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The p-terminal generalization of a two-terminal switching function is a
matrix of swilching functions representing the conditions under which
the terminals are interconnected. The properties of these ‘‘swilching mal-
rices’” are studied, and examples are given to show how they may be em-
ployed effectively in the design of switching circuils. Soma» basic problems
are outlined and a ibliography is attached.
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1. INTRODUCTION

Matrices over a Boolean algebra, or simply Boolean mairices, are rec-
tangular arrays of elements from a Boolean algebra. These arrays are
subject to appropriate rules of operation, some of which are analogous
to the rules of operation for ordinary matrices, whereas others reflect the

177



178 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1955

Boolean character of the elements. The purpose of this paper is to present
those properties of Boolean matrices which have application to the
design of combination relay logic circuits, and to develop fundamental
aspects of this application.

In this paper, we shall assume a knowledge of the elementary aspects
of Boolean algebra and of its application to the design of switching cir-
cuits." * We shall use the following notations for the Boolean operations:

+ denotes the Boolean sum or union,
denotes the Boolean product or intersection,

< denotes inclusion.

In order to be able to operate most naturally with Boolean matrices,
we use the system in which the parallel connection of contacts @ and y
is represented by x + y while their series connection is represented by
x-y or just xy. We use 0 to denote an open circuit or contact and 1 to
denote a closed circuit or contact. The Boolean algebra from which the
elements of our Boolean matrices are selected is the set 8" of 2" Boolean
or switching functions of n variables x;, @2, -+, @, .

2. MATRICES ASSOCIATED WITH COMBINATIONAL CIRCUITS

We shall be concerned with the analysis and synthesis of combina-
tional relay circuits, that is, circuits which may be represented symboli-
cally as in Fig. 1. Here there are indicated n coils x1, 22, -+, @, which
determine respectively the conditions ,, s, -+, x, of contacts in the
box. We call 21, %a, - -+, @, the inputs or input variables of the circuit.
The outputs of the cireuit are the interconnections between the ter-
minals 1, 2 - -+, p, which are established as a result of energization of
certain of the coils. It is assumed that the contacts of the circuit are all
in the box and that these contacts are operated solely by the coils

Tig. 1
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X1, Xa, -+, X, , which are controlled entirely from outside the box.
The design of such circuits is discussed in Reference 3, Chapter 6.

In a combinational eircuit, after a brief operate-time, the state f;; of the
connection between the terminals 7 and 7 depends only on the combina-
tion of values assumed by the input variables @, , a2, - -+ , x, , and hence
may be represented as a Boolean function of these variables:

Jii = fij(xn, a2y oo, ®).

(Since a terminal 7 is always connected to itself, we define f;; = 1 for
each 7.) The p” functions so obtained may be used as the elements of a
p X p symmetric Boolean matrix which we call the output matrix “F”’
of the cireuit:

F = [fi.

Thus, for example, the output matrix of a simple, three-terminal circuit
is illustrated in Fig. 2. (In Fig. 2 and in succeeding figures, small rings
are used to denote the p terminals of a network, and black dots are used
to denote non-terminal nodes which simply serve as connecting points.)

Two p-terminal combinational circuits with the same output matrix
are called equivalent. Equivalence is denoted by the symbol “~"" in
this paper.

With a given circuit, we can associate a second type of Boolean matrix
in the following manner. First we select and number certain nodes in the
circuit, using the numbersp + 1, p + 2, --- | p + k. These we call non-
terminal nodes to distinguish them from the terminal nodes 1,2, -+ - | p of
the circuit. The non-terminal nodes are so chosen that between any two
of the p + I nodes of the circuit there appears at most a single contact or
a group of single contacts in parallel. Moreover, we assume that every

1 X 2

1 X+yu XUz +yz
y u X+yu 1 XYz +uUz
XUz+yz Xyz+uz 1

() O 1)

Fig. 2
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contact of the network is included in the connection between some pair
of nodes.

Let p.; represent the ‘“connection’ between nodes 7 and j. This sym-
bol has the value 0 if there is no connection at all and 1 if there is a short
cireuit, but otherwise it is the symbol denoting a single contact or is a
sum of such symbols. The matrix ““P” of order p + k:

P = [pil
is then called a primitive connection matriz of the circuit. For example, if

in Fig. 2 we select a single non-terminal node in the obvious way and
number it “4”, we obtain the primitive connection matrix

1 z 0 Yy

x 1 0 U
P =

0 0 1 2

Y U - 1

A third type of matrix which we often associate with a cireuit falls, in
a sense, between the primitive connection matrix and the output matrix.
We call it just a connection matriz, “C”. (This term was originated by
Warren Semon at the Harvard Computation Laboratory.) In such a
matrix, the entries are switching functions of two-terminal circuits
connecting the nodes, both terminal and non-terminal, of the circuit,
but the number of non-terminal nodes selected need not be large enough
to lead to a primitive connection matrix. However, it is assumed that
enough non-terminal nodes are selected so that all the contacts of the
network are accounted for in the resulting two-terminal circuits. The
situation is illustrated in Fig. 3. For certain purposes, a connection matrix
such as this is as useful as a primitive one, or more so.

