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The simple model of a semiconductor, based on a single effective mass for
the charge carriers and a spherical shape for the surfaces of constant energy,
is now known to be inadequate for most of the semiconductors which have
been extensively studied experimentally. However, some of these do corre-
spond to what may be called the “many-valley” model, a model for which
the band edge occurs at a number of equivalent points K" in wave number
space, and for which the surfaces of constant energy are multiple ellipsoids,
one centered on each of these points. This paper develops, for models of this
type, the theory for: mobility (Section 2) and its temperature dependence
(Section 3); thermoelectric power (Section 4); piezoresistance (Section 5);
Hall effect (Sections 6 and 9); high-frequency dielectric constant (Section 7),
and magnetoresistance (Sections 8 and 9). These phenomena are treafed,
for cases to which Maxwellian statistics apply, on the assumption that the
scattering of the charge carriers is describable by a relaxation time which de-
pends on energy only, but is otherwise unrestricted. This assumption can
be shown fo be justified in a large class of cases, although for some cases il
fails, notably when ionized impurity scatltering predominates and at the
same time the effective mass is very anisotropic. Spectal allention is given lo
the role of inter-valley lattice scatlering, i.e., to processes whereby a charge
carrier is scattered from the neighborhood of one of the band edge poinis
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K to the neighborhood of a different one. Numerical calculations are pre-
sented which show the effects of such processes on the magnitudes and tem-
perature variations of the effects listed above.

1. THE MANY-VALLEY MODEL

Most of the literature of semiconductor theory has been based on what
we shall call the simple model. This model is based on the assumption
that the minimum energy in the conduction band, or the maximum
energy in the valence band, is possessed by only one quantum state of
either spin. This state has the form of a Bloch wave with wave number
K = 0.* States with energies near the band edge value therefore have
small K values, and, since their energies ¢(K) must vary continuously
with K in this region, ¢(K) for small K must be a quadratic form in
K.,K,, K. . If the crystal structure is cubic, ¢(K) « K, and the sur-
faces of constant energy are spheres in K-space.

It has long been known that other models are possible, and indeed
likely in many cases. In recent years it has become clear that the simple
model does not apply to any of the four cases corresponding to n- and p-
type germanium and silicon. The evidence for this includes magneto-
resistance” * * and piezoresistance’ effects, cyclotron resonances,® and
many other phenomena. Now the possible alternatives to the simple
model are the various models for which there is more than one state,
apart from spin degeneracy, with the band edge energy. These models
fall into two general categories.

(A) Models for which the band edge energy occurs for several wave
number vectors K”, but for which there is only one state of each spin
having this energy and a given K. For a conduction band model of
this sort the energy e, considered as a function of K, has a number of
minima or “valleys”, hence we shall call these “many-valley” or “simple

* For the convenience of the reader the notations defined in the text are re-
capitulated on page 288.

1 1. Estermann and A. Foner, Phys. Rev., 79, p. 365, 1950; G. L. Pearson and
H. Suhl, Phys. Rev., 83, p. 768, 1951; and G. L. Pearson and ¢ Herring, Physica,
to appear.

2 l“[’ Shockley, Phys. Rev., 78, p. 173, 1950, and unpublished work.

3§, Meiboom and B. Abeles, Phys. Rev., 93, p. 1121, 1954; B. Abeles and S.
Meiboom, Phys. Rev., 95, p. 31, 1954; and M. Shibuya, J. Phys. Soc., Japan, 9,
p. 134, 1954 and Phys. Rev., 96, 1385, 1954.

4 C. 8. Smith, Phys. Rev., 94, p. 42, 1954,

5 (3. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev., 92, p. 827, 1953; B. Lax,
H. J. Zeiger, R. N. Dexter, and Ti. 8. Rosenblum, Phys. Rev., 93, p. 1418, 1954;
R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev., 95, p. 557, 1954; R. N. Dexter,
B. Lax, A. F. Kip, and G. Dresselhaus, Phys. Rev., 96, p. 222, 1954; and R. N.
Dexter and B, Lax, Phys. Rev., 96, p. 223, 1954.
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many-valley’’ models. For a valence band the situation is similar, but
inverted.

(B) Models for which, apart from spin degeneracy, there are two or
more states with the band edge energy and the same wave number
vector. These we shall call “degenerate’” models. We may subdivide them
further into “degenerate single-valley” and “degenerate many-valley”
cases according to whether the band edge energy occurs for only one
wave vector, or for several.

This paper is concerned with the transport properties of the simple
many-valley models defined under (A). These models are much simpler
to handle than the degenerate types, for reasons which are illustrated
in Fig. 1. This illustration shows schematically the form in wave number
space of the surfaces of constant energy, near the band edge energy, for
four models. For the simple model, shown in (a), the locus of a given
energy is, as already stated, a sphere. For a simple many-valley model,
shown in (b), the locus is a set of ellipsoids centered about the band
edge points K. The ellipsoidal shape is required by the facts that
energy must depend continuously and differentiably on K and have an
extremum at each K. For a degenerate model, however, the dependence
of energy on the components of K is singular at the band edge point,*
in that unique second derivatives do not exist: energy varies quadrati-
cally with K in any given direction from this point, but the coefficients
going with different directions are determined by a secular equation.
The result is that the contours of constant energy may look as shown in
Fig. 1(¢) (degenerate single-valley case). Degenerate many-valley cases
are of course similar, but with the surfaces multiplied, as in Fig. 1(d).
Such situations are obviously harder to handle mathematically than
those of Fig. 1(b).

Besides the irregularity of the energy surfaces, there is another dif-
ference between these two types of cases which greatly complicates theo-
retical work with degenerate models. This is that in most cases the
energies of the two or more states going with a given band-edge K will
be split by spin orbit coupling. If this splitting is <kT it can usually be
ignored, and if it is >>£7" it may effectively convert the degenerate model
into a simple or simple many-valley model. Unfortunately, it usually
happens that neither of these extremes applies, and for such inter-
mediate cases not only do we have to deal with energy surfaces like
those of Fig. 1(a), but, much worse, the variation of energy with K is not
a simple quadratic dependence even in a fixed direction from the band
edge point.

In view of all these complications of the degenerate models, it is for-
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tunate that the simple many-valley case does seem to occur for n-type
silicon and n-type germanium. One of the best ways of finding out
whether it occurs for any given semiconductor is to compare observa-
tions on this material with theoretical predictions for the various possible
models of the simple many-valley type. We proceed now to derive these
predictions, assuming for simplicity that the charge carriers have
Maxwellian statistics and an effective relaxation time dependent only
on energy. We shall take up the simplest properties first, the more com-
plicated ones later. Sections 2 to 5 will consider perturbation of the
distribution function of the carriers by a static electric field, Section 6
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Fig. 1 — Different types of band structure for a semiconductor, illustrated by
the forms of the surfaces of constant energy in wave number space. The band
edge points are represented by heavy dots.
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the Hall effect, Section 7 the perturbation by an oscillating electric
field, Section 8 magnetoresistance, and Section 9 effects at high mag-
netic fields.

In presenting this material our primary objective will be to provide a
coherent treatment of all the effects in language as simple and physical
as possible. Thus, for example, the Hall and magnetoresistance effects
will be discussed ab initio, although many of the details presented here
have been derived and published independently by several workers.” ®
Nor is the theory of this paper the ultimate in refinement: at cost of a
little more mathematical complication, the assumption of a relaxation
time dependent only on energy can be dispensed with, and anisotropy in
the scattering processes acting on the carriers can be taken into ac-
count.® However, the present simpler treatment illustrates most of the
physical principles involved in the various phenomena, and turns out to
be quantitatively adequate in a large class of cases.

2. CONDUCTIVITY

In this section we shall solve the Boltzmann equation for the effect of
a constant, electric field E on the motion of charge carriers in a simple
many-valley band. Maxwellian statistics will be assumed. Thus if
AP = h (K — K") measures the deviation in crystal momentum
space from one of the band edge points K, then for E = 0 the proba-
bility of occupation of the state described by AP (by an electron or hole,
depending on the sign of the carriers) is

dm*  2me 2my* (1)
kT

AP AP AP

—ler—e| —

§ = exp

where e is the Fermi level, & the band edge energy and my*, my*, ms*
are the effective masses in the three coordinate directions 1, 2, 3 which
are principal axes for the energy surfaces of the valley in question.
When E = # 0 the distribution function f is determined by the competi-
tion between the perturbing effect of E and the restoring effect of scatter-
ing processes which try to restore the form (1). To make the problem
tractable we shall assume that the scattering processes which the charge
carriers undergo are described by a relaxation time which is a function
of energy e only. In other words, we shall assume that for any slight

6 (!, Herring and E. Vogt, to be published.
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departure of f from ' the time rate of change of f due to collisions is

a\ _  (F—71" .
(a)c N 7(e) (2)

The legitimacy of this assumption is analyzed in Appendix A. It is shown
there that the assumption should be rather accurately valid for all kinds
of inter-valley scattering — defined as scattering from the neighborhood
of one band edge point K" to the neighborhood of another K —and
for intra-valley lattice scattering due to optical modes or to neutral
impurities, provided, in the latter case, that the temperature is low
enough. For intra-valley lattice scattering due to acoustical modes the
assumption » = r(e) is not necessarily valid, but the arguments of Ap-
pendix A suggest tht it will often be a good approximation. For scatter-
ing by ionized impurities, however, this assumption will usually be a
poor approximation. There is a good prospect that in the near future
the adequacy of this approximation for lattice scattering can be quanti-
tatively estimated for some substances. If it should turn out to be in-
adequate, the necessary generalization of the calculations of this paper
can probably be made without great effort.

