Topics in Guided Wave Propagation
Through Gyromagnetic Media

Part I1I — Perturbation Theory and Miscellaneous Results

By H. SUHL and L. R. WALKER

Some problems, complele discussion of which would be extremely difficult,
are treated approximately by means of perturbation theory. Among these
are the partially filled cylindrical waveguide, and the problem of multiple
internal reflections in a sample of finite length filling the cross section of a
cylindrical guide. Propagation in a ferrite between parallel planes, mag-
netized along the propagation direction is discussed by the methods described
in Part I. The paper concludes with an addendum to Part I — a numer-
ical study of field patterns of the TEy-limit and TM iy-limit mode for
various dc magnetic fields.

INTRODUCTION

Parts I and II of this paper were devoted toa number of specific propa-
gation problems, whose solutions, though frequently quite complicated,
could be discussed with a reasonably modest investment of effort. Un-
fortunately, not all of these problems pertain to situations met with in
actual gyromagnetic devices. Actual devices frequently employ struc-
tures whose performance could be predicted only as the result of lengthy
computing programs. For example, the microwave gyrator using Faraday
rotation usually employs a ferrite sample whose cross-section only partly
fills that of the cylindrical waveguide. Although it is easy to formulate
the corresponding equation for the propagation constant, the classifica-
tion and survey, let alone the computation of solutions, would be very
difficult to carry out. _

Thus, one must often be content with approximate results, and the
bulk of the present paper is devoted to perturbation methods. These
take as starting point a situation whose propagation problem is essen-
tially solved. The small change in propagation constant due to a slight
change in the original state of the system is then calculated. The small
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change of state may be the weak magnetization of an originally un-
magnetized specimen occupying a substantial part of the structure, or
the introduction of a very small specimen with arbitrarily large mag-
netization into the originally empty structure. Under the heading,
“Small Magnetization — Arbitrary Sample-Size,” we shall discuss the
propagation constant for a pencil of ferrite of any radius, coaxial with a
cylindrical waveguide, the space between guide wall and pencil being
filled with an isotropic medium whose dielectric constant equals that of
the ferrite. This is discussed in preparation for the practically more
important case of a ferrite pencil of any radius in an air-filled guide. Here
the unperturbed state of the system, when the pencil is unmagnetized
and therefore isotropic, is already rather complicated and require some
preliminary calculations. Under the heading “Small Sample-Size — Ar-
bitrary Magnetization,” we consider the case of a thin pencil of ferrite
in an originally empty guide.

Another topic, not easily treated except by perturbation methods, is
that concerning end effects in samples of finite length. After a prelim-
inary discussion of internal reflections in an extended slab of ferrite (a
problem which can be treated rigorously), two cases are considered: a
ferrite slug of arbitrary length, closely fitting a cylindrical guide, and a
thin disc normal to the guide axis, of arbitrary size. In these cases in-
terest centers around the effect of sample length on Faraday rotation,
though for the ferrite slug a subsidiary effect, that of mode conversion,
is also mentioned briefly.

It should be emphasized that the perturbation methods employed here
are not in themselves novel. They are standard to most linear eigenvalue
problems of physics, and have been used in connection with electromag-
netic problems by many authors.!

The remainder of the paper is devoted to a discussion of a ferrite-filled
“cable” in plane parallel form, using the methods of Part I. The treat-
ment is kept in terms of saturation magnetization and magnetizing field,
and is based on Polder’s equations. The paper concludes with an adden-
dum to Part I, which reports some calculations and graphs of field pat-
terns in a cylindrical waveguide completely filled with ferrite.

1. PERTURBATION METHODS
1.1 General Method

A number of authors have made applications of perturbation theory
to the problems of propagation in gyromagnetic media and the exposi-
tion which follows is included mainly for completeness. We shall develop
the subject in the following fashion: it will be supposed that the unper-
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turbed system is a wave guide containing a medium whose permeability
and dielectric tensors are diagonal and isotropic, but may vary over the
cross section of the guide, although not in the z-direction along the guide.
For this system it will be assumed that a complete set of normal modes
exists for which appropriate orthogonality relations are known. The
perturbation of the system will then consist of changes in the permea-
bility and dielectric tensors of the medium, including the addition of
non-diagonal terms. If these changes are to be genuine perturbations,
they must be of one of two kinds. Either, the variation in the properties
of the medium is confined to a limited region, small in volume in some
appropriate sense, in which case its magnitude may be large, or, we may
have a small fractional change in the material properties extending over
a considerable volume. The fields in the guide may be expanded in the
normal modes and a system of equations is developed for the z-de-
pendence of the amplitudes of these modes. These equations are then
solved approximately, making use of the smallness of the perturbing
terms. The results may then be specialized to the various situations of
interest.

Let us suppose that the unperturbed permeability and dielectric con-
stant are w(z, ¥) and e(z, y) respectively and that the system is now
altered so that it possesses a permeability tensor

pe(, y) —jk(x, y) 0
Je(, y) p2(, y) 0
0 0 pa(@, y)
and a dielectric tensor
e, y) —jn(x, y) 0
an(x, ) ez, y) 0
0 0 (2, y)

Maxwell’s equations for the perturbed system may be written, using
the notation of Parts I and II,{ in the form:

dH * .
V*H, -_ —I:zi- - JCUGQE; —_ coqu* = 0,

I
L

AEX* | . .

V*E, — 92 + jopeH, + weH,
V- -H* — jwgE, = 0,

V- E* + jouH, = 0.

T We omit the vector signs from all transverse vectors, which are sufficiently
labelled by the subscript “t.”

(1)
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These may be rearranged as

aH *
z

Il

V*H, — — jwell, = ju(e — e) B+ wnE* = A,

v, — 225 jomH, = —jo(us — w)H, — wkH* = By, (9)

V.H‘* — jUJElEz = jw(éa - Gl)Ez == A=1
V- E#* + jomH, = —jo(us — w)H. = B:,

where A, B;, A, and B, are introduced as abbreviations for the terms
on the right hand side of the equations. F, and H, may be eliminated by
substituting in the first two equations the expressions

R el
Juwer
and
: Jwu

The two equations so obtained are

. *
1 v*("v—@‘—) + ‘9—H—‘+ joeB = —A, + L+ v+ B
Jw M1 Jw Ha

and

—v*(VH‘) "E‘+;met=B¢+ V*A @

Jw €1 €1

We now suppose that , and H, can be expanded in the form

= ; a.,(z)E;n(I: y)

and

H, = ; ba(2)H w(z, y)!

where
B e and H e

satisfy the unperturbed form of equations (3) and the boundary condi-
tion that tangential E vanishes at the guide wall. These equations have
solutions for certain values of 8, only, but, if ¥,., H: are solutions for
Bn = ¢ > 0, then Ey, , — H, are solutions for 8, = —c. We shall assume
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hereafter that FE,, and H,, pertain to positive 8, values. For a given
ba(2)
an(2)
of propagation reverses. Substituting these series for £, and H, in equa-
tions (3), one finds

unperturbed mode it follows that reverses sign when the direction

B.

b, | . ' _ _ 1 g
; [E + Jﬁnan:| Hyp*= -4, + Ju v . (4a)
and
Z Iidd_an + jﬁnb"] Eln* = _Bt - '-l' v* '& * (4b)
- P Jw €

The orthogonality relation between functions of different n has been
given by Adler.” It is

f Eu*-HodS = 0,

where n # m; the tilde denotes the complex conjugate and the integra-
tion goes over the cross section of the guide. We consider the fields to be
un-normalized and write

fEln*'th dS = Aﬂr
Clearly
thn*'Eln dS = _Aﬂ- (5)

Multiplying equation (4b) by H,- and equation (4a) by &+ and inte-
grating each expression over the cross section we have

- db” . - _ . l Al . *Bz
_An [‘a—z' +J.8nan] - fAl Etnd8+jwalﬂ v HdS,

An [d& + Jﬁnbn:[ = '_th'Hln dS - -lfgtn'v* é ds.
dz Jw €
Now we use the identity
[ 6evrris = — [ F@eds) + [ #v-a*as.

surface boundary surface

This yields
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fﬁt,,-v*%ds = —f B, (B -ds) + f‘—%v-ﬁ,"* ds,
g H1 b H1

dry K1
= jo [ B.H.as,

since En-ds = 0. H,, is the H, field appropriate to the nt* mode. Again,
we have

fﬁm-v*i’ = —fb -“E(ﬁ.,,-ds) + fi:—’v-ﬁm*ds,

€] ‘dry €1
- —joo f A, dS.

since A, = 0 on the boundary. E,, is now the E, field of the n'" mode.
Making use of these results we obtain the equations for the amplitudes
in the form:

R . s
Tiz_+ Jlgnam = A,‘ [ng EmdS - stHzn dS:I,

(6)
da, : 1] i ~
Y+ 382bn = E[ [ Bofuas + [ a.B., ds]
Restoring the full expressions for A,, B,, 4, and B;, we have
%‘1 '+‘ jﬁnan = {Kwn [f (62 —_ E])EI'Em dS - jf‘l]‘Eg*'Et,, dS
(7a)
t+ [ s — w)H.Hn ds],
da, ; Jjw - ) .
EE + jBrbn = A—— (Mz - ﬂl)Hg‘ch ds — J kH * Hm dS
" (7b)

+ [ @ — @)BE., d8:|.