The output matrix of a circuit may also be regarded as a connection
matrix if that appears desirable, but its primary importance lies in the
fact that it is the generalization of the switching function of a two-terminal
circuit. (Note that the output matrix of a two-terminal circuit is simply

[

where f is the switching function of the circuit, and thus tells us nothing
more nor less than the switching function f itself.)

The fundamental problem of the analysis of a combinational circuit
involves writing a connection matrix corresponding to the circuit, there-
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after deducing the corresponding output matrix or other relevant infor-
mation. This presents relatively few difficulties. The problem of synthesis,
on the other hand, is much more difficult, for it involves translating given
operate-requirements into the form of an output or connection matrix
and deducing therefrom a primitive or a near-primitive connection ma-
trix corresponding to an optimal or at least to an economical realization
of the requirements. We shall discuss these problems in the order stated,
but first we need to indicate some properties of the type of Boolean ma-
trix we use in studying switching circuits.

3. THE ALGEBRA OF SWITCHING MATRICES
3.1. Basic Definitions and Properties

The Boolean matrices which are useful in switching theory have all 1’s
on the main diagonal. Any Boolean matrix of this kind, with its remain-
ing elements chosen from a switching algebra S, will be called a switching
matriz. When, as in later sections of this paper, only relay contacts are
used as switching elements, the resulting switching matrices are all
symmelric. Throughout this section, we discuss the more general case,
however, by way of laying the groundwork for a later extension of these
methods to electronic circuits.

Consider now the set “M” of all switching matrices of order m with
elements from S. We make the following definitions, where 4 = [a,,],
B = [b;], -+, are matrices of M :

(1) Equality: A = B if and only if a;; = b;; for all 7 and ;.

(2) Sum: A + B = [ai; + byj], that is, the sum is formed by adding
corresponding elements. The sum of two switching matrices is again a

Y
z
w z
y 4
| X(y+z) uy
\ X x(y+z) X+2Z
Z Cc=
Yy

uy X+2Z 1

-« N F

Y w z y

Fig. 3



182 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1955

switching matrix. It corresponds to connecting the elements a;; and by;
in parallel between nodes 7 and j throughout the circuit.

(3) Logical Product: A * B = [a;;-b;;], that is, the logical product
is found by multiplying corresponding elements throughout. The logical
product of two switching matrices is again a switching matrix. It cor-
responds to connecting the elements a;; and b;; in series between 7 and 7.

(4) Complement: A’ = [a;;] where a;; = a;f if © # j, but @i = 1 for
all 7. This operation corresponds to replacing all the two-terminal eir-
cuits corresponding to the a;; (i  j) by their complements, recognizing
the fact that the connection of a terminal to itself is invariable.

(5) Inclusion: A = B (“A is included in B” or*“4 is contained in B”)
if and only if a;; < b;;foralland j. Also, B = A isequivalentto A = B.
If A < B, then any combination of values of the input variables which
results in a path from ¢ to j in the circuit corresponding to 4, also results
in such a path in the circuit corresponding to B.

(6) Zero Matrixz: The zero matrix Z has a;; = 0 fori = jbut ai; = 1
for all 7. This corresponds to open circuits between all pairs of terminals.

(7) Universal Matriz: The universal matrix U has a;; = 1 for all 4 and
7. It corresponds to short circuits between all pairs of terminals.

(8) Matrixz Product:
AB = [(Z a.-;,b;c,-)] .
k=1

The rule here is the same as for ordinary matrices. A” means 44 --- A
to p factors. The matrix product of two switching matrices is again a
switching matrix, but since the product of symmetric matrices is not nec-
essarily symmetric, this product does not always have meaning in the
case of relay switching circuits.

(9) Multiplication by a Scalar: aA = Aa = [8i;] where a belongs to
S and 8i; = ea.; if i # j, but 8;; = 1 for all 7. Thus a4 is again a switch-
ing matrix.

(10) Transpose: A™ = [ai;] where a;; = aji.

Using these definitions, it is not difficult to prove the following fact:

Theorem 3.1.1: With respect to the meanings of = and =, and the
operations +, *, and ' as here defined, the switching matrices of order m over
a swilching algebra S constitute a Boolean algebra.

This result is due to Lunts.® As a consequence of this theorem, we may
employ all the rules of Boolean algebra in operating with swilching matrices.

When the matrix product, the transpose, and multiplication by scalars
are also taken into account, many of the familiar rules of ordinary matrix
algebra are seen to persist. Some additional rules result from the combina-
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tion of these operations with the Boolean ones, but most of them will
not be used in this paper. A list of the more fundamental properties is
given in the appendix. Properties of the class of all Boolean matrices are
discussed in Reference 6.

