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Part I of this paper dealt with various idealized transmission characteris-
tics and with methods of evaluating pulse distortion resulting from various
system imperfections. In Part I1 the resultant iransmission tmpairments or
limitations on pulse transmission rates are discussed for systems with low-
pass, symmetrical band-pass and asymmetrical band-pass characteristics,
and a comparison made of the {ransmission performance of double and
vestigial sideband systems. The limitation on channel capacily imposed by
random tmperfections in the transmission-frequency characleristic, as com-
pared to random noise, 18 also discussed.

12. IMPULSE CHARACTERISTICS AND PULSE TRAIN ENVELOPES

In pulse modulation systems pulses are transmitted in various com-
binations to form pulse trains, and at the receiving end the envelope of
the pulse train is sampled at regular intervals to determine the ampli-
tudes of the transmitted pulses. As a result of pulse overlaps there may
be appreciable distortion of the pulse train envelope, which may cause
errors in reception or noise, depending on the type of system. To evalu-
ate transmission impairments, or limitations imposed on transmission
capacity to avoid excessive transmission impairments from pulse dis-
tortion, it is necessary to establish basic relations between the impulse
characteristic of the system and the envelope of the received pulse train.

In Fig. 42 are shown three transmitted pulses of different peak ampli-
tudes, A_; , Agand A4, , transmitted at intervals = with the first and third
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pulse overlapping into the middle pulse. The instantaneous amplitude
of the received train at a time # referred to the peak amplitude of the
middle pulse is

W(t) = APt — 1) + AP(l) + APt + 7),

It

1 (12.01
= 3, APty + nr). )

ne=—1
When the sequence of pulses transmitted at uniform intervals = extends
between n = — o and «, the instantaneous amplitude of the pulse
train at time #, is

Wt = i APty + nr). (12.02)

The above equation gives the instantaneous value W(t) for any se-
~ lected combination of transmitted pulses. The transmitted pulses may
have any value within certain limits, as when they represent signal
samples in a pulse amplitude modulation system, or may assume two or

AMPLITUDES OF TRANSMITTED PULSES

Ao
[
-T 0 T

IMPULSE TRANSMISSION
~“CHARACTERISTIC

W(t)=A_ P& +7) + A P(L)+ A{P(L-7)

Fig. 42 — Formulation of expression for pulse train envelope in terms of im-
pulse characteristic and amplitudes of transmitted pulses.
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more discrete values as in pulse code modulation systems. In pulse posi-
tion modulation, A, = 0 except at the instants pulses of a given ampli-
tude are transmitted, and n may not necessarily be an integer. In pulse
duration modulation, A, = 1 over the intervals nr of varying duration
in which pulses are transmitted, and zero otherwise. Equation (12.02)
is thus a general formulation of the wave shape of a received pulse train,
applicable to various pulse modulation methods.

Inserting (2.09) in (12.02) with R_ + Ry = Rand Q- — @, = @
and taking ¢, = 0 without loss of generality

W (to)

o0

> A,lcos wlty + nr)R(ty + nr) + sin w (b + nr)Q( + nr)l,

n=—c0

cos wdy 2, Aulcos wnrR(ty + nr) + sin wnrQ(ty + nr)]

B (12.03)
+ sin wily 2, A,[cos wnrQ(t + nr) — sin wnrR(ty + nr)l.
The envelope of the wave at the sampling instant &, = 0 is
W) = (B* + @)™, (12.04)
R = E A,leos wnrR(nr) + sin wnrQ(nr)),
B (12.05)
Q = > A,lcos wnrQ(nr) — sin wnrR(nr)].
For the particular case of a low-pass system
Q =0, and w, = 0,
so that
W) = Y. A.P(nr). (12.06)

n=—u0

A band-pass characteristic can be obtained with the aid of band-pass
filters at the transmitting or receiving ends, or at both ends of a system,
and the equations developed previously for the impulse characteristic
tacitly assumed such an arrangement. Equivalent performance can,
however, also be secured by methods which are usually employed in
practice, and to which the equations also apply. Impulses can thus be
applied to a low-pass pulse shaping network or filter, and the output used
to modulate a carrier. There will then be a symmetrical distribution of
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sidebands with respect to the carrier, equivalent to a band-pass charac-
teristic, with the spectrum of the sideband frequencies determined by
the characteristic of the low-pass filter. The equivalent of an asymmetrical
band-pass characteristic can be obtained by suppressing part of the upper
or lower sideband with the aid of filters.

