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Many microwave tubes make use of a long electron beam. The radio fre-
quency excitation on such a beam can be expressed in terms of two space-
charge waves, one of which has nmegative energy and negative power flow.
The electron beam may pass through resonators, through lossy surroundings,
through slow-wave circuits. In this paper the low-level operation of klystrons,
resistive-wall amplifiers, easitrons, space-charge-wave amplifiers, traveling-
wave tubes and double-stream amplifiers is explained in terms of waves on
electron beams and on circuits. Noise 1s discussed in terms of such waves.

INTRODUCTION

There are many different ways in which one can make a valid analysis
of the low-level or small-signal behavior of the many types of microwave
tubes which use long electron beams. Which way one should choose de-
pends partly on one’s purpose in making the analysis, and partly on the
particular problem to be solved.

All of these analyses lead at some point to waves or modes of propaga-
tion: waves which travel along an electron stream, along a circuit, or
along the two together; waves which are unattenuated or which increase
or decrease with distance. Sometimes, the analysis starts out with elec-
tron current, electron veloeity and eircuit dimensions as the fundamental
physical quantities, just as network analysis can start out with induec-
tance, capacitance and resistance. However, an analysis can start out
instead with waves, their propagation constants and their characteristic
impedances as the fundamental physical bases of the analysis. We might
argue that as we are to end with waves, we may well start with waves.
As it turns out, the picture of the operation of various tubes in terms of
waves is simple and pleasing.

It is the purpose of this paper to present a picture of the operation of
microwave tubes in terms of waves. This may be of some interest to
those outside of the tube field, in that it gives an account of many recent
devices. For experts in the field it can serve as an introduction to a
method of analysis which is fairly recent and which may be unfamiliar.
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In this analysis, certain simplifications are made. One underlying
simplification is that of linearity; it is assumed that at low signal levels
the behavior of the electron stream, which is inherently non-linear, can
be represented by that of a truly linear system.

As this paper purports to give an accurate and useful picture of the
low-level operation of microwave beam devices rather than an exhaustive
discussion, some details have been omitted or passed over lightly because
they seemed to be of secondary importance. Material which may be un-
familiar to workers in other fields but which is important as background
is presented in appendices A to C. Various points can be pursued further
in|the literature. References to publications and to those responsible for
various advances are not given in the body of the paper or in the ap-
pendices; they are given for each topic in Appendix D.

SPACE-CHARGE WAVES

Many microwave tubes embody a long, narrow electron beam sur-
rounded by a conducting tube and focused or confined by a longitudinal
magnetic field. At low levels of operation, the radio-frequency disturb-
ances on such an electron stream can be expressed in terms of space-
charge waves.

In these waves, two forms of energy are of primary importance:
electrostatic energy associated with the bunching together of electrons,
and kinetic energy, associated with differences in the velocities of the
electrons. Thus, the waves may be called electromechanical; the electric
energy which we associate with waves in transmission lines and wave-
guides is present, but the magnetic energy is replaced by kinetic energy.
In circuit terms, we have an electrical capacitive element, but the in-
ductive element is inertial, not magnetic in nature. When the electron
and wave velocities are slow compared with the velocity of light, the
magnetic fields produced by the electron convection current are negli-
gible.

There may be many space-charge modes or waves in an electron
stream, some with complex radial and angular variations of amplitude
over the electron stream. Two waves predominate in the operation of
tubes, however, and one simplification we will make is to deal with these
only, and to disregard other modes of propagation on the electron stream.
Appendix A discusses such a pair of waves in a simplified physical system.

We can associate with these two waves an ac electron convection cur-
rent ¢ and an ac electron velocity v. Either we can assume that the elec-
tron beam is narrow and disregard the fact that these quantities vary
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across the beam, or we can deal with peak or effective values much as in
the case of voltages and currents in waveguides.
These ac quantities are assumed to contain a factor
eim! e—:'ﬂz

That is, they vary sinusoidally with time and with distance, and (as-
suming 8 to be positive) propagate in the 4z direction. The phase con-
stants 8 of the two waves will be called 8; and 8.. For beams of mod-
erate charge they are very nearly
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Here u is the electron speed,  is the operating radian frequency and w,
is the effective plasma radian frequency.
The plasma frequency of the electron beam w, is given by
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o
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Here e¢/m is the charge-to-mass ratio of the electron, po is the charge
density and e is the dielectric constant of vacuum. In terms of w,, w,
may be expressed

w, = Ruw,

Here R is a factor somewhat less than unity which depends on the
geometry of the electron beam, on w and w, , and on the velocity distribu-
tion of the electrons (see Appendices A and C).

Let us consider the simple case in which R is unity and the effective
plasma frequency is equal to the plasma frequency. The phase velocities
v; and v; of the two waves, which are » divided by B, are

Uo
h =
.
1422
w
Uo
Vo =
Wp
w

Thus, the first wave has a phase velocity less than that of the electrons;
it is a slow wave, and the second wave is a fast wave.
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Suppose we make up a radio-frequency pulse out of various fre-
quency components of one wave. The pulse envelope generally travels
with a different velocity from that of the rf sinusoids under the envelope.
The velocity of the envelope is called the group velocity. The group
velocity is the velocity with which a signal is transmitted. The direction
of the group velocity is the direction in which causality acts (for some
waves the phase velocity and the group velocity have opposite direc-
tions). The group velocity tells in which direction energy flows, and the
power flow P is the stored energy per unit length, W, times the group
veloeity, v, -

P = Wy,
The group velocity is given by
1
Vg = ——
3B/ 0w

We see that for our assumption w, is equal to w, , the group velocity for
each wave or mode is u , the velocity of the electrons in the beam

Vg = W

Thus, of the two waves, the first has a phase velocity slower than that
of the electrons, the second has a phase velocity faster than that of the
electrons, and each has a group velocity equal to that of the electrons.