With the assumptions just stated in (1) and (2), the Boltzmann equa-
tion for a steady state in the presence of a field E takes the form

)
_ o + ¢E-Vpf — =17 (3)
at T

where the upper sign is for electrons in a conduction band, the lower
for holes in a filled band. If, as is customary, we set

=" 4 EA£Y + 0(FY, (4)
(3) gives, just as in the simple theory,
£ = tervyfV (5)

Having obtained the solution of the Boltzmann equation in the form
(4), (5), we shall now evaluate the electron current density j from it. If
§? is Maxwellian,

(0)
o _ df v oo .
=Y gAe = ———
Vel dae A€ i ©)
where v is the group velocity and Ae = | € — & | is the distance from the

band edge. The contribution of carriers in the 7th valley to the current
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density is then
I (£ e)v(AP'")f(AP'")
APLD),s
¢ .
= — >, [“7(A0E-vv (7
kT Aaptos
where the summations are over all AP oceurring in the ith valley in
unit volume of material, and over both states of spin.
The expression (7) states that any single valley ¢ possesses an aniso-

tropic conductivity tensor aag'”, or an anisotropic mobility tensor was'”,
ie.,

- (i) G () '

Ja" = 2 0w By = 2 (0w ") g ®

8
where
n(l') — Z f(ﬂ) (9}
AP ¢

is the number of carriers in valley ¢ per unit volume. If we choose the
x, y, and z axes to be along the principal axes of the ellipsoidal energy
surfaces of valley ¢, (7) shows that cas'” and pas"” will be diagonal. Each
diagonal element '’ will involve a Maxwellian average of u’r(Ae).
Now the equipartition principle leads us to expect that the average, over
an energy shell Ae to Ae + dAe in AP-space, of the kinetic energy asso-
ciated with the x-component of velocity should be the same as that as-
sociated with the y- or z-component. This is easily demonstrated ex-
plicitly (Appendix B). Thus, if m*, m.*, ms* are the effective masses
in the three principal directions,

, 2 2 2
Lo my*oy = Lo ma*ee = 1§ my¥e, (10)

Therefore (7) and (8) give, in our system of axes,

faa' | = m(;* ?;:: (11)
pat'' =0 (a#B) (12)
where the angular hrackets denote Maxwellian averages:
Aer> = 2 Aerf /20 17 ete. (13)
AP AP

The denominator of (11), <Ae>, of course equals 345 kT by equipartition.
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The formula (11), it will be noted, is the same as that of the simple
theory” with m* replaced by m.*.

The overall conductivity tensor due to the carriers in all the valleys is
of course Z;‘ﬂ'ug(i} , and the overall mobility tensor is the average of
o over the different valleys. For a cubic crystal the mobility is the
same in all directions, so we have

1 i
b =pan = l/é Zﬂau = W ZZ .'-‘cm()
o v T a
(14)

_ € <Aer?
m? <Ae>

where Ny is the number of valleys and m'” is an average inertial mass
defined by

1 1 1 1
=14 - 4+ -4 =
ma 73 l:ml* + — + ma*] (15)
This mass, as we shall see in Section 7, is the one most directly meas-
ured by the Benedict-Shockley experiment on high-frequency dielectric
constant.

3. TEMPERATURE VARIATION OF LATTICE MOBILITY

The r oceurring in the mobility expression (14) differs from the r of
the simple model in that it contains the effect of inter-valley scattering
in addition to intra-valley and impurity scattering. Inter- and intra-
valley scattering differ in that most of the phonons emitted or absorbed
in intra-valley scattering have energies << the energies of the charge
carriers, while those involved in inter-valley scattering usually do not.
If K® and K are two different band edge points, scattering of a carrier
from valley 4 to valley 7 must involve emission or absorption of a phonon
of wave number close to 4q,; , where q;; = K’ — K. If q;; has a mag-
nitude of the order of the radius of the Brillouin zone, as is likely in
most cases, the energy fiw;; of this phonon will be a major fraction of
of k0, where 0 is the Debye temperature. This is usually Z%T in the
extrinsic range. One must therefore use the Planck, rather than the
Rayleigh-Jeans, distribution function for these phonons. At very low
temperatures, inter-valley scattering is negligible: absorption of an j
phonon is rare because few such phonons are present; emission is com-

7 See, for example, W. Shockley, Elecirons and Holes in Semiconductors, (Van
Nostrand 1951) p. 276.



TRANSPORT PROPERTIES OF A MANY-VALLEY SEMICONDUCTOR 245

parably rare because few carriers have energy enough to create such
a phonon. With rising temperature inter-valley scattering becomes
more important. This causes  (hence u) to decrease more rapidly with
increasing 7' than it would if there were no inter-valley scattering. In
this section we shall develop this idea quantitatively.

The matrix element for scattering of a carrier from some state in
valley 7 to another state in valley 7, by absorption or emission of a phonon
hw, has the form common to all one-phonon scattering processes®

N2 absorption
M;; = v + 1)1f2} D; for {emission .

where N is the number of phonons of the given type present in the
initial state and where D;; is independent of the occupation of the phonon
states. For inter-valley scattering D;; is practically independent of the
locations of the initial and final states in their respective valleys. In
general, of course, D;; will be different for the different branches of
the vibrational spectrum. The transition probability from a state of
energy e in valley 7 to a state in valley j of energy ¢ = ¢ + fw (absorp-
tion) or € — hw (emission) is proportional to | M;; |* times the density
" of states at energy ¢ in the jth valley, provided the variation of 7w
with position in the valley is negligible, as is the case for most transitions,
Since the number of states between ¢ and ¢ + d¢' is proportional to
Ae''"” dA€, where A¢’ is the distance from the band edge, this transition
probability has the form

s (e + h)"”
absorption: W, « oxp Gu/FT) — 1 (17)
_ 1/2
emission: W, o (A — hw) for Ae > hw
1 — exp (= hw/kT) (8)
0 for Ae < hw

Since either of the processes (17) and (18) randomizes the initial
velocity of the charge carriers, and since in this paper we are assuming
the existence of an effective relaxation time r;(e) for randomization of
velocity by the intra-valley scattering of acoustic modes, the total
relaxation time for lattice scattering is given by

11 ' . .
; = 'r_ -+ Z [Wu(tja a) + WG(T'J: a)] (19)
" }.ﬂ
where « labels the branches of the vibrational spectrum and W, and W,

% See, for example, Reference 7, p. 520.
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Fig. 2 — Contributions to the reciprocal relaxation time of a charge carrier, due
to inter-valley and intra-valley lattice scattering. The dot-dash curves are the
inter-valley scattering contributions W.(ij, @) for emission of a phonon, the dashed
curves are the corresponding quantities W (ij, «) for absorption of a phonon.
There are many transitions from valley 1 to different ones of the other valleys,
due to different branches « of the phonon spectrum.

are given for each type of transition by (17) and (18) respectively, with
hw = hw(ij, ). The prime on the summation means that when is an
acoustic branch, the term j = 7 is to be omitted. However, since (17)
and (18) apply to intra-valley scattering by modes of the optical branches,
such scattering is included in (19) as the terms with j = 7. Fig. 2(a)
shows the various contributions to 1/r as functions of the initial energy
Ae of the carrier being scattered: 1/7;; is proportional to A€, as in the
simple theory (this corresponds to a mean free path independent of
energy for any given direction of motion), and each of the other terms
is proportional to some (Ae + fiw)'"”.

We shall try to estimate the order of magnitude of the steepness of
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the parabolas describing the various inter-valley terms, relative to that
of the intra-valley term 1/r;;. For the low-frequency acoustic modes
involved in intra-valley scattering the factor D;; in the matrix element
(16) is proportional to ¢/(fw)"”, and since w « g and N ~ ET/hw>> 1
for such modes | M,; |* « 7 and is independent of ¢. The ¢'s involved in
inter-valley scattering will usually be too large to satisfy k7T /hw 3> 1,
at least in the extrinsic ranges of Ge and Si, but we may hope to estimate
a plausible order of magnitude for their W,’s and W,’s by assuming
their D;'s to be «q/hw with a factor of proportionality of the same
order as for intra-valley scattering. With this assumption the steepness
of a typical (47) parabola corresponding to phonon emission (W,) should
be of the same order as the steepness of the intra-valley parabola when
kT = hw(iy), while for kT < hw(ij) the W,(47) parabola should become
nearly independent of 7', as contrasted with 1/7,:(¢) < T. The parabolas
corresponding to phonon absorption are of course always less steep, the
ratio of the steepness of W,(7j) to that of W.(ij) being
Wa/(Ae + hw)'? 1 — exp (— how/kT)

nr”/(AE _ hw)lp‘z = exp (ﬁw”ﬁT) 1 = exp (_ ﬁw/ﬂf) (20)
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Fig. 3 — Same as Fig. 2, but for the simplified model of Equation (24), on
which the numerical caleulations of Figs. 4, 5,8, 9 and 10 are haged.
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Because of the large number of terms W,,.(ij, @) in (19) or Fig. 2,
each with an at present unknown amplitude and eritical frequency, 1t
would be pointless to undertake calculations taking individual account
of all the possible types of transitions. However, it is reasonable to hope
that the behavior of the inter-valley terms can be roughly approximated
by a model which considers absorption and emission of just a single type
of inter-valley phonon. This model is illustrated in Fig. 3. It contains
three adjustable parameters w; , we , and hw, defined by

Ae 1/2
(s 1)
We = @ (22)
exp (ho/kT) — 1

Ae \
W, = d or 0 (23)

1 — exp (— hw/kT)

Equation (19) becomes
wmr =

A_E 1/2 E 1/2 -1 (24)
(éﬁ)lﬂ(@)_}_wz (ﬁm + 1) N (ﬁw - 1) or0

hw) \hw/ " wilexp (ho/kT) — 1 1 — exp (— ho/kT)

Thus w,r is a function of the two variables Ae/Aw and kT /hw, and the
single parameter ws/w; . The behavior of the mobility as a function if
kT /hw therefore depends, apart from the constant scale factor w, , only
on wa/w; -

Fig. 4 shows the results of some caleulations of this mobility-tempera-
ture relation, made by numerical evaluation of (24) and (14). It is evident
that with reasonable values of w,/w: , the negative exponent describing
the temperature variation of the mobility can be increased to a value
considerably above the 34 of the simple theory, over a considerable
range of temperature. This is often what is needed to explain the ob-
served mobility behavior. In Sections 4, 6, and 8 we shall see the extent
to which this mobility exponent is correlated with, respectively, the
electronic part of the thermoelectric power, the ratio of Hall to drift
mobility, and the magnitude of the magnetoresistance.
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4. THERMOELECTRIC POWER

The thermoelectric power of a semiconductor is a little different from
the other effects discussed in this paper, in that it involves not only the
response of the distribution function of the charge carriers to a per-
turbing temperature gradient or electric field, but also the alteration
of the distribution function of the phonon system.” ' The duality mani-
fests itself in the apperaance of two contributions to the thermoelectric
power Q: the measured  is the sum of an electronic part Q. representing
the emf necessary to counteract the tendency of charge carriers to diffuse
from hot regions to cold, and a phonon part @, , representing the emf nec-
essary to counteract the drag exerted on the carriers by the phonons
which flow down the temperature gradient in thermal conduction. As
the present paper is devoted to effects having to do with the response of
the electronic distribution function to various influences, and as all
aspects of the theory of thermoelectric power have been discussed else-
where,'" we shall limit the present section to a discussion only of the
electronic part ., which, fortunately, predominates greatly over Q,
at high temperatures.