Although the mathematical formulation with both methods is es-
sentially the same when w, is identified with the carrier frequency w,,
with impulse excitation the phase of w, is fixed in relation to the envelope
but is independent of it with carrier modulation. By proper choice of
the pulse interval = in (12.03), such that cos w, (f + nr) = CO8S w,dg Or
wr = 2rm, m = 0, 1, 2 -+ it is possible with impulse excitation to
obtain the same relation between the reference or carrier frequency as
when the output of a low-pass filter is used to modulate a carrier. In the
above case the pulses are transmitted at intervals = = m/f, = m/f,,
corresponding to multiples of the duration of a carrier cycle. Since the
duration of a carrier cycle is ordinarily small in relation to the pulse
interval, there is essentially no important difference in the rate at which
pulses can be transmitted with the above two methods. However, with
band-pass filters the exact relationship of pulse intervals to the carrier
frequency may be difficult to maintain with simple instrumentation,
while this is no problem with carrier modulation. For this reason, and
since the performance is otherwise equivalent, only the basic relation-
ships with carrier modulation will be discussed further.

Assuming that cos w.(fo + n7) = €08 wlo, as discussed above, equa-
tion (12.03) becomes

W (to)
= cos widy 2, A.R(lo + n7) + sin wly > AQ + ). (12.07)

The envelope at the sampling point is accordingly
2

W(0) = ([g A,Je(m)]2 + [}::, AnQ(nr)T) . (12.08)

In ideal transmission systems there would be no pulse overlaps or
intersymbol interference, and the amplitude of the pulse train at the
sampling instant would be

W(0) = AJR*(0) + Q*(0)]"™ (12.09)
This condition could be realized with sufficient pulse spacing. However,

the objective in the design of efficient pulse systems is to determine the
minimum pulse spacing consistent with tolerable intersymbol inter-
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ference and thus the maximum transmission capacity or optimum per-
formance in other respects for a given bandwidth. In the following sec-
tions this problem is discussed further.

13. TRANSMISSION LIMITATIONS IN SYMMETRICAL SYSTEMS

In a symmetrical system the amplitude characteristic has even sym-
metry and the phase characteristic odd symmetry with respect to a
properly chosen frequency. A low-pass transmission system is thus
symmetrical with respect to zero frequency, when the negative fre-
quency range is included. A double sideband system is symmetrical if
the amplitude characteristic has even and the phase characteristic odd
symmetry with respect to the mid-band frequency.

Equation (12.06) applying to a low-pass system or baseband trans-
mission may be written

mmammm+immwwwumﬁm (13.01)

Let it be assumed that pulses of varying but discrete amplitudes are
transmitted, with a maximum peak amplitude equal to A, and a
minimum peak amplitude Ani, . If ¢ pulse amplitudes are employed,
the difference between peak amplitudes is then (Amux — Amin)/(g — 1).
Let P™ designate positive values of P(n7) and P~ the absolute value of
negative amplitudes.

The maximum value of W(0) when a pulse of amplitude 4, is trans-
mitted at the sampling point n = 0 is then

Wnax = AoP(0) + fj Amu Pt (nr) + PH(—n1)]
"t (13.02)

-]

- ﬂz_:l Amin[P™(n7) + P™(—n1)]

The minimum amplitude of W(0) when a pulse of the next higher am-
plitude 49 + (Amax — Amin)/(g — 1) is transmitted becomes

Wmln = (An + M) P(O)
qg—1

—immmw+mwm (13.03)

+ 21 Amin [P+ (n7) + P+(—-m-)].

To permit distinction between the two pulse peaks it is necessary that
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Wwmin be greater than Wi, . The difference M = Wuin — Wix,
which represents the margin for distinction between pulse amplitudes,
becomes

A= Ao 3
M = £o =S p0) — (Anax — Ama) 2 [P¥(r) (13.04)
+ P (nr) + PY(—nr) + P (—n1)),
or:

@

M = (Amsx — Amin) [QP(TO)I = 21 | P(nr) | + | P(—n7) |], (13.05)
where | P(== n7) | designates the absolute values of the impulse charac-
teristic.

Equation (13.05) shows that for a given value of ¢ the margin depends
on the maximum pulse excursion A max — Amin and is thus the same with
Amex = 1 and Ay = 0 as with Apex = 0.5 and Apin = —0.5. As an
example, equation (13.05) shows that with two pulse amplitudes, ¢ = 2,
it is possible to distinguish between pulses and spaces, or between posi-
tive and negative pulses, if the sum of the absolute values of the impulse
characteristic at all the sampling points, excluding 0, is less than the
amplitude P(0) of the impulse at sampling point 0.

The maximum margin against errors is obtained without pulse over-
laps, i.e. when the summation term in (13.05) is zero, and is

P(0)

M = (Amnx - Amin) 1

(13.06)

The ratio of the margin M as given by (13.05) to the maximum margin
becomes:

M/Mppx = 1 — P (0) Z) | P(n) | + |P(—nr) |. (13.07)

This equation may be employed to determine the maximum possible
pulsing rate for a given impulse characteristic and number of pulse
amplitudes, obtained when M /M. = 0, or to determine the margin
for a given pulse transmission rate. An example of the latter application
is illustrated in Fig. 43, which shows the margin M /M . in per cent,
obtained when (13.07) with ¢ = 2 is applied to the curves shown in
Fig. 23 for various degrees of delay distortion. The pulse interval is
taken as 7 = 1/2fi = 1/fmax , Wherefi is the frequency at the 6 db down
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point on the amplitude characteristic and fm.x = 2fi. Under this con-
dition there is no intersymbol interference in the absence of phase dis-
tortion.