Equations (7a) and (7b) are, so far, exact, but they involve, on the right
hand side, the functions E;, H,, E. and H. which are still unknown.
We are interested in those cases where the integral terms are small,
either as a consequence of the terms (ex — 1), 1 and so forth being small,
or of their being finite only over a small region. In the first case the fields
E,, H,, E. and H, may be replaced in the integrals by the values which
they would have before the perturbation was made. In the second case
this is not possible since a large change in the material constants of a
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region alters the field substantially within that region. Here, then, we
have a preliminary problem to solve, namely that of determining the field
in the perturbed region in a zero order approximation.

Perturbation problems may be divided into two classes by another
distinction. The changes in material properties may be independent of
the z-coordinate, so that the new problem is to consider propagation in a
uniform guide differing slightly from the original one. Typical of such
problems is that of a waveguide containing a ferrite rod of infinite length
parallel to the z-axis; the perturbation consisting here of the change in
the properties of the rod when it is magnetized. Clearly, in such cases,
solutionsforwhich all field components vary as exp — jBz are still possible
and the perturbation equations (7) become equations to determine g.
On the other hand, there is a class of problems for which the perturbation
is confined to a limited region in the z-direction, and we are interested,
perhaps, in the reflection and transmission coefficients for a wave inci-
dent upon the ohstacle. Here, for example, we might think of the case
of a dise of ferrite across the guide. If we remain in the range for which
perturbation theory is valid the changes in the amplitude of reflected
and transmitted waves will be small, but the changes in phase may not
be, if the perturbed region is sufficiently long. In the latter case, it would
be possible, if the perturbation were uniform in z over the region in which
it exists, to find solutions going as exp jBz, as described above, and to use
these to fit the boundary conditions at the ends. It is also possible if the
perturbed region is long, with slowly varying properties, to obtain suitable
approximate solutions by the WIKB method. Some of these cases will
arise in the examples which we treat below.

1.2. Perturbations Uniform in z

We consider first the general case in which the perturbation is uniform
in z. In the absence of the perturbation the m*» mode is to be present. For
the fields £, and H, , in the perturbed region we write an(z)E oz, ¥)
and a,(2)H..o(z, 1), respectively, where a,(z) is the amplitude function
for the m*» mode. If the perturbed region is one in which, for no magneti-
zation, the material properties differ only slightly from their unper-
turbed values, we may justifiably identify E,., with E., and H.,,, with
M., . If the material properties are appreciably changed even in the
absence of a magnetic field, E,, and H,., have to be calculated by
an independent method. For a,, we put A,e ***, where 8 = 8, + 8
and 43 is small. Similarly for H, and E,, we write b,, H .0 and b,, E..o,
with b,, = Bne **. With such assumptions, the m" set of equations (7)
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gives an equation for 8, while any other set, with n # m, gives the
excitation of the n*® mode. Substituting in (7) we have

jremAm - ]BBm = "-]—-i (f [(52 - e1)-E1:m0'l"-jtm - jﬂEtmﬂ*'Elm
Am
(8a)
+ (#3 - #l)Hszgzm] dS) Am = jLA.m
and
ijBm - j]BAm = éi (f (#2 — #I)H!mﬂ'ﬁtm - ].KHtmD*'ﬁ.!m
" ' (8b)

+ (53 - e!.)-Ezmﬂ-Eizm] ds) Bm = jMBm.

Ignoring squares and products of small quantities, one then has
88 = s (L + M). 9)

The first example to be considered is the effect on the propagation in a
circularly cylindrical waveguide, when a coaxial, magnetized pencil of
ferrite of very small radius is introduced. The guide radius is 7o and that
of the pencil is r, . Before the ferrite is introduced, ; = poand 6 = &,
where po and e are the free space values. The unperturbed fields are
those of the usual TE and TM modes in round guide. It is necessary to
calculate first the zero order electric and magnetic fields within the
magnetized pencil; it will be sufficient to work out the magnetic case and
deduce the electric one by analogy. Since the cross-section of the pencil
is very small and transverse propagation effects consequently negligible,
the internal field may be calculated by solving a static problem. The
transverse magnetic field before the pencil is inserted is H.n, and it is
assumed that the pencil is so small that over a circle with a few times
the radius of the latter, H, is essentially uniform. We must now solve
Laplace’s equation for a cylindrical rod immersed in a magnetic field
which is to be uniform at large distances. Within the rod, B, = uH,
— jkH/*, and at its surface the usual boundary conditions prevail.
Hereafter we write u for us .

The fields are derivable from potentials ®,,¢, ®in , Which are of the
form

‘i’in = (-_H-tmﬂ';‘),

Pout = (Hlm';) +

(-

T
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- -, .
where » = (7, y), a is a constant vector and the coordinate system has

its origin at the centre of the rod. Continuity of tangential H at the sur-
face of the rod requires

-

H!mﬂ = Htm + -22
1
and then
Doy = Htm 1' + (Himu H!m)';-

The normal derivative at the surface of the rod is
1 od
v
Ty y

:-'__[Hlm‘; - (Html] - Htm) ';]'
1

or, externally,

Matching the normal B’s at the surface then gives
#0[2 I{tm - H!m[)] = F‘Htrn(] - jKHtmﬂ*,
or

_ 2u0l(p + po)Him + jxH i }
(k4 wo)? — &

In a similar manner, one would find if the dielectric constant of the rod
were e,

H o (10a)

2E('J-E!m
€ + €p ’

The longitudinal fields E., and H.. are unchanged within the rod.
Turning now to the expression (9) for 83, we have in the present-case,

E!mﬂ = (IOb)

W 2e(e — &) 2 . 2
66 N E'/;encil dS [_5—"‘50_ IE‘ml + (e en) IE""i
e e A
W F = R e

where we have anticipated that A, is real, which we verify below.
Since the integrand is constant the integral may be replaced by mr’
times the value of the integrand at »r = 0. We consider now a TE-mode
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with variation ¢’™¢, n # 0. We shall have,
Eim = —jouV*¥,,
Htm = _ijV\Pm,

where
r ine ’
¥, = Jﬂ unm; e, Jﬂ(u‘nm) =0
1]
and
2
B 2 = m2e _ Unm
m 00 Tuz .

For the fields on the axis, one finds for n = =+1,

- . .Bmuﬂm in
H, = —jH, = —jn"=""¢""
n J L j 2?.0
and
nEq; = JE, = jwon Ilﬂ B’-“p.
2?‘0

If | n| 5 1 there is no first order perturbation. We now have

2 2 2
w o| € — € 2 2Unm Bo8m Unm T+ Nk — o

5,6 = —— 7" l:EU w Mo + - - ] N
2Am e+ & 7ol ro° g+ nx + po

But we have

To
Aw = 27"[ Etm*'gtmr dT!
0

= —27 wioBnm j;“m [Jn'(a:)z + ‘-Ili::—)z:l x dz,
= — 27w J“(;"m)2( am = 1)
and then,
58 1 Unm'

= 28 T T () (ttm® — 1)

[ ap + MK — po 2€1 — €
B ——————— + Bo = 1.
g+ nx + po 6+ &

(11)
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For TM modes we have
j 2
. n
Efm = _J)GMVXM Ez =T Xm

H;m = jﬂJE{)v*Xm
where

r

Xm = Jn (jnm —) eiﬂ'ﬂ, Jn(jmn) =0
To

and

B’ = wepo — 2 5 -
-
Proceeding as before, we find,

1 ?”12 1 2 b+ MK — po 26'—60]
B =—-—=" . — - . (12
B 28 70 Jn’(.]nvu)") [ﬁﬂ B+ nk 4w T A €+ & ( )

A problem which is of some interest, although not of immediate prac-
tical significance, is that of a ferrite pencil of arbitrary radius and infinite
length in a round wave guide, with the remainder of the waveguide filled
with a non-magnetic dielectric, whose dielectric constant, € , is equal to
that of the ferrite. The ferrite is supposed to be only weakly magnetized.
For such a problem, we have,

BB = —L f [()‘4 - FD)Htm'Htm ’_jKHlm*'Htm] dS-
zAm peneil
H ., is the field of an unperturbed TE or TM mode in the dielectric-filled
guide. p — po and « are supposed small, but r; , the radius of the pencil

need no longer be small.
For TE modes, we have as before (again excluding the case n = 0),

EY!m = _jw#ﬂv*‘llm )

Htm = '-jﬁmv‘l-"ms

Yy = Ju (u,.,,. 1) e’
To

and
2 2
m

2 2 2
B = wep — 5 = Bi° — .
To To®
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Hence, assuming the pencil coaxial with the guide.