3.2. A Useful Theorem

The following result is useful in establishing several basic theorems
concerning the analysis of circuits. The theorem was first stated by
Lunts.”

Theorem 3.2.1: If A is any switching matrixz of order m, then there exists
a positive integer ¢ < m — 1 such that

A=A 24 =4"""= ...,

First we note that if A* = [ay] then, since a;; = 1,
AM = [; aikakj] = [cw + ké; aikﬂki] .

Thus the ij-entry of A"** contains a;; so that A" = AM for all positive
integers h.

To complete the proof, it will suffice to show that A™ ™" = 4™, Hence
consider any off-diagonal entry of A™. (The diagonal entries are all 1.)
It may be written in the form

D Qi @yl Gy -
ky-+km_1

There are m + 1 subseripts here, so that not all can be distinet. Consider
now any term of this sum. If j = k, for some s, the term takes the form

aikl e aku—ljajku+l e akm_l.j
which is contained in the term
allk]_ e ak,_[]‘

of the Zj-entry of A° and hence in the 7j-entry of A™', by what has al-
ready been proved. A similar conclusion holds if 7 = k, . If neither 7 nor
7 is equal to any k, then k, = k, for some s and » and the term takes the
form

a"k: T ak:—lkrakrk|+l et akr—lkra’krkr+1 e a"‘m_lii
which is contained in the term

a"'kl e ak:—lkra’krkr+1 e akm_lf :
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But this too is contained in the 7j-entry of A™ ", Thus we may conclude
that A™™" = A™. But we have already shown that A™' < A™ Hence
A™ " = A™, and the theorem follows.

In the generic case, ¢ = m — 1. However, because of special behavior
of the elements of A, we may have ¢ < m — 1, as is frequently the case
when switching circuits are under consideration.

4. THE ANALYSIS OF COMBINATIONAL CIRCUITS
4.1 The Star-Mesh Transformation and the Reduced Connection Malrix

The basic problem of analysis is, as stated earlier, the determination
of the relation between any given connection matrix and the correspond-
ing output matrix. To accomplish this, we show first how to obtain from
a given circuit an equivalent circuit using one less non-terminal node
in the formation of the connection matrix. This operation may then be
repeated until there are no non-terminal nodes in the accounting. The
method is to formalize the Y-A or star-mesh transformation (Reference
3, page 94).

Consider a non-terminal node r in a combinational network with p
terminal nodes and & non-terminal nodes, and with a corresponding con-
nection matrix €, not necessarily primitive. Connections ¢;; and ¢,;
provide a path from node ¢ to node j if and only if ¢;¢,; = 1. Let us now
replace the connections of the given circuit by others such that between
each pair of nodes 7 and j (neither of which is r) there appears circuitry
corresponding to the function ¢;; + ¢i,¢,; and remove all connections ¢;,
between node » and other nodes of the circuit. Thus node r is effectively
removed from the circuit, but the output of the circuit on the remaining
nodes will be the same as before.

Matrixwise, this operation proceeds as follows. To remove a non-
terminal node r, we add to each entry c;; of C' the product of the entry

A—
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¢;- in row 7 and column r of €' by the entry ¢,; in column j and row r,
thereafter deleting row r and column r from C.

This operation of removing a node may be repeated until, after k
steps, no non-terminal nodes remain. The resulting p X p connection
matrix will be called a reduced connection matrixz of the original circuit
and will be denoted by the symbol €', . The process is illustrated for the
circuit of Fig. 4. The matrix obtained from €' by the removal of node j
is denoted by ('(;, ete.

1 x 0 0] —
, 1 z 0 x
x 1 0 0 Y
, x 1 Ty 0
P=10 0 1 Yy xT N C(5 = ' ,
, 0 xy 1 Yy
x 0 i 1 9 ,
, , x 0 Y 1 |
Loy x oy 1]
1 t z'y]
(-'n = C(.{(a = x 1 .l"y'
! L
Ty Ty 1

The given circuit is needlessly complicated, considering its output. It
will be simplified presently.

The process of removing a node may of course be reversed in certain
cases. This reversal is a simple matter when the entries of the output or
connection matrix contain the proper terms. Thus, for example, we have

a b a
1 a+ aff b+ ad
a 1 c g
a+ af 1 ¢+ g6 |~
b c 1 b
b+ ab ¢+ 36 1
a B é 1

Again, starting with the matrix € associated with Fig. 4, we observe
that because of the common factor 2/, the entries 2’y and «'y’ could have
arisen from the removal of a node. In fact, it is readily checked that

1 x 0 Y

1 x .r'y ,

., T 1 0 Y
0 1 ay |~ ,
, . 0 1 x
vy vy 1
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The circuit corresponding to the second of these matrices is shown in
Fig. 5. It has one less contact than the circuit with which we began, the
node insertion having replaced the two contacts =’ by one. As this ex-
ample suggests, the “insertion of nodes” will appear to be an important
tool in the synthesis of circuits.