The above equations apply to peak intersymbol interference, obtained
by taking the maximum positive and negative values of the summation
term in (13.01). As discussed in previous sections, certain types of trans-
mission system imperfections give rise to pulse distortion extending over
long time intervals, such as fine structure deviations over the transmis-
sion band, a low-frequency cut-off and pronounced band-edge phase
deviations. Evaluation of peak intersymbol interference is then rather
difficult, and a more convenient approximate method is to evaluate
rms intersymbol interference, which can be related to rms deviation in
the transmission frequency characteristic by methods discussed previ-
ously. Peak intersymbol interference may then be estimated by applying
a peak factor between 3 and 4, depending on the type of transmission
distortion.

If Po(n7) designates an ideal impulse characteristic, which is zero for
n = =1, &2 ete., the deviation from the ideal envelope of a pulse
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Fig. 43 — Margin against excessive peak interference in systems employing
two pulse amplitudes with intervals between pulses 7 = 7, = 1/2f1 = 1/fmax. for
impulse transmission characteristic as shown in Fig. 23.
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train may be written

AW(0) = W(0) — Wo(0) = D, AuP(nr) — Po(nr)]. (13.08)

The rms deviation becomes, with AP(n7) = P(nr) — Po(nt)
awo = 4 (5 wrenr), (13.09)
) 1/2
~A G f_ [AP(D))? dt) , (13.10)
= AP(0)U. (13.11)

A is the rms amplitude of the transmitted pulses and U the rms inter-
symbol interference referred to unit amplitude of the received pulses.
Expressions for U applying to fine structure imperfections in the trans-
mission frequency characteristic were given in Section 8, for a low-fre-
quency cut-off in Section 9 and for band-edge phase deviations in Sec-
tion 10.

For balanced pulse systems employing positive and negative pulses,
rms intersymbol interference in the positive and negative directions will
be equal. For such systems the maximum value of the summation in
(13.02) becomes kW(0) and in (13.03) —kW(0), where k is the peak
factor. Equation (13.04) is then replaced by

M= ‘EL:;@‘ P(0) — 2kAP(0) U,
(13.12)
= 2AmeP(0) I:q_}—i - k{_](A/Amx):|,

when Amin = —Amax .

In a balanced pulse system employing ¢ pulse amplitudes, ie., ¢/2
positive and ¢/2 negative amplitudes, with equal steps 2Am./(g — 1)
between pulse amplitudes, the following relation applies if all ampli-
tudes have equal probability.

1/2
A/ A = [?)(qq—tlﬁ] . (13.13)
Hence,
2 1/2
M= 3%"—‘::.1’1(_0) [1 —k (qu) g]. (13.14)

As mentioned before, the factor & may be as high as 4, in which case the
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maximum tolerable rms intersymbol interference U referred to unit peak
amplitude of the received pulses becomes for M = 0:

g = 2 4 8
U=02 0112 0054

In (13.14) and in the above table, U is the maximum tolerable rms
intersymbol interference from all sources, such as fine structure imper-
fections over the transmission band, band-edge phase distortion and a
low-frequency cut-off. Interference from these various sources may be
combined on a root-sum-square basis.

In the above evaluation of rms intersymbol interference a balanced
pulse system was assumed. An unbalanced system can be obtained by
superposing on a balanced system an infinite sequence of pulses of equal
amplitude and polarity at uniform intervals as indicated in Fig. 44. This
superposed system will give rise to a fixed intersymbol interference or
displacement of the received pulse train, which does not alter the margin
for distinction between pulse amplitudes and which can be corrected by
a fixed bias at the receiving end if necessary. For this reason, in the case

(a)

r"'] [_"] BALANCED PULSE TRAIN WITH
EQUAL MAXIMUM AMPLITUDES OF
U L] POSITIVE AND NEGATIVE PULSES

ININERININENE "
ﬂ SUPERPOSED INFINITE PULSE TRAIN

(a) + (b)

(©)
H [ 1 |—| H UNBALANCED PULSE TRAIN

Fig. 44 Derivation of an unbalanced from a balanced pulse train by super-
position of an infinite train of pulses of equal amplitude.
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of an unbalanced system, only the balanced component need to be con-
sidered in evaluating rms intersymbol interference, which will thus be
the same whether or not the system is balanced. As shown previously,
peak intersymbol interference, or the margin for distinction between
pulse amplitudes, depends only on the peak to peak pulse excursion and
is thus the same for unbalanced as for balanced systems. It may be
noted here that for a balanced system the transmitted power is a mini-
mum for a given margin in pulse reception, as is the interference in other
systems that may be caused by the transmitted pulses.

For a symmetrical band-pass system, rather than a low-pass system
as discussed above, Q(n7) = 0 in (12.08). The envelope of the pulse
train then becomes

©0

W) = > A.R(nr), (13.15)
where R(n7) = R_(nr) + Ry(n7) = 2R, (n7), with E_and R given by
(2.10).