A simple discussion of power flow is given in Appendix B. In describ-
ing the excitation of the electron stream we can use the convection
current i together with a quantity U which is analogous to voltage. In
terms of the ac electron velocity v,

The real power flow P is given by
P = LWGEU* + i*U)

This relation is justified in Appendix B.
For each of the two waves the voltage U bears a constant ratio to the
current 4; this ratio is the characteristic impedance K of the wave. We

find that

K= U= g Vo
21 NID
K2=—[é— o Vo

2:2 w Iu
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Here V, is the accelerating voltage specifying the electron velocity o
and Iy is the total beam current.

We see that the characteristic impedance K; of the slow wave is
negative. This means that the power flow in the 4z direction is negative.
We could also say that positive power flows in the —z direction, but this
may carry an unfortunate implication as to the direction in which
causality acts. An example may be helpful.

Fig. 1 shows an electron beam acted on by the fields of two devices
A and B. The fields in A are such as to set up the slow wave only. This
travels between A and B. The fields of B are such as to just remove the
slow wave entirely, so that the electron beam leaves B with no ac dis-
turbance on it. The electron velocity u, , phase velocity v, group velocity
v, and negative power flow — P are all directed in the +z direction, that
is, to the right.

We must remove a power P from A to set up the slow wave. A power
—P flows from A to B. We must add a power P to B to remove the slow
wave from the electron beam. Causality acts from A to B. To change the
amplitude of the slow wave between A and B we must change the fields
in A, not the fields in B.

The power flow is the group velocity times the stored energy per unit
length. As the group velocity for the slow wave is positive and the power
flow is negative, we see that the stored energy must be negative.

If we moved with the electrons and observed the waves, we would
find that the average kinetic energy associated with the ac electron
velocity was equal to the average potential energy of the electric field,
and that both were positive; this is characteristic of waves in a stationary
medium. The kinetic energy of the electrons relative to a fixed observer
is proportional to the square of their total velocity, that is, the ac velocity
plus the average velocity. The average velocity is larger than the ac
velocity, so that energy terms involving the product of the average

ELECTRCN VELOCITY
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Fig. 1 — Device A sets up the slow space-charge wave only, and device B
removes it. uwo, v, v, and —F are respectively the electron velocity, the phase
velocity, the group velocity and the power flow between 4 and B.
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velocity and the ac velocity are larger than terms involving the square
of the ac velocity. The product terms may be negative or positive.

We can understand the negative energy of the slow wave qualitatively
through a simple argument of a somewhat different sort. In the slow
wave, the charge density is greatest in regions of less-than-average
velocity and least in regions of more-than-average velocity, so that the
electron beam has less total kinetic energy in the presence of the slow
wave than it does in the absence of the slow wave. How does this come
to be? Suppose that we move with the wave; we then see electrons
moving in an electric field which is constant with time, and hence, as
electrons move through the field their velocities vary as the square root
of the potential. Relative to the wave, the electrons move slowest in the
low-potential regions, and correspondingly, they are bunched together
in regions of low potential. Now, for the slow wave the total electron
velocity is the arithmetic sum of the wave velocity and the electron
velocity relative to the wave, so if the electrons are bunched in regions
of lowest velocity relative to the wave they are necessarily bunched in
the regions of least total electron velocity, and the kinetic energy of the
slow wave is thus negative.

In the case of the fast wave, the electrons travel backward relative to
. the wave. The total electron velocity is the arithmetic difference between
the wave velocity and the electron velocity relative to the wave. Hence,
the total electron velocity is greatest at the bunches, where the velocity
relative to the wave is least, and the kinetic energy of the fast wave is
positive.

THE KLYSTRON .

We can explain the operation of a number of types of vacuum tubes in
terms of space-charge waves. Consider the klystron, illustrated in Fig. 2.
The voltage produced across the input resonator by the input signal
sets up on the electron beam both the slow and the fast space-charge
waves in equal magnitudes and so phased that the velocities », or the
voltages U add, while the currents cancel. Thus, just beyond the input
resonator, the beam has an ac velocity; it is velocity modulated, but it
has no ac convection current.

Because the two space-charge waves, one with negative power flow and
one with positive power flow, are set up with equal magnitudes, the ac
power flow in the beam between the input and the output resonators is
zero. The input resonator neither adds power to nor subtracts power from
the beam.

Because the two waves have different phase velocities, their relative
phase changes as they travel along the beam. If we go along the beam a
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distance L such that
w
2L=nx

we will find that the ac velocities of the two waves cancel and their cur-
rents add. If at this point we put an output resonator, the current will
produce a voltage across the resonator which will act on the electron
beam to set up new components of the slow and the fast waves.