4.2. The Fundamental Theorem

The relationship between connection and output matrices may now
be established. (A less general form of the following theorem was first
stated by Tunts.”)

Theorem 4.2.1: If C' is any connection matrix of a p-lerminal circuit,
if Cy is the corresponding reduced connection matrix, and if F is the output
matriz of the circuit, then there exists an integer k, 1 < k < p, such that
C " =F.

In the case of the matrix () obtained in the preceding section, we have,
for example, €y} = (' so that C, is itself the output matrix of the circuit.

From Theorem 3.2.1 it follows that there exists an integer k, 1 =k < p,
such that ;" = ;""" = ... . It only remains to show that ot
= F. For this purpose it is sufficient to show that C>=F.

Let us denote the elements of Cy by ¢;;. Then the j-entry of €y’ is
the funection

cial1j + Cit2j + 00+ CigCpj-

Since multiplication means “and”’ and addition means “or”, this func-
tion is 1 for ¢ # j when and only when the input variables are such
that there is a path from 7 to j, either directly (because of the term
¢i,cj; = €i;) or via some intermediate node 7. Similarly, the j-entry of

<7

wo—}i

Fig. 5
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('," is a funetion which is 1 when and only when the input variables are
such that there is a path from 7 to j, proceeding directly, or via one inter-
mediate node, or via two intermediate nodes. Continuing thus, since no
path requires more than p — 2 intermediate nodes, we see that the 7j-
entry of C," " is a function which is 1 when and only when the circuit
variables are such as to interconnect 7 and j. That is, ("' = F.

The following two corollaries are immediate:

Corollary 4.2.2: The reduced eircuit matriz of a two-terminal circuit s
the output matriz of the cireuil.

Corollary 4.2.3: The ij-entry of ¥ may be found by considering the cir-
cuit as a two-terminal circuit connecting 7 and j and removing all the other
nodes.

4.3. Characterization of an Output Matrizx

Certainly any symmetric switching matrix may be interpreted as a
connection matrix of a combinational relay circuit. However, a natural
question to ask at this point is, “When is a given symmetric switching
matrix also an output matrix?”’ The answer is given in

Theorem 4.3.1: The necessary and sufficient condition that a symmetric
switching matriz C' be an outpul matrix is that C* = C,

Suppose first ¢* = . Multiplying both sides repeatedly by €, we
conclude €' = (', where p is the order of . That is, €' is its own out-
put matrix.

Conversely, suppose (' is an output matrix. Denote any reduced con-
nection matrix of the eircuit by . Then, using Theorems 4.2.1 and
3.2.1, we have ¢ = ("' = " = (* and the theorem is proved.

44 Redundant Elements

In the synthesis of a circuit it is often helpful to detect and remove,
or to insert, what we call redundant elements. These are elements whose
replacement by open circuits (in the parallel case) or by short circuits
(in the series case) will not alter the output of the circuit.

To illustrate these notions, we consider first the following connection
matrix in which redundant terms are bracketed:

1 x+ [y] y z+ [au]
z+ [4] 1 y u
y Y 1 [yue]

z 4 [xu] u [yuz] 1
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The term y in the 1,2-entry is redundant since there is a path from
1 to 3 and another from 3 to 2, hence one from 1 to 2, if y = 1. Thus
the term y in the 1,2-position (and of course also the term y in the 2, 1-
position) may be dropped, that is, may be replaced by zero, and the
output matrix of the cireuit will not be altered. We could have reasoned
in the same way that the y in the 1,3-entry or the 2,3-entry is redundant,
but only one of these three 3’s may be removed. (The reader should
note that the key to this situation is the appearance of two identical
elements in the same row, along with a third identical element in the
same column as one of them.)

Similarly, after the y in the 1,2-position has been removed, the term
2w in the 1,4-entry may be seen to be redundant since there is a path
from 1 to 2if 2 = 1 and from 2 to 4 if « = 1. (The key here is the fact
that the factors  and u of zu appear as terms of other entries in row 1
and column 4.) Finally, the entry yuz in the 3,4-position is redundant.
In fact, there is a path from 3 to 2 if y = 1 and from 2 to 4 if u = 1,
so that there is a path from 3 to 4 when yu = 1, regardless of the value
of z. The successive deletion of these redundant terms, in brackets,
evidently yields a primitive connection matrix which is equivalent to
the original matrix in the sense that both lead to the same output matrix.

To illustrate the removal of redundant factors, we consider the con-
nection matrix

1 e z+ [y
x 1 x .
z+ [zly = 1

Here the factor 2’ in the 1,3-entry is redundant since there is a path
from 1 to 3 when y is 1, regardless of the condition of z, as a figure will
readily show. This factor may therefore be dropped (replaced by 1)
without altering the output matrix. This amounts to adding a redundant
term x to the 1,3-entry because of the 2’s in the 1,2 and 2,3 positions.
Then the rule z + 'y = = + y accounts for the removal of z’.