Since (13.15) is of the same form as (13.01), the relationships estab-
lished above for low-pass systems also apply to symmetrical band-pass
systems, with R(nr) replacing P(n7). R(n) will have the same shape as
P(n7), but will be greater by a factor 2, which will appear as a multiplier
in the various expressions and hence not alter the requirements on toler-
able pulse distortion or intersymbol interference.

14. TRANSMISSION LIMITATIONS IN ASYMMETRICAL SIDEBAND SYSTEMS

The formulation of transmission limitations imposed by pulse distor-
tion in asymmetrical sideband systems is complicated by the presence
of the quadrature component in the impulse transmission characteristic.
Of particular interest are the transmission limitations with vestigial
sideband as compared with double sideband transmission, assuming the
same bandpass characteristic in both cases, a question which has been
dealt with in literature for systems with a linear phase characteristic’, '
Relationships (2.18) and (2.19) facilitate a comparison also for systems
with phase distortion, as shown in the following.

If the envelope of the impulse characteristic with double sideband
transmission is P(t), the in-phase and quadrature components with

vestigial sideband transmission are given by (2.19), with w, = w, or
R = R_ + R, = cos (wt — ¥.) P(),

14.01
Q = @ — Q. = sin (wt — ¥o) P®. (1401)
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If ¢ is so chosen that v — ¢, = 0, and the time with respect to this
value of { is designated ¢, , then

R(ty) = cos witoP(ty),
Q(t) = sin w;teP (o).

An application of this method to the impulse characteristic shown in
Fig. 23 for b = 15 radians is illustrated in Fig. 45.

In order to compare vestigial with double sideband transmission, it
suffices to evaluate the in-phase and quadrature components at the
sampling instants. With r = 7 /2w, =1/4f, , thein-phase and quadrature
components at times mr, for m = 0 +£1, +2, ete., will be as illustrated
in Fig. 46.

(14.02)

0.9
AMPLITUDE
o8 :,«“\ Eaier CHARACTERISTIC
! DISTORTION . CARRIER
0.7 / '.‘ i R
\
! 1
| A
0.6 —t | - RN
! 1’% L";‘ggul" ':)m‘\}jf’f }b: -15 RAD
| ] ==
0.5 — T l‘l 1 _
[N i R = cos (wst ~ys) P(t) wst ~Ys=o
L 04 - ',' i ! | Q= siN (wst-ps)P(t)  wHEN wst=-10.4
8 ;% H I \ Ws = 0.707b = -10.4 RAD orR fuyaxt =-3.37
e |
5 03 ] ~ ] [
o
SERRRNR
s I \ \
< 0.2 / |J i = l’ ||
" ;
> g I \ N
& o / i AN
z " ~ ] 1 |
Ve U l'\,/‘.\/‘ R P
Z oPg \|I ; i “ VA, '/, e :)/‘\:;// >
[~ ] | =T
w N\ \Q ¥ ’ g ]\\}Q | "=
= —oal—Y \ " l
|t 5
ViRl
] l
ey |
\ _
\_,( l \ / P = ENVELOPE OF IMPULSE
—o3 CHARACTERISTIC
\ R = IN-PHASE COMPONENT FOR
, CARRIER AT Wr = Wm+ Ws
-0.4 \ — Q= QUADRATURE COMPONENT FOR
l CARRIER AT Wp = W+ Ws
cosf—t ]
-0.6 \\// t
-5 -4 -3 -2 -1 [¢} 1 2

tfuax = 21t
Fig. 45 — Determination of in-phase and quadrature components of impulse
characteristic for vestigial side-band transmission.
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With double sideband transmission, pulses would be transmitted at
the points m = 0, £2, 44, etc. At these points the quadrature com-
ponents vanish, as indicated in the above figure, and the in-phase com-
ponents are the same in amplitude as with double sideband transmission.
Thus, if pulses were transmitted at the same rate as with double side-
band transmission, the sum of the absolute values of the in-phase com-
ponents at the sampling points would be identical with the sum of the
absolute values of the envelope with double sideband transmission. It
follows from the criteria established in Section 13 that for this particular
pulse transmission rate the effect of pulse distortion would be the same
with both transmission methods. With an ideal transmission frequency

TRANSMISSION
FREQUENCY
CHARACTERISTIC

_-SIN wsto

ﬁ(t) = ENVELOPE OF IMPULSE CHARACTERISTIC
R = IN-PHASE COMPONENTS AT SAMPLING INSTANTS
Q = QUADRATURE COMPONENTS AT SAMPLING INSTANTS
7 =1/Ws = PULSE INTERVALS WITH DOUBLE SIDE BAND TRANSMISSION

Fig. 46 — In-phase and quadrature components of impulse characteristic with
vestigial side-band transmission.
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characteristic having a linear phase shift, there would be no intersymbol
interference with either method for the above rate of pulse transmission.