The expression for @, is most simply derived by making use of the Kel-
vin relation @, = II,/T between . and the electronic contribution II, to
the Peltier coefficient, which represents the energy flux, relative to the
Fermi level, which accompanies the transport of unit charge in an
isothermal conduction process. For an intrinsic semiconductor with low
carrier concentration

eTQ, = ell, = er — & — Aer (25)

where as before e, is the Fermi level, & the band edge energy, and where
Aeq is the average energy of the transported electrons relative to the
band edge, a quantity >0 for n-type material, <0 for p-type, and of the
order of magnitude of kT. Now | e — & | can be expressed in terms of
the carrier concentration n and the effective masses. For a many-valley
model the number of carriers n'” in each valley is easily shown to be the
same as for a simple model semiconductor with the same | ez — & | and
with an effective mass equal to the geometric mean of the principal
masses m.*, ms*, my* of the valley. This is because the density of states
in energy is proportional to the volume of K-space inside an energy sur-
face, a quantity which for a spherical surface goes as the cube of the
radius, and for an ellipsoidal one as the product of the prineipal semi-

o 1. P. R. Frederikse, Phys. Rev., 92, p. 248, 1953.
10 (0. Herring, Phys. Rev., 96, p. 1163, 1954.
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axes. The total carrier concentration is therefore

3/2
n=Npn'" = 22k T) (mi*ma*ma*)"*Ny cxp( Ler e"l)

S kT
where Ny is the number of valleys. The final expression for Q, obtained
by expressing | ez — & | in terms of n and inserting in (25) is
Q). = F
- 15 * u* *
86.2 [(‘n XL 5y i Ny + 15 (’L‘l’"_”)
n m m m
(26)

| AET I:I uv/deg.

+ 35T+

where 7 is in em™ and the upper sign is for n-type material, the lower
for p-type.

If a relaxation time exists, dependent only on energy, the distribution
function for isothermal conduction has the form f + E-f worked out
in Section 2, and we have, for a cubic crystal,

[Aev- £V dP _ KA€D

Aep | = =
| der | [vi7dp  <Ae>

(27)

by (5), (6) and (10), where as before the angular brackets denote Maxwel-
lian averages as defined by (13).

It is important to know the value of (27) as accurately as possible,
in the temperature range where (), is measurable, since if (27) is known
the measured @, can be used with (26) to give information on the effective
masses. For pure intra-valley scattering, (27) has the value 2k7. Im-
purity scattering increases Aey by causing the current to be carried more
by fast carriers and less by slow; inter-valley scattering has the reverse
effect. It is worth while to try to correlate the effect of inter-valley
scattering on Aer with its effects on two measurable properties, namely,
the temperature variation of mobility (Section 3) and the ratio of Hall
to drift mobility (Section 6). Accordingly, caleulations of | Aer | have
been made using the expression (24) (model of Fig. 3) for the relaxation
time. The results are shown in Fig. 5, which shows | Aer |/ET as a func-
tion of kT /hw.

5. PIEZORESISTANCE

As we have just seen in Section 2, the quantum states in any small
region of wave number space make a contribution to the conductivity
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Fig. 5 — Values of the thermoelectric transport ratio | Aer |/kT" defined by (27),
for the simplified lattice scattering law (24). The ratio ws/w; measures the strength
of the coupling of the carriers to inter-valley modes in terms of that for intra-
valley scattering; « is the frequency of the inter-valley modes. The curves have
been drawn to smooth out irregularities (severe for k1'/hw = 1 to 2) in the cal-
culated points.

which depends on (i) the degree to which these states are populaled in the
equilibrium distribution f**, (ii) their group velocily, and (iii) their relaxa-
tion {tme, or more generally, the transition probabilities for scattering
from these states to others. When the crystal is strained, any or all of
these factors may change, and the resulting change in the sum of all the
local contributions to the conductivity constitutes the piezoresistance
effect recently discovered by Smith.* Although there are a number of
processes which can contribute to the three factors (i) to (iii) just
enumerated, it can be argued plausibly that for a simple many-valley
model the principal effects are usually those due to a single process,
namely, the strain-induced shifts of the energies ¢; of the band edge
points K”. We shall consider (i) to (iii) in turn:

(i) The change in the population f”(K*” 4+ AK) depends on the shift
of the energy e(K” + AK), and because.of the smallness of AK this is
practically the same as the shift 8¢ of e(K). In a shearing strain some
of the 8¢ will be positive, some negative, and so some of the valleys will
have their populations decreased, some increased, the fractional change
in each case being 5¢'”/kT. Now it is evident from the second equation
of (7) that the contribution of a single valley to the conductivity is aniso-
tropic. If all valleys are populated equally, as we assumed in Section 1,
the total conductivity will be isotropic. But if strain causes different
valleys to have different populations, the overall conductivity will have
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an anisotropy like that of the more populous valleys. If the ratio of §¢”
to the shear strain amplitude is of the order of magnitude of the known
ratio of deq to strain for isotropic compression, viz., a few volts, the frac-
tional change of /' per unit strain will be of the order of hundreds. Since
the observed fractional change in resistance per unit shear strain is of
the order of 10" in the more favorable orientations,’ the change in f* is of
the right order of magnitude to contribute a major part of the effect.

For an isotropic compression or dilation there exists the possibility,
not present for shearing strains, that the total carrier concentration may
be changed in first order. A large effect of this sort, again of the order of
the 8¢ /kT, will oceur for a specimen in or near the intrinsic range, be-
cause of the change of energy gap e; with strain. This effect rapidly
becomes negligible, however, as the specimen is made extrinsic. For ex-
ample, if unit volume of an n-type specimen has an excess n, of donors
over acceptors, all ionized, the hole and electron concentrations nj ,
n. , obey

2
N, = Np + M, Ny = Ny

where n;(7') is the value of n, = ny in intrinsic material. Thus if np >> n;

2

M N P

v () =
and since dn./de; = dny/deq, the energy gap effect is negligible if n,
exceeds n; by a large factor, even though the change in n,; with strain
may be sizable, For extrinsic specimens with incomplete ionization of
impurity centers, there may of course be an effect of compression on total
carrier concentration due to change in the ionization energy of the
centers; however, if this ionization energy is <<eq this effect will be of a
smaller order of magnitude than the s¢'” /kT.

(ii) It is easy to show that the fractional change in group velocity
per unit strain must be much smaller than the s¢”/kT just discussed,
hence too small to contribute in a major way to the piezoresistance ef-
fect. For we expect the change év in the group velocity at K" + AK to
have an order of magnitude given by

o ~ [3e(K” + AK) — 8¢ ”)/hAK ~ (AK/K™)*(5¢” /hAK)
since the quantity in square brackets must vary as AK”". Since
v~ [e(K” 4+ AK) — ?]/hAK = Ae¢/RAK
we have
sv/v ~ (AK/K) (567 / Ae) (29)
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Since a typical charge carrier has Ae ~ kT, (29) is smaller than the ratio
discussed in the preceding paragraph by the factor (AK/K (1% 1t is thus
plausible to neglect strain-induced changes in group velocity, or equiva-
lently, in the effective masses.

(iii) Consider the transition probability from a state K to the group
of states lying in a small element of volume in K-space, centered on a
point K’ at which the proper energy conservation law for the transition
K — K’ is satisfied. This probability, like all gquantum-mechanical
transition probabilities, can be expressed as the product of the square of
a matrix element M (K, K’) by the number of states per unit energy in the
given element of volume. We have to consider the effect of strain on each
of these factors.

The matrix element M (K, K’) can be changed either by a change in
the wave functions ¥x , ¥x' , or by a change in the physical processes
determining the perturbation operator M, e.g., a change in the ampli-
tudes of the thermal vibrations, or a change in the dielectric constant,
which enters into scattering by charged impurities. Typical assumptions
on the equation of state of a crystal suggest that the fractional change
in the squared vibration amplitude, per unit strain, might be of the
order of a few units, i.e., at least an order of magnitude less than the
observed elastoresistance for the optimum orientations. The effect of the
change in the wave functions is of similar magnitude: To effect a major
change in M (K, K’) one must make a major change in the wave func-
tions. To do this probably usually requires a strain of amplitude 0.1 to 1.
Therefore it is reasonable to expect that the fractional change in | M |
per unit strain will be of the order of 10 or less, i.e., again an order of
magnitude smaller than 5¢” /LT, or than the observed elastoresistance.

The effect of strain on the density-of-states factor, on the other hand,
can be larger. For intra-valley scattering, where initial and final states
are both near the same band edge point K'”| the effect is of course very
small, since initial and final states undergo very nearly the same energy
shift with strain. But for seattering from one valley 7 to another valley
7, the two energy shifts 5¢'” and 8¢ are in general quite different, and
for a given initial state application of a strain will change the set of K”’s
deseribing final states which conserve energy and hence will change the
density of final states — e.g., the density in a given solid angle of vectors
AK’ = K’ — K. Since in a given solid angle the density of states is
« A¢''"*, the fractional change in this density due to a strain is o /2A¢
which on the average is of the order of 3¢ /KT, i.e., of the same order as
the effect discussed under (i).
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TABLE I — Ways 1N WHicH STRAIN CAN AFFEcT CONDUCTIVITY

Effect Probable Order of Magnitude | pRankin
(i) Population function f. . ... e 8 /kT + much First
- smaller terms
(ii) Group velocities of states. . .. . ... .| &8V /kT

(iii) Transition probabilities
(a) Matrix elements

() Wave functions | BV ET

(8) Vibration amplitudes, etc...| Rather <&e'“/kT Second (?)
(b) Density of states

() Intravalley..... e b/ kT

(8) Intervalley... .. B 8¢ /kT + much First

smaller terms

Table T summarizes the foregoing discussion of the ways in which
strain can affect conductivity.