L8t 2
_%ﬁ 6 = 21rj; (n — _uo)ﬁ,: [u"m Ji‘z (unm r_)

w To® To

2
+2 7 (um ’"—ﬂ rdr
r T
+ 2B’ - 22 p f J (um T—) g, (u,.m i) dr,
To 0 To To
Unm (r1/7q) 2
= 27B" [(p — po) j; l:x-f’f(x) + ]"T(x)] dx
-+ QJmf;

21%”[(# — uo)(mJ W) () + ';—J wx)

2
+ I lJf.(:v)) + (um T—l)}
z=(r|/rg)Uinm To

unm (r1/rg)

Ja(@)J, () dx:I ,

I

2

Making use of the value of A, found in the preceeding paragraphs, we
have

_ Bon Ko ' Jiz 19
o8 = e = DT (tm)? [(uo 1) (an(x)Jn () + 5 Jax)

2
+o 1 Ji(x)) +n T (um ’3)]
2 T=tpm(r1/rg) Mo To

For TM modes,

(13)

Elm = '_jﬁMVXm ’
Hgm = jwélv*li’m ]

. T n
Xm = Jn (Jnm *) e’ 9",
To

In this case,

2Am o, 2 _ i Y
= 58 = 2w(we) ((IJ uu)j; I:F I (Jm r—ﬂ)

. 2 Ty .
4 dum i (j,m ”-)] rdr + 2n f Jom (j,.,,. ”—) T, (.,, ”_) dr) .
To” To 0o To To To
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The value of A, for this case is

.2
Am = —21weSn -J% T G-
The value of 58 now becomes
e [ ) (oo + 5
0 = e - —1 xS (), (o — J . (x
B Bogmid 2o L\ () () + 5 (x)

2 1 (14)
M .ﬂ;(.,,-)) Lok ( _)]
2 T=jnm (r1/rq) Ko To

We note that for a ferrite filled guide with 7, = ry, the nonreciprocal part
of 83 vanishes which confirms a result found in Part I of this paper for
weak magnetization.

The very high dielectric constant of the ferrites (about 10) puts rather
severe restrictions on the size of the pencils to which perturbation theory
is applicable, even for weak magnetization. This limitation would be
substantially relaxed if we possessed exact solutions for rods of high
dielectric constant inserted into round guide, which could be used as the
basis for magnetic perturbation calculations. Unfortunately, the only
extensive published calculations of this kind are for dielectric constants
less than 3. However, at the suggestion of M. T. Weiss, a calculation of
the propagation constant of the lowest mode varying as ¢ in a wave
guide containing a coaxial dielectric rod (e, = 10) has recently been made
in the Mathematics Department, for varying rod diameter, but for a
single value of guide radius equal to 0.4 times the free space wavelength.
With the aid of this information, which was made available to us, the
magnetic perturbation caleulation has been carried out.

As before, the radius of the guide is 7, and that of the rod is r, . The
dielectric constant of the rod is ¢ . We consider first the propagation in
the unmagnetized case. Since we are considering only one mode, namely,
that with an angular variation, ¢”, and of the lowest order radially, we
need not identify the E’s and H’s by a label. We use a subseript “1” for
fields in the dielectric and “0” for fields in the empty part of the guide.
In general, we have

o'E, = —jlouV*H, + BVE],
o’H, = —j[BVH, — weV*E.),

where
2 2 2
a = weuw — 37,

VH. = —d’H.,
VE, = —d'E,.
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and ¢, u refer, for the time being, to the dielectric constant and perme-
ability of the region considered. It will be convenient to put

H.ov= A/ 2 H..; =g £

= =&
Ko € Ho

B - o _
wy/ En.lto_ B w\/én.ul}_a?

1
and to measure lengths in terms of —== . We shall continue to use
w'\/ﬂoéu

7 and V* with the understanding that they refer to the scaled units.
We now have

ja'E. = gV*H. + BVE:,
jﬁzgg = ngg - EV*E,,

-2 -
& =& — @,

vzﬂ'z = _azﬁl 3
V’E., = —&'E..
At the surface of the rod E,, H,, E, and H, are continuous. We must
have
and

1 [GB gy (OEN] _ L [iB gy _ (O
c—Toz[a’“(“) (ar M’a‘ﬁ[ﬂﬂ‘(”) (a_)}

C [+ 2]
a@” r/i I

- €1 -2 52 faet | e a2
€ = — Otn=1—'|8 and a1=e1—,8.

where

i = 1, everywhere, if the unmagnetized ferrite has the permeability of

free space.
These equations may be rearranged in the form:

(1 1 1 1 [em.
(= a) 20 = { -z i (3 )]
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Within the dielectric, since all fields are bounded at » = 0, both E. and

H. are proportional to Jy(@r) and, evidently,

. 1 (c’)_ﬁ_) — 1 (%) _ al;"lJl’(Q’lrl) - F(a 7.)
H-(ro\or i E.-(r) \drn h J1(aury) v

in the notation of Part 1. (K.), and (H.)y, similarly, will be those two
linear combinations of Ji(@r) and Yi(aer), which, respectively, vanish
and have zero normal derivative at » = 7y, in order to ensure the van-
ishing of the tangential fields there. The functions

r a(g:)n r a(Ez)O

(H)o or an (B or
will be called H(a) and G(aor) respectively.

Eliminating £.(r) and H.(r;) from equations (15) we obtain the char-
acteristic equation of the problem in the form

Be( 11 )2 = (F (air) _ fl(_ﬁtn?‘l))(él F(f‘rm) _ G(fzon))_

aﬂ?. &1‘1 alz ane a12 0302

The perturbation in the present problem is that due to a mild mag-
netization of the rod and referring again to equation (9) we have (in
unscaled units)

% = Hé_ZT! .Ld [(u — #O)Hz‘Ht - jKH!*'H‘] ds,
with

A, = E*-H,dS.

guide

Thus, in the scaled system,

T _ ; - -~
f [(E‘ - 1) l , |2 - JL (Ht*'tH):| rdr
Jo | \Mo - Mo )
ro . )
f E*-H,rdr
0

B =~ (16)

The evaluation of the normalizing integral in the denominator is an ex-
ceedingly tedious business and it seems advisable to avoid it. This may
be done in the following manner. The characteristic equation has been
solved for numerous values of r, and 8 may be considered to be a reliably

known function of 7, . In particular the slope L is known. But we may

71
also deduce %@_ , by a perturbation calculation in which we start with a
1
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rod of radius 7 and increase the latter to r, 4+ dr; by changing & to &
in the shell . < r < r + dr,. For such a perturbation, since E. and E,
are continuous at the boundary, they suffer no change when the boundary

moves; E, however is discontinuous and (K., = »—(Er), where (E,). and
(E,); are the normal fields just.outside and just 1ns1de the rod. The per-

turbation formula (unscaled), thus gives

— eo)(l E.I"+ | K, | + - | (E,): |2)'21rr1¢5r1 ,

ZA
or, scaled, with r and r; representing scaled radii,
l(n — V(B[ + [ B[+ a| (£ I)
[ gt ar

B = —

l\.JI

The formula (16) for the magnetic perturbation may now be written

ry . o
1 dB . I:(E—— l)lHl 2_‘].;:—(H.|*‘H¢):|Td1’
0

B =" dry Mo o
g — 1 | E(r) P+ | Eo(r) [P+ & | (B ?
Inside the rocl, we may write
7 ﬁz(rl) o -
H. = () E, = jcE;
and then
jar'H, —J,B— al%E,,
2l _ 0E.
i 1 ar

The integrals are readily carried out and are as follows:
L N 3
[ 1arar
0

12 ~2 2 1
Ea(“) [( o'+ ' )(F(am) L F ("“") + & 1) - 2cBaLJ,

8™

T -
f (Hz* H;)T d?'
0

. 2 2
_ B [(512 + ) — 2u (Ffam) 4 Blam | a = 1)]




GUIDED WAVE PROPAGATION THROUGH GYROMAGNETIC MEDIA. III

The term in the denominator may be evaluated by using

J-C-ller

._ 2 = aEg Jﬁ
ja B, = gc-(ﬁ%—?E,.
We obtain

| E.(r) P4 | Eo(r) P+ & | (B |

1149

T [[ﬂ - cF(an)] + EI[C — BF(ai)]* ]

?

