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Samples have been cut from single crystals of the nickel-iron ferrite
NiO)o.1s (FeO)o.ssFesOs tn such a way that they contain one and only one
movable ferromagnetic domain wall. The viscous damping coefficient for
this wall, which 7s a measure of the losses associated with domain wall
motion in this material, has been measured as a function of temperature.
This damping shows a very large increase as the temperature goes down to
the region of 77°K. The value of this damping is correlated with the Landau-
Lifshitz equation for the rotational motion of magnetization by means of
previously available theoretical analysis. In addition, it is suggested that
the sharp tncrease in damping at low temperatures is due to a relaxation
associated with a rearrangement of the valence electrons on the divalent and
trivalent iron ions in the ferrite. A tentative phenomenological theory of the
losses based on this mechanism is presented.

INTRODUCTION

The mechanism which contributes most to the permeability of high-
permeability magnetic materials is the motion of ferromagnetic domain
walls. These walls are thin lamellae in which the direction of the spon-
taneous magnetization of the material changes from one domain to
another. As a result, this mechanism contributes a major part of the
energy losses which accompany rapid changes in the direction of the
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magnetization in such materials. In the ferromagnetic metals, it is well
known that these losses ordinarily arise largely from the eddy currents
which are induced by the motion of the domain walls. In the ferrites,
however, the conductivity is so low that the contribution of eddy cur-
rents to the losses is never overwhelming and is often negligible; the
losses must therefore in large part arise from other sources not yet under-
stood. Tt is the purpose of this paper to present some recent studies of
these losses and to discuss their relevance to the losses in ferrites gen-
erally.

In any ordinary sample of a ferromagnetic material, a study of domain
wall motion and the associated energy losses is complicated by the fact
that the domain pattern is very complex. Any attempt to provide a
theoretical explanation of data taken on such samples must involve an
averaging process over many domain walls of varying area, crystal
orientation, ete. This makes it extremely difficult to describe the be-
havior of such patterns uniquely and quantitatively, although some
progress has been made."’ 1'% A method of avoiding this difficulty has been
developed by Williams, Bozorth, Shockley, Kittel’ and Stewart™
working on silicon iron. This method consists in cutting a polygonal
ring from a single crystal in such a way that each leg of the ring lies
along one of the easy directions of magnetization in the crystal. In
silicon iron this leads to a rectangular ring with each leg along a [100]
crystal direction. In the ferrite which we use this technique to study
here, the easy directions are [111] directions, and we use a diamond
shaped sample as shown by the solid lines in Fig. 1. Each leg is along a
[111] direction, and the major face is a (110) plane. If the sample is good
enough, the domain pattern is that indicated by the dotted lines in Fig.
1. This pattern consists of four stationary walls, one at each corner, and
one movable wall which goes all the way around the sample. The mag-
netization thus travels around the sample in two paths, one clockwise
and the other counter-clockwise, and the position of the movable wall
therefore determines the net circumferential magnetization. In such
samples we study quantitatively and in some detail the motion of an
individual movable wall.

Williams, Shockley and Kittel’ studied the motion of the movable
wall on one of the rectangles cut from a single crystal of silicon iron.
They found the motion to be viscously damped, as Sixtus and Tonks'
had in earlier experiments with more complicated domain walls. Be-
cause of the simplicity of their domain pattern, Williams, Shockley and
Kittel were able to calculate the eddy current losses in their.experi-
ments, and to show that they accounted for most of the observed damp-
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ing as expected. There was an additional contribution, however, which
Kittel suggested was due to mechanisms of the sort which give rise to
the width of ferromagnetic resonance lines.” These mechanisms of course
are the controlling ones in the ferrites, where eddy current losses are
small. The motion of a domain wall damped by such effects and un-
affected by eddy currents was first discussed in a classic paper by Landau
and Lifshitz."

The experiments reported in the present paper consist of measure-
ments of the velocity of a movable wall as a function of applied magnetic
field in a sample like that shown in Fig. 1. The measurements are made
by observing the voltage induced in a secondary winding on such a
sample when a known field is applied by means of a pulse of current
in a primary winding. The composition of the ferrites used in these
studies is given by the approximate chemical formula (NiO), 75(FeO)q o5-
Fe,03 . Data have been taken as a function of temperature on several
samples. The large, perfect crystals of the ferrites which are essential
to the success of these experiments have been obtained through Dr.

_ POSITIONS OF
“~ DOMAIN WALLS

Fig. 1 — Sample of ferrite used in this study.
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G. W. Clark from the Linde Air Products Company. Similar studles
have been performed previously at room temperature on Fes0s” by
the author, and in a preliminary way on (NiO)og (¥eO)o.m Fe,0; ° by
the author in collaboration with J. A. Andrus and H. G. Hopper.

THE EXPERIMENTS
Preparation of Samples

The key to the success of experiments of this sort is of course obtain-
ing the domain pattern shown in Fig. 1, so that we have only one movable
wall in the sample. The achievement of this pattern, and the observa-
tion of it when achieved, depend in turn on success in producing a
perfect or almost perfect sample. It therefore seems worth while to
describe the process which has finally emerged as a satisfactory way of
producing these samples.

The rough crystal is first oriented by means of X-rays (Laue and X-ray
goniometer techniques) to an accuracy of a few minutes while it is
mounted in such a position that afterwards we can grind a flat on it
which is coincident with the (110) plane. This flat is ground simply with
a belt grinder. A cut is then made with a diamond saw parallel to this
flat, so that we have a disc whose faces are (110) crystal planes. This
disc is usually made about 214 to 3 mm thick. The second face is ground
accurately parallel to the first in a paralleling block. A flat coincident
with the (100) plane is ground on the edge of this disc for later use in
orienting the sample in the plane of the dise. This flat is also ground with
a belt grinder after orienting the disc with Laue and X-ray goniometer
techniques.