Appendix C gives the mathematical treatment of the two effects which
are of the order of the quantities d¢'”/kT, namely, the change in fm)
and the change in the density-of-states factor in the transition proba-
bilities for inter-valley scattering. This treatment, which is fairly simple
and straightforward, is based on the following assumptions:

(a) Neglect of all other effects of strain on the conductivity.

(b) The assumption of the preceding sections that the scattering of
the carriers is describable by a relaxation time which in each valley is a
function of energy only.

(¢) Carrier concentrations in the extrinsic range.

(d) Maxwell-Boltzmann statistics.

(e) Valleys lying along a threefold or fourfold symmetry axis of a
cubic crystal. For such valleys the energy surfaces are ellipsoids of revo-
lution.

The principal features of the calculation are qualtative ones which
can be derived with little or no mathematics. These we shall consider
here, with a little inquiry in each case as to the sensitivity of the conclu-
sion to relaxation of the assumptions (a) and (e) above. The first such
feature to be noted is that under assumption (a) the change of mobility
in an isolropic compression vanishes. For in an isotropic compression all
the band edge shifts d¢'” are equal. This means that for a given total
carrier density the distribution function f in each valley does not
change, if, as we are doing, we neglect changes in the effective masses.
Similarly, since all valleys are shifted together, there is no change in the
density of final states corresponding to any inter-valley scattering
process. The present conclusion is easily seen to be independent of
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TaBLE IT — ISOTHERMAL ELASTORESISTANCE CoNSTANTS FOR Ge AND
Si (SmitH, REFERENCE 4)

Material and Resistivity I M ; mugz _ M ; M2 féd z‘av _ mn -}; 2mia
2cm
n Ge 1.5 —93.0 +0.4 —5.3
5.7 —92.0 +0.5 —6.8
9.9 —92.8 +0.1 —9.8
16.6 —93.4 +0.1 —13.6
p Ge 1.1 +65.1 —2.8 +3.9
15.0 +66.5 —6.3 +1.4
n Si 11.7 —10.8 —79.5 +5.7
p Si 7.8 +110.0 +3.9 +6.0

Here m,,qp , defined by (C7) of Appendix C, describes the relative change of the
conductivity tensor with the strain tensor, in a coordinate system oriented along
the cube axes. The abbreviation of this by m(r, s = 1 to 6) follows the same prac-
tice as that used for elastic constants.

assumptions (b), (d), and (e). As regards assumption (a), however, it is
clear that inclusion of any of the other strain effects listed in Table I will
in general lead to a nonvanishing effect of compression on the mobility.

By virtue of the fact just mentioned it is possible to test the validity
of assumption (a) by comparing the observed elastoresistance for iso-
tropic compression with that for a typical shear. Table II, taken from
the work of Smith,* shows the room temperature elastoresistance con-
stants of Ge and Si. The entries in the last column vary with resistivity
for the case of Ge, because of the energy gap effect discussed under (i)
above [failure of assumption (¢)]; our present interest is therefore in
the values for low resistivity specimens. For these the volume coefficient
(last column) is in all cases only a few percent of the larger of the shear
coefficients (middle columns); this accords with the expectation that
the volume variation of the squared matrix element for scattering (pre-
sumably the largest of the neglected effects) should be an order of magni-
tude or more smaller than the 8¢ /kT. This is encouraging, but it must
be remembered that the shear variation of the matrix element may well
be larger than its volume variation because suitable shearing strains can
usually couple a band edge state to states closer to it in energy than can
isotropic dilatation.

The second important conclusion is that under assumplion (a) the
change of mobility vanishes for a dilatation along a (100) direction if the
valleys are on (111) axes, and for a dilatation along a (111) direction, if the
valleys are on (100) axes. In terms of the elastoresistance coefficients of
Table 11, (mn — mi) vanishes for (111) valleys, and m4s vanishes for
(100) valleys. This conclusion is obvious from the symmetry of the
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problem: a shear compounded out of a unidirectional dilatation of the
type described and an isotropic compression must shift all band edge
points by the same amount. This amount must be the same as in the
negative of this shear, so all §¢; = 0. This conclusion is again independent
of assumptions (b) and (d), but in general breaks down if assumption (a)
is relaxed to the extent of taking account of the effect of strain on the
matrix element for scattering.

The third point to be made is that the change of mobility accompanying
a gwen strain is inversely proportional to T at temperatures low enough for
inter-valley scattering to be of negligible importance. This is because the
relative change of population of different valleys with strain is propor-
tional to the 8¢'”/kT. The more complete treatment of Appendix C shows
that, under the present assumptions, the decrease of elastoresistance with
increasing T should be more rapid than 1/T when inter-valley scattering
is just becoming important, but that for very high T' it should again go
as 1/7. This behavior is illustrated schematically in Fig. 6. The present
conclusion is not dependent on assumptions (b) or (e), but depends on the
others, especially (a). The effect of strain on the matrix elements for
scattering will give a contribution to the elastoresistance which is inde-
pendent of T in the range (if such exists) where only intra-valley lattice
scattering is important; if impurity or inter-valley scattering contributes
the dependence is of course more complicated.

LOG Mypap —>

Lo T =—>

Fig. 6 — Schematic variation of any component of elastoresistance with tem-
perature, showing the transition from the low temperature region where the only
important effect of strain is to change the relative population of the valleys, to
the high temperature region where the effect of strain on inter-valley scattering
is of comparable importance.
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In conclusion, a few words are in order regarding the extent to which
the present conclusions on piezoresistance can be expected to hold for
models other than the simple many-valley type to which this memoran-
dum is restricted. First of all, we may note that for the various types of
degenerate models, such as that of Fig. 1(a), different states in the neigh-
borhood of the same band edge point can experience widely different
energy shifts de under shear. Consequently the mobility will be affected
in a major way not only by the two effects labeled “first” in Table I —
change of the population function and change of the density-of-states
function in inter-valley scattering — but also by changes in the group
velocities. Moreover, the perturbation of the erystal Hamiltonian by a
uniform shearing strain may now have sizable matrix elements between
states of the same wave vector belonging to the different bands which
come together at the band edge point. This can cause the form of the
cerystal wave functions to be much more sensitive to strain than when the
perturbation only connects states a few volts apart in energy, and so
the dependence on strain of the matrix element for scattering may be
much larger than for the simple many-valley case. Thus at least four,
rather than two, of the entries in Table I become of first magnitude.

In view of these facts, most of the conclusions reached for the simple
many-valley case probably become invalid for the degenerate and de-
generate many-valley cases. An exception is the conclusion concerning
the smallness of the change of mobility in isotropic compression. The
perturbation introduced into the erystal Hamiltonian by an isotropic
compression does not mix states of a degenerate set, so the arguments
previously given remain valid.

6. HALL EFFECT AT Low H

When a magnetic field is present the E in the transport equation (3)
must be replaced by E + v X H/¢, where as before, v is the group veloc-
ity. Thus with the upper sign for electrons, the lower for holes, the dis-
tribution function f of the carriers obeys

S [ X By - U

We shall seek the solution of this as far as the first order in E and the first
order in H, i.e., we shall set

f — f(ﬂ) + E.f(lﬂ) + ZEFvapv“n + . (31)
ny

There is, of course, no term of the first order in H and the zeroth in E,
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since a pure magnetic field has no effect on f. The vector function f 1 g
of course the same as in Section 2, Equation (5), namely,

19 = 2orv,fV (32)
Putting (32) and (31) into (30) we get for f,,"":
% Y ol " = e VX H vk erE v @)
Ba¥
whence
fuv = T ; 0,008 aP. (TBP,, (33)

where 8,,5 = 0 if any two of its suffixes are the same, and +1 if the suf-
fixes are an even (odd) permutation of xyz.

The physical meaning of the steps leading to (33) is just that a weak
magnetic field perturbs the f* solution of Section 2 by displacing each
part of the distribution in the direction of v X H in crystal momentum
space, the displacement being proportional to v XX H and to 7.

The term (33) in the distribution function gives rise to a contribution
i to the current, which is at right angles to H and to E. This contribu-
tion can be described by a “Hall conductivity tensor” gy, , thus:

W= 2 el H, (34)
uv

The contribution ey.,'” of the ith valley to o), is easily obtained from
(33). We shall assume Maxwellian statistics, so that afV/oP, =
—(u,/kT)f'. When this is inserted into (33) the last factor involves a
derivative of v,f” 7 with respect to P, . If 7 depends only on energy, as
we are assuming throughout this memorandum, the derivative of f 0
with respect to P, in (33) will be proportional to v., and Z, gd,astla
will vanish identically because of the anti-symmetry of 8,43 in @ and 8.
Therefore the only term which need be retained in 8/dP, is that in
av,/dP. . If the coordinate axes are chosen along the principal axes of
the energy surfaces of the ith valley, this latter derivative is just 8.a/m,*.
Thus we get, with the upper sign for n-type the lower for p,

9 (0)
T Z 6,,15?),\1)3 m (_ Tf Ull)

3
M _ ¢ K
¢ AP(D),s af kT

Thpy

(35)

a 2(0)
J

¢ UNs
B SRR S
¢ _31:;:)," m* 3 wd

where as usual the first summation is over all vectors AP in the ith
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valley, per unit volume, and over both states of spin. In our present co-
ordinate system the average of vz over an energy shell vanishes unless
B = A, while that of »" can be evaluated from the equipartition relation
(10): 1" — 2Ae/3my*, where Ae = | € — & | is the distance from the band
edge. Thus with kT = 24 <Ae>, (35) reduces to

En'? (Aer®) By

(1)
] = F
e ¢ {Ae) m*m,*

(36)

where n'?, as in (9), is the number of carriers in the sth valley per unit

volume, and where the angular brackets are Maxwellian averages, as in
(13).