The importance of these ideas is that we can reverse both processes
whenever this is of avail in the synthesis of a circuit, as will appear later.

Tt should not be overlooked that the removal (or insertion) of redun-
dant elements must either proceed in successive steps or be capable of
being so arranged, since such an operation alters the corresponding cir-
cuit, and hence may alter the conditions for redundancy of other terms.
Sometimes the insertion of redundant terms renders other terms redun-
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dant so that they in turn may be removed. Later, we shall employ this
fact to good advantage.

It may of course be possible to replace elements of a connection matrix
by other functions than 0 and 1, but we do not employ such substitutions
in this paper. These substitutions have been characterized completely
by Semon.*

5. THE SYNTHESIS OF COMBINATIONAL CIRCUITS

5.1. The Truth-Table Method of Synthesis

The “truth-table” approach may be employed in synthesis in the
same way that it is in the two-terminal case. For example, the output
of a four-terminal circuit is specified by Table 1, where z and y are in-
put variables.

The necessary and sufficient condition that given output require-
ments be consistent is clearly that whenever f;; = f; = 1, then fu = 1
also. It is readily checked that this condition is satisfied in the case of
this example.

We have, from the fi-column, fi» = 2y’ + 2’y = 2’. Similarly, fi; =
'y + ay =y, fu=0,fu = 2y, fu = xy’, fas = 2'y’. Thus we have

1 a 9 0
! ! I
@ 1 Ty Y
I = ' rr ]t

Y Ty 1 'y

0 zy 2y 1
Let us consider this output matrix as a connection matrix of the
desired circuit. Then, since we have a path from 2 to 1 if 2/ = 1 and
from 1 to 3 if ¥ = 1, the 23-entry z'y is redundant and may be replaced
by zero. (The resulting matrix is no longer an output matrix, of course.)
Now we insert a node 5" to separate the products xy’ and 2y’ in the

TasLE I
x ¥ Sz Ju  fu fa fu fu Non-Vanishing Product
0 0 1 0 0 0 0 1 z'y’
0 1 1 1 0 1 0 0 z'y
1 0 0 0 0 0 1 0 xy’
1 1 0 1 0 0 0 0 Ty




190 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1955

last column:

1 a’ i 0 0
a 1 0 0 x
i 0 1 0 x’
0 0 0 1 y'
0 z ¥y 1

The reader should check this by removing the additional node, and
should observe how this insertion replaced two y' contacts by one. The
cireuit corresponding to this primitive connection matrix is shown in
Fig. 6.

In many cases, the output matrix or a suitable connection matrix
may be written by inspection. Any techniques useful in simplifying
switching functions may of course be applied in computing the fi;.
However, the ‘“simplest’” forms of these functions are not necessarily
the most useful, when it comes to matrix methods of synthesis. These
points will be illustrated by later examples.

5.2. Matrixz Synthesis of Two-Terminal Circuits

In the previous section, we gave an example of how one may deduce
from an output matrix a primitive connection matrix of an economical
realization of the circuit. In this section we illustrate the procedure
further by applying it to some simple two-terminal circuits.

Geometrically, synthesis of a two-terminal circuit amounts to the
selection of an appropriate set of nodes and connecting links joining the

1

N S—T_p—

Fig. 6
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two terminals. Algebraically, this is accomplished by beginning with

the output matrix
1 f
f 1

of the two-terminal circuit and reducing the complexity of its entries
by successive node insertions until a primitive connection matrix is
finally obtained. Operations with redundant elements are ordinarily
an essential part of the process, as the following examples show.

Example A. f = ABC + AD + BD + CD.

First we factor f in some convenient way, say into the form f =
A(BC 4+ D) + BD + CD, and by the insertion of a node remove the
first term, that is, render it redundant so that it may be replaced by
Zero:

1 A(BC + D) + BD + CD
I:A(BC‘ + D)+ BD 4+ CD 1 :I
1 BD + CD A
~|BD + CD 1 BC + D
A BC+ D 1

Suppose now that we decide toremove the term C'D from the 1,2-entry.
We note first that there is a path from 1 to 2 if BD = 1 and from 2
to3if D = 1,1i.e., from 1 to 3 if BD = 1. Hence we may add the redun-
dant term BD to the 1,3-entry:

1 BD + ¢D A+ [BD]
BD + €D 1 BC + D
A + [BD] BC + D 1

(Brackets around a term denote that it is redundant.) Now we can insert
a fourth node which removes the terms CD, BD, BC from the 1,2-,
1,3-, and 2,3-entries respectively. This yields the matrix

1 [BD] A D
[BD] 1 D

A D 1 B

D o B 1
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Here the entry BD is redundant, for we have a path from 1 to 4 if D =
1, from 4 to 3if B = 1, from 3 to 2if D = 1, hence from 1 to 2 if BD =
1. Dropping the two BD’s we obtain the primitive connection matrix,

1 0 A D

0 1 D C
A D 1 B
D C B 1

which is a wiring diagram for the bridge circuit shown in Fig. 7.
This work can all be performed without recopying. Thus, the matrix

1 [4(BC + D) + [BD] + [cD]| A+ [BD]

[A(BC + D)] + [BD] + [cD] 1 ] [BC]+ D
A + [BD] [Bc] + D 1
D C B

gives the desired result. Brackets are drawn around all terms, whether
originally present or inserted, which are ultimately removed because of
redundancy.