The disc is ground as smooth as possible with 30314 emery, and then
very carefully polished. The polishing is done first on a lap surfaced
with No. 0000 french emery paper, with Linde A abrasive loose on top
of the emery paper. After this the lap is surfaced with a sheet of very
smooth paper and then Linde B abrasive is used. The polishing process
takes four to eight hours per disc, and removes all pits visible under
50X magnification, except those inherent in the erystal. Only on such a
smooth surface can the very small holes which sometimes occur in these
crystals be seen. Sometimes, however, the polishing process conceals
fine cracks. It also cannot reveal variations in chemical composition
which sometimes occur from point to point in the crystals. Such com-
position variations are presumably variations in the concentration of
divalent iron from point to point in the erystal. In order to reveal these
latter imperfections, the disc is etched for three hours by boiling it in
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50 per cent H,SO, under a reflux condenser. An asbestos pad is placed
between the flame and the bottom of the flask containing the H,SO,
in order to prevent sharp temperature fluctuations in the bath. The rate
of the etching attack, and the quality of the surface it leaves are sharply
dependent upon temperature. It should be mentioned that if this etch
is used on the discs before polishing, the surface remains rough or may
even be made rougher, so that it is impossible to detect the imperfec-
tions in the disc. The etch must start on a smooth surface.

Once the disc is cut, polished, and etched, if it is found to be sufficiently
free of imperfections, a sample is cut from it in such a way as to avoid
those which there are, as they are revealed by the polishing and etching
processes. First the diamond-shaped hole is cut by means of a jig whose
rotational posicion with respect to the disc is determined from the (100)
flat on the edge of the disc. This jig is a piece of steel which is driven in
vibration vertically with a magnetostrictive drive.” The surface of the
disc is covered with a slurry of carborundum or diamond dust, and this
abrasive is made to cut a hole in the disc as the vibrating jig is slowly
lowered. With the hole cut in the proper orientation, the outer parts of
the disc are ground down to form the legs of the sample. Another jig of
the proper shape is used to hold the sample in position during this process.

A hysteresis loop is taken as soon as the sample is cut. A relatively
good loop taken on our best sample is shown in Fig. 2. All such loops
on these samples are taken on the Cioffi recording fluxmeter.® This
loop is obviously not yet in the form which we finally need. In order to
square the hysteresis loop, we anneal the sample for approximately an
hour at 600°C in a magnetic field of 10 to 20 oersteds. The field is pro-
duced by running a current through a few turns of glass insulated wire
wound on the sample. After such a heat treatment the hysteresis loop
of this sample assumed the form shown in Fig. 3.

Once the sample is prepared, the next problem is to observe the domain
pattern and find if any important deviations from the pattern shown
in Fig. 1 occur. The heat-treatment we give them corrodes the polished
surfaces of the sample, and of course the faces exposed when the sample
is cut from the dise have not yet been polished. Consequently both the
major (110) faces of the sample and the outer faces of the legs are pol-
ished, and the sample is then etched in the same way as before. Usually
a hysteresis loop is again taken at this point as a check. If the sample
is good, it is not significantly different from the loop taken immediately
after heat-treatment. The sample is brought to a demagnetized con-
dition at this point so that the movable wall will be near the center of
the sample where it can be observed. This completes the process of
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Fig. 2 — Hysteresis loop taken on sample before heat treatment in a magnetic
field.

preparing the samples for observing their domain pattern and for per-
forming our experiments on them.

Four samples have been prepared in this way for our studies on
(NiO)o,75 (FCO)Q_% FGzOs .

Domain Pattern Observations

The method used to observe the domain walls on these surfaces is
the same as that used by Williams and his collaborators.” We will there-
fore not describe it in detail. It consists essentially of observing through
a microscope the pattern formed by a magnetic colloid on the surface.

The observation of domain patterns, even on these carefully pre-
pared samples, is difficult. There is still some pitting on the surfaces.
Also, many of the surfaces become rounded in the process of polishing.
This produces surface spikes of the sort discussed by Williams, Bozorth
and Shockley.” The result is that on many surfaces the domain pattern
of the sample as a whole has to be discerned in a substantial amount
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of extraneous structure such as surface spikes and pits. It is therefore
impossible to show in one picture the whole pattern as diagrammed
in Fig. 1. However, more detailed pictures of parts of the pattern do
show that it is there. The essential features of the pattern on our best
sample are shown in Figs. 4 and 5. Fig. 4 shows the stationary wall at
one corner, and Fig. 5 shows a section of the movable wall on one leg.
Differentiation of the domain walls in Figs. 4 and 5 from the many
scratches is not very difficult after one has some experience in such
observations.

The variation in wall position along the leg shown in Fig. 5 is due to
the effects of strains and other imperfections, present even in this care-
fully prepared sample, in determining the position of the wall at rest.
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Fig. 3 — Hysteresis loop taken on same sample as loop in Fig. 2 after annealing
for one hour at 580°C in a magnetic field of approximately 20 oersteds.
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Fig. 4 — Picture of domain pattern at one corner of sample. The stationary
wall is indicated by arrows.
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Fig. 5 — Picture of a section of the movable wall along one leg of sample. The
line has been slightly emphasized by retouching after the picture was taken. The
edge of the leg can be seen at the bottom of the figure.

It is unlikely that the wall is so distorted from a plane when in rapid
motion, however, since then the driving force and the viscous damping
resistance to motion are both much larger than the effects of these
imperfections. The imperfections, of course, are primarily effective in
determining the coercive force, as read from the hysteresis loop.

The domain pattern as traced out on each of four samples is discussed
below:

Sample 1. Although they had spikes associated with them, the sta-
tionary walls expected at the corners could be seen, at least in part. In
addition, at one of the acute angle corners there was some rather ex-
tensive domain wall structure. This structure had one form when the
sample was magnetized in one direction, another when it was magnetized
in the other. It was due to the presence of a small void at this corner
whose magnetic energy was reduced by having domains of reversed
magnetization around it. The existence of this void was established from
structure which appeared in the spots on an X-ray Laue photograph
taken at this point. The process of magnetization in this sample con-
sisted in (a) the growth of the wall from the nucleus around this void
until it existed all around the ring, and (b) the motion of this wall to
the other side of the sample, where it again shrank to a configuration
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which minimized the magnetic energy of the void. As a result of this
state of affairs, the wall was not in equilibrium in the middle of the
sample, but always shrank around the void so as to magnetize the sample
in one direction or the other. It was impossible therefore to demagnetize
the sample so that the wall was at the center of the legs and then have
the wall stay there to be observed. The wall could be brought to the
center, however, and held there using the technique mentioned by
Williams and Shockley® (see Fig. 8 in their paper). The legs of the sample
were so small that it was difficult to do this, but the wall was found on
three legs of the sample at different times in this way. The wall curved
a good deal in traveling along the legs. This sample was etched repeatedly
so that data could be obtained as a fuction of sample dimensions. The
variations observed led to a viscous domain wall damping independent
of dimensions if it was assumed that the domain wall was perpendicular
to the major (110) face. Therefore it was to this (112) plane that the
wall was brought for observation.