The proportionality of the Hall conductivity tensor to <Aer’> and to
the reciprocal product of two different principal masses is easy to under-
stand physically. Without a magnetic field, an electric field in the u
direction gives a distribution, in each energy shell of the 7th valley,
which has a mean velocity in the u direction proportional to Aer/m,*
(ef. Section 2). Thus the distribution in this energy shell is acted on by a
transverse magnetic force whose average value is proportional to this
expression. This transverse magnetic force produces a transverse current
proportional to the force and to r/my*, where X is the transverse direction.

For a cubie crystal the relation of the Hall current to E and H must
be isotropic, i.e., the right of (34) must be proportional to E X H. It is
easily shown that the quantities in (34) are related to the ordinary con-
ductivity oo, Hall coefficient R, and Hall mobility uy = Roc, by

i = 'RE X H
or

Tl

Thpy = D'DZR{S}\F,, = 6)\#,, (37)

where as usual the upper sign is for n-type, the lower for p. Since
Z\wO b 18 Invariant with respect to changes in the orientation of the
coordinate system, we may evaluate it by evaluating each E;,.,cr;,., 6;,‘,
in the system of principal axes of the 7th valley, and then summing on <.
From (36) we find in this way

ool
O'OR =+ CH = 1% Z Trwsbrpr = ’6 E Z 07‘*" ‘5"""

t Apry

Aer®> 1 1 (38)
e'n <Aer

= F 12 + +

e <he 3 (?7’11*?7’12* ma*mg* m;*ml*)

where n = =n'” is the total density of carriers. A neater way of pre-
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TasLe IIT — Vavrues oF tae LasT Facror v (39), ror CASES or THE

Form
m* = mo* = m ¥ my* = m*
my* m*
m* _ N ﬁ (2 + E;T‘)
20 0.784
10 0.816
5 0.868
3 0.918
2 0.960
1 1.000
0.5 0.938
0.3 0.808
0.2 0.674
0.1 0.437
0.05 0.254

senting this result is in terms of the ratio up/u. Multiplying (38) by ¢/oou
and using oy = nep and (14) for p we get

3 1 + 1 1
Br CAer><Ae> . ml*mg* TJ’LQ*?TH* m;.*m]*

m T Aen? 1 1 1 \?
(ml* T ma* T ;l? (39)
_ <Aer*><Ae> B -
{Aer>? ’ y-

Note that the first factor of (39) is the value of uy/p in the simple
theory," and that the second factor B, involving the anisotropy of the
effective mass, is unity for zero anisotropy and <1 in general. Some sam-
ple values of this mass factor B are given in Table III and Fig. 7. Fig. 8
gives values of the first factor in (39), for the simplified model of intra-
and inter-valley scattering described by (24).

7. THE BENEDICT-SHOCKLEY EXPERIMENT

We turn now to the response of the assembly of carriers to an electric
field which varies sinusoidally with time. As Benedict and Shockley have
shown," this response becomes limited at high frequencies by the inertia
of the carriers, and so by measuring it one can obtain an effective mass.

1t See, for example, Reference 7, p. 277.
2T, §. Benedict and W. Shockle\ , Phys. Rev., 89, p. 1152, 1953.
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on the anisotropy of the effective mass, for the case mi* = mo* = m * my* = m*.

The solution of the transport equation for this case proceeds almost
exactly as in Section 2. We assume that the scattering of the carrier is
described by a relaxation time 7, whose dependence on position in mo-
mentum space we shall for the moment leave unrestricted. The analysis
starts as before from (3) for the distribution function f of the carriers,
namely, with the upper sign for electrons, the lower for holes,

(0
O _ pgvg— =1 (40)
at T
(We neglect the very small effect of the magnetic field generated by
dE/at.) Instead of (4) we write, if E = | D

f) = S + Eof7(0) + O(ES) (41)
From (40) and (41) the equation for f is
Bf(l) o i f{l)
-—a— = ZEEVPI( )C'w‘ _—— (4.2)
t T
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for the simplified lattice scattering law (24). The ratio w./w, measures the strength
of the coupling of the carriers to inter-valley modes in terms of that for intra-
valley scattering; w is the frequency of the inter-valley modes. The curves have

been drawn to smooth out irregularities (severe for kT /he = 1 to 2) in the ealeu-
lated points.

If Ae = | ¢ — & | isthe distance from the band edge, we have, for Max-
wellian statistics, f'© o exp (—Ae/kT') and of course VpAe = v, thegroup
velocity. Thus £ = £,%e™" with

I (0)
(1) Fevfr
fo =

B kT(1 + iwr) (43)

The current density is given by the usual sum over the different valleys
i and the states (AP spin) in each valley:

i=2 2 (Fev(aP")f(aAP'") (44)

i AP(i),s

TFrom (41), (43) and (44),

2 (0
j _ E ‘ (EW ng T) ot
AP,

7 ET(1 + twr

2 2.(0)
B e (A Y
3T T ap@ s \(1 + twr)

if the crystal has cubic symmetry. Thus the semiconductor has the fre-

(45)
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quency-dependent complex conductivity

neé |/ v'r

o) = g\ z‘m> (46)
where n is the number of carriers per unit volume and the angular
brackets denote a Maxwellian average. Note that in deriving (46) we
have not had to assume anything about the dependence of ¢ or 7 on
AP; (46) is therefore valid for all models, not merely for the many-valley
case. However, (46) is still not explicit enough to be directly usable for
the evaluation of experimental results, and we shall need to use the spe-
cial properties of the many-valley model to express the Maxwellian aver-
age in terms of measurable or readily interpretable quantities.

Under the usual assumptions of this paper r is a function of energy e
only, so the average in (46) depends only on the average of ' over an
energy shell. By the equipartition principle (10) we may therefore replace
v* by
2 (l’éml*”f 4 %ma*’”ﬁ) = 24 (L + Lt _1_) (47)

ml* mz* m;;* ml* Mmo m;;*

)

The average of the masses is the same m"" we encountered in Section 2,

namely,
1 1 1 1
ﬁﬁ:%&5+aﬁ+ﬁa (48)
Therefore
[ VT N2 (B
\1 + twr/  m® \1 + twr (49)

The expression for o(w) becomes, with its real and imaginary parts sep-
arated,

_ omé’ [/ Aer N\ ./ A \}
(@) = gppm [\1 F ot N atr/ (50)

The real part oz(w) of this is what is usually called the “conductivity”.
The imaginary part o;{w) is proportional to a contribution to the dielec-
tric constant x(w), since (47) 'k(w)dE/at is the sum of the displacement
current (47) 'kdE/dt and the part of the true current j which is in phase
with 8E/a¢. Thus the departure of «(w) from the dielectric constant xo
of the crystal without its free carriers is given by

m—d@=—%ww (51)
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At the frequencies and temperatures which have been used for the
Benedict-Shockley experiment, most of the carriers have relaxation times
short compared to ™', and it is appropriate to make an expansion in
powers of w:

<1 _ﬁe;,‘! ,,> = CAer> — w'Cher> - (52)
<1 -?-e:or\ = Der> — wler’> - (53)

(If r — « as AP — 0, as would be the case if the only scattering were by
phonons of negligible energy, the series (52), (53) do not converge for any
finite w. However, asymptotic series can be written down which differ
only in order «’ and higher from the series obtained by simply expanding
the denominators). Denoting the de conductivity by ¢; — equal to ne
times the g of (14) — we have from (50) to (53)

A
or(w) = oo I:l (<A €;> + O(w ):| (54)
_ Aer™> e Aer'> 4
ko — k(w) = 4mag I: G ¢ e + O(w ):I (55)

It is convenient to express the first term in the square bracket in (55)
in terms of the Hall mobility ux , since the same average <Aer’> occurs in
(38) as in (55). Let us set op = neu and use the designation B for the
last factor in (39), a factor = 1 dependent on the anisotropy of the
effective mass in each valley and close to unity unless the anisotropy is
very extreme (see Table IIT). Then

ke — k(w) = meﬂm(_n |:1 - m D ppn <her'>Ae>

B e’B {Aerh? +0 (w‘):l (56)

Equations (55) and (56), like all equations in this memorandum, is in
Gaussian units. For rationalized MKS units, as used in the papers of
Benedict and Shockley, the coefficient 47 should be replaced by 1/¢ ,
where ¢ is the permittivity of the vacuum.

The leading term of (56) is the same as that which one would obtain
by simply replacing u* by pux/B in the formula used by Benedict and
Shockley (simple model, r = constant). But because the dimensionless
factor <Aer'><Ae>/<Aer’>” is always =1 instead of =1, the second term
in the brackets in (56) is not the same as that resulting from this substitu-
tion. Thus the expression used by Benedict' in his later analysis of data

15T, 8. Benedict, Phys. Rev., 91, p. 1565, 1953.
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(56) for the high-frequency dielectric constant, for the simplified lattice scatter-
ing law (24). The ratio w./w; measures the strength of the coupling of the carriers
to inter-valley modes in terms of that for intra-valley scattering; o is the fre-
quency of the inter-valley modes. The dotted extrapolations are qualitative only.

oceurring in the equation

on p germanium is corrected only to the zeroth order in w and to the ap-
proximation B & 1. Some sample values of the ratio CAer'><Ae>/<her’>’
have been computed for the scattering law (24), and are graphed in Fig.
9. These show that the range of possible variation of this factor is con-
siderable.

A similar, though less useful, transformation can be made on (54), to
express the second term in brackets in terms of the dimensionless coeffi-
cient 7 defined hy

Aer 2
er ><Ae> (57)

G =
<Aerd?

This is a coefficient which we shall encounter in the next section, in the
theory of magnetoresistance, and which is graphed in Fig. 10 for the inter-
valley scattering law (24). We find

2 2

orlw) = oo [l — m_k @+ O(wl)] (58)

et

The quantity G is =1, the equality holding only if 7 is a constant. Table
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IV and Fig. 10 give some typical values, for scattering laws of the
form 7 « A€ or of the form (24).

8. LOW-FIELD MAGNETORESISTANCE

In Section 6 we set up the Boltzmann equation for the steady motion
of charge carriers under the combined influence of an electric field E and
a magnetic field H, and solved it to the first order in H. We shall now
undertake to solve this equation to the second and higher orders in H.
The solution has been worked out independently for a number of cases
by Abeles and Meiboom,” Shibuya,’ and Shockley (unpublished). We
shall not give all the details of the solution, especially at large H, as many
of them can be found in the reference just mentioned. However, to em-
phasize some features not brought out in this previously published work
we shall review the whole calculation briefly from the beginning,.