If the resonator is on tune, so that it acts as a resistive impedance,
the phase of the voltage is such with respect to the space-charge wave
producing it that the new component of the fast space-charge wave

INPUT OUTPUT

— —
INPUT OUTPUT
RESONATOR RESONATOR

Fig. 2 — In a klystron the input resonator sets up slow and fast space-charge
waves so phased that the velocities add and the currents cancel. At the output
resonator the currents add and the velocities cancel. The voltage across the output
resonator increases the amplitude of the slow, negative-power wave and decreases
the amplitude of the fast, positive-power wave.

subtracts from the old component, while the new component of the slow
space-charge wave adds to the old component. Thus, while to the left
of the output resonator the two space-charge waves have equal magni-
tudes, so that the net power flow is zero, to the right of the output
resonator the slow space-charge wave has a greater magnitude than the
fast space-charge wave, so that the power flow in the beam is negative.
The missing power appears as the output from the output resonator.

Of course, klystrons are frequently used in the nonlinear range of
operation, and the distance I between resonators may be chosen differ-
ently from other considerations.

THE RESISTIVE-WALL AMPLIFIER

Consider a tube much like a klystron, but in which the electron beam
is surrounded by a glass tube coated with lossy material, such as graphite,
as shown in Fig. 3.
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As in the klystron, the input resonator produces both the slow and the
fast waves with equal magnitudes. As each wave travels, it induces
currents in the resistive wall surrounding it and dissipates power in the
wall. Thus, the power in each wave must decrease as the wave travels.

The fast wave has a positive power, and so for its power to decrease
the amplitude must decrease. Thus, in the resistive-wall region the
amplitude of the fast space-charge wave decreases exponentially with
distance.

Because the slow space-charge wave has a negative power, its power
can decrease only if the amplitude of the wave increases, so that the
power flow becomes less (more negative). Thus, in the resistive-wall
region the amplitude of the slow space-charge wave increases exponen-
tially with distance; the wave has a negative attenuation; it is amplified
as it travels.

If we put the output resonator far from the input resonator, the ampli-
tude of the fast space-charge wave will be very small there, but the
amplitude of the slow space-charge wave may be very large. Its current
will produce a large voltage across the output resonator. As in the case
of the klystron, this voltage will increase the amplitude of the slow space-
charge wave, thus decreasing the power flow in the electron stream.

The resistive wall amplifier has a feature which the klystron lacks; the
process of amplification involves an actual growing wave along the elec-
tron stream.

THE EASITRON; INCREASING WAVE IN A LOSSLESS SYSTEM

Consider a tube somewhat similar to the resistive wall amplifier, but
in which the beam is surrounded, not by a lossy tube, but by a series of
pill-box resonators, as shown in Fig. 4. Imagine that the resonators are
so tuned that at the operating frequency they present a lossless negative
susceptance to the electron beam.

TUBE COATED WITH
RESISTIVE MATERIAL

Fig. 3 — In a resistive-wall amplifier the currents excited in the lossy wall by
the slow, negative-power wave decrease the power in the wave, so that tKe ampli-
tude of the wave must increase.
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The impedance an electron beam sees in traveling through free space
or in a concentric lossless tube is capacitive. In section 1 the space-charge
waves were described as involving the stored energy of the electric field,
capacitive in nature, and the kinetic energy of the electrons, which has
an inductive effect. We might liken the beam and its capacitive circuit
to the ladder network of Fig. 5. We know that such a network supports
waves.

When the charge of the beam sees a negative susceptance, the be-
havior is much as if the capacitances in the ladder network of Fig. 5 were
negative.* In this case the waves characteristic of the circuit are not
traveling waves, but are a pair of waves, one of which decays with dis-
tance and one of which increases with distance. Neither has any net
stored energy.

We can express the propagation constants of the waves much as in the
section on, ‘“Space-Charge Waves,” but the effective plasma frequency
w, 18 now imaginary; we will eall it jw,”. The phase constants 8, and .

Fig. 4 — In the easitron, resonators surrounding the beam change the suscep-
tance the electrons see from positive to negative. The system no longer supports
two traveling waves, but rather, a growing and a decaying wave.

I -

Fig. 5 — If the capacitances in this ladder network were negative it would sup-
port growing and decaying waves rather than traveling waves.

* Some care must be used in arriving at proper equivalent circuits. For instance,
neither of the electric waves on a ladder network has negative energy if the net-
work is set in motion, but we have seen that one of the longitudinal space-charge
waves does have negative energy. If both the capacitances and the inductances
of a ladder network are negative, the waves on the network will have negative
energies.
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The fact that the characteristic impedances of the two waves are
imaginary means that neither of the waves alone has any power flow.
Neither of the waves can very well carry power. The amplitudes change
with distance; hence for each wave Uz* and :U* increase or decrease with
distance. But, the circuit and the electron beam are lossless, and the
power cannot change with distance. As the waves do have a group
velocity, neither has any stored energy. Does this mean that the beam
cannot carry any power? The beam can carry power, just as a filter in
its stop band can carry some power from a source at one end to a resistive
load at the other end. The power flow is still given properly in terms of
the total current i and the total voltage U by the same expression used
in section 1. Suppose that the two waves have currents 7, and 7, . Then
the total power flow is

P = B[(5 + @) (Ki*i* + Ki*io*) + (0% + 02%)(Kvi + Kaia)]
P = WK, + Ki*)(@i*) + (Ko + Ko*)ista* + 010:*(K: + Ko¥)
+ (1" (K1 + Ki¥))*]