The perturbation may now be written:

]
r—
2 _ 61‘1
% = o — 1
(FL — 1)[.4 (& + B — 2cBal + ﬁ-[zf’ + B — 24cap]
. \Ho 0
rfat + [B — cF(an)]* + &le — BF(am)] ’
where

F (C!l?‘l)

A= +F( 17'1)‘|'6\f11,‘1

and ¢ may be obtained from equation 15, and the definition of ¢

Glar) . Flar)

&y’ ! & &12G(5tn?‘1) — &ao F(ar)

c = =

Y E B@— 1)

oy~ )

with
Ni(@oro)J 1’(5.'07‘1) — Ji(@ro) N 1’(070?‘1)

((@ors) = aory Ni(aoro)J (@) — Ji(@ro) Ny (@r)

(17)

Fig. 1 shows the propagation constant as a function of the relative

diameter, ri/ry, of the dielectric rod in the unmagnetized case,

= 10. Fig. 2 shows the derivative (/) as a function of r/r,

with

. The

guide radius is 0.4 times the free space wavelength. From equation (17)

68 may be written as
B = P(p — m) + Qx.
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Fig. 1 — Propagation constant of a circular guide containing an unmagnetized
coaxial, dielectric rod (e/es = 10). 71 is the radius of the rod and rg the radius of
the guide. ro = 0.4\o , where Ao is the free space wavelength.

The computed values of @ and P — @ are shown in Fig. 3 as a function
of relative rod radius. P — @ is plotted since P and @ are very nearly
equal .*

1.3 Perturbations Non-Uniform in z

So far we have been concerned only with structures indefinitely ex-
tended in the direction of wave propagation. In practice the non-recipro-
cal element is, of course, finite, but end effects can frequently be ne-
glected, since the element is matched at its ends (by tapering of the finite

* 1, Seidel and Miss M. J. Brannon, at the suggestion of M. T. Weiss, have re-
cently calculated the dielectric loss for the guides containing a dielectrie rod de-
scribed above. By combining such information with that obtained here it is possi-
ble to discuss figures of merit (degrees of rotation loss in db) for various pencil
radii. Such an analysis is being made by M. T. Weiss and will appear in an ar-
gicle, by 8. E. Miller, A. G. Fox and M. T. Weiss, in a forthcoming issue of the

OURNALL.
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sample, for instance). The matching could be accomplished in such a
way that the transition region, whose characteristics would be very diffi-
cult to compute, should contribute little to the overall non-reciprocal
behavior. Therefore, in many cases, the theory for the indefinitely ex-
tended sample is adequate. For some special purposes, however, it is
desirable to mismatch the sample deliberately. For instance, Rowen®
has suggested that the change in Faraday rotation, due to internal re-
flections in an unmatched specimen, can offset to some extent the fre-
quency dependence of the rotation which is implied by the Polder rela-
tions, broadening thereby the useful bandwidth of the device.
Consider an infinite slab of ferrite, magnetized in a direction normal
to its two parallel plane bounding surfaces. A circularly polarized wave,
normally incident on the slab, will be partially transmitted, and, since
for such a wave, the medium behaves as though it had an ordinary scalar
permeability, the phase and amplitude of the transmitied portion are
readily caleulated. It is clear that, as the result of multiple internal re-
flections, the phase of the emerging wave will differ from the value ap-
propriate to a single trip through the slab (such as would be obtained
were the slab perfectly matched). Both amplitude and phase of the
transmitted wave will depend on the electrical thickness of the slab and
its dielectric constant, and on the effective permeability. The latter

2 \
/ T —
[+] --_———_J
o] 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c=n/r

Fra. 2 —

dg 7y
versus — .
d (ﬂ) h
To
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= 0.10

IR/ S

0.2 0.05
0 J ~~—1lo
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/T

Fig. 3 — Q and P — @ versus r1/ro .

differs for right and left circular waves, so that a plane polarized signal
(which is the sum of equal right and left circular components) will
emerge, in general, elliptically polarized, with the major axis of the
ellipse tilted from the.polarization at incidence by an angle which differs
from the single trip value as the result of internal reflections. It is clear
that this change in rotation can be calculated in a very elementary way.

When the sample is confined to a waveguide a similar effect occurs,
but its caleulation becomes extremely involved, at least for arbitrarily
large magnetizations. The reason, which should be clear from Part I of
this paper, is that the circularly polarized modes no longer have the same
field configurations inside and outside the sample.* Therefore any inci-
dent mode excites all of the normal modes of the ferrite; these, in turn,
give rise to all the mode patterns of the air-filled portion of the guide.
Even if all but one of these are cut off, the excitation modifies the phase
and amplitude of the reflected and transmitted portions of the propagat-
ing mode.

* This is due to the fact that there is now no ordinary effective scalar perme-
ability as for infinite geometry.
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Thus all modes have to be included in the problem, which conse-
quently takes the form of an infinite system of linear equations for the
mode amplitudes. This can be solved only to some approximation whose
general validity it would be hard to establish. The problem could also
be stated as an integral equation involving a complicated Green’s func-
tion, with no greater chance of complete solution.

We are therefore forced to restrict the problem to the ranges of mag-
netization, or of sample size, in which perturbation theory is applicable.
However, we begin with a discussion of the infinite, plane, loss-free slab,
a problem which can be solved completely, and which has some bearing
on the perturbation problem for a slug of ferrite whose cross section
completely fills the waveguide.

Let the plane houndaries of the slab be normal to the z-axis, which is
also the direction of magnetization and the propagation direction of a
circularly polarized wave incident on the boundary z = 0 (see Fig. 4).
In terms of the parameters p and ¢ of Section 2.1, Part I, the effective
permeability for a circularly polarized wave is

P
{ = = 1
[T = KB ].ln( :I:1 J),

the upper sign referring to right circular polarization. The correspond-
ing propagation constants in the slab are then

ﬁi=w\/m4/1ii

1l +¢o

%
— —_—
INCIDENT DC
FIELD FIELD

Fig. 4 — Normally magnetized ferrite slab.
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where ¢ is the dielectric constant of the ferrite. If d is the thickness of the
slab, the electrical thickness is

_ 2rd _ . p

0y = Bz '—K—en/‘/ldzlia_:

where 6y = w\/ued is the electrical thickness of the unmagnetized
sample. Let us now confine the discussion to the right circular wave. If
the incident electric field is taken to be ¢ % where By is the free space
propagation constant, w /e , the incident magnetic field will be

0  —jfgf
—E..e"ﬂ“,
Wity

and if the reflected electric field is pe™*, the reflected magnetic field will
be

Who

Bo pe™"

since (3 reverses sign. Inside the slab, the electl.'ic field consists of forward
and backward travelling parts 7¢ **+* and r,¢”+*, and the corresponding
magnetic fields are

—_'(.3..".'.. 1-13_:.'5 +£
WU
and
18—+ 1'26'"8'” .
wp
Finally the transmitted electric and magnetic fields will be denoted by
g PO
and

_ B | e
Who

respectively. In general p, as well as the r’s, will be complex. To obtain
s, we write down the equations of continuity of all tangential fields
across the boundaries z = 0 and z = d. Since the fields are confined to a
plane normal to the z-direction, these equations are:

l+p=n+nmn,

&(1 —P) = Et(‘n'—fz)
WHho Wio
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and

T3 = ne_‘w*d + Tgﬂ—Jﬂ+d,
—f.d d
—_— T3 = -B--t (1'18 Bid _ Tze,ﬂ+ )
W
These four equations in four unknowns are easily solved for 7; . Writing