Sample 2. Stationary walls at the corners were rather patchy but
vigible. The movable wall was traced along the outside faces of two legs,
which indicates that it lay in the (110) plane. The wall curved a good
deal. There were also other walls which enclosed patches of surface. It
is suspected that these patches were the bases of spike domains extending
into the sample from strain patterns on the surface. The sample was
therefore etched again. Unfortunately, the bath apparently became
locally overheated, and this etch took off rather more material than
expected. It also left a matte surface on which domain walls could not
be observed. The data taken on this sample, however, check those on
other samples if we assume a pattern in which the movable wall is in
the (110) plane, as our observations lead us to suspect.

Sample 3. The stationary walls at the corners were seen, but only
with difficulty. They were patchy. There was a good deal of structure
all along the legs on the major (110) face of this sample, but no wall
which ran around the sample could be seen on this face.

On the outside of two of the legs, which are (112) faces, pitting and
extraneous walls were so bad that the main wall could not be discerned.
On a third, the wall could be traced most of the way. On the fourth,
however, there were two walls, one of which could be traced along the
whole leg, the other of which went only three-fourths of the way along
the leg. Both walls on this leg showed a good deal of curvature. It there-
fore appears that the movable wall lies in the (110) plane, but that
there is another wall big enough so that it may move and affect our data.
This picture of a domain pattern with two movable walls was confirmed
by checking the data obtained on this sample with those from others.
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Sample 4. The stationary walls at the corners, although patchy, were
seen. There was some extraneous domain wall structure on the major
(110) faces, but nothing which looked at all like the main wall.

On the outside (112) faces of the legs, however, the wall was traced
almost all the way around. Only short sections were impossible to trace.
The wall curved as usual, and there was some extraneous domain wall
structure on these faces, but substantially the whole of the ideal pattern
shown in Fig. 1 was seen on this sample. The hysteresis loops shown in
Figs. 2 and 3 and the domain pattern pictures shown in Figs. 4 and 5
were taken on this sample.

Not only was the domain pattern on sample 4 the best and most com-
plete, but the data taken on this sample was much the most reproducible.
We shall therefore report the data taken on this sample in detail, and
simply refer to the results on other samples as a check and to indicate
the sort of variations which occurred from sample to sample.

M easurements

Our procedure in making the measurements is as follows. The sample
is wound with a primary and a secondary winding. A square pulse of
positive voltage is applied to the primary winding in series with a re-
sistor which is large enough to keep the pulse rise time short. The rise
time must be short compared to the time required for the field produced
by the pulse to reverse the magnetization of the sample. On the other
hand, since the pulse is applied for the purpose of reversing the magneti-
zation of the sample, the length of the pulse must be at least comparable
with the time required for the reversal to occur; if possible, it should be
longer than this. The reversal time, of course, is the time required for
the mobile domain wall to move from one side of the sample to the other
under the field produced by the applied pulse. A second pulse, of nega-
tive voltage, is applied to the primary during each cycle of the pulser
in order to bring the wall back to its original position so that the phe-
nomenon may be observed repetitively.

By synchronizing an oscilloscope sweep with the pulser, the signal
induced in the secondary winding is observed while the applied pulse
is on the primary. Since this signal is proportional to the velocity of the
wall, it is constant to a first approximation during the application of a
constant field. Irregularities in the erystal may cause the velocity of the
wall to vary somewhat as it moves across the sample, however, and this
will cause the signal to vary too. In this case, the observer reads the
average value. Fig. 6 shows an example of the signal induced in the
secondary winding as seen on an oscilloscope. Sample 4 was used to
obtain this picture.
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WALL VELOCITY IN CM PER SEC

Fig. 6 — Oscilloscope trace of the induced voltage in the secondary winding
while a square current pulse 8y sec long was applied to the primary. The voltage
spike at the beginning is not completely understood, but is thought to be con-
neeted with the fact that the domain wall spikes associated with imperfections
do not pull back on the domain wall until it has moved a little distance. In this
sample, once this initial peak is over, the wall velocity comes to its steady state
value and is not much disturbed by imperfections, so that the observer need do
no averaging. In this case, the wall was moving with a velocity of 3500 ecm/sec.
At this velority, the wall was unable to reverse the magnetization in 8u sec, so the
signal ends as the magnetic field goes to zero at the end of the pulse. After the
pressure on the wall due to the magnetic field stops, the domain wall spikes asso-
ciated with imperfections pull the wall back slightly, giving rise to the voltage
spike in the opposite direction.

The applied field due to the primary pulse is deduced from the cur-
rent in the primary winding (measured by observing the voltage across
the series resistor) using the solenoid formula H = 4wNI. To obtain the
relation between wall velocity and induced voltage per secondary turn
we have:

Volts/turn = (d®/df) X 107° = 8aM,(Az/A)wym X 1075, (1)

where (Az/At) is equal to the domain wall velocity », and wyan is the
width of the wall between the boundaries of the sample in the direction
perpendicular to the direction of magnetization. It is in deriving (1),
of course, that we use our detailed knowledge of the domain pattern in
the sample.

We are thus able to obtain a value of the domain wall velocity » for
each value of the applied field H. These data are the results of the
experiment.

The value of M, used in (1) is the measured value (322.5 cgs units/cc)
at room temperature. The values used at other temperatures have been
deduced on the assumption that M, varies the same way with tempera-
ture in this material as it does in magnetite as measured by Weiss and
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Forrer." We have extrapolated their data to get the variation up to our
highest temperatures.