First consider the case in which w, is real and for which the characteris-

tis impedances are real and
K, = —K,
In this case
P = Kuiy* + Koiota™

This is the familiar case of unattenuated waves. The total power is the

power of each wave calculated individually.
Let us now consider the case in which the effective plasma frequency
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is imaginary. In this case we can write
K, = —jK,
K, = +jK,
where K, is real. We have
P = [—jiis*Ko + (—jiia*Ko)*]
Either wave alone carries no power; there is power flow only when the
two waves are present simultaneously. The two waves vary with distance

as

e—j(mlun)ae(ug 'fua):; e_j(“’"“")e_("' "ug)z

so the #;%,* is constant with distance. If this were not so the power would
change with distance, but as the resonators have been assumed to be
lossless, neither taking power from the beam nor adding power to the
beam, this is impossible. Thus, in a lossless system an increasing wave is
always one of a pair, and the other member decreases with distance in
such a way as to keep the product of the amplitudes of the two waves
constant with distance. Neither the increasing wave alone nor the de-
creasing wave alone carries any power, but the two together can carry
power.

We will note that in the easitron the direction of the group velocity, that
is, the direction of causality, is the direction of electron flow. Thus, the
waves are both set up at the input resonator; it is there that boundary
conditions on both current and voltage must be satisfied.

COUPLING OF MODES OF PROPAGATION

We know that waves which increase and decrease exponentially with
distance are characteristic of a ladder network in which the susceptances
of the shunt and series arms have the same signs. They occur in other
networks as well. Consider a smooth transmission line loaded periodically
with shunt capacitances, as shown in Fig. 6. Each capacitance reflects

I
j

Fig. 6 — Capacitances connected across a smooth transmission line periodically
couple the forward and backward waves and produce stop bands characterized by
growing and decaying waves.

)
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part of a wave approaching it. In other terms, each capacitance acts to
couple one mode or wave (say the forward wave) to another (say, the
backward wave). When the distance between the capacitances is such
that the couplings reinforce, that is, near a half wavelength in this case,
the system is a filter in its stop band ; it does not transmit traveling waves,
but supports rather a wave which increases exponentially with distance
and a wave which decays exponentially with distance. Neither of these
waves alone carries any power.

The space-charge waves of an electron stream can be coupled to one
another, to a space-charge wave of another stream, or to an electromag-
netic wave. In any of these cases we can have increasing waves.

THE SPACE-CHARGE-WAVE AMPLIFIER

Consider an electron beam surrounded by a series of metallic tubes
A, B, A, B ---, alternately at different potentials with respect to the
cathode from which the electrons come, as shown in Fig. 7. The impe-
dances of the space-charge waves will be different in tubes A from what
they are in tubes B. The behavior of this system is much like that for the
transmission line system shown in Fig. 8, in which we have alternate line
sections of different characteristic impedances K, and K5. We know that
such a series of line sections forms a filter with stop bands.

=

= lllllll}lllhlﬂ
CATHODE

Fig. 7 — The impedances of waves in an electron beam passing through elec-
trodes at alternately higher and lower potentials differ in regions of different po-
tentials. This can result in stop bands characterized by growing and decaying
waves. Such a device is a space-charge-wave amplifier.

Kg ) Kp

Ka Ka

I

Tig. 8 — A transmission line with alternating sections of impedances K4 and
Kp is somewhat analogous to the space-charge-wave amplifier.



WAVE PICTURE OF MICROWAVE TUBES 1355

In the case of the space-charge-wave structure of Fig. 7, the stop band
occurs for conditions near that in which for both sections A and B the
section lengths L., and Ly are such that

Wqa
Z—qLA=1r
Uo

2 bﬂ La = m
Uo
Here w4 and wgp are the effective plasma frequencies for sections A and
B.
A structure such as that of Fig. 7 can be interposed between input and
output circuits, such as resonant cavities, to give a space-charge-wave
amplifier dependent for its action on the growing wave of the pair.

THE TRAVELING-WAVE TUBE

In the space-charge-wave tube, the two waves which are coupled to-
gether have different velocities, just as the forward and backward waves
on an electron stream have different velocities. Hence, they can be
coupled strongly only through the use of some periodic structure in which
the period is related to the difference in phase constants of the two waves.

In a traveling-wave tube we can have coupling between a space-
charge wave and a wave traveling on a circuit, and both of the waves can
have velocities which are nearly or exactly the same.

Here we must consider two different cases. If both of the coupled waves
carry power in the same direction (that is, if the power is positive for
both, or negative for both), coupling cannot result in a stop band, but
only in transfer of power between one wave and the other. In order to
have a stop band, power which we try to send in on one wave must come
back to us on the other. Hence, to produce a stop band and gaining
waves, the two coupled waves must carry powers with opposite signs.

A traveling-wave tube can consist of a helix of wire, which can sup-
port a slow electromagnetic wave, surrounding an electron beam, as
shown in Fig. 9.

:TIN Nou-r

Fig. 9 — The vital elements of a traveling-wave amplifier are an electron
sgream and a slow-wave circuit which may be a helix surrounding the electron
stream.
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Traveling-wave tubes really involve at least four waves: two space-
charge waves and two circuit waves. Usually, the backward circuit wave
is so far out of synchronism with the space-charge waves that we can
neglect its coupling with them. Further, if the space-charge waves are
well separated in velocity, that is, when w, is large enough, then when
one is coupled to the circuit wave the other isn’t, and so we can get some
idea of traveling-wave tube operation by considering waves in pairs.
The simple mathematics of such coupling is given in Appendix D.