— 4
S VAR ol

and noting that

Be [Bo_ /e / x
Mg/ Mo €0 o
$+ bl y’
where
a = i
€p !
one finds the solution te be
1
Ty = 7 a . ,
cos fox + '22- (5:— + F*') sin 6oz,
e
= | 73 |47,
where
tan &, = % (-xg- i x—J) tan fev, (18)
+
and
2 —1/2
[ 73]+ = [cos2 6oy + i(xi + %*) sin* 00:::+:| . (19)
+

Similar results apply to a left circular wave; it is necessary only to reverse
the signs of ¢, p in the expression for z, . Equations (18) and (19) show
that equal right and left circular incident waves emerge with different
amplitudes and phases; hence an incident plane polarized wave emerges
elliptically polarized with its major axis inclined to the polarization direc-
tion at incidence. The inclination and the ratio of minor to major axis
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are determined as follows: The right and left circular fields, upon emer-
gence, may be written in terms of rectangular components (with the
polarization of the total incident field along the 2-axis)

B — Bt = re,
B+ jE, = 6™,
from which the resultant field in the z-direction is seen to be
Eop = BN+ B, = | 74| cos (et — @) + | 7| cos (wf — @)
and in the y direction (20)
Eyr=ES + E,

= |7_|sin (ot — @) — [ 74| sin (wf — D).
The amplitude at time , (F.r" + """, is thus given by
Bl + Byr = | i [+ | - [
+ 2| 74 || 7— | cos [2ut — (@- + @4)] (21)

The major axis of the ellipse is the maximum of (E.* + E,«)"* with
respect to wt. It equals | 74 | + | — | and is attained at

wf = 15(®- + ®y).

Similarly the minor axis is the minimum and equals | 7| — | 7—|.
The ratio of minor to major axis is therefore

rel = 17|
ESESES
The angle between the z-axis (the incident polarization direction)
and the major axis is found by substituting ot = 19(®- + ®,) in (20).
This gives

. o, — Pb_
E,T=(|r+i+|r,{)cosi~2—,

. . B, — B
Eyp = (|7 |+ I 7=]) 31114'2—,
which shows that the angle is

B, — D
P T

¥

| 7| and & are plotted versus x in Fig. 5. 74, 4 and 7, ®_ at given
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Fig. 5 — Phase and amplitude of transmitted circularly polarized wave as a

P , with RASTY (a), top, ® for 6o = = and 3=; (b),
1+e €

0
bottom, & for 8y = 7r; (¢), | 73 | for 8y = = and 3=; and (d), | 73 | for 6y = 7.

function of = = 1+

lal,|p
in

are found by choosing positive and negative signs for « and p

.1:=/|/1+1jia.

Note that @ can be imaginary corresponding to cut-off in the range
—1 << —=1—p(p<O0).
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Fig. 5(c), top and (d), bottom — See Fig. 5.

Near z = 1 (corresponding either to small p or to sufficiently large o),
@ differs from its value ®, for the isotropic case by a small amount &P.
The rotation, to first order, is then just one half the difference between

the & for positive and negative p, o. Writing

1
.'c:k—l—l-ﬁxi—1:1:51:&‘:r
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and expanding equation (18), we obtain
G .
cosh ¥ sec? 6, — 200 G v

8B, = fob 2
* 0 1 4+ cosh? ¥ tan? 6, !

€
a=/‘/j.= ‘I‘_
€

[This result holds even near 6 = (n + 14)r where tan 6 = <, as can
be seen by expanding the reciprocal of equation (18).] The quantity
146y(6z,. — dx_) is the rotation corresponding to a single trip through
the sample. The actual rotation is 14(6®, — ®_). Hence we may define
a rotation gain as the ratio

where ¥ is defined by

_ 306w, — )
960, a) = m )
(22)
cosh ¥ sec® 6 — tan 6o sinh ¥

o
1 + cosh? ¥ tan? 6,

In many cases, 6, >> 1, that is, the thickness of the sample is much
greater than a reduced wavelength in the specimen. Then the second term
in the numerator of g is always negligible compared with the first. g then
simplifies to

cosh ¥
cos? 0 + cosh® ¥ sin? 6,

=

This expression is plotted in Fig. 6 as a function of 6 for various a = ¢".
1 1
oh at 6, = (n + 5) m, and max-

ima equal to cosh ¥ at y = nr(n = 0,1,2, --.). Whena > 1 (a ~ 3
for many ferrites), cosh ¥ is replaced by 14¢* = 14a, and then

For given ¥ it has minima equal to

Bl

Jimax = 5

J1min =

ISR ]

It is to be noted that when 6 = n, the condition for maximum g, ,
the unperturbed reflected amplitude is zero, and the ellipticity vanishes
to first order in §z.
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Tig. 6 — Rotation gain, gi(80), versus electrical thickness, o, for small mag-
netization.

Perturbation theory enables us to solve approximately, for weak mag-
netization, the problem just considered for the case in which a right
circular eylinder of ferrite snugly fits a cylindrical waveguide. We will
show that, with a suitable reinterpretation of the constants, equation
(22) for the rotation gain of the extended slab continues to apply here.

Before magnetization, a particular right circularly polarized mode,
say the m™, is present in the sample. The small magnetization distorts
the pattern of this mode and changes the propagation constant slightly.
The distorted pattern can be expanded in the series of normal modes of
the unperturbed material. In these expansions only the coefficient of the
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originally present m™ mode will be large; all others will at most be of the
order of the perturbation. Denoting perturbed quantities by the superfix
+, we have for the distorted fields

— Bt
Etu =€ B2 Z:EI pﬂlﬂE!n y
—ig +
HTm =e Bne z:=1 anth )

where pum and ¢ are large compared with the other coefficients. @
and the p’s and ¢’s are determined from equations (7a) and (7b). @, in

these equations is identified with ¢ * ' s b With ¢ g Since

all perturbation integrals involving E, and H,, E, vanish in the present
case, we obtain

.Buqmn — B;:pmn = Ai [f(.u = ,UU)Hng!n dS - j f KHT:th dS:|

and
Bnpmn = ﬁIan = 0.

In the first of these equations, H1,. , the perturbed magnetic field, con-
sists of @mmH m , plus an admixture of other modes with coefficients them-
selves of order u — uo, k. Therefore, to first order, it suffices to write

HTm = Q'mmHlm
in the integrand, with the result:

ﬁann - Bv:pmn = I:nqulm;
+

m
Pmn = — Qmn ,

B

where
I:u = Ai f (ﬂv - ﬂ»O)HImﬁln - jKH!*mﬁ!n] dS-

Elimination of p.. gives
(B — B )amn = BulnGonn -
The case n = m determines 8, :
Bn' = Bn(l — InmB,). (23)
All other cases give, to first order,

Balmn
Inm = ﬁ2 n_ F) Gmm

m
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which, again to first order, equals

-+
ﬁnImn (24)

=g

One of the quantities Pmm , Gmm , is still arbitrary. If it is required that
the perturbed field is, to zero order in I +., normalized to the same value
as the unperturbed field, it is readily found that one can take

_ Bm
=5

We are now in a position to consider the problem of a right circular
mode, say the r*", incident upon the end plane, z = 0, of the ferrite cylin-
der extending to z = d. One simplifying feature of this problem is that
the unperturbed modes inside, and the modes outside, the sample have
the same dependence on radius since the sample fills the whole guide-
cross-section. However the modes inside and outside may have different
numerical coefficients. Thus, if we distinguish quantities outside the
sample by primes, the TE,, mode can be represented outside and inside
the sample by

Pmm = 1, Gmm

E"ar = E‘-r = V*%ur,
’ ’
H,, 6 = Br sgn er
Wiy
H., = 3, sgn B Vder
Whto

Here sgn 8 means: sign of the propagation direction, +1 and —1 for
forward and reverse respectively. The function ¥., is given by

'P.!r = Js (ur 1) eiaw,
To

where ¢ is the azimuthal angle, o the guide radius, and u, the " zero of
J/(x). Tor TM modes we have similarly

E,l.r = Etu = Vi,

H‘rr = _g_e_? (A*’Ilﬂ‘) sgn ﬁr ]
H‘:r = - (v*\b") sgn B,

Br
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where in the definition of the ¥, u, is replaced by j, , the ' zero of J,(x).
Since the perturbations considered here do not couple modes with dif-
ferent azimuthal number, s will be considered fixed hereafter, and only
the suffix » will be retained.