The relation of theory and experiment in the area of magnetoresistance
resembles that for piezoresistance, in that the tensor quantity which is

3.2
.8 —
2 /_-—? =
yamE
2.4 — 7 >
Wz _ 4/ ™
< | / G‘W| - “.‘
820 ‘ 9 - e
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Fig. 10 — Sample values of
, {Aer®><Ae>? {Aer®>Aer>
G=-——"— and A =———
{Aerd? {Aer??

for the simplified lattice scattering law (24). The ratio w./w, measures the strength
of the coupling of the carriers to inter-valley modes in terms of that for intra-
valley scattering; w is the frequency of the inter-valley modes. The @ curve has
been drawn to be roughly consistent with the smoother A curve and the curve of
Fig. 8. The dotted extrapolations of the curves are intended only to show the ex-
pected qualitative behavior,
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TaBLE IV — SamrLE VALUES OF THE QUANTITIES G AND A DEFINED
BY (57) anp (68), RESPECTIVELY

Scattering Law G = <A€?A>"<>?‘>= A= <A¢<r;>",<>ﬁ:,>
T o A0 e 2.58 4.01
o AU E e 1.77 1.27
7 = constant. ... ... 1.00 1.00
o AL 1.33 1.09
T o Ae. .. 2.52 1.28
oo Ael B e 5.89 1.58
Form (24), wo/wy, = 4, kT/he = 1.43 ... 2.77 1.40
0.667........ 2.70 1.21
0.333........ 1.92 1.08
0.167........ 1.52 1.15

simplest to calculate is reciprocal to the one which is directly measured.
Thus one measures piezoresistance but calculates elastoresistance. Simi-
larly the measured magnetoresistance is a change in the electric field E
for given current, whereas the simplest quantity to calculate is the change
of the current for given E, i.e., the dependence of the conductivity tensor
on H. We shall see below that the neatest way of comparing theory and
experiment, at least for small H, is to invert the observed magnetore-
sistivity tensor to get the magnetoconductivity tensor, and then compare
the latter with theory.
The Boltzmann equation (30), from which we shall start, is
v X H-Vp

0= ﬂ:GE'VPfﬂ:e—C' f

0)
RS 59)

where as before the upper sign is for electrons, the lower for holes, f is
the distribution function of the carriers, f the (Maxwellian) distribu-
tion in thermal equilibrium, v = Vpe the group velocity. As in Section 2
we set :

f=f4+Ef 4+ 0(F) (60)

and neglect higher order terms in E. The resulting equation for £ can
be written in the condensed form'*

0 = 47V £ H-4f" — £© (61)

where

Y= VXV (62)
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In the notation of Davis," and Seitz,® v = (¢/#’%)Q, while in the nota-
tion of Abeles and Meiboom,” ¥+ = (e/c)Q. The solution of (61) can be
expressed formally in terms of the reciprocal of the operator (1 &= 7H-vy):

£ = (1 = H-y) 'revf” (63)
If we set
(1+Hy)"'=1F Hy+ (+H-y)-H-y)--- (64)

we see that the leading term of (63) is just the solution (5) of Section 2
for H = 0, while the next is just the term (33) of Section 6. In other
words, the series (64) corresponds to an iterative solution of (59). If we
are interested only in the first few powers of H, this iterative solution is
as simple asany; at high fieldsit is better to solve (61) explicitly in closed
form, a procedure we shall outline in the next section.

The solution given by (63) and (64) of course applies for any depend-
ence of the relaxation time 7 and the energy e on position P in ecrystal
momentum space. However, we are here interested only in the case
where, in each valley 4, € is a quadratic function of the components of
AP = P — P and where 7 is a function of e only. For this case some
simplifications are possible. For one thing, r commutes with the operator
v, since (62) acting on a function of e contains the factor v X Vye = 0.
The expression for the current density j in powers of H has the form

Ju= 2 owh, + O gwaHE, + Zﬂ cwagHlaIE, + --+  (65)

where of course a,, = g, for a cubic substance, with «, given by the
equations of Section 2, and similarly ¢,,. = 00 R8ua , where R isthe low-
field Hall constant and as in Section 6 8,,, = =1 if yra is an even (odd)
permutation of 123, zero otherwise. To get the contribution of the 7th
valley to the second-order “magnetoconductivity” tensor ou.s, we
multiply (60) by =ev, , insert (63) and (64), and sum on all momentum
vectors in the 4th valley and in unit volume, and on spins. The result is

2

W _ € 0 _3
Tyvaf = T Al;ﬂ.a f T (UF'YHT,va)symm (66)

where as usual we have assumed f to be Maxwellian, and where the
subseript “symm’’ means that the expression in parentheses is to be
averaged with the expressions obtained from it by permuting a with 8,
since only the part of o,,.s symmetrical in & and 8 has physical signifi-

T, Davis, Phys. Rev., 66, p. 93, 1939.
16 T, Seitz, Phys. Rev., 79, p. 372, 1950.
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cance. (This symmetrization is not necessary, but simplifies the work by
preventing the appearance of meaningless components.)

The explicit evaluation of (66) is a straightforward but tedious exercise
in algebra, and will not be given in detail here. However, there are some
important properties of the tensor (66) which can be established rather
simply. Since the components of v are linear functions of the components
of AP, the operator ¥ defined by (62) takes any linear function of the
APy into another linear function. Therefore the v,y.ysr, in (66) is a quad-
ratic function of the APy , and it is easily seen that this function contains
denominators of the fourth degree in the effective masses. Now a quad-
ratic function of the APy can be written as an effective mass times the
energy Ae relative to the band edge, times a function of the direction of
AP, dependent only on the ratios of the effective masses in the principal
directions. Thus we may write, for example,

Ae
DuYa¥als = 8 % function (uveB, direction of AP, mass ratios) (67)

where m‘" is the inertial average of the effective masses, defined by (15).
Now let the summation on AP be broken up into a summation over
values in an energy shell Ae to Ae + dAe, and a summation over different
shells. The function of direction in (67) will be the same for all the shells,
and so we have the result

a )

5 G iy
= mUHFWﬂﬂ '

Uuwﬂ“
where F,,.5'" depends on the anistropy ratios of the effective masses in
the ith valley, but not on the variation of = with energy, while a is pro-
portional to the number of carriers in the valley and to the Maxwellian
average of rAe.

Tt is convenient to express the average of 7 Ae in dimensionless form
by using the quantity G defined by (57), namely,

. CAer’><Ae’
(I = - —
<Aer>?
or else the quantity
Aer'><Aer>
A= 0T 68
<Aer®? (68)

Here as usual the angular brackets denote Maxwellian averages as de-
fined in connection with (14). We may use (14) to eliminate m'" and the
carrier density and if we wish we may eliminate x in favor of py by (39).
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The result is

(i) (D'tl.u ) (Guﬂﬂ (i)
O ppay =G BFm _‘A wa (69)
wrag (NV ) praf (N ) praf
where oy, p, uy, are the conductivity, mobility, and Hall mobility,
respectively, at H = 0, Ny is the number of valleys, and where B = 1
is the function of the effective mass ratios defined in (39) and Table III.
Summing on valleys 7 gives

Tuya = .;"‘l (0'“‘%) F.umﬂ e G (O’n—) B F;wu&‘ (70)

nvaﬂ Y Z Flwﬂﬁ ) ) (71)

Note that Fl,.s, as defined by (.rO) or (71), is dimensionless, as are GG
and A; Fuas or B® F .3 depends on the geometry of the valleys and the
ratios of the principal masses of a valley. We shall see presently how the
analysis of experimental data is facilitated by this decomposition of the
magnetoconductivity into the product of a scalar factor depending on
the behavior of r and a tensor factor depending on the shape of the
energy surfaces.

The quantity A defined by (68), like (¢, is =1, the equality holding
only if r is a constant. Some sample graphs of A4 and @ are shown in
Fig. 10, for scattering laws of the form (24), and some numerical values
for this case and for r « A€ are given in Table IV. Note that for the
ideal case of intra-valley lattice scattering only, a case approximated
in very pure material at moderately low 7, r = —lgand 4 = 4/r =
1.27, GG = 9x/16 = 1.77. Table V gives values of all the nonvanishing
coefficients F,,."" relative to a coordinate system oriented along the
principal axes of a valley. The middle rows of Table VI give the F,.3,
relative to the crystal axes, for some of the simpler possible arrangements
of valleys. The entries were obtained, of course, by comparing (69) or
(70) with the results of explicit evaluations of (66). For completeness,
Table V also gives the directional factors involved in the contribution
o' of a single valley to the conductivity tensor o, in the absence of a
magnetic field, and to the Hall conductivity tensor o,,. defined hy (34)
or (65). All these table entries are similar to those given by Abeles and
Meiboom.* However, they have given the unsymmetrized o,,.5 ete. for
the cases r = — g and +34, in terms of mean free path, absolute values
of the masses, and carrier concentration; here we have given the sym-
metrized g,..g ete. in terms of the directly observable oy and u, , and for
any 7(Ae).
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The qualitative behavior of the entries in Table V is easily understand-
able. The tomponents F onaa'” refer to the longitudinal magnetoconduc-
tivity when both electric and magnetic fields are in one of the principal
directions of the valley, the « direction. Since a magnetic field in such an
« direction does not change the « component of the velocity of the car-
rier, this longitudinal magnetoconductivity must vanish:

* (1)
I aaaa = 0.

It is easily verified that, for our model, the principal directions of a valley
are the only directions in which the longitudinal magnetoconductivity
contribution vanishes. Since the relative longitudinal magnetocondue-
tivity Ag/o is necessarily = 0, and for a cubic crystal is the negative of
the relative longitudinal magnetoresistivity Ap/p, we can conclude that
on our model the vanishing of the longitudinal magnetoresistance in any
direction is possible, at least for cubic materials, only if the direction in
question is a principal axis of all the valleys. It can further be shown,
though we shall not give the details here, that lack of constancy of =
over an energy shell, far from upsetting this conclusion, merely makes it
impossible for the longitudinal magnetoresistance to vanish in any direc-
tion.