Example B. f = A'B + AB" + AC.

One possible procedure is indicated by the following matrix:

B 1 [A'B] + [AB] + [AC]] A7 A7 A"
| [4'B] + [4B] + [4C] 1 ] ¢| B'| B

A C 1] oo
B A B’ 0 140 .
i A B 0 0 1

Here the three terms of f were removed one at a time, proceeding from
right to left, by inserting three additional nodes. The corresponding
cireuit, shown in Fig. 8, contains an unnecessary A-contact, even though
we have arrived at a primitive connection matrix.

An alternative procedure is indicated in the matrix:

1 [A'B] + [AB"+ )] A’ A

[4'B] + [A(B' + O] 1 B B+«
A B 1 0
A B +C 0 1

—_— N
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in which the A’B term was removed first. The corresponding, more
economical ecireuit is given in Fig. 9.

These examples illustrate the important facts that (1) the matriz
represenltation is not prejudiced in favor of series-parallel circuitry and
(2) the circuit finally obtained depends on the steps used in obtaining a
primitive connection malrix.

5.3. Further Examples With More Than Two Terminals

The examples of the preceding section were introduced primarily for
illustrative purposes. We now introduce two examples designed to in-
dicate the power of the method.

First we construet a circuit simultaneously realizing all sixteen switch-
ing functions of two variables. (This circuit was first obtained by a

N

A

] B 2
D\ /C
a
Fig. 7
S
/\
A B,
(
! A - 8" 2
A C

N

3

Fig. 8
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student in the switching course at M.I.T. and was later proved by Shan-
non, in an unpublished memorandum, to be minimal.)

A connection matrix of order 17 (sixteen terminals and ground) may
be written at once. It has the 16 functions in the G row and column,
and all other off-diagonal entries are zero. For convenience, we omit

1234567891011 12 13 14 15 16 G |
1 T A A E 0 1
1 I Lo yo—— o b x 2
1 R | ! Yy 3
1 | I — — — x' |4
I i I y' 5
1ol ez Y[ + 6
1 1 r oy e [v] + v 7
I g [x] + ¥ 8
1 [2] + v 9
1 2"y'] 10
1 [2"y] 11
1 [zy] 12
1 [xy] 13
1 [@ + @+ y)] | 14
1 ["+ v+ ]| 15
1 1 16
1 | @

all entries below the diagonal. Entries which are zero throughout are
omitted entirely. (Off-diagonal entries which are not in the G-column
are inserted redundant terms whose presence will be explained.)

Fig. 9
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First we note that since terminals 4, 10, and 11 are grounded when
and only when 2’ = 1, 2y’ = 1, and 2'y = 1 respectively, redundant
entries ' and y may be inserted in the 4,10- and 4,11-positions re-
spectively. Then, however, the 10,G- and 11,G-entries become redun-
dant and may be replaced by zeros. (The terms y and 3’ which we in-
serted then lose their redundancy, of course.) In the same way, we may
put redundant terms y’ and y in the 2,12- and 2, 13-entries respectively,
thereafter replacing the now redundant 12,G- and 13,G-entries by
ZeToSs.

With the entries 2'y’ + xy and 2’y + zy’ in the 14,G- and 15,G-
positions factored as indicated in the matrix, we see next that the same
type of operation permits insertion of redundant entires x + 3’ and = +
y in the 7,14- and 6,15-positions respectively, after which the 14,G-
and 15,G-entries become redundant and may be removed.

Finally, we note that the common term z’ in the 6,G- and 7,G-entries
permits the insertion of a redundant =’ in the 6,7-position. This in turn
renders the 2”’s in the 6,G- and 7,G-entries redundant, so that they
may be replaced by zeros. Finally, in the same way, we insert a redun-
dant z in the 8,9-position, after which the x’s in the 8,G- and 9,G-entries
may be replaced hy zeros.

The resulting primitive connection matrix corresponds to the circuit
shown in Tig. 10.

G
(0 1 o g'—ci 8 (X+Y')
X
(xy') 12
i, y -! 9 (X+y)
y
(x) 2 } X N\ (x'y+xy"
y X y
oy) 1 b "J'_&'i & (X'+y)
Xl’
(Xry') 10 ? y 7 (X'+l:|)
gf
(x') 4 { x! x u
H U
14 (Xy+Xx'y"
X'y) n ! Y
(Y) 3 o= y o 16 (1)
y) s o y’

Fig. 10
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TasLe II
Relays Operated Leads Grounded

v, w 1

v, T 2

w, T 1,2

v, Y 3

w, Yy 1: 3
T, Y 2,3

v, 2 1,2,3
w, & 4

z, 2 1,4
Y, 2 2,4
None None

As a second example, consider a circuit (Reference 3, page 124) with
five relays, v, w, x, y, z and leads 1, 2, 3, 4, whose operate conditions are
given in Table II.