The field at z = —0 (just outside the ferrite) will consist, not only of
the incident field and its reflection p,, but also of other modes excited
by the perturbation. Taking the incident E, to have unit amplitude, we
have, from the continuity of tangential electric fields,

(1 + Pr)E:r '+' ; PnE:n = E (Tnl + 1':112) ; pﬂtEM,

(25)
= Z‘ (Tﬂl + TnE)'pn!Elt ’
where the 7,1, 7. are respectively the forward and backward traveling
amplitudes of the n*"* perturbed mode. In the same way, we have for the
tangential magnetic field:

(1 - Pr)H;r - ; PnH:n = z; (Tnl - T,;E)qtltHit . (26)

The changes in sign of the coefficients of the backward waves have al-
ready been explained in Section 1.1. Let us now suppose that the incident
mode is the TE, mode. Multiplying both sides of (25) by V*¢, and both
sides of (26) by V¢, , and integrating over the cross-section we have,
from the orthogonality relations of these functions,

1 + Pr = Z (Tnl + Tﬂ2)p?"' ?

ﬁ:'(]- - Pr) = ; ﬁr('rnl - Tnﬁ)QHr .

But in these series, all 7 except 7, will be small, as will be all p, g except
Prr s Grr - Hence all terms, except those for whichn = r, will be small of
second order, and can be neglected. Further,

Br
Prr = 1! Irr = Er—.,‘.. .
Thus we obtain finally,
14+ pr=ma+ 7,
.
1-— pr = ('rrl - Tﬂ),@r‘ﬂ;_f;:j'

In view of equation (23) for 8,, these equations can be written, to
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first order in I}, ,

1+ pr=ma+

+ (27)
1 - pPr = ;::: (Trl - Tre)

It
ot =“°(1 - Is:)'

Similarly at the output plane, z = d, the transmitted amplitude .3
satisfies

where

—j0 70
Tr1€ + Tr2€

Trd

(28)

"
Trs = @ ("l"rl"-"--:”i|
)enurl-
where 6 = B8," d. Comparison of equations (27) and (28) with the cor-
responding equations for the infinite slab shows that they have the
same form; however, equations (27) and (28) hold only for small mag-
netization. Hence only those results for the slab that relate to small
magnetization can be generalized to the present case. One such result is
that for the rotation gain. If we re-identify variables by

— Ty2€ jﬁ) ]

+ +_ 105 11,
oxr’ — Ox, —EE— i-ﬁj’
30—>0,=3,d,

a—a = Br/ﬁ:' ]
we obtain, for the rotation gain,

tan 0,

cosh ¢, sec’ 6, — sinh ¢,

g = 1 4 cosh? ¢, tan? 0, ’

(29)

where
’ '
e"b =a, = Br/.ar .

The formulae and conditions for maximum and minimum rotation gain
derived in the previous section, apply here also, in terms of the re-defined

variables.
The conversion of part of the incident mode to the 5™ mode in the

transmitted wave can be examined by multiplying the matching equa-
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tions by V*J, or V¢, and integrating over the cross-section. It is then
found that the transmitted amplitude of the n*™* mode is

(Z. + Z,)(cos 8, — cos8,) + j(1 + Z.Z.)(sin 6, — sin 6,)

T = 2N (o v cosbu T (25 T 1) sint,) 27, cosb, - 722 + DsinG,)’
where
0. = Brd, Zyn = g—z
and
Bul s

The perturbation theory just outlined assumed a guide closely fitted
with a slug of ferrite of finite length, and slightly magnetized. The per-
turbation consisted in the small changes in permeability. Here we treat
another kind of perturbation in which the ferrite does not fill the guide
completely, and in which the magnetization can be arbitrarily large,
but the sample is a thin lamina, mounted normally to the guide axis
which only slightly perturbes the field pattern. Its shape can then be
considered arbitrary; its thickness will be assumed uniform and very
much smaller than a wavelength in the material.

Under these conditions, the equations for the perturbed amplitudes
of the right-circularly polarized 2*® radial mode are

day, . . ~ ) _
aiz + Jﬂ"lbﬂ =1 zw_“ I:f (’-" - ﬂO)HtH!n dS — ] f KHg*Hm dsS

- f (¢ — «)E.-B., ds], (30)

‘?(;)—;' + jﬁnan = J Zw; [f (E - EU)Et'Etu dS] )
in the usual notation. The terms on the right are assumed different from
zero only in the range z, z + 6z occupied by the sample, and the integrals
are extended over the cross section of the sample only. E,, , H,, are the
mode functions for the empty guide. The fields H, , E, , E, are the actual
fields inside the sample. For the first-order calculation E, and H, are
identical with the incident field and E. (by continuity of the normal

component of D,) is < times the incident &, . Now the incident fields may
€
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be taken simply as
anUEtn ; UmuHm ) anOE.!n

(since, #n vacuo, b,y = @nosgn B, and sgn 8, = +1for the incident field),
and the amplitude @, may be taken to be unity. Therefore equation (30)
may be written

da, . ~ .
i =1 il [f (F- - #O)HmHm dsS — JfKHm*Hm dsS

az
+ f(]. —_ z—o) éoEanm dS] e jﬁ"b“l

abs _

a J_Ag;f (e — ea)EgnEm s — jﬂna" .

We solve these equations by integrating through the small thickness of
the sample. Since we are interested only in results of first order in dz,
a, and b, on the right hand side of these equations may be replaced by
@no , Do ; that is by 1, 1. Writing

IA == i[[ (,u - Mu)chHIn dS _ijH!n*HlndS

+ [ (1 - Z—") B ds],

=2 [ e = @EuBuns,
we have, upon integration from the incidence plane (1) to the exit plane
(2),

w2 — @ = J(I4 — Bn)dz,

baz — bu = j(Is — Ba)dz.

an , the amplitude at the entrance plane consists of .o = 1, the incident
amplitude, plus a small reflected amplitude p. Thus @, = 1 + p. Simi-
larly b, consists of @.o sgn 8. = 1, and the small reflected amplitude
psgnfB, = —p (correspondingjto a backward wave). b.e is equal to an.
(since the transmitted wave is a forward wave). Hence we have

a2 — (1 + P) = j(IA - Bn) 52:
aa — (1 — p) = j(Is — Bn) 82.
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whose solutions for the transmitted and reflected amplitude are
Apo = 1 —j(ﬁn — IA_;_j)az

and

g — I,
2

oz,

Thus, to first order, the transmitted wave only undergoes a phase change,
of amount

L -; IB) 0z,

A similar result applies to a left circular wave; the only difference arises
in the contribution

dpy = (Bn -

—ra f kHo*H,, dS

to I—z‘ which will merely change sign. The remainder of I, , and also I,

are unchanged. Thus the Faraday rotation of a plane polarized wave,
which is one half the difference of the phase change for right and left
circular waves, is equal to

‘_3"1;2'&— - _22,.j fmuf diso oHon*Hn dStz.

The integral on the right is real, and, when the disc is circular of radius
1, is of exactly the type that has already been encountered in the case
of the ferrite embedded in a material with the same dielectric constant
(Section 1.2). Here, however, x need not be small, so long as §z is suffi-
ciently small. In using the results of Section 1.2 it must be remembered
that the mode functions there related to a dielectric, while here they
relate to air-filled guide. When this is taken into account, one obtains
for the specific rotation of a TE-mode:

59" _ Bm ﬂf 2 f 72
6; B ("'rl"m.vm2 - ]-)ng(unm) [ Mo Jﬂ (unm TO):’ ’ (313‘)

a TM-mode:
1) w’oeo [nk 2 ( 7‘1)]
T T 37 < | — Jn nm ] 31b
6z ijnm%f;z(_?nm) Ho J To ( )
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results which show that the rotation in a thin disc is independent of the
dielectric constant of the disec.

2. THE PARALLEL PLANE CABLE

Measurements on ferrites are sometimes made by a coaxial cable tech-
nique. The ferrite fills a section of the cable, and is magnetized axially.
In this section we consider a simplified problem of the same kind: that of
wave motion between parallel conducting planes bounding a ferrite slab
magnetized in the propagation direction. The characteristic equation for
the propagation constant has been established by a number of authors,
particularly Van Trier, but as in the case of the cylindrical waveguide,
no analysis of the equation in terms of the laboratory variables appears
to have been made. We shall make such an analysis by means of the
methods already used in Part 1 for the cylindrical waveguide. The dis-
cussion will be limited to the dominant (TEM-limit) mode, and to the
principal features of the incipient modes (shape resonances).

The distance between the two conducting boundaries will be denoted
by 2a. The system of axes is as in Fig. 7; the y-axis is perpendicular
to the walls (located at y¥ = =a), the z-axis is the magnetization and
propagation direction. The microwave fields are assumed not to vary
along the r-axis.

