on py . An additional mode arises each time x is allowed to
pass a number of the form (2n + 1)/2. It is to be noted that these
modes are not confined to the resonance range. For 8 positive, they can
exist in the range « > ¢ > o9 and in the range —op < ¢ < 0.

ArpenpiX 1. SomE ProrerTiES OF WHITTAKER Funcrions Usep 1IN
THIS PAPER

I. RELATION TO BESSEL FUNCTIONS

1"){.[:(2.7"‘5) ol "
Lt = e = 2T+ D@,
LE M = 22#]:‘(# + I)IH('IB)’
x=+0 2z

14 Wiu@r) _ Ku(®)
x =0 V 21: '\/; ?
W, . (—24
Lto xae{ 2j717) _ %EjpﬂH"m(I), and
x—* vV —

W, .u(2j2) Fuwl2) XvF( 2jz) —:(;m'2):|
u[ Tt VAN

II. DIFFERENCE RELATIONS

The following results can be obtained either by reference to Erdélyi,*, 1
pp. 258, 254, by differentiation and subsequent integration by parts
of integrals such as

Wul®) = il R e HQA + ot gy
R T+ —x) b
or by observing that combinations of the form
d Wy
:Ba \/5 + XWx.O(x)

satisfy Whittaker’s equation with p = 1. In the last mentioned method,
the required constant multiplying the first order Whittaker function
can be obtained by reference to the limiting behavior for small z. If
Ry = Wyu(x)/v/z and Sy, = M, .(z)/+/z the results are

Rxﬁf + xBx = (X - %)Rxl,

: (39)
Sx(!’ + xsxﬂ = }é (% - X.) SXI .
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III. ZEROS

When x = 2n + 1)/2, n = 1, 2...., Wyu/2* " reduces to a
polynomial times a function of x. This may be inferred from the asymp-
totic expansion,

— —(x/?) x
Wew=c¢ T

(14 5= =300 = = 39710 = ot Y,

nlz®

n=1

which terminatesif u = land x = n + % (n = 1,2...), orfrom the
fact that for these values of the suffixes, W reduces to the generalized

Laguerre polynomial
L;(cz—)(me) (@).

Similarly when x = (2n + 1)/2,n = 0,1,2...., Wy, reduces to the
Laguerre polynomial

Ly—qm ().

The zeros at the critical values of x are given in the following table

x Zeros of Wy,0 Zeros of Wy,1
1g 0 None
35 0;1 0
34 0; 0.586; 3.414 0;3
% 0; 0.416; 2.294; 6.200 0;6;2
9% 0; 0.323; 1.746; 4.537; 9.395 0; 1.517; 4.312; 9.171
1lg 0; 0.26356; 1.413; 3.596; 7.086; 12.641 0; 1.227; 3.413; 6.903; 12.458

Between n + 16 and n + 3¢, Wyohas n + 1 zeros (n = 0,1,2...)
and W, has n zeros (n = 1,2....).

The zeros of M, coincide with those of Wy, whenx = n + 14, and
at those values of x only. The functions M, and W, ; then are propor-
tional to each other.*

IV. THE RICCATI-EQUATION FOR THE IMPEDANCE FUNCTION Wo/W,1.

The computations concerning the cylindrical helix required a study
of the function

Wx.ﬂ(u)
W,,l(u) ’

* At these critical values of x, the solution to the problem of the hollow cyl-
inder of ferrite in the waveguide breaks down, since M and W are then not in-
dependent. A further independent solution must then be constructed.

Z(u) =
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We will show that Z,(u) satisfies a non-linear first order differential
equation of Riccati-type. From the difference relations, equation (36),
we have

Wx.x(u) _ Wx.u’(u) _ 1
C =) o = Weat) 7aT

Q=

) say

and from Whittaker’s equation

d Wx,o' -Plr_",‘_o")2 ( 1 X i 1) =
d_u(wx,u)+ (Wx,;' t\@tu"1)"0

Therefore
dug+g + - (——2x)+(x - 3) =0,
or
d
4ot (P-2n)o+ -n00
Finally, let
W o(u)
= — 1 —_ X
Z (X é) g(u) Wx‘l(u) .
Then

- (x—%)+(:7—2x)z+ (x + 14) 2*

Since this equation is satisfied by M, o(u)/M,(u)) as well as by
Wy o(u)/Wy1(u), a selection has to be made from all the possible solu-
tions of this equation. We require the one which for large u approaches
unity. But for large » the equation is

dz
du

whose integral is

=(1-2)[x -3 - Kx+ ¥ 12,

_ = 1de" — 1
(x + }4)4e* — 1
For large u, therefore, the solution is either unity, when A = 0, or else

(x — ¥8)/(x + ¥5), A + 0. Thesolution with 4 4 0 corresponds to the
M functions; that with A = 0 to the W-functions.
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The case A = 0 was integrated on an analogue-computer, and the
results are shown in Fig. 14(b). The computation was restricted to the
range | x | < 34. Beyond these values, the helix-problem was discussed
only qualitatively.
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