In general, a plot of the data turns out to have the form shown in Fig.
7. This is the data taken on SBample 4 at 201°K. The wall does not move
until the field exceeds the coercive force required to get it past various
imperfections in the crystal. Its motion in fields higher than this is
viscously damped. The wall velocity, », therefore follows the relation:

v=GH — H)), (2)

where H. is the coercive field and @ is the slope of the line drawn through
the data. The value of G is high if the losses are low, and vice versa, of
course.

RESULTS

Data on Sample 4 of the sort shown in Fig. 7 have been taken at
various temperatures, We show in Fig. 8 a plot of v/(H — H,) as a
function of temperature for this sample. Clearly, the outstanding fea-
ture of the data is a tremendous increase in the viscous damping of the
domain wall at low temperatures.

Since the other samples were not as satisfactory, for reasons given
above, we do not reproduce the data on them explicitly. Similar data
have been taken on Samples 1 and 2, however, and they show the same
behavior within their accuracy except that the very sharp decrease in
v/(H — H.) seemed to occur at a somewhat higher temperature. This
difference may be due to slight variations in composition among the
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Fig. 7 — Typical plot of actual data for domain wall velocity as a function of
applied field.
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samples (Chemical analysis indicated that Sample 1 was
(N10)o.77(FeO)p uFe0s

as distinet from
(Ni10)g 75(FeO)g 2 €204

for Sample 4) but it is possible that other more subtle differences such as
the arrangement of the divalent nickel and iron ions are involved. Volt-
‘ages induced in the secondary winding on Sample 3 for various applied
fields were much higher than for the other samples at room temperature.
This confirms the presence of more than one wall as indicated by the
domain pattern. Therefore no further data were taken on this sample.

Each sample, after it had been cooled to the temperature of liquid
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Fig. 8 — Plot of »/(H — H.) for Sample 4 as a function of temperature.
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Fig. 9 — Plot of wall veloeity as a function of applied field at 77°K. Note that
at the higher fields the velocity is no longer a linear function of the applied field.

air once, gave the same value of »/(H — H,) as before. Samples 1 and 2,
however, were cooled several times, and after the later runs they no
longer did this. In both cases the value of v/(H — H.) as deduced from
the ideal domain pattern and (1) was lower by about one-half; we inter-
pret this to mean that the domain pattern in these samples was changed
by the repeated thermal shock. Direct confirmation of this interpreta-
tion by observation was not possible, however, for reasons indicated
above in connection with domain pattern observations on these samples.

In view of the fact that only one point is plotted beyond the knee of
the curve in Fig. 8, it should be emphasized that continuous qualitative
observations made while the sample was cooling showed that the change
was continuous and monotonic. On Sample 1, furthermore, the data at
201°K was somewhat down from the knee of the curve [v/(H — H.) =
18000 em/sec/oe] because of the fact that the knee occurred at higher
temperature as mentioned above.

Another feature of the data is indicated by Figs. 9 and 10. Data dis-
cussed thus far have been taken at the lowest convenient velocities in
order to minimize the possibility of wall distortion. However, when
data were taken at higher fields, a non-linearity of the sort shown in
Fig. 9 appeared. The average velocity increases more rapidly at the
higher fields than our viscous damping coefficient would lead us to ex-
pect. This effect was observed at all temperatures, but as comparison
of Figs. 7 and 9 will show, it set in at lower velocities at low temperatures
where the enlarged viscous damping appeared. Simultaneously with the
appearance of this non-linearity in the apparent average velocity of the
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wall, the voltage induced in the secondary winding during the pulse of
constant applied field is seen from the oscilloscope trace to distort
with time. Fig. 10 shows a series of traces observed at room temperature
on Sample 4 which show this distortion increasing from (a) to (d) as the
applied field is increased. At the highest fields the trace forms a peak
which is almost triangular in shape.

We shall discuss the theoretical implications of these data in the next
two sections.

WALL VELOCITY IN CENTIMETERS PER SECOND

L———— ¥73 SEC“———)I

Fig. 10 — A series of oscilloscope traces showing the deviation of the wall ve-
locity from a constant with time at the higher applied magnetic fields and there-
fore at the higher velocities. These pictures were taken at room temperature, but
similar phenomena occur at all other temperatures in the range of applied fields
where the nonlinearity in velocity shown in Fig. 9 becomes apparent. The ve-
locities, as shown, increase from a to d.
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THEORY

A theoretical analysis of the experimental results given in the last
section divides itself rather naturally into three parts. First we char-
acterize the data in terms of an equation of motion for unit area of
domain wall. This means we determine the constants of motion (viscous
resistance and coercive force in our case) of unit area of wall, Secondly,
we show the relation between the viscous resistance of unit area of
domain wall, and the constants which characterize the ferromagnetic
material in general (saturation magnetization, crystal anisotropy, ete.).
This is essentially an application of the recent work of Becker” and
Kittel.” Lastly, we calculate the magnitude of the damping from a
relaxation mechanism which accounts for the low temperature effect
shown in Fig. 8 at least qualitatively.

Consider unit area of a 180° domain wall between two regions of
saturated material. Such a system has an equation of motion for small
amplitudes of the applied magnetic field H which may be written:

mz + Bz + ez = 2M H, 3)

where z is the displacement of the domain wall along its normal, m is
its mass per unit area, 8 is a parameter measuring viscous resistance, and
@ is a stiffness parameter which has meaning only for small fields such
as those used in initial permeability measurements. When fields larger
than the coercive force are applied, as in our experiments, the term con-
taining « disappears and the field effective in moving the wall is less
than the applied field by an amount equal to the coercive force; this is
shown by the data given previously in the section on results. This re-
formulation of (3) is quite reasonable when one remembers the spikes
which pull back on the wall, in the experiments of Williams and Shockley,
for small wall motions and snap off entirely if the wall moves a large
distance. Furthermore, since the velocity of the domain wall rises to
its steady value in a negligible time in these experiments (Fig. 6) the
initial term in (3) is also negligible. As these remarks indicate, under the
conditions of the experiment in wall velocity, (2) takes the form:

Bz = 2M,(H,,, — H.). (4)

This relation obviously fits the data given previously.
The second step in the theoretical analysis starts from an equation of

—
motion for the magnetization M in a small volume which was first used
by Landau and Lifshitz,’ and takes advantage of more recent work of
Becker” and Kittel."” If we consider a volume small enough so that the
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magnetization in it is everywhere uniform even if we are inside the
domain wall, our equation of motion is:

djll

i vIM X H] — N/ MM x (3 x ). (5)

Here v is the gyromagnetic ratio (ge/2 me), and A is a parameter, as-
sumed to be characteristic of a given ferromagnetic material, which is

5
determined by the magnitude of the damping effects in the motion of M.
The magnitude of the last term on the right in (5) is thus determined
by the amount of the damping losses.

e
The rate of dissipation of energy in the small volume is H - (dM/dt),
—_— 4
where M is the magnetic moment of the volume, and H is the total
—_
magnetic field in the volume. The value of H requires some discussion.