The solution of Maxwell’s equation proceeds just as in the case of the
cylindrical waveguide (Part I, Section 3), with the simplifying feature
that one of the coordinates () drops out of the problem. We shall use
the reduced notation of Part I. 8, the propagation constant will be meas-
ured in units of wv/ue, the propagation constant of the unmagnetized,
unbounded medium. @ will denote aw+/pe, the half-spacing measured

A
in terms of the reduced wavelength o9 of the unmagnetized, extended

medium.

I

CONDUCTING |

BOUNDARIES 5
\ |

\\\ : 1

g FERRITE

_ Fig. 7 — Parallel plane cable filled with ferrite magnetized along propagation
direction.
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It is found that (see Part I, Section 3) the longitudinal electric and
magnetic fields are then given by

Anl[/l — A o = Y1 — Y

S VS T —A
where ¥1,2(y) are solutions of
*
e
= 2
e + X122 = 0, (32)

where Ay» are the roots of the quadratic (16), Part I, and where, finally,
the x’s are defined in terms of the A by equations (17a) and (17b), Part I.
The z-component of F is given by [see equation (22a), Part 1]

2
(A1 — A)QE. = I:JBAlPH - pf;vn + vy (1 — E)] s ,
Vi ay

or the same expression with suffixes 1, 2 interchanged. (Note that the

x component of Yy is now zero, that of V*y is 64/) If the boundary con-

ditions are to be satisfied at both ¥y = +a and y = —a, the solutions of
equation (32) must be either even or odd functions of y. Since E. must
vanish at y = =a, we have for the symmetric (or even) case

€oS X1l COS Xal
',bls = A X1y | ‘PE" = A COS X2l ,
(_0‘3 x1a COS xo0
and for the antisymmetric (odd) case
a sin xay a sin xat
20 =A1.—; Yo = As - ZJ.
sin x1 Sin x=a

The characteristic equation for these two sets now follows from the
fact that K, = 0 at y = Z-a. Expressing the A’s in terms of the x’s by
means of equation (17h), Part I, and writing 8As,; = A, 2, we obtain

! a tan xa ! @ tal il
= X 1 Xat
)\17( 2 X1 X 7\2)(22 : X

for the symmetric case, and

2 tan x1@ — tan x.a

AMxa 2X2
x1a X2a

for the antisymmetric case. To bring these equations into a form suit-
able for graphical discussion, we express the x in terms of A, ¢ by means



1170 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1954

of the quadratic for A, and by means of the relations between the tensor
components of the permeability (see beginning of Section 4.11, Part I).
We then obtain

1 ST, -, [T
V1T tan a T (33)
T, . JT=n T, . /T=
1 = A t
MA/ T B T = T Y T, O

for the antisymmetric modes. When Ay , \; pairs satisfying one of these

equations, and the Polder relation
R[ + Aa — Oﬁlxg =0 + y (35)

have been found, 8° is given by
B = —M\.
Appearances to the contrary, equations (33) and (34) deseribe the

ordinary TE and TM modes when p = 0, regardless of ¢ (see the dis-
cussion opposite Fig. 3. of Part I). When ¢ = 0, the Polder relation trans-

2 2
forms - — 2 'ntoi ?\;\ , 50 that either of equations (33) and (34)
"

1= oh
can be satisfied only by

1—N _1—=A _ a7 ( 1\ 7
—en 1-oh @ & nt3) @

and the two alternatives respectively give

AN =F=1—-n"T

AT
Since both equations (33) and (34) are satisfied by either the n-, or the
(n + 14)- dependence, a problem of classification arises: “Which mode,
TE or TM, is described, as p ~ 0, by the solutions of (33) and (34)?”
Leaving aside the question of the TEM mode we note that the following
degeneracy exists in the isotropic case:

or
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A TE mode with antisymmetric H, and a TM mode with symmetric
F; have the same propagation constant

2 71'2 1 2
B =1—52(n+§) n=201,2":-:).
A TE mode with symmetric H, and a TM mode with antisymmetric
E, have the same propagation constant
2 2
f=1-20 (n=1,2,).
Since application of a very small magnetization will not destroy the
symmetry properties, it follows that the solution of equation (34), and
the solution of equation (33), which in the limit p = 0 reduce to
2 2
1
ﬁZ = 1 —-%(n-—[—-é) ’
correspond to a TE-limit and a TM-limit mode respectively. Likewise,
the solutions of equation (33) and the solution of equation (34) which
in the limit » = 0 reduce to

correspond to a TE-limit and a TM-limit mode respectively. When
p # 0, the new §° are thus given by different equations, so that the
magnetization is seen to have removed the degeneracy of the isotropic
case.

In the special case of the TEM limit mode (8° = 1 when p = 0) only
one of equations (33) and (34) has real roots. For, when p = 0, the
Polder relation gives

1=\ 1=
1 — o\ 1 — 0)\2, ' (36)
=0

3

if #°is to equal unity. But equation (36) satisfies equation (34) only
[equation (33) would demand A, = A which is impossible for real fgl.
Thus the TEM mode exists as the limit of an antisymmetric mode only.
In fact it is easily shown that for a value of @ too small (lesa than er) to
admit any except the TEM mode in the isotropic medium, the only solu-
tions of equation (33) for general o, p describe incipient modes.
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Thus for a < ;—the analysis may be confined to equation (34) which

will give the course of the TEM limit mode. The graphical analysis
follows closely that of the cylindrical waveguide (Part I, Section 4.1);
the part played by the G-funetion there is now played by the function

1= -
-2 14/ .
L 1/1—axlta‘na 1= o

A contour map is drawn of the function L in the upper half of the A-o
plane. Only the upper half plane need be considered since the L-equation
(34) is unchanged by reflection in the origin. This, incidentally, means
that the present situation is reciprocal, so that o, p hereafter can be
considered positive. Pairs of values \(>0) and M(<0) satisfying the
L-equation can then immediately be read off, but while they will give
8 = M2, they do not necessarily, for given ¢, p, satisfy the Polder re-
lation, equation (35). To ensure this, the quadrant, A < 0, ¢ > 0,
and the L-contours therein are transformed on to A > 0, ¢ > 0 by the
Polder relation for fixed p:

d + P — M _
A = T - T(M).
The surfaces Iy = L(\1, o) and L, = L(T(\), o) will intersect in a
number of curves, along whose base curves in the A-¢ plane both the
Polder equation and the L equation are satisfied, and along which g =
—M\\e is known as a function of o, p. The zero and infinity curves of
L(\, o) are denoted by 0, I when X > 0, and by 0’, I” whenX < 0. The
transforms of 0/, I’ onto A > 0 are denoted by (0')r, (I")r. The suffix
n denotes the infinity (zero) curves corresponding to

2 2 2 2 2

}—_%}‘ = (n + %) g;; (ﬁ =n ;;2) n integral.
The lines A = 0, 4+1, —1, are all zero curves denoted by 04, Og, 04/,
respectively. The line Ao = 1 is a conditional infinity curve, called I. .
It is an I curve when viewed from oA > 1 for A < 1, and when viewed
from oA < 1 for A > 1. Otherwise (for oA < I, < landoX > 1,A > 1)
it is a limit curve of all possible curves L = const., where the constant
takes on any value indefinitely many times. (See Part I, Section 4,
where the curve oA = 1 is a conditional zero curve, 0..) Fig. 8, drawn
for @ ~ 1, p ~ 0.5, shows the part of the first quadrant allowed by the
Polder relation divided into regions of like and unlike sign of L(X, a)
and L(T(\, o)) by the various 0, I and (0")z, (I")r curves. The un-
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shaded regions are regions of like sign, and all these carry solution
curves (dotted lines), by the same reasoning as was employed in Part I,
Section 4.11. Two branches of the TEM limit mode exist; in the area

bounded by (04)z, 05, (08')r and in the area Og, I, , (05')» . The branch
in the first region begins at ¢ = 0 with A,\s given by

MV — A2 tan av/1 — A2 = V1 — A2 tan @av/1 — A2,
Mt+M=7p

and ends at the intersection of (04)7, 0z withe = 1 — pand g° = 0
(since A = 0 on (04)r). The branch in the region 05 , 11, (05') r begins
with 8, = «, ¢ = 1 and proceeds towards ¢ = =, 8 = 1.