Assume next that the pulse transmission rate is doubled and that the
quadrature component is eliminated. This is possible if the carrier fre-
quency is transmitted and is derived at the receiving end with the aid
of filters and applied in proper phase to a product demodulator, a method
known as homodyne detection. At the points m = 1, 3, 5, etc., there
would then be no quadrature components and no in-phase components.
The sum of the absolute values of the in-phase components at the other
sampling points, m = 2, 4, ete., would be the same as with double side-
band transmission. It follows that the transmission capacity (pulsing
rate) can be doubled by vestigial sideband transmission if the quadrature
component is eliminated by homodyne detection, for the same margin
against excessive intersymbol interference as with double sideband
transmission.

An increase in transmission capacity can be realized with vestigial
sideband transmission without elimination of the quadrature component
by homodyne detection, although a two-fold increase is then possible
only if the phase characteristic is linear, as discussed below. Vestigial
sideband transmission can be employed without transmission of the
carrier, or with a fixed level of carrier in the absence of pulses and a
higher level in the presence of pulses. The latter method is equivalent
to the transmission of two or more pulse amplitudes, with the minimum
amplitude greater than zero. With this method the effect of the quadra-
ture component on the envelope of a pulse train can be reduced, and
even eliminated provided the phase characteristic is linear. In the follow-
ing, vestigial sideband transmission with two pulse amplitudes at twice
the double sideband pulsing rate is discussed, for the case in which the
minimum pulse amplitude is finite rather than zero.

With pulses transmitted at twice the double sideband rate, i.e., with
the interval between pulses equal to r = 7/2w,, equation (12.08) for
the envelope becomes in view of (14.02)

w(0)
- ([_i A, cos wsnrl_’(nf)]z + [i A, sin w.n-rl_’(nr):r)m (14.03)

At the even sampling points, i.e.,n = 0,2,4 --- | cos wnr = %1 and
the in-phase components may be written
R(+2m7) = +P(+2mr), m=20,1,2---

At the odd sampling points, ie.,n = 1,3,5 -+, sin wnt = %1 and
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the quadrature components may be written
Q[=(2m — 1)7 = £P[+(2m — 1)1, m=1,2,3
Let

3 (B @mr) + B (—2mn),

m=1

2R*

-]

LB = Zq [R~@2mr) + R (—2m7)),

N (14.04)
2qt = ;1 Q'lem — 17 + @ T—(2m — 1)),

¢ =3 Qlen— Dd+Ql-Cen— 1,

where R*, Q" designate positive values and B~, @ the absolute values
of negative amplitudes of the in-phase and quadrature components.

Let it be assuméd that two pulse amplitudes are employed, Ami» and
A ax - When the minimum amplitude is transmitted, the maximum value
of the envelope is obtained by considering the maximum positive over-
laps of the in-phase components in conjunction with the maximum value
of the quadrature component. The value thus obtained is

Wmux = [(Amin R(O) + Amnx ZR+)2 .
+ (Amax 2@ — Amin 220"
It is assumed that ZQ_ > EQ+, otherwise @~ and Q" would be inter-
changed in the last term.
When the maximum amplitude is transmitted, the minimum value of
the envelope is obtained by considering the maximum negative overlaps

of the in-phase components, in conjunction with the minimum value of
the quadrature component, which gives

Wmin = [(Amax. R(O) - Amax ER_)z + AQmin (ZQ_
_ EQ'F)?]!M.
The margin for distinction between Amin and Amax is M = Wi —
Wmax and becomes

M = Ams [(R0) — 2R + p*C2QY — 22071
— Aumax [(WRO) + RN + (22Q™ — 2 22@7Y,

(14.05)

(14.06)

(14.07)

where
B = Amin/Amu'. .
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The margin for a unit difference Amex — Amin , i.e. M1 = M/(Amax
— Amiy) becomes:

1 —\ 2 2 — 211/2
My= y—— ((BO) = ZE) +w'2Q - ZQVT" 1 g
— [(R(0) + 2R + (2@ — u22Q@")1").

The special case of an ideal transmission characteristic as shown in
Fig. 47 will be considered first. In this case

R(0) =1 R(27) =0 R(—27) =0
R4r) =0 R(—47r) =0
Q(r) = 05 Q(—7) = —05
Q@) =0 Q(—3r) =0
so that:
SRt =0 SR =0
T =05  XQ =05
Equation (14.08) in this case simplifies to

My = ﬁ (1 - [,f + i- (1 - u)”]m)_ (14.09)

For various values of u = A,in/Amax the margin for unit difference in

Fig. 47 — Envelope of idealized impulse characteristic.
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pulse amplitudes becomes:

Koo 0 0.2 03 0.5 0.8 0.9 1.0
My 0.50 0.69 0.77 0.87 0.96 0.998 1.0

Thus, for an ideal impulse characteristic as assumed above, the
quadrature component gives rise to 50 per cent maximum intersymbol
with g = 0, and to negligible intersymbol interference when u = 0.8 or
greater. By way of comparison, the margin would be zero with double
sideband transmission at the rate assumed above, i.e., twice the normal
double sideband rate. This follows from (13.07) when it is considered
that P(&7) = ¥ P(0), P(+27) = 0, so that the sum of the absolute
values of the impulse characteristic at the sampling points is equal to
P(0) and thus M /M pax = 0.