Outside the wall?{ = }T)Io where ﬁo is the applied field, which is parallel
to the wall. When the wall is moving, however, there is an additional
field TI, inside it. This field, which is normal to the wall, is a demag-
netizing field which arises from the tendency of M in the moving wall to
have a component normal to the wall. This field has just such a value
that the magnetization in the moving wall precesses about it with the
Larmor frequency. Its value is:

H, = —(0/v)(30/2), (6)

as Becker™ has shown. Here v is the velocity of the wall, z is a distance
coordinate normal to the wall, and 6 is the rotational angle of the mag-
netization as we pass through the w all along z. In31de the wall, H, is
much larger than H, , but in any case H = H,+ H, . From (5) we find:

H-dM/dt = \H2, (M)

as Kittel” first showed. In the theory of the domain wall it is shown
that 86/9z in the wall is equal to the square root of the ratio of the in-
crease in anisotropy energy as the magnetization turns away from the
easy direction of magnetization, to the exchange energy constant. That

- 14
18 3

a0

5, = (90 — g(00)] /A (8)

The exchange energy constant A is defined by the following expression
for the exchange energy per unit volume due to gradients in the direction



MOTION OF INDIVIDUAL DOMAIN WALLS 1041

of magnetization:
Exchange energy/unit vol = A[(Va)® + (Vau)® + (Vas)’], (9)

where a;, a», and ay are the direction cosines of the magnetization.
g(#) is the anisotropy energy:

g(B) = K] (afaf + a22a32 + C!32C!|2), (10)

expressed in terms of 6, and ¢(f,) is the anisotropy energy along the
direction of easy magnetization. Note that [g(6) — g(6o)] is always posi-
tive. K; is the first order anisotropy constant.

If we use (6) and (8) in (7), and integrate over z along a cylinder of
unit cross-section normal to the wall to get the rate of energy dissipa-
tion for unit area of moving wall, we have:

f H- d_j —— dz = W/ 4”2)f lg(0) — g(60)]"* do = 2H M, (11)

where 6; and 6, are the angular positions of M on the two sides of the
wall. 8 — 6; = m, of course, since we are considering a 180° domain
wall. In order to obtain (11), we have used (8) to transform from in-
tegration over z to integration over 8 as well as to evaluate (7). We set
our result equal to 2 ,H (pressure on the wall) times » since this is the
rate at which the wall, considered phenomenologically, does work. We
may now write:

2M ,y2 AV
v = B2
A f [g(6) — (8] db

H,. (12)

This is the desired relation between wall velocity and applied field which
is to be compared with (4). In this way we find:

= otam | “[9(6) — 9001 de. (13)

We have thus shown the relation between the wall parameter 8 and
the parameter A which measures in general the losses associated with
motions of the magnetization.

The third part of our theoretical analysis is concerned with a cal-
culation of the damping parameter A, or rather the relation between
v and H itself, from an explicit physical mechanism. Such a calculation
has not been made in the past since the appropriate mechanism on
which to base it has remained obscure. Verwey and his co-workers"
have explained the well known transition at about 115°K in Fe;O, as
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an order-disorder transition in the arrangement of the divalent and
trivalent iron ions. M. Fine of Bell Telephone Laboratories has found a
remnant of this transition in crystals of the same composition as those
studied in the present research, by means of ultrasonic measurements
of elastic constants.”® We propose that the mechanism which causes the
sharp rise in the damping of domain wall motion at low temperatures is a
relaxation associated with this transition. Wijn and van der Heide"
have explained in this way observations of theirs of losses associated
with initial permeability at low frequencies in certain other polycrystal-
line ferrites. The time associated with this relaxation should be short
because this rearrangement of ions involves only the motion of electrons
from one site to another.”® It should be of the order of the relaxation
time associated with the electrical conductivity of Fe;Os. Snoek™ has
suggested some time ago that losses in the ferrites were due to an after-
effect (relaxation) which, because of the short time constant involved,
must be associated with electron migrations.

It is extremely useful to compare our data with a theory of the damp-
ing based on the above relaxation mechanism no matter what assump-
tions we make in detail about what it is that relaxes. We shall see that
we are led quite generally to the result that v/H ~ 1/r where 7 is the
relaxation time for the process. However, in order to perform this cal-
culation explicitly we must make more detailed assumptions about
exactly what quantity relaxes with the relaxation time 7. Changes in the
direction of the magnetization cause changes in stress in the sample
because of magnetostriction. One possible assumption is that the re-
sulting strain would lag behind this stress and mechanical energy would
be dissipated in the crystal. This mechanism, however, cannot act in
our case. The magnetization in the two domains on each side of the wall
points in opposite directions, but causes the same strain in both, and
they have such a large stiffness that the thin region occupied by the
domain wall assumes this same strain even though the direction of the
magnetization is different there. Thus regardless of the stresses produced
in the wall, the strains remain the same, inside and outside the wall,
whether it is moving or not; under these conditions no work is done on
the lattice, and no energy can be lost in this way by the moving wall. A
calculation has been made by the author on the assumption that it is
the magnetization itself which relaxes with relaxation time 7. This
assumption leads to the result that wall velocity is not linearly dependent
upon (H — H.); it is therefore not correct, since the data shows such a
linear dependence. A similar result is to be expected if we assume that
the dielectric polarization relaxes.
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What seems at present likely to be the approximate nature of the
mechanism, and what we will assume is the nature of the mechanism
for the purposes of an illustrative calculation is as follows. As the domain

—
wall passes a point in space, and the direction of M changes, the electrons
on the divalent and trivalent iron ions tend to rearrange themselves so

as to minimize the magnetocrystalline anistropy energy.” If ﬁ? changes
slowly this anistropy energy is near the minimum possible value (the
reversible value) at all times, and the process is almost isothermal. As a
result of the fact that the process deviates irreversibly from equilibrium,
however, net work is done in bringing about the change. If, on the other

— ,
hand, the direction of M changes so suddenly that the electrons have no
time to rearrange, the process is adiabatic, and the magnetocrystalline

anistropy energy varies more widely with the angular position of Il_{’ .