No other combinations of relays operated occur, so that we “don’t
care” what happens in the ecircuit for such combinations. Nor do we
care if ungrounded terminals are interconnected. Taking account of
these assumptions, it may now be seen that switching functions ex-
pressing the conditions under which the various leads are grounded are
as shown in Table ITI.

These functions allow us to write a connection matrix for the desired
cireuit:

(1) (2) (3) (4) (@)
B 1 0 0 0 w2 + w'zy’
1 0 0 xz' + x'zw’
0 0 1 0 vz + y2'
0 0 0 1 a'
| w2’ + w'zy’ xz + z'zaw’ vz + yz' ' 1 |

The insertion of a node “5”’ to remove the terms in column “G*’ which
contain the factor z immediately suggests itself since 4 z-contacts might
thus be replaced by a single z-contact. This would require, however,
preliminary insertion of suitable redundant terms in place of certain
zero-entries of this matrix. The additional column and row for node ““5’’
and the requisite terms whose redundancy must be investigated in the
light of the don’t-care conditions are shown in the next matrix.
(Proposed redundant terms are listed above the diagonal only.)
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TasLe IIT
Lead Function
(1) wz' + w'zy’
(2) zz' + x'zw’
(3) vz + yz'
) 0

In the 1,2-position, the product a'w'y’ would have to be inserted,
as shown. But when z’w’'y’ = 1, vz may be 1 also. May 1 and 2 be con-

— 1 (w'w'y') (trw'y') (v'w'y’) wzr + w!zyr - w'y' -|
0 1 (w'z) w2 x4 2’2’ w'e’
0 0 1 0 vz + y2' v
0 0 0 1 2’ v’
| we' + w2y’ w2+ 2’ vz 4 oy 2’ S | 1 =
't r ! r
wY wT v v z 1

nected when vz = 1? A check of the table of operate-conditions shows
that 1 and 2 are both to be grounded when vz = 1, so that the insertion
of this term is harmless.

Next, in the 1,3-position, the entry vw'y’ would have to he inserted.
When this factor is 1, we may also have xz = 1, but » and x and z are
never all simultaneously operated, so this causes no trouble. However,
we may alternatively have zz’ = 1 or 2’z = 1. May 1 and 3 be connected
when v and x or v and z are both operated? The table shows that, in
either case, 1 and 3 may be connected since neither is grounded in the
first case, but both are grounded in the second. Thus the term »w'y’
may be safely inserted.

The term vw'z’ in the 2,3-position brings trouble, however, for when
vy = 1, only 3 is to be grounded, whereas 2 and 3 could be connected
in this case. If we abandon the attempt to remove the term vz from the
3,G-entry at this step, the difficulty is eliminated, for the required
redundant terms then violate none of the operate conditions of the cir-
cuit.

The terms containing z’ may also be removed from column G by the
insertion of a node “6”’. This replaces three z-contacts by just one. The
insertion of both nodes 5 and 6 is indicated in the following matrix. It
is left to the reader to complete the checking of the redundant terms.
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The redundant terms we inserted were of course absorbed again by
the node-insertion process. We now have a connection matrix which

(1) (2) (3) (4) (@) (B)

i 1 0 0 0 [we]+ [wey']] w'y'| u
0 1 0 0[] + [2'2’] | w2’ | a
0 0 1 0 vz + [y2'] 0 Y
0 0 0 1 [20] T

| [w2] + [w'ay] [22] + 2w vz + [2] [20] 1 | =

L w'y' w'z’ 0 v’ z 1 ] 0
w @ y 0 Z 0o 1

is not primitive but which cannot be further simplified by node insertion
because of the absence of appropriate common factors. The corresponding
circuit is shown in Fig. 11.

The reader may check that the requirements are satisfied and that
no leads are improperly grounded. Although there are 12 contacts in
this realization, only 21 springs are recquired because of the three pos-
sible transfers. Leads 1, 2, and 4 are connected when none of the relays
are operated, but otherwise no ungrounded leads are connected.

5.4, Other Transformations of a Connection Malrix

We have seen how the removal and insertion of nodes by the Y-A
transformation may be used in the analysis and synthesis of networks.

’

v 0 4

W

G
N 2' X
y
}»3
Z v

Fig. 11

[
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There are, of course, other methods of transforming a connection matrix
without altering the output. One of these is the A-Y transformation,
which is simply the dual of the one just mentioned, and which we now
explain.