Elimination of the effect of the quadrature component by the above
method is contingent on a symmetrical impulse characteristic, i.e.,
P(n7) = P(—n7), a condition which can be realized only with a linear
phase shift. Furthermore, the in-phase components must vanish at the
sampling points, which entails an ideal amplitude characteristic. In the
presence of phase distortion the effect of the quadrature component
cannot be eliminated but may be reduced by proper choice of the ratio
u, as discussed below for a transmission characteristic with moderate
phase distortion.

As an example consider an impulse characteristic as shown in Fig. 23
for b = 5 radians. The in-phase and quadrature components at the
various sampling points are in this case

R(0) = 0.97 R(—27) = —0.09 R(27) = 0.13

R(—47) =0 R(47) =0
Q(—7) = —054 Q(r) =044
Q(—37) =0 Q@37) = —0.03
Q(—57) =0 Q(57) =0

Hence ‘
SR*=013 YR =009 3Q"=044 3Q° =057

Equation (14.08) in this case becomes
M, = ii_# ((0.887 + 0.13%)"* — [(0.97u + 0.13)?

+ (0.57 — 0.44w)7").
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For various values of g = Anin/Amax the margin for unit difference in
pulse amplitudes becomes

Boooininannns 0 0.2 0.3 0.4 0.5 0.6 0.7 0.75
My ........... 0.30 0.375 0.40 0.375 0.3¢ 0.25 0.13 0

The optimum condition is thus in the above particular case obtained
with p = 0.3, with a comparatively small variation in transmission per-
formance for any value of p between 0 and 0.5. .

In the above discussion of vestigial sideband transmission, modulation
of a carrier was assumed, with elimination of one sideband except for the
wanted vestige. The equivalent performance can be secured by applica-
tion of impulses to a band-pass transmission characteristic with the
proper interval between pulses in relation to the midband frequency, as
discussed below:

When equation (12.03) is written with respect to the midband fre-
quency, w, = wn, and a symmetrical amplitude characteristic is assumed
so that Q@ = 0, the following relation obtained.

W) = cos wats D, An cos wunrR(l + nr)

n=—oo

(14.10)

o0

— 8in wate 2, A, sin wanrR(t + nr),

in which R may be replaced by P, the envelope of the impulse charac-
teristic.

Let it be assumed that 7 is so chosen that cos w,nr = cos nr/2 in
which case sin w,nr = sin nwr/2. The above equation then becomes

W(ty) = cos wale », A.P(to + nr) cos nw/2

- (14.11)
— sin wmte 2, AnP(lo + nr) sin nr/2.

n=—w

The in-phase and quadrature components of the envelope at the sampling
instant ¢, = 0 are accordingly

R(0) = i A,P(nr) cos nr/2,
o (14.12)
Q(0) = 2 A,P(nr) sin nx/2.

Pulses in even positions, i.e., Ay, A2, Ay, ete., will thus contribute an
in-phase but no quadrature component while pulses in odd positions
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Ay, As, As, ete., will contribute a quadrature but no in-phase com-
ponent. It will be recognized from Fig. 42 that this is the same condition
as encountered in vestigial sideband transmission with pulses in the
latter case transmitted at intervals + = /2w, = 1/4 f, .

To realize the above condition with pulses applied to a band-pass filter,
it is necessary that in (14.10)

want = nw(}4 + N), (14.13)
where N is an integer, or that

_m(1+2N) _1+2N
Qo ifn

(14.14)

The interval between pulses must thus be an integral number of half-
cycles plus one quarter cycle of the midband frequency fn , as illustrated
for a particular case in Fig. 48. When f,, is large in relation to the side-
band frequency this condition can be achieved with substantially the
same pulse spacing as with vestigial sideband transmission. To secure
exactly the same rate of pulse transmission it is necessary that

T = 1/4 f:,
which, in conjunction with (14.14), gives
N =3 (fn/fs — 1). (14.15)

Thus, if f» = 5fs, N = 2 and the interval r between pulses as obtained
from (14.14) is 1.25 cycles of fn . If f. = 10f,, N = 4.5 and it is not
possible to have exactly the same pulsing rate as with vestigial sideband
transmission, since N must be an integer. It is then necessary to take
N = 4 or 5. With N = 4 equation (14.14) gives 7 = 9/40f, and with
N = 5, r = 11/40f. . This compares with r = 1/4f, = 10/40f, with
vestigial sideband transmission, so that there is a minor difference in
pulse intervals with the two methods.