The nonvanishing magnetoconductance effects can be desecribed in
terms of the current due to the force exerted by the magnetic field on the
transverse Hall current. This current is proportional to the Hall current
and inversely proportional to the effective mass — call it m,* — in the
direction normal to the Hall current and to H, this being the direction of
the force producing the second-order current. The Hall current, as we
have noted in Section 6, is proportional to the zero-order current, hence
to the reciprocal of the effective mass mg* in the direction of E, and to
the reciprocal of the effective mass my-x* in the direction normal to E
and H.

To employ these ideas specifically, consider first the component
Taags |, Which measures the change in current in the a direction pro-
duced by a magnetic field in the g8 direction. Here mz* = m,*, mg-g*
= m,*(y # «a, 8), m;/¥ = m.*. Thus

i) 1

Oaafp & — o (y # o, B) (72)

the minus sign coming in because the second-order current is in the direc-
tion opposite to E. When we insert the mass-dependence of ogu,” into
(69) and combine with the F,.5"" of Table V, we do in faet find that
Taags | contains the masses only as indicated in (72). (The fact that
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Faags'” depends on the masses in a much more complicated way is due
to our choice of the defining equation for it, (69): we chose to write this
equation so that it involved only the directly measurable quantities
oo and py , and the dimensionless quantities A and Fuyas' . This choice
is the most convenient one for comparisons with experiment, but is less
simple conceptually than a choice giving the factor (72).) The remaining
independent. component, ¥ adag |, may be analyzed similarly. It repre-
sents the second-order current in the « direction due to an E in the g
direction and an H in the direction midway between « and g. Here
me* = mg*, me-n* = m*y # «a, f), my*¥ = m.*. The Hall current is
weaker by 2" than for the previous case, because of the 45° angle
between E and H, and since the force producing the second-order current
is at 45° to the 8 direction, we must put a second 2"%in the denominator.
Thus

(O 1 — 1
ImoFmgFm,* 2mF*ma*my*

(73)

Tafaf

This, again, can be verified to follow from (69) and Table V.

To apply these results to experimental magnetoresistance data in the
region of proportionality to H ® it is necessary, as has been mentioned
above, to derive an experimental magnetoconductivity tensor from the
obsewed magnetoresistance. For a cubic crystal the magnetoresistivity
tensor can be deseribed by three constants b, ¢ (not to be confused with
velocity of light), d, defined by

A.D' IH _|_ (] H) + d (?z"H + Jy-H + 72 z )
pH* 7 J?

(74)

where Ap is the change of resistivity p due to a small field H, and where
the axes are those of the crystal. The equations relating the constants
b, ¢, d to the corresponding constants desc 11b1ng the magnetoconduectivity
tensor have been given by Pearson and Suhl.'® From these equations the
components of a,,.5 can be expressed in terms of the empirical constants
b, ¢, d. The results are tabulated in the last row of Table VI.

If the ratios of these components are compared with the ratios of the
corresponding F,.s , one can check the correctness of an assumed model
and determine the ratio m*/m *. From the absolute values of the
Tuvag ONE can then determine A. A further check is provided if data are
available at more than one temperature, since the mass ratio should come
out roughly independent of 7', while the variation of A with 7' should

16 (3. L. Pearson and H. Suhl, Phys. Rev., 83, p. 768, 1951.
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accord with a reasonable picture of the effects of impurity, inter-, and
intra-valley scattering on the form of r(Ae).

An analysis of this sort has been carried out for n type silicon.” For
this substance the longitudinal magnetoresistance nearly vanishes in
directions of the type (100). From what has been said above, this almost
requires that the band structure have valleys on the (100) axes in K-
space, and that the relaxation time be practically a function of energy
only. Fitting the remaining magnetoconductivity constants gives
my*/m,* = 5; this ratio comes out independent of temperature as it
should. It agrees with the ratio determined by ecyclotron resonance.”

9. HALL EFFECT AND MAGNETORESISTANCE FOR LARGE MAGNETIC FIELDS

As the theory of Hall and magnetoresistance effects for large magnetic
fields is rather complicated mathematically, it will suffice for our purposes
merely to outline the approach which can be used and to quote a few
results without proof. Some of the details can be found in the papers of
Abeles and Meiboom® and of Shibuya.’

To treat these we solve the transport equation (61) for the distribution
function £ and calculate the current density from . This gives the
electrical conductivity tensor ¢, (H), which can be inverted to give the
resistivity tensor p,, . The antisymmetric part of p,, determines a Hall
coefficient (in general slightly orientation-dependent),” and the sym-
metrical part determines the magnetoresistance.

The solution of (61) can be carried out either by summing the series
(64), or directly by guessing that £ will be a linear function of the
velocity components, with coefficients which are functions of energy.
These coefficients can be determined by solving a set of three simultane-
ous equations.

As H — o, the conductivity tensor ,,(H) becomes singular, the con-
tribution o,,"” of the ith valley taking the form

) N 'nez <Aer> HFH::
Tur Ny Ao m*H® + mo*Hy* + my*Hy
_ oo mmH,.H,
Nvm*H? + ma*H? + my*H?

where n is the total density of carriers, Nv the number of valleys, Ae the
distance from the band edge, 7(A¢) the relaxation time, oo the conduc-
tivity at H = 0, m'"” the average inertial mass defined by (15), and

in general

(75)
for a cubie crystal

17 3, L. Pearson and C. Herring, Physica, to appear.
18 Dexter, Lax, Kip, and Dresselhaus, see Reference 5.
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H,, Hs, H; are the components of H along the principal axes of the
valley. Summing (75) on 7 gives a limiting o, which is still proportional
to H,H, ; its determinant therefore vanishes, and it cannot be inverted
to give the limiting p,, . It turns out that (75) suffices to give the limiting
value of the longitudinal magnetoresistance as H — =, but that to get
the limiting value of the transverse magnetoresistance it is necessary to
evaluate contributions to o, (H) of order 1/H". The limiting Hall coeffi-
cient can be obtained from the contributions of order 1/H to ¢, (H).

The following points are noteworthy: (i) The limiting value of the Hall
coefficient as H — « is B = F(1/nec), independently of the arrange-
ment and mass anisotropy of the valleys, and of the dependence of = on
energy. Even if 7 is not a mere function of energy, the same limiting form
obtains. (ii) For E parallel to H, the ratio ¢(H — «)/o; depends on the
arrangement, and mass anisotropy of the valleys, but not on the law of
variation of r with energy, as long as 7 is a function of energy only.
(iii) For E not parallel to H, both ¢(H — «) and ¢(H — «)/s, depend
on the behavior of r(Ae€) as well as on the band structure.
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APPENDIX A
THE RELAXATION TIME ASSUMPTION

The use of the relaxation time concept represents a great simplification
of the Boltzmann equation for all kinds of transport phenomena. To be
strictly correct, one ought to describe the scattering processes which the
carriers undergo by a transition probability S(K, K’) defined as the prob-
ability per unit time of a transition from an initial state K to a final state
in unit volume of wave number space centered on K’. (Conservation of
energy will usually limit these transitions to a certain surface in K’-space,
so that S will contain a delta function of energy; however, this complica-
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tion has no bearing on the remarks of this paragraph.) The Boltzmann
equation, for the case of Maxwellian statistics, therefore takes the form

I _ (A0 L+ [UEDSE ) — S0 KDLk (A1)
at at  /rields

This is in general an integral equation for the distribution function f, or

for the part E-f of f which is linear in the electric field. Our task in this

Appendix is to say a few words about the validity of approximating (A1)

by an equation of the form

af(K) _ (a/(K) (1K) f.f‘“’{K)> ,
ol (W#)Fivlcla ( 7(K) (a2)

and to examine the validity of the further approximation 7(K) = (e).
We shall give only a rather brief discussion of these questions, however,
as a future publication® will give a more thorough treatment and include
a discussion of the solution of (A1) when these approximations fail.

To begin with, let us consider the special class of cases for which

S(K’,K) = S(K’, K¥) (A3)

where K* is the state in the same valley as K but with opposite velocity.
If (4) is inserted for f in the integral of (A1), the f " term contributes
nothing, and if (A3) is satisfied

f E-f9(K)S(K’, K) dK’ = 0, (A1)

since £ is an odd funetion of velocity while S is even. Therefore, to the
first order in #, (A1) reduces to (A2) with

1/+(K) = f S(K, K) K’ (A5)

For collision processes which do not satisfy the velocity-randomizing
condition (A3) we may assess roughly the legitimacy of using a 7(e) by
comparing, for different initial states on the same constant energy sur-
face, the mean rate with which scattering destroys the component of
velocity in the original direction. This rate of loss of velocity defines a
1/7 which if isotropic is known to be usable in (A2) for energy-conserving
scattering processes in the simple model," and for the many-valley model
it is a reasonable presumption, borne out by the more rigorous treatment

W, Shockley, Electrons and Holes in Semiconductors (Van Nostrand 1951)
p. 251 et seq.
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of Reference 6, that if this rate of loss of velocity is nearly constant over
an energy surface, then (A2) is legitimate with r = 7(e).

We shall consider five types of scattering in turn, three by phonons
and two by impurities. For the phonon processes, scattering of a carrier
from K to K’ involves absorption of a phonon of wave vector K’ — K,
or emission of one with the negative wave vector. The matrix element
for such a process is of the form™

N2
MK, K') =
vV + '

where N is the occupation number of the lattice mode involved, w is its
frequency, and C'(K, K’) is proportional to the matrix element, between
states K and K’, of the perturbation of the electronic Hamiltonian due
to a static displacement of the nuclei of the lattice, of unit amplitude in
this mode. The scattering function S(K, K’) which we have used above
is given by

absorption
for (A6)

emission

(K, K"

wl;"l

MK, K') |"6le(K) — e(K') + hw] (A7)

, 2
SK,K) = 5= 3

where é is the Dirac delta function and the summation is over absorption
(upper sign) and emission (lower sign), and over the various branches of
the vibrational spectrum.