Since our data is taken at low velocities and extrapolated to zero
velocity, it seems most appropriate for us to make a calculation of the
losses on the assumption that as we increase the velocity of the wall
we are deviating from the isothermal condition. Let us define as a ther-
modynamical system the part of the magnetic lattice which lies in a
small volume fixed in space. This volume is a sheet of unit cross-section
in which the magnetization is uniform and which is part of the cylinder
of unit cross-section normal to the wall mentioned in connection with
(11). From the first law of thermodynamics, as the wall passes the small
volume, we have:

dw = dU — dQ = dy, (14)

where d@ is heat added to the system, dU is a change in internal energy,
dw is work done on the system, and g is the anisotropy energy as-
sociated with our rearranging electrons. Note that ¢, is a term in the
free energy of the magnetic lattice. The free energy includes other
terms in addition to g, and indeed there is in general another term in
the magnetocrystalline anistropy energy; we will not consider any of
these, however, since they also integrate to zero as the domain wall
passes our small volume. Similarly, there are many contributions to
dw, but we will concern ourselves only with the term which does net
work on our system, the pressure on the wall times its velocity. If we
now consider changes in our system with time we have from (14):
dw dg

il (15)

The rate of doing work on unit area of the wall moving along our
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cylinder, which is the integral of dw/dt over the cylinder, is 2M ,Hw
as in (11). The rate of dissipation of energy in this section of the wall
is somewhat more difficult to caleulate. It is the sum of contributions
from all the small volumes along the cylinder. In order to calculate the
contribution from the small volume we are considering, we first note
that if the process is reversible,

dg = g“; a8, (16)

where 6 is the angle of rotation of ]1—1) . Physically, the factor dg/d6 repre-
sents a torque on the magnetization. We will assume that (16) holds
even when the domain wall passes our system at a finite velocity and
we have departed slightly from isothermal equilibrium. The field H.,
defined in (6) transmits this torque to make the magnetization rotate
through the angle 8, but we will not go further into the details of this
process.

As the domain wall goes by, dg/df, which we will abbreviate as g’,
changes. If the process were reversible, g’ would be zero at all times and
the torque on the magnetization would always have its equilibrium
value. Actually, as we deviate more and more from the reversible process
by moving the wall faster, the electrons are no longer able to rearrange
fast enough, and ¢’ deviates from zero while continually relaxing toward
it. We must form our analysis in such a way that a maximum is estab-
lished for ¢, since even if the magnetization moves infinitely rapidly,
g’ does not become infinite. Since the electrons minimize their free energy,
it must be positive, and we write ¢ = g1, — g1 80 that ¢" = J1e — 01
where g relaxes toward g1 . Note that the torque relaxes downward
from a value, g1,, , associated with the adiabatic anisotropy energy (fast
motions of the magnetization) to a value zero, associated with the iso-
thermal anisotropy energy (slow motions of the magnetization). We
may now write:

dgy _ gi= — g 17
a7
Physically, this relation assumes that the torque on the magnetization
relaxes in the same way if g1 is a continuous function of time as it
would if ¢} and ¢; differed but gi.. was constant. Here 7 is the relaxation
time associated with the rearrangement of divalent and trivalent iron
ions. If we write (17) in the form:

d_5ﬂ_|_g_;=fliz (18)
dt T r ]
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we see at once that the solution for g1 as a function of ¢ as the domain
wall passes the position of our small volume is:

g0 = %e_”' f (D" dt. (19)

We have ignored the solution of the homogeneous equation, as it con-
tains a factor ¢ —

In order to evaluate (15) for our small volume, we need a more ex-
plicit value for g;. From the Fourier transformation we may write:

J1(t) = f Glo(w)e™’ da. (20)
Consequently:
gi(t) - le—t,'f ff G;m(w)e(”f-{-{u)tdw dt. (21)
T Lo

This can be integrated over t. If we do this, then bring the factor '
out from under the integral sign, we find:

* G;w("-’) ei.'.ul

e 1 + twr (22)

gi(t) =

Now the frequencies for which we get a contribution to the integral in
(22) have an upper bound determined by the velocity and the thickness
of the domain wall, of course. The faster the domain wall moves, the
higher the upper bound on the frequency. We have been careful to make
our measurements near zero wall velocity, and the data clearly extra-
polates linearly to zero. This was done in order to minimize the possibility
of wall distortion, but it also is consistent with our assumption of al-
most isothermal conditions. We are therefore justified in assuming that
wr < 1 for all the frequencies in G1.(w), and we can expand the factor
1/(1 4+ dwr) in (22). We obtain:

gi(t) = f_ i [1 — (iwr) + (o)’ + - -1G1e(w)e™" de, (23)

and if we form the derivatives of (20) and compare them with the terms
in (23), we see that:

dg1.,(1) 4 d*g1,,(t)

o I8 + cee (24)

.‘I;(t) = g;m(t) -7
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Since the value of 7 is very much less than one, the series in (24) con-
verges quite rapidly at low domain wall velocities, and we only keep
the first two terms.