Consider three nodes 7, 7, k of a network, as indicated in Fig. 12(a).
This part of the network may be replaced by the network of Figure 12(b).
This replacement is what 1s known as the “A-Y transformation” (Refer-
ence 3, page 93).

Matrixwise, this transformation is simple to execute. We first mark
the 47 and 77, 7k and kj, ki and ik entries of the connection matrix, say
by bracketing them. Then, in a new column, we enter in rows ¢, 7, k the
sums of the marked entries in those rows. The rest of the column is
filled out with zeros except for the diagonal entry, which — as always
—1is 1. The bracketed elements are then replaced by zeros and the
matrix is completed in symmetric fashion. The reduced connection
matrix appearing in Section 4.1 is used to provide an example:

T [2] [+'y] 1 0 0 x4y

[«] 1 2yl | ~ 0 1 0 x4y
["]  [2"] 1 0 0 1 !
T4+ y T+ y' a 1

The result is a primitive connection matrix, but not as simple a one as
we had before. However, a redundant x may be inserted in the 1,2-

| ] ]
- & ~. /’l\ /‘*-.
o+3 a+d
;] ')

p+d
I’ k \\ ,I k \\
(@) (b)

TFig. 12
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position after which the z’s in the 1,4- and 2,4-positions become redun-
dant. When these are removed, the matrix is again that of the circuit
in Fig. 5.

This transformation is clearly indicated for consideration when the
addition of two entries in the same row results in a considerable simpli-
fication. It is probable that still other transformations — useful, like
this one, under special conditions — could be developed. However,
because of its simple geometric and algebraic significance, the node-
insertion operation seems likely to remain most useful of all.

6. CONCLUSION

In this paper we have outlined the basic properties of switching matri-
ces and have applied them to both the analysis and the synthesis of
combinational relay circuits. It is clear that we have not reduced cir-
cuit design to a “cook-book’ procedure, but our experience with a
variety of design problems (not all of which are reported here) leads us
to believe that the method shows considerable promise of becoming a
“practical” tool, and that further study is justified along the following
lines: _

(a) The work done in References 4 and 7 on circuits with unilateral
elements should be extended in the hope of devising a tool comparable
to node-insertion for synthesis.

(b) The class of all transformations of a connection matrix which
leave the associated output matrix invariant should be characterized
and their application in synthesis should be studied. (From an algebraic
point of view, the interesting thing here is that allowable transformations
of a connection matrix need not leave its order invariant.)

(¢) The manner in which “don’t-care” conditions enter into synthesis
should be more extensively studied. In the presence of such conditions,
the class of connection matrices giving rise to an acceptable output
matrix is of course considerably more extensive than it would be other-
wise.

(d) The possibility of characterizing a primitive connection matrix
of a minimal network should be investigated. This may be related to
synthesis by a minimum number of nodes and complete ahsence of redun-
dant elements.

Other problems have, of course, suggested themselves. We have listed
what seem to be the more important ones; the reader will undoubtedly
formulate others for himself.
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7. APPENDIX
The Basic Properties of Switching Matrices

If A, B, C' are any switching matrices of order m over a switching
algebra with n variables, then with respect to the definitions given in
Section 3, we have the following Boolean rules of operation:

A+A=4 AxA'=12Z
AxA=A U+A=TU
A+B=B+4 UxA=A
AxB=DB+A A+A'=U
A+ (B+C)=A+B)+C (A*B)Y =A"+ B’
Ax(BxC)= (A*B)xC (A+ B) = A'"xB’
A+BxC=(A4+B)*(4 4+ 0C) (A4 = A
AxB4+C)=A*B+ AxC A4+AxB=A
Z+ A=A A+ A'«B=A+B
ZxA =14 A=A
A=<BandB £ Aifandonlyif A = B
AZ<BandB = Cimply 4 £ C
A=Bifandonlyif A *B = A
A =<Bifandonlyif A + B =B
Z <A £ Uforall A,
Every Boolean matrix € has a canonical expansion
2n—1
C = ZCkp;;
k=0
and a dual canonical expansion
2n—1
¢ = II (v + s0)
k:O
where p; are the fundamental products formed from 2z, 22, +-+, @

and the s, are the fundamental sums. The ij-entries of C) and T} are
the values associated with p, and s respectively in the ordinary canonical
expansions of the entry ¢;; of C'.

When the not-characteristically-Boolean operations of forming the
transpose and the matrix product are introduced, we find that the
following properties hold, among others. Many are familiar, others are
not.
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AB s BA ordinarily
AB+ C) = AB + AC
(A + B)C = AC + BC
AZ =ZA = A
AH" = 4
(A7) = (4"
(A+B)"= A"+ B*
(AxB)" = A"« B"
(AB)" = B"A"

Ur=0U
=1
(Ap)q = AM
APA? = A'.n-l-q
AU=UA=TU
(AB)C = A(BC)

ABx(C) = ABx AC
(A*+B)C = AC * BC

A £ Bimplies AC < BC and CA = CB, but not conversely.
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