In Fig. 10, the behavior of various phase constants, plotted as a func-
tion of w/ue , is shown qualitatively. Here w is radian frequency and
is electron velocity. We may consider that w/u, is varied by changing
the electron velocity up and keeping the frequency w constant. The
horizontal line 8. is the phase constant of the forward circuit wave in
the absence of electrons, or when the coupling to the electrons is zero.
B. does not change with electron velocity. 8, and B; are the phase con-
stants of the slow and fast space-charge waves, respectively, with zero
coupling to the circuit wave. For the slow space-charge wave, the power
flow is negative, while for the circuit wave and the fast space-charge
wave the power flow is positive. Thus, for coupling between the slow

2.0
1.5
Bs ﬁf
P 3
10 Pe
0.5
o]
0 0.5 1.0 1.5 2.0 2.5
W ’
Uo

Fig. 10 — Suppose that at a constant radian frequency w we change the electron
velocity g in a traveling-wave tube. If the waves of the electron stream were not
coupled to the waves of the helix, the phase constants, 8. of the forward circuit
“ilave, B, of the slow wave, and 8, of the fast wave, would vary approximately as
shown.
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Fig. 11 — Because of coupling of the space-charge waves to the forward circuit
wave, gain is produced near 8, = 8, , while the curves sheer off from one another
near 8, = By .

space-charge wave and the circuit wave we can have a stop band, while
for coupling between the circuit wave and the fast space-charge wave we
cannot. : _

The consequences of the couplings between the circuit wave and the
space-charge waves near the intersections of 8. with 8, and 8, are il-
lustrated in Fig. 11.

We see from Fig. 11 that near synchronism between the circuit wave
and the fast space-charge wave (8. = B; for no coupling) these waves
combine so that for any given value of w/u, there are always two dis-
tinet real values of 8. This is typical for coupling between modes with
power flows of the same sign. At 8. = 8, each of the two mixed waves has
equal energies in the circuit and in the electron stream. ’

Near synchronism between the circuit wave and the slow space-charge
wave (8. = (B, in absence of coupling) these two waves combine so that
over a range of w/u, near 8. = B,, § has two complex values with the
same real part and with equal and opposite imaginary parts. We can
write this as

B = B = ja; —jB = —jB F «
This corresponds to an attenuated and a growing wave with the same
phase velocity. In Fig. 11, 8, and « are plotted as dashed lines.
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Over the range of w/uy for which the waves are attenuated (a # 0)
the net power flow in each of the modes is zero. The power flow in the
electron stream is equal and opposite to that in the circuit. Such behavior
is characteristic when two modes with power flows of opposite signs are
coupled. It is characteristic of the stop band of an electric wave filter.

The curves of Fig. 11 exhibit the same behavior that has been found
by other means, although similar curves are sometimes plotted somewhat
differently.

When an input signal is applied to the helix of a traveling-wave tube,
all three forward waves are set up. The increasing wave grows until it
predominates, and it forms the amplified output of the tube.

The total ac power of the increasing wave is zero. How can we obtain
power from it? In the increasing wave we have a positive electromagnetic
power flow in the circuit and an equal negative power flow in the elec-
tron stream. If we terminate the helix we can draw off the electromag-
netic power; the electron stream is left with less power than it had on
entering the helix.

DOUBLE-STREAM AMPLIFIERS

A double-stream amplifier makes use of two streams of electrons which
have different velocities, as shown in Fig. 12. The behavior of a double-
stream amplifier is very similar to that of a traveling-wave tube. In such
a device each electron stream supports a slow, negative-energy wave
and a fast, positive-energy wave. At a constant frequency w let the -
velocity u; of one stream be kept constant and let the velocity u, of the
other stream be varied. The behavior of the phase constants 8 of the
waves is shown qualitatively in Fig. 13. 8. and 8n are the phase con-
stants of the slow and fast waves of the constant-velocity stream, and
B and By are the phase constants of the slow and fast waves of the
stream whose velocity is changed. There are two ranges of velocity us for
which gain is obtained; for u. a little larger or a little smaller than w, .

STREAM 2

QUTPUT

Fig. 12 — Two nearby electron streams of different velocities u; and u. consti-
tute a double-stream amplifier.
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NOISE WAVES ON ELECTRON STREAMS

Consider the electrons of the beam as they leave the cathode. If the
velocity distribution is Maxwellian, and if the electrons leave inde-
pendently, there will be a mean-square fluctuation in convection current,
7°, given by

i = 2el,B

and an uncorrelated mean square fluctuation in ac velocity, o*, given by

- ()

Here I, is beam current, ¢ and m are electron charge and electron mass’
k is Boltzmann’s constant, T'. is cathode temperature and B is bandwidth’

Usually, space-charge-limited flow is used. In this case the beam cur-
rent is only a part of the emitted current; the rest is turned back at the
potential minimum. In this case we may use the above relations, counting
I, as the beam current, as some sort of approximation for the current
passing the potential minimum.

The wave picture we have been discussing may be seriously inaccurate
near the cathode where the relative spread in electron velocities is large.
Suppose that we hope for the best and apply it. We find that in the most
general case our electron stream will have on it a noise standing-wave
pattern. If 4min and Zm.x are the minimum and the maximum noise

currents,
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Here « is a constant near to unity.