Until now, we have been concerned with a small volume of the mag-
netic lattice fixed in space. As in deriving (11), if we wish to calculate the
rate of loss of energy for unit area of the domain wall moving with con-
stant velocity, we must integrate dg,/dt over a cylinder of unit cross-
section normal to the wall. g, is now a function of (f — z/v) where v is
the velocity of the domain wall, and z is a coordinate normal to the wall.
If we form this integral, and use (16) and (24), we find:

f d91 dz = _[: I:g;m(t — z/v) — dgl” (t — z/v )]M dz (25)

We note that:

dgin(t —2/v) _ _ dgia(t = 2/2)
dt dz !
do(t — z/v) _ —y do(t — z/v)
dt dz '

For the first term in (25) we find, using (26):

(26)

f gt — d"(‘ z/”) dz = —v f Gt —2/0)do =0, (27)

since g, is the same on both sides of the domain wall. Now if we use (26)
in the second term of (25), and remember the result in (27), we have:

dgy s ® dg(t — 2/v) d6(t — 2/v)
@ dz = —7v 3 p 7 dz. (28)

We may, without loss of generality, evaluate the intergral in (28)
at ¢t = 0. It is therefore the integral of a function of z over z. In order to
evaluate it, we wish to express g1, as a function of 8. We have:

[ ==t [ (&) o )

' g, do
—_— 2 glm [u—
ket j;l de® dz b, (30)

where we have replaced g1, by dgi../d6. We note now, from the relation
between g and g, , that dg,/dt = —dg/dt. We therefore set the right hand
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side of (30) with reversed sign equal to:
* dw
L o dz = 2M.Ha,

as mentioned after (15) to get the relation between the velocity of the
domain wall and the applied field. As we shall see later, the right hand
side of (30) is positive if we use a g,,, associated with a positive contribu-
tion to the anisotropy energy. We find:

v = r fﬁg dzglm—d_ade 0. (31)
9, do* dz

The derivatives of # with respect to z in (29), (30), and (31) are to be
evaluated by means of (8) and (10). In using these equations, of course,
we are assuming that the wall is moving slowly enough so that its shape
remains that of the wall at rest.

Equation (31) shows that » ~ H/r as we mentioned earlier. Inspec-
tion of Tig. 8 shows that this relationship explains very satisfactorily
the sharp drop in v/(H — H.) at low temperatures if we remember that
r depends on temperature as follows:

r =1, e (32)

where € is an activation energy.
Finally, the right hand side of (30) may be set equal to:

[ a-astjan a,
as calculated from the Landau-Lifshitz equation, see (11), to obtain a
value for A. We find:

fg dE
J1 df
0, do® dz a0

[ *
j; [9(6) — g(60)]"* db

'YZA 12

A=r17 (33)

DISCUSSION

It is clear that (4) fits our experimental data at each temperature.
By fitting our data to this expression we obtain values for 8, the para-
meter characteristic of the material which measures the damping of the
wall. Values of 8 obtained in this way are given in Table I. A more
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correct value of M, for Fe;04 at room temperature (475 c.g.s. units) has
been used in calculating the 8 given in Table I than has been used in
previous calculations.

In Table I we give in addition to values of 8, values of A at room tem-
perature obtained from (13). The value for Fe;0s is calculated from the
new value of 8 and also corrected for the error mentioned in Reference
14. Values given in References 7 and 8 are somewhat in error. The values
of 8 and \ given for Fe;O, in Table I are the remainders after the contri-
bution due to eddy currents has been subtracted out by means of the
low field calculation of Williams, Shockley, and Kittel,® [see their Equa-
tion (11)].

TasLE I — Room TEMPERATURE DaTA oN Fe;O4 AND
(Nio)n.vs (Feo)o.za Fe.04

(c.g.s. units)

8 (corrected for eddy‘ A domain A ferromagnetic
currents) wall resonance
FesOgo oo i 0.44 5.5 X 10% 9 X 108
(Ni0)o.7 (FeQ)g.2s FesOy. ... ... ‘ 0.023 4.6 X 107 10 X 107

TasLe IT—Data For (NiO)oss (FeO)q 25 FesOy*

T(K) My (c.g.5. units) K1 (ergs/cc) % ‘Ei 555; /‘Zgg ?‘{g‘;'g'l“l’;n‘i"t‘;‘}‘
77 341 —8.1 X 10¢ 158 6.3 X 10°
201 335 —5.4 X 10¢ 26150 4.4 X 107
300 322.5 —3.8 X 10¢ | 28500 4.6 X 107
363 309 —3.1 x 10* | 32500-35300 4.0-4.3 X 107
400 298 —2.8 X 10* ‘ 31750 4.5 X 107
445 281 —2.4 % 104 I 36850 3.9 X 107

* The value of M, at 300°K is measured from the hysteresis loop of Fig. 3.
Other values were obtained by assuming that M, varied with 7" in the same way
as observed by Weiss and Forrer!! in.Fe;0, .

The evaluation of A from (13) is done as follows. Since the wall is in a
(110) plane, we find from (10):

g(@) — g(tn) = |I§‘i (2/4/3 — 4/3sin’ 6)”, (34)

N
where @ is the angle between M and the [100] direction which lies in the
plane of the domain wall. 6 is cos™'(1/4/3) on one side of the wall, and
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m + cos ' 1(/4/3) on the other. Then,

r4cos—1(1/+/3) o
[ (9@ — 9@ do = 092 v/[Ke].  (35)

0s—1(1/4/3)

In performing this integration, care must be taken to use the positive
value of the square root over the whole interval. It should be noted that
in using (8) and (10) to evaluate (13) we are assuming that the wall is
moving slowly enough so that its shape is the same as that of the wall
at rest. A is best evaluated from a fundamental relation derived by
Herring and Kittel” between A and the Bloch constant:

A = [8/Q]"[k/13.3C"), (36)

where % is Boltzmann’s constant, C' is Bloch’s constant as used in the
relation M, = My(1 — CT**), S, is the atomic spin, and @ is the atomic
volume. (S,/Q) is equal to the saturation magnetization at 0°K divided
by twice the Bohr magneton.

For Fe,0y, we find ¢ = 4 X 107" by fitting the Bloch T"* law to
the saturation magnetization measurements of Weiss and Forrer."
From (36), assuming M, at O°K is 505 c.g.s. units, we then find 4 =
1.24 X 107", Furthermore, K; = —1.1 X 10° as given by Bickford,” and

v = (1.76 X 10Mg/2 = 1.865 X 10,

where we have used Bickford’s™ value (2.12) of ¢.% Now from (13) we
find

A =55 % 10°

in Fe;O4 at room temperature.