15. DOUBLE VERSUS VESTIGIAL SIDEBAND SYSTEMS

From the preceding discussion it follows that, for the same bandwidth
and margin against interference from characteristic distortion, a two-
fold increase in transmission capacity can be approached with vestigial
over double sideband transmission. This assumes that the carrier is
transmitted at the proper level and that the phase characteristic is
linear, or that otherwise homodyne detection is used to cancel the effect
of the quadrature component.
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For the same bandwidth, the same transmission capacity can be
realized with a double sideband system employing four pulse amplitudes
as with a vestigial sideband system with two pulse amplitudes. However,
the latter type of system will have a greater tolerance to interference
from characteristic distortion than the former. This follows when it is
considered that in a quaternary system the maximum tolerable inter-
ference is 1§ the maximum pulse amplitude, as compared to 14 the maxi-
mum pulse amplitude in a binary system. With ¢ = Anin/Amex = 0,
the quadrature component reduces the margin by a factor of 0.5, so that
the maximum tolerable interference in relation to the maximum pulse

PULSE SPACING ___ _ _ e m e PULSE SPACING __ ___ .

< T " {15+0.25) CYCLE I (1.5 +0.25) CYCLE

PULSE TRANSMITTED IN POSITION N = -1
———— PULSE TRANSMITTED IN POSITION N =1
——-—— RESULTANT ENVELOPE

Fig. 48 — Impulse exitation of band-pass system with pulse spacing selected
to provide equivalent of vestigial side-band transmission.
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amplitude is 14 as compared to 1§ for a quaternary system. If the phase
characteristic is linear and the carrier is transmitted at the optimum
level, or if homodyne detection is used, the effect of the quadrature com-
ponent is cancelled. The maximum tolerable interference is then 14 as
compared with 1§ for a quarternary double sideband system.

In the presence of phase distortion, a substantial advantage can also
be realized with a binary vestigial system, which can be illustrated by
considering the example in Section 14. For the optimum condition p =
0.4, the margin is reduced by a factor 0.4 and is thus 0.2. For a quater-
nary double sideband system the factor by which the margin is reduced
is given by (13.07), with ¢ = 4 and with

Py 33| Pm) |+ | =) | = i [ BF+ )

where R(0) = 0.97, > R™ = 0.13 and ) R~ = 0.09, as in the example
in Section 14. The reduction in margin thus obtained is M/M.x =
0.32. Hence the maximum tolerable interference for a quarternary double
sideband system is 0.32/6 = 0.053 as compared with 0.20 for a binary
vestigial sideband system under the optimum condition p = 0.4.

For the same transmission capacity and same number of pulse ampli-
tudes, a substantial transmission advantage may be realized with ves-
tigial over double sideband transmission in circuits with pronounced
phase distortion, owing to the circumstance that a two-fold reduction
in bandwidth with vestigial sideband transmission may afford a sub-

( T FREQUENCY
| P ==
| A R S ) 4
| 1 dmax ! A
Lo | DELAY DISTORTION
| S
| [ diwe
| -
}‘— _____ fuax ===~ "l diaax Fraax = 015 duax Fuax

Fig. 49 — Comparison of double and vestigial side-band transmission in the
presence of delay distortion.
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stantial reduction in delay distortion over the transmission band. This
is illustrated in Fig. 49, where a cosine variation in transmission delay
is assumed. With a two-fold reduction in bandwidth, the product
@' maxf"max for vestigial sideband transmission is about 15 per cent of the
product dumaxfmax for double sideband transmission. Thus, With dmaxfmax
= 8.3, d'muxf"max = 1.25, corresponding to b = 5 radians, as assumed in
the example in Section 14. Vestigial sideband transmission is in this case
feasible with an adequate margin, about 40 per cent of the maximum
margin in the absence of phase distortion. Double sideband transmission
would not be possible, as is evident from Fig. 43, since it would be neces-
sary to have dyaxfmax less than 4, as compared with 8.3 in the above case.

The above discussion of vestigial vs double sideband transmission
pertains to the effects of characteristic distortion rather than noise, and
the relative complexity of terminal equipment was disregarded. Because
of the simpler terminal equipment with double sideband transmission,
this method is ordinarily used where bandwidth is not a primary con-
sideration, as for example in providing a number of telegra.phj channels
over a voice frequency circuit.

16. LIMITATION ON CHANNEL CAPACITY BY CHARACTERISTIC DISTORTION

For an idealized channel of bandwidth f; with a transmission-frequency
characteristic as shown in Fig. 7, the transmission capacity in bits per
second for a signal of average power P in the presence of random noise
of average power N can with sufficiently complicated encoding methods
approach the limiting value given by Shannon:"

C = filog: (1 + P/N). (16.01)

The above expression also applies to certain other idealized channels
with a linear phase characteristic, when f; is defined as in Fig. 10. In all
of these cases the integral of the area under the amplitude characteristic,
or the equivalent bandwidth, is f; .

By way of comparison, for pulse code modulation systems the channel
capacity is of the same basic form as (16.01), namely™:

C' = filog (1 + I%,) (16.02)
where K == 8. Thus about an 8-fold increase in signal power is required
to attain the same channel eapacity as with the idealized but imprac-
ticable encoding system underlying (16.01).