The noise pattern is made up of two uncorrelated noise standing-wave
patterns, one from ¢ at the cathode and the other from v at the cathode;
these patterns have amplitudes 7; and 7, at their maxima; the minima
are of course zero. We have

| Zmin | | fmax | = [ 41| [ 2] sin®

Here ¥ is the relative phase angle of the standing-wave patterns associ-
ated with ¢, and 7, . That is, if the maximum of the 7. pattern is at that
of 7, ¥ = 0, while if the maximum of the 7, pattern is midway between
maxima of 7; , then ¥ = /2.

The first of these theorems says something about the noise current at
the maximum and that at the minimum, but it does not directly say how
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Fig. 13 — In a double-stream amplifier, gain is obtained when the phase con-
stants of the slow wave of the faster stream and the fast wave of the slower stream
are nearly equal.

large the maximum is. For an ordinary two-potential electron gun, ¢ma.
is very large compared with 7mix .

NOISE DEAMPLIFICATION

Early traveling-wave tubes made use of a two-potential electron gun
spaced a critical distance from the circuit, as shown in Fig. 14. More
recently it has been found possible to reduce the noise figure considerably
by the use of space-charge-wave amplification, as discussed in the sec-
tion on “The Space-Charge-Wave Amplifier.”” The structure used is
indicated in Fig. 15. The gun has a low-potential anode followed by a
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Tig. 14 — When a simple, two-potential electron gun is used, the noise figure
of a traveling-wave tube can be optimized by adjusting the drift-space between
the gun anode and the helix.
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drift tube. At the point where the noise current is a minimum the voltage
is “jumped” to the helix voltage. A second drift tube follows, so that
there is a critical distance between the jump and the helix.

The effect of this “voltage jump” gun is to deamplify the component
of the space-charge waves which is associated with the noise current at
the current maximum, In space-charge-wave amplifier terms, this com-
ponent sets up the decreasing wave only. Thus, in the second drift tube
the ratio | max/%min | s smaller than in the first.

By using a single velocity jump, traveling-wave tubes with noise
figures around 8 db have been made.

The use of more velocity jumps has been proposed. It can be shown,
however, that as ima.x is deamplified, 7,,;n must be amplified. This sets a
theoretical limit of around 6 db to the noise figure attainable by means

of space-charge-wave deamplification alone.
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Fig. 15 — When a two-potential or “velocity jump’’ gun is used, the noise figure
can be reduced by space-charge-wave deamplification of the noise on the electron
stream.

NOISE CANCELLATION

It would be highly desirable to build a traveling-wave tube such that
the electromagnetic input would excite an increasing wave, but the noise
in the electron stream would excite only some combination of the
decreasing and the unattenuated waves. If we succeeded in this, the
noise introduced by the tube could be made as small relative to the
signal as desired, merely by making the tube long enough. Can we ac-
complish this by means of some special structure near the input end of
the tube?

We can represent the noise on the electron stream at some reference
point by means of a velocity fluctuation v and a current fluctuation 7; we
have seen that neither can be zero. Because the system is linear, super-
position applies, and the amplitudes of the growing, attenuated and
unattenuated waves which are excited are the sums of the amplitudes
excited by 7 and » independently.

Suppose that v = 0. Then the beam carries no power. Thus, ¢ cannot
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excite the unattenuated wave, for that wave carries power. Let us assume
that it excites the decreasing wave alone, which, when present alone,
carries no power. So far there is no contradiction, and we can believe that
it is possible to arrange matters so that the current alone does not excite
the increasing wave.

Suppose we have so arranged matters that 7 does excite the decreasing
wave only. Consider what happens when ¢ = 0. Can v alone excite the
decreasing wave only if 7 alone excites the decreasing wave only? If it
can, then » and 7 together must excite the decreasing wave only. But
suppose v and 7 are of the same frequency and in phase. Then the beam
carries power. But, the decreasing wave alone cannot carry power, and
hence what we have assumed is impossible. If the 7 excites the decreasing
wave only, then » must excite at least a component of the growing wave.
Hence, we cannot cancel out the noise from the beam completely.

FINAL COMMENTS

We have seen that the properties of space-charge waves and the
behavior which must follow when space-charge waves are coupled to
other space-charge waves or to circuit waves can be used to explain the
operation of seemingly diverse types of microwave tubes. The wave
picture gives a clear and quantitative picture of energy relations and
power flow. It enables us to understand simply the effect of thermal
velocities on the operation of tubes through their effect on the phase
constants of the space-charge waves. It is useful in detailed considera-
tions of noise, and in one case it has enabled us to draw a general con-
clusion without resorting to formal mathematical manipulation. It may
well be that the wave picture can be of further use both in calculating
detailed behavior of tubes and in understanding their general properties.

ApPPENDIX A
SPACE-CHARGE WAVES

Consider a narrow electron stream in which we may assume that elec-
tron velocity and charge density do not vary across the stream, and in
which the electrons are free to move in the z-direction only. An axially
symmetrical electron focusing system immersed, cathode and all, in a
strong magnetic field approximates this.