The region bounded by I, (04)r, I, contains an infinity of solution
curves, the incipient modes. The n** of these begins at ¢ = 1, A, = 1,

the intersection of 7, and I, (the line 7. is also the transform of Ay = — =,
0j Ony In yle O (O'8)r
2.0
+ -
T
1.0 —
. 1,
\\ =
) : =
~m
| 0 7 =i HRAMA-
(Ca)r ©%);
-1 0 1 2
-—p, A—>

Fig. 8 — Zero and infinity contours of L(\;, ¢) and L(T'(\), ¢) in the first
quadrant of the X - ¢ plane. Cross-hatched regions are excluded by the Polder
relation; shaded areas are regions of unlike sign of the two funections. Dotted
curves are solution curves.
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along which Ly = =); crosses from one allowed region to the next
through the intersection of 0, with (05")r and proceeds to its cut-off
point (0, — (04) 7).

Formulae giving §° in the neighborhood of special points on the solu-
tion curves, or for special values of the parameters, are obtained exactly
as in Part I, by expansion of the L-equation. The results are tabulated
helow. They relate to antisymmetric modes only.

Cut-off of the TEM-limit mode (¢ = 1 — p, 8 = 0)
Near cut-off
ag* 1

do _(1 _ tan a) (37)
P 24

For p > 1, the TEM mode has no lower branch.

Behavior near resonance (¢ = 1):
2

k
TEM mode: §° = 8f2ap,
(¢+3)-
thos s P 2 _ P
n'" incipient mode: §° = 257 1 T
C(n=1,2-)

Cut-off of the n*" incipient mode (parametric representation):
-2 -2
_ A _ -t a a e
)\1—6, o =& (1—1’72;2)_'_7-],_2;26
p=c—X; =0 (39)

2 2 2 2 2 -
dg* _ _( ik I 1) coth 9/[(’"_" — 1)e"+ 2tand o _ o
dr a a? at a

(The reader may note the similarities of these formulas to those
for the cylindrical waveguide).

Spot-point for the #** incipient mode:

s [(1 - 2«*)/5] L (40)

p={1Lta@ -1

Il
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Approximate formulae for all antisymmetric modes at small p,
g #1:

TM modes: §* = B..* —L—, (41)
1 —o¢
TE modes: 8° = Bas (1 — _P s (42)
1 —¢?
where
2 n21r2
ﬁ"'lr_l—F n=1,2.'-
and
2
(n+ %) T
ﬁn.22=1_T n=0,1,2;"'
TEM mode:
2 _ 4 _ 9D
=1 = (43)

TEM mode for large o:
g2=1+1’+0(1—3). (44)
a g

TEM mode for very small a:

for sufficiently small a, the g° for the TEM mode is independent
of a. For general o, p, except ¢ = 1,

0_1"(0’+p)2

'6‘-—1—0'1]—0'2‘ (45)

Reference to the expression for p and « in terms of o, p will show that
the wave progresses as though the medium had a scalar permeability

werr given by
1 1/ 1 1
Heff _2(#+ 'f+1-¢ - K)'

3. FIELD PATTERNS IN THE FILLED CIRCULAR GUIDE

In Part I we discussed propagation in a circular guide flled with
ferrite and longitudinally magnetized. Formulae or the field com-
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ponents were given there, and it is of some interest to examine numeri-
cally or graphically the distribution of E and H. Since all field compo-

. . itnf+wi .
nents vary (in complex notation) as P with n

1 in the present

case, it is clear that the field patterns are stationary in a system rotating
with angular velocity, —w. Writing @ for the angular variable, 6 + wt,

in this system,

E,
E,

where

one finds the following formulas:

= —FE_sin 2@, E, = (E4
= E_(‘032¢+E+, Eg b (E+
= I cos P,
=H._COS2¢+H+, Hr=(H+
= H_ sin 2®, Hy = (H-
== H(] SiIl ‘I:’,
1 _
5(5: + 1)
E (r) = 2] —
(r) Oxed 1 (xr) a(xﬂ‘) i
1 _
'8(1 = 7\1)
E =~ "l —
() D1 xamo) o(xar) i
1 + l ; X12
H{) = ————— ™ ], —
(?‘) 2X1J1(X1?'0) z(X1T‘)
1 - )(12
-1+
H = A..ixj"] o)
+('r) 2le1(x1r0) D(Xﬂ)
Ji(ar) |: :I
E, = —
o(r) TiGary) K
1 Jl(XH’) |: :|
H = —— — — .
o(r) A1 J1(xare) 2

— F_) sin &,
+ E_) cos @,
(46)
+ H_) cos @,
— H,) sin ®,
iN
L (47)

The terms in square brackets are in each case the same as the cor-
responding unbracketed terms, A; and xs replacing A, and x; . The quan-
tities I, and E_ are the amplitudes of the left-handed and right-handed
components of eircular polarization into which the transverse E-field
may be resolved at each point. H and H_ have a similar significance
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for the transverse H-field. This may be readily verified by examining
the vectors (E, + jE,)e ™" and (H. 4+ jH,)e ™', which represent the
transverse field vectors in the laboratory system. The transverse fields
are elliptically polarized at any point and the ratio of minor to major
axes of the ellipses are

Bl = B g LHel=[H||
T2+ B i+ 1|

The fields so far are normalized only by the choice of a simple form for
the function, Ey(r); all components may, of course, be multiplied by the
same arbitrary constant. There is some virtue to a normalization based
upon power flow. The power flow is given in unreduced units by

f (E X H). dS.
guide

Using the scaled units of part T with

r
Tactual =
Mo€

and H replaced by 4/ B0 [T to give it the same dimensions as F (e is
€

the dielectric constant of the ferrite), the power flow becomes in the
present variables

I)

I

_/‘/“u o f (K Hy + E_H_) rdr,

= _/‘/E :r TI.
Mo W HoE

We shall normalize the I and H fields by dividing the values given by
equations (47) by I'*. This makes the power per (isotropic wavelength
in the ferrite)’ a constant. In Fig. 9 we show the normalized fields for
the TEy-limit and TMj-limit modes as a function of » for the case
ro = 5.75, | p| = 0.6 and several values of o. The behavior of the modes
as a function of ¢ and p for this radius is shown in Fig. 14 of Part I.
We also show the amplitudes for the isotropic cases, ¢ = p = 0. It may
be recalled from the discussion of cut-off points in Part I that, for the
TM mode at this radius, when cut-off is reached at ¢ = —0.4, the am-
plitude of the H * field is overwhelmingly greater than that of the others.
Even when normalized to the same power flow, the field amplitudes
for a given ¢ are undetermined to a factor of £1. This factor has been
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chosen for each pattern according to the following considerations. For
large | o | the amplitudes should tend to those of the isotropic case; for
| ¢ | < oo the amplitudes should develop with increasing | ¢ | away from
the isotropic amplitudes. Thus, if the phase of the isotropic amplitudes
is first fixed, that of all the others may be fixed by the conditions that
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Fig. 10 — Transverse field patterns in a rotating system for four particular
cases of Fig. 9. For any pair of E and H patterns the length of the arrows is propor-
tional to field strength, but the patterns for different o-values have not been
given a common normalization. (a), top, TE;;-limit mode, &« = 0.6, p = 0.6; (b),
bottom, TE,,-limit mode, ¢ = —0.6, p = —0.6; (¢), TM;;-limit mode, ¢ = 0.6,
p = 0.6;and (d), s = —03,p = —0.6.
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they shall fall into an orderly sequence. In Fig. (10) the actual transverse
E- and H- field patterns are shown for some representative cases.

It will be noted from Fig. 9 that for both TE- and TM-limit modes,
the amplitude patterns for 0 < ¢ < ¢ resemble those for ¢ < —1,
while those for —oy < ¢ < 0 resemble those for 1 < ¢. Further, the
patterns in the first two ranges of ¢ are quite similar to the isotropic
patterns; those of the latter ranges depart markedly from the isotropic.
All of these s%milarities are more clearly seen for the TE modes than for
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Fig. 10(c), top, and (d), bottom — See Fig. 10.
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the TM modes. In Part I where the propagation in guides of very large
radius was briefly examined, it may be recalled that in both of the ranges
0 < ¢ < goand o < —1 the field patterns approached those of a plane
wave rotating in the same sense as the pattern as a whole. Again, it was
found that for —ay < ¢ < 0 or ¢ > 1, the field at most points in the
guide was locally rotating in the opposite direction to that of the whole
pattern. The points of similarity to the present case are clear and it is
also evident that the TE mode more nearly approaches the large guide
situation because 7y = 5.75 is much further above the cut-off radius for
this mode than it is beyond the cut-off for the TM-mode.
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