For (NiO).15(FeO)o.25Fe:0;, we assume that M,, while different
from that for FesO4, varies in the same way with temperature so that
¢ = 4 X 10°°. From our measurement of M, at room temperature
(322.5 c.g.s. units) and this assumption about the variation of M, with
T, we find that M, at 0°K is 342 c.g.s. units. This leads by (36) to A =
1.09 X 10~°. Ferromagnetic resonance experiments™ done by W. A. Yager
and F. R. Merritt in collaboration with the author on spherical single
crystals of the same ferrite material as that used in the present research
give a g value of 2.14 at all the temperatures mentioned in Table II
except 77°K, where ¢ = 2.19. These values are used in determining the
value of y[= 1.76 X 10" /2] in (13). The anisotropy values in Table 11
are also taken from the results of these ferromagnetic resonance experi-
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ments. The K; at room temperature is —3.8 X 10*. The room tempera-
ture value of A domain wall given in Table I and the values at various
temperatures given in Table II are obtained from (13) using these data.
An independent value of A may be obtained from the ferromagnetic
resonance line width. The relation between the observed line width
2AH and \ has been given elsewhere.” Sample shape enters this relation,
but not in a critical way, and we therefore ignore it except as it affects
the value of the dc magnetic field at resonance, H,., . The relation is:

X = A-H'YMs/Hres- (37)

From Bickford’s” data on line width and (37) we find A = 9 X 10° for
Fey04 at room temperature. From the ferromagnetic resonance data
reported elsewhere™ on (NiO)o.z5(FeO)o.s5l'e;0;, the material used in
the present research, we find A = 10 X 10" at room temperature. Table I
compares the room temperature values of A obtained in the two ways on
the two materials.

The differences between the domain wall experiments and the fer-
romagnetic resonance experiments lead to quite different behavior of
A in the two cases at low temperatures. These differences can be under-
stood in terms of the frequency dependence of A as given by an extension
of the relaxation theory given in the third part of the theoretical dis-
cussion. A discussion of these relationships must await the detailed
report on the ferromagnetic resonance results which is now in prepara-
tion, where such an extension will be given. As Table I shows, the room
temperature values obtained in the two ways are of the same order of
magnitude.

Let us now turn to a discussion of the relation between (31) and (33)
and the data shown in Fig. 8. Qualitatively, of course, the 1/r factor in
v/H, which (31) reveals, taken together with (32) explains most satis-
factorily the sharp increase in viscous damping of the domain wall at
low temperatures. Furthermore, it seems quite possible, although the
author has not investigated it, that the higher order terms in (24) account
for the nonlinearities in Figs. 9 and 10.

It should be mentioned that an increase in relaxation time at low
temperatures which is consistent with (32) has been deduced by Bloem-
bergen and Wang™ and Healy” from ferromagnetic resonance data
taken by them.

Quantitatively, we have inadequate data for a satisfactory compari-
son between Fig. 8 and (31), and the assumptions of the theory should
perhaps be investigated further before any such comparison is taken
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seriously. Nevertheless, plausible assumptions can be made which make
an instructive comparison possible. g;, in (31) is equal to the difference
in the variation of the anisotropy energy when measured adiabatically
and when measured isothermally. At this stage of our knowledge, many
assumptions which still retain the symmetry of the erystal are possible
concerning the form of ¢..(8). For our present purposes we will assume
that it is given to within a constant by (34), but we must introduce a
minus sign to take account of the fact that the rearranging electrons
must have a positive anisotropy energy associated with them. Since we
differentiate before substituting in (31), we do not need to subtract out
the constant. The amplitude of g1, is not given by | K, | of course; we
will call this amplitude | K. |. When we introduce the minus sign into
(34), and calculate the integral in (31), we find:

1 4.0M, H
iy o9
i A

This relation points up the fact that the mechanism we are discussing
here is characterized by two parameters, an amplitude factor | K, | and
a time 7. Our experiment tells us nothing about | K, |, so we will ar-
bitrarily assume it is about 14 of | K; | at room temperature, or 20000
ergs/ce. | K, | can be measured by comparing values of | K; | determined
isothermally, say by measuring the torque on a dise, and values of
| Ki| determined adiabatically, say by ferromagnetic resonance ex-
periments, but this has not been done as yet. To determine r at 77°K,
assume that the maximum frequency of rotation of dipoles in the wall is
such that wr = 0.1 when the non-linearity shown in Fig. 9 first occurs
(at v = 150 cm/sec). We calculate the thickness of the wall to be 4 X 107°
c¢m from standard formulae (see Kittel’s review article, Reference 14)
and find 7 = 0.5 X 107°. These values of r and | K, |, together with
| K| from Table IT at 77°K and A as calculated above, give v/H, = 40
when inserted into (38). This is to be compared with a measured
v/(H — H,) of 160 at 77°K. In view of the preliminary nature of (31),
and the arbitrariness of some of our assumptions, this check is quite sat-
isfactory. It would be naive to expect the theoretical result to be closer
than an order of magnitude to the experimental one. Inspection of Fig.
8 suggests that the mechanism which gives the sharp increase in damp-
ing at 77°K is submerged at room temperature in the effects of other
mechanisms, perhaps other electronic rearrangements, perhaps exchange
effects of the sort recently suggested in metals by Rado.” Equation (39)
confirms this expectation when we use r = 107", as determined either
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from ferromagnetic resonance data® or from the conductivity of FezO, .
The above method of caleulating = from domain wall data is less sat-
isfactory at room temperature.

The idea of associating losses in ferrites such as this one with
changes of order in the divalent and trivalent iron ions explains the fact
that the damping observed in domain walls at room temperatuie in
Fe;0, ;" where none of the divalent iron is replaced by nickel, is larger
than that observed in (Ni0O)y.z5(FeQ); 25Fe.0; . Finally, as Wijn and van
der Heide” have pointed out, and as (31) and (33) show more analyti-
cally, this mechanism is a very satisfactory explanation of the sharp
change in domain wall relaxation frequency observed by Galt, Matthias,
and Remeika.”
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