The above expressions give the limitation on channel capacity imposed
by random noise. From the discussion in Sections 13 and 14 it follows
that a limitation is placed on channel capacity by characteristic distor-
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tion, in the absence of noise. In idealized communication theory, charac-
teristic distortion has been disregarded in determining channel capacity
on the premise that unlike random noise it is predictable and can there-
fore be corrected, at least in principle. In actual systems, however, com-
plete elimination though possible in principle cannot be accomplished in
practice. The resultant limitation on transmission capacity may be as
important as that imposed by the maximum signal power that can
actually be provided to override noise.

In the following it will be assumed that correction of amplitude and
phase deviations is made by equalization, so that the amplitude and
phase characteristics are as assumed for an ideal channel, except for
small fine structure residual deviations as illustrated in Fig. 30. These
small fine structure deviations may be regarded as of random nature in
the sense that they differ among channels and cannot be predicted,
although for a given system they would remain fixed in the absence of
temperature variations or changes in amplifiers with age.

From equation (13.12) it follows that the maximum number of pulse
amplitudes or quantizing levels as limited by characteristic distortion is
obtained from the relation

1 —
e kUA/Amax (16.03)
or
=1+ X Amax/A
q= k,U max/ £1. (1604:)

In the absence of characteristic distortion, the maximum number of
pulse amplitudes as limited by an rms noise amplitude 4, or a peak
noise amplitude kA, is obtained from the following relation for a bal-
anced pulse system.

Amax
= kA, .
s Rl (16.05)
or
I (16.06)
kA, '

Comparison of (16.04) and (16.06) shows the following equivalence
between intersymbol interference and noise from the standpoint of
limitation on the permissible number of pulse amplitudes

U= A,/A, (16.07)
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or
U*=D = N/P. (16.08)

This means that random characteristic distortion has the same effect
as a random noise power N = DP, where D is a distortion factor. '

In view of the above equivalence, the channel capacity of a PCM
system in the presence of random characteristic distortion, but without
noise, as obtained by substitution of (16.08) in (16.02) becomes

1
C = f1 lng (1 + 1—.(-—D‘) . (16.09)

With random interference from both characteristic distortion and noise,
the interfering powers add directly, so that for a PCM system

1
C aral fl logz (1 + I—{—('Wj) . (16.10)

The equivalence (16.08) was established above on the basis of discrete
pulse amplitudes, but it is independent of ¢ and would thus apply also
for eontinuous signals. On this basis it would apply for any method of
modulation or of encoding signals and the maximum channel capacity
as given by (16.01) would be modified to

C = f]_ lﬂgz (1 + D—-l-_lhr/P) y (16.11)

It follows from the above that for any modulation method the toler-
able distortion factor is directly related to the average signal-to-noise
ratio. Thus two modulation methods which are equivalent from the
standpoint of signal-to-noise ratio are also equivalent from the standpoint
of tolerable rms distortion, provided faithful reproduction of the trans-
mitted signal is required, as assumed here.

From (8.14) the following relation is obtained between the distortion
factor D = U” and small rms deviations a (nepers) and b (radians) in the
amplitude and phase characteristics

D =a + b (16.12)

In order that characteristic distortion may be disregarded in compari-
son with noise, it is necessary that D < N/P or

@ + b < N/P. (16.13)

For example, in communication systems employing the same band-
width as the original signal, such as a pulse amplitude modulation sys-
tem, a representative signal-to-noise ratio would be about 40 db, or
N/P = 107", In order that characteristic distortion may be disregarded
in this case, it would be necessary for both @ and b to be substantially
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less than 107 nepers and radians respectively. This would correspond to
an rms gain deviation over the transmission band well below 0.08 db
and an rms deviation from a linear phase characteristic well below 0.6
degrees. Since these tolerances are difficult to realize in actual systems,
at least for wire circuits, characteristic distortion rather than noise may
impose a limitation on channel capacity of systems employing about the
same bandwidth as the original signal.

In accordance with (16.01), the bandwidth can in principle be halved
without change in channel capacity if the signal-to-noise ratio is squared,
ie., if N/P = 107® rather than 107" in the previous example. The toler-
able rms amplitude and phase deviations would then be

@+ P K107
Thus both a and b would have to be substantially smaller than about
10~*, which would preclude a substantial bandwidth saving in practical
systems from the standpoint of characteristic distortion, even if it were
feasible from the standpoint of signal power required to override noise.

The above considerations apply when faithful reproduction of the
transmitted signal is required, as for example in data transmission. In
speech transmission considerable distortion can be tolerated, a circum-
stance which permits appreciable phase distortion in the usual frequency
division system without noticeable impairment of intelligibility, but
which cannot be taken advantage of in time division pulse systems be-
cause of the resultant intersymbol interference. The characteristics of
speech sounds also permit a reduction in the bandwidth of the original
transmitted signal, by such devices as vocoders or frequency compandors,
without excessive impairment of intelligibility.
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