Let all ac quantities contain the factor

e—iﬂseﬁut

and let the total charge density, current and electron velocity be made
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up of de and ac parts as follows:*
charge density: — py + p
convection current density: — I, + ¢
velocity: wg + v

Here po , Iy and u, are positive de quantities. The quantities on the right
are the ac components.
We have from the definition of convection current

(=L + i) = (—p + p) (e + v) (A1)

In the case of very low level operation, we neglect products of ac
quantities in comparison with products of ac and de¢ quantities. Doing
this, we obtain from (Al) the de and ac convection currents

Iy = potto (A2)
or
1 = —pi + Ugp (A3)
p= i+ pov (A4)
Uo

We can apply the continuity equation, or, the equation of conserva-
tion of charge, to the ac convection current

% _ _op
0z at (A5)
Bi = wp
. 1 .o .
Bi = (—) (jowi — pojurv)
o
(A6)

— —wpoV

w — ,B'lm

Thus, if we have a wave with a given phase constant 8, and if we know
p and o, (AG) gives the convection current in terms of ac electron
velocity. How can we find what 8 will be? To find this we must consider
the effect of the electric field on the electrons. Consider an ac electric
field E. in the z direction, which also varies with time and distance as

* It will be convenient elsewhere to use —7I, and 7 as currents rather than
current densities and —p and p as charge per unit length.
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do the other ac quantities. We can write

dv e
@~ Tm (A7)
Here e/m, the charge-to-mass ratio of the electron, is taken as a posi-
tive quantity. _
In (A7), dv/dt is the rate of change of » with respect to ¢ for a single

electron; that is dv/dt observed riding along with the electron. If we ride
along with the electron for a time df we move along distance dz

dz = (u + v) dt
For small signals we neglect v in this expression and write
dz = up dt
Hence, the total change dv in the velocity of the electron in the time dt
18
do =%t + 2w dt
Hence, we find that

dv .
@ _?(w — Bug)v (AB)

Using (A7) and (A8), we see that

. e

J 1;' Et
(w — Buo)

s (A9)

We can combine (A9) with (A6) and write for the convection current
density

e
= o pol (A10)
(0 — Bup)?

7::

Let us now consider a special, hypothetical case in which the electric
field is in the z direction only, so that there are no transverse electric
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fields and no transverse displacement current. Then the total ac current
density 7, is the sum of the convection current density and the displace-
ment current density, or,

i = 1+ jweE,;
— 0 (A11)
. m .
TN\ g e

Let us use a quantity w,, which was long ago named the plasma fre-
quency (radian frequency)

€
ra) 2 = 7'1—1,_” (Alz)
? €
Using w, , (A10) can be written as
2
AR (—(—wi""—w + 1) jweE, (A13)

According to Maxwell’s equations the divergence of the total current
is zero. Both components of ¢, vary with 2. If, as we have assumed, there
is no current normal to the z direction, then 7, must be zero. If this is
to be so, we must have

(b) - ﬁuo)z = wpz
(A14)
g=2 4%
Uo Uo
In actual electron beams there is transverse electric field away from
the beam, and hence 7; is not zero. It is found, however, that when w, is
small compared with w, we can write quite accurately

+ =2 (A15)

Here w, , which is known as the effective plasma frequency, is smaller than
wp . As w is raised, so that the wavelength of the space-charge waves
becomes smaller compared with the diameter of the electron beam, the
electric field tends to become largely longitudinal and w, approaches w, .
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The upper sign in (A15) gives the phase constant of the slow wave, a
wave with a phase velocity less than that of the electrons. The lower
sign gives that of the fast wave, a wave with a phase velocity faster than
that of the electrons.

From (A15) and (A6) we note that

i=+2 pp (A16)
Wg
The upper sign holds for the slow wave; the lower sign for the fast wave.
Tt has been convenient to use — I, and 7 as current densities and — py
and p as charge densities. In subsequent work and in the text, —I, and
i will be used as beam current and —py and p as charge per unit length.
All the relations of this appendix except (A11)-(A13) will hold if the
quantities are so interpreted.

ApPENDIX B
POWER FLOW IN SPACE CHARGE WAVES

The purpose of this appendix is to justify the expression for power flow
in the beam.

Consider that the electron beam is acted on over a short distance by
an ac voltage. Imagine, for instance, that the beam passes through two
very closely spaced grids which form a part of a resonator, and that a
voltage AV appears between the grids. What does the voltage do to the
beam?

The voltage AV changes the velocity of the electrons but it does not
change the convection current. To find out how much the velocity is
changed we need only consider the case in which the beam has no ac
velocity on reaching the grids, since in a linear system the change will
be the same in all other cases. The total velocity u, + v is given in terms
of the total accelerating voltage V 4 AV by

uo+v=/‘/2£(Vu+AV) (B1)
We assume AV to be small, so that

AV < AV ©
m m

VAT w
m 0
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The change AU in the “voltage” U is

AU = — 2 = _ay (B3)

m

The convection current 7 flows against the voltage AV, so that a power
AP is transferred from the beam to the resonator which is attached to
the grids.

AP = —ReAV7* (B4)

Thus, the change in the power in the beam in passing through the grids
must be —AP

—AP = Re (— AVi*) = ReAUs* (B5)
AP = —ReAUs*

According to the expression we have used in caleulating beam power,
if the “voltage’ of the beam on reaching the grids is U, and the convec-
tion current is %, then the beam power P; on reaching the grids is

Py = ReUs* (B6)

After passing through the grids, U is increased by an amount AU while
the current is unchanged, so that the power P, of the beam leaving the
grids is

Py = Re(U 4 AU)d* (B7)
The loss of power in the beam, AP, is
AP = Py — Py = —ReAUi* (B8)

This agrees with (B35), in which AP was calculated as the power lost from
the beam to the resonator.

ArreEnDIX C

THE EFFECT OF THE VELOCITY DISTRIBUTION IN THE ELECTRON BEAM
ON THE EFFECTIVE PLASMA FREQUENCY

Consider an electron beam in which electron motion is confined to the
z-direction, and in which the electrons have a velocity spread with a
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mean square deviation {u”) about the mean value uo . If wy is the effective
plasma frequency for («*) = 0, then taking the velocity spread into
account, the effective plasma frequency w, is given approximately by

<u2 2
wg = wgo(1+3—ug—>(£ﬂ

If the velocity distribution is the same as for electrons accelerated
individually by a voltage V,, that is, if electron interactions do not
affect the velocity distribution appreciably (as they probably do not)

W'y _ _(kT) 1( T, )
Tul eVo 11,600 V,
Here k is Boltzman’s constant and T. is cathode temperature. Thus,
from this assumption

@ = wip (1 T (f{f) (w))

Following our wave picture, we can take into account the thermal
velocity spread by using this corrected value for the effective plasma
frequency in all our formulae. For all practical purposes, the change in
effective plasma frequency due to thermal velocities is negligible.

In a paper which will appear in the Journal of Applied Physics, D. A.
Watkins has used a somewhat different approach in treating the effect of
thermal velocities on the operation of traveling-wave tubes.

AppEnDIX D

PHASE AND ATTENUATION CURVES FOR COUPLED MODES

When two unattenuated modes of propagation are coupled together
periodically in a lossless manner, they combine to form two new modes.
For each of these new modes the amplitude is changed in one period of
the coupling structure by a factor

Mo 002,505+ 2 (D1)

where M is a root of

M — 2/ TF T8 cos & 9"2"31_93)+1=0 (D2)

Here k is a coupling coefficient which is zero for zero coupling. The
upper sign applies if the power flow in the two modes have the same
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signs while the lower sign applies if the power flows have opposite signs.
6, and 6, are phase lags per coupling period associated with the two orig-
inal modes and 6, and 8, are phase angles associated with the coupling
device.

We can treat the ease of continuous coupling by letting the period of
coupling L be very short, the angles 8, , 6, , 6, 65 be very small, and the
coupling per period, k, be very small. In this case the cosine can be
represented by the first terms of a power series and we find that the
phase constants 8 of the modes are given by

_|Ba+Bb ﬁu_Bb 2K 2
g=fet :i:( 2) 1*(@.—&,) (D3)

Here 8, and S, are the phase constants for K = 0 (zero coupling)

8, — 61

Ba = T (D4)
go= (D5)
and K is the coupling per unit length
k
=7 (D6)

As before, the upper sign in the radical applies when the power flows
have the same signs and the lower sign when the power flows have
opposite signs.

In applying (D3) to the case of traveling-wave tubes and backward-
wave oscillators, the effect of all but two modes was of course neglected
when the two phase constants would have had nearly the same value in
the absence of coupling; the curves for such regions were then joined
smoothly to give the overall plots of Figs. 11 and 13.

In Fig. 11 the parameters chosen arbitrarily were:

B =1
Be = w/ue + 1%
Br = w/uo — %
K =01

The complex portion of the phase constant, or, the real portion of the
propagation constant, in a stop band caused by the coupling of two
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modes with power flows of opposite signs is designated by « and is plotted
as the dashed ellipses about the horizontal axis.

ArrEnDIX E

This appendix comments briefly on various sections and cites refer-
ences, which are listed at the end of the appendix. The list of references
is not exhaustive, but it should enable the interested reader to follow
work back to its source.

1. Space-Charge Waves

Space-charge waves of the general sort considered are related to the
plasma oscillations of Tonks and Langmuir." Waves in long beams were
first discussed by Hahn® and Ramo.’ The effects of a velocity distribution
are discussed by Pierce* and by Bohm and Gross.” The negative energy
of the slow space-charge wave has been reported by Chu® and by Walker.”
Chu gave the effective ‘“voltage” U and the characteristic impedance K
for the waves.

2. The Klystron

Beck® gives an adequate description of and references to klystrons.

3. The Resistive Wall Amplifier

The effect has been discussed by Pierce,” and a tube using it has been
described by Birdsall, Brewer and Haeff."

4. The Easitron; Increasing Wave in a Lossless System

The original easitron was a tube built by L. R. Walker at Bell Tele-
phone Laboratories; it was a 3-cm tube using half-wave wires as resonant
elements. It has not been described in the literature. Pierce has discussed
the operation of this sort of multi-resonator klystron on page 195 of
Traveling Wave Tubes" and elsewhere.”

5. Coupling of Modes of Propagation

The operation of traveling-wave tubes was first explained in terms of
coupling between an electromagnetic wave and a space-charge wave by
C. C. Cutler in unpublished work. Mathews has made an analysis in
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these terms.” Such coupling has been considered in general terms by
Pierce.”

6. The Space-Charge-Wave Amplifier

This tube was invented by Tien, Field and Watkins™ and is described
in more detail by Tien and Field.”

7. The Traveling Wave Tube

Adequate descriptions and references are available in work by Kompf-
ner,'® Pierce," and Beck.®

8. Double-Stream Amplifiers

Descriptions and references are given by Pierce” and by Beck.?

9. Noise Waves in Electron Streams

Cutler and Quate have published experimental results.'” The theorems
quoted are given by Pierce."

10. Noise Deamplification

This was suggested by Tien, Field and Watkins' and is described in
detail by Watkins” and Peter.”

11. Noise Cancellation

Noise cancellation was first proposed by C. F. Quate.”
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