(i) Inter-Valley Lattice Scattering. Here the magnitude of K’ — K is
large compared with the distance of either K or K’ from the band edge
point nearest it. Moreover, the total change in fw as K or K’ ranges over
a constant energy surface will be < kT if the energy relative to the band
edge is ~£T. Therefore the percentage variation of M (K, K’) over such
an energy surface will be small. And unless the energy relative to the
band edge is extremely small, the surface in K’-space which makes the
argument of the delta function vanish will be nearly a constant energy
surface. We conclude that S(K, K’) can be taken to be independent of
K and K’ when either ranges over a constant energy surface in its valley,
and in particular, (A3) applies. Therefore inter-valley lattice scattering
is deseribed by a relaxation time which is given by (A5) and is a funetion
of energy only.

(ii) Intra-Valley Seattering by Optical Modes. For a nonpolar erystal
this case is essentially the same as the preceding, since the matrix element
C(K, K') is substantially equal to its limiting value as K’ — K. For a
polar material the longitudinal polar optical modes give a C(K, K’) «

20 See, for example, Reference 19, p. 520.



280 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1955

| K’ — K| ™. In a cubic erystal this contribution is independent of the
direction of (K’ — K), but if the energy surfaces are anisotropic the
variation of C(K, K’) with | K’ — K | will suffice to prevent 7(K) from
being constant over an energy surface.

(ili) Intra-Valley Scattering by Acoustical Modes. Here (A6) and (A7)
again apply, but with the simplification that for all but extremely slow
carriers the Aw in the argument of the delta function can be neglected,
since only very low-energy phonons are involved. However, C(K, K')
need no longer be independent of direction. The reason for this is
that according to the deformation potential concept,” C depends on the
strain associated with the lattice mode in question. If only the volume
dilatation affected C, as was the case for the simple model, C' would
be independent of the direction of the phonon wave vector (K — K'),
since the dilatation amplitude in a compressional wave of unit dis-
placement amplitude is independent of direction. But for a many-
valley model both shears and dilatations can produce deformation
potentials, and the nature of the shear strain in a shear wave of unit
amplitude depends strongly on the direction of propagation. There-
fore ¢ may be a function of the direction of (K — K’), in any par-
ticular valley.

For a valley whose K lies on a threefold or fourfold symmetry axis
of a crystal the deformation potentials due to the different possible types
of strains can be expressed in terms of two constants, Z;, E., which
appear in the theory of piezoresistance, Eq. (C6) below, and which are
defined thus: Let u,(r = 1 to 6) be the six components of the strain
tensor, relative to the principal axes of the valley, the z axis being
taken along the symmetry axis of the valley. Then a dilatation in the
two directions normal to the symmetry axis (wy = uz = /2, u3 = 0)
produces a band edge shift Zsu. A uniaxial shear (ux = us = —u/2,
us = u) produces a shift Z,u. As will be shown in detail in Reference 6,
it is not hard to evaluate the dependence of C(K, K’) on the direction
of K’ — K, in terms of Z; and =, and the elastic constants of the crystal.
Thus we can caleulate the variation of S(K, K’) over an energy surface
by (A7), in terms of the constants Z;, E,, and the anisotropy of the
effective mass.

We shall presently exhibit the results of some calculations, made by
the procedure just outlined, of how much the rate of loss of initial
velocity varies over an energy surface. However, we shall first present an
argument that for given deformation potentials, the greatest variation of
this quantity may be expected to occur for spherical energy surfaces,

21 Bee, for example, Reference 19, p. 520 et seq.
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and that usually very little variation will oecur for extremely prolate or
oblate surfaces. In other words, for almost all values of E; and =, , the
use of a 7(e) will be justified for very prolate or very oblate surfaces. Fig.
11 shows the argument. In (a) is shown a spherical energy surface cen-
tered on a band edge point on some symmetry axis in K-space. We
expect the greatest difference in relaxation time r(K), defined in terms of
rate of loss of initial velocity, to be that between a point K,; where the
symmetry axis cuts the sphere and a point K, 90° around the sphere from
K, . Backward scattering processes for K, , i.e., those which almost re-
verse its velocity, have K’ — K, vectors almost parallel to the symmetry
axis, while forward scattering processes, which take K, to a state K’ with
almost the same velocity, have K’ — K; almost at right angles to the
axis. For a carrier initially at K, , on the other hand, the vector K’ — K,
is almost perpendicular to the axis for backward scattering, while for
forward scattering it may range from almost parallel (plane of paper) to
perpendicular (normal to paper). For this case, therefore, a dependence
of the scattering function on the inclination to the symmetry axis will be
quite effective in producing an anisotropy of 7(K). Now consider the
situation for a very prolate energy surface, as shown in (b) of Fig. 11.
This figure has been derived from that of (a) by a horizontal extension
and a vertical contraction. Now all the dotted lines representing vectors
K’ — K, or K’ — K, are nearly parallel to the symmetry axis, and the

SYMMETRY
AXIS

FORWARD

=
SYMMETRY BM e FORWARD
AXIS e —
ké/ / K-|

(b

Fig. 11 — Comparison of intra-valley lattice scattering processes for a valley
with spherieal energy surfaces, (a), and a valley with highly prolate surfaces, (b).
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corresponding scattering functions must therefore be very nearly the
same. Of course, forward scattering from K, through sufficiently small
angles has K’ — K; nearly normal to the axis, and the same is true for
backward scattering from K, in a small range close to 180°. But it is
clear that as the energy surface becomes more prolate these cases form a
smaller and smaller fraction of the total of possible final states K’. Thus
for extreme prolateness r(K,) — 7(K,). For strongly oblate energy sur-
faces most of the K’ — K vectors approach normality to the symmetry
axis, and a similar conclusion holds. The argument fails if, and only if,
the scattering probability practically vanishes for K — K along the
symmetry axis (prolate case) or perpendicular to it (oblate case).

Fig. 12 shows the results of some calculations of 7(K.)/r(K,) carried
out by K. Vogt for the worst case, that of spherical energy surfaces, and
for an actual case, that of valleys on a (111) axis with m*/m_* = 1.3/.08,
the value found in eyelotron resonance experiments on n germanium.’
The anisotropy of the elastie constants has been assumed to be that for
germanium. For the spherical surfaces calculations were made for valleys
centered on (100) and (111) axes, but the results were found to be in-
distinguishable. A comparison of the full curve (spherical surfaces) with
the dashed one (prolate surfaces) shows, as expected, that with a highly
anisotropic effective mass the anisotropy of the relaxation time is much
less than for the spherical case, except near the ratio Z,/Z, = —1. This
is the ratio for which modes with wave vectors along the symmetry axis
are incapable of scattering. We conclude that for intra-valley lattice
scattering the assumption of a relaxation time dependent only on energy
will fail over a considerable range of the deformation potential parame-
ters if the effective mass is isotropie, but only over a moderate range
near Z,/=, = —1 if the effective mass is very anisotropic.

(iv) Scattering by Ionized Impurities. To date the quantum theory of
this effect has been developed only on the crude basis of treating the
fluctuations of potential due to a random arrangement of ions as a small
perturbation on the motion of the charge carriers.” The result is that the
effective matrix element for scattering between two states K, K’ on the
same energy surface is a function of | K’ — K | which is sharply peaked
at very small values of this quantity, at least when the density of impuri-
ties is not too high. This means that the principal effects come from small-
angle scattering, a fact well known in the classical theory of impurity

- 2 [, Brooks, Phys. Rev., 83, p. 8 & 0, 1951 (contains typographieal errors);
C. Horie, Téh. U. Sci. Rep. 34, 27 (1950); and C. Herring, unpublished.
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Fig. 12 — Anisotropy of the relaxation time for intra-valley lattice scattering,
as a funetion of the ratio of the deformation potential coefficient =, for two-dimen-
sional dilatation to the coefficient =, for uniaxial shear, as these quantities are
defined in Appendix A or in Equation (C6). The ordinate is the ratio, for the
points K. and K, of Fig. 11, of the effective relaxation time 7 defined by -1 =
— (initial velocity) ' (time rate of change of mean velocity, due to scattering).

The elastic anisotropy assumed is that for germanium.

scattering.” Now the probability of a collision with a given range of
| K’ — K| is proportional to the square of this matrix element and to
the number of possible final states K’ within the given range of distances
from K and in a given small range of energy. A little calculation shows
that this number is greater when K is near the K; of Fig. 11(b) than when
K is near K, . Moreover, the fractional loss of the velocity component in
the initial direction is greater for a collision at K; than at K, . The result

2 k. Conwell and V. F. Weisskopf, Phys. Rev., 77, p. 388, 1950; R. 8. Cohen,
L. Spitzer, Jr., and P. M. Routly, Phys. Rev., 80, p. 230, 1950; and L. Spitzer, Jr.

and R. Hiirm, Phys. Rev., 89, p. 077, 1053.
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is that carriers near K; have a much shorter effective relaxation time for
impurity scattering than do those near K.

Thus if the energy surfaces are very anisotropic, the assumption r =
7(¢) may be expected to be a poor approximation when ionized impurity
scattering is important.

(v) Neutral Impurity Scattering. In the simple theory the scattering of
charge carriers from neutral impurities in hydrogen-like states is mathe-
matically equivalent to the scattering of electrons from hydrogen atoms.*
At the temperatures at which such scattering is important the wave-
length of the incident carrier is usually >> the diameter of the wave
funection of the center, so s wave scattering predominates. Therefore the
scattering is isotropic. For a many-valley model, however, the situation
seems at first sight more complicated, since the effective mass is aniso-
tropic, and the centers are not spherically symmetrical. However, it can
be shown® that, at least if the energy of the carrier is low enough, the
scattered wave must be describable as an s wave in the space of the
transformed coordinates defined by

& = my* (A8)

In the corresponding momentum space (the ¢-space of Appendix B) the
surfaces of constant energy are spheres. It follows, that, at least at low
energies, neutral impurity scattering satisfies (A3) and is describable by
a constant relaxation time.

ArpENDIX B

EQUALITY OF THE ENERGY-SHELL AVERAGES

2 2 2
- Lgmy*uy, Lomy*v,y, Yoms*vy

Choose coordinate axes along the principal axes of the energy surfaces
in any given valley. For A = 1, 2, 3, let

o = nm®)'? = AP/ (m*)" (B1)

Then
Ae=|e(AP) — & | = ¥ 2 o (B2)

so that the energy surfaces are concentric spheres in ¢-space. The den-
sity of g-vectors consistent with the periodic boundary conditions is of
course uniform, like that of AP. The average of 14m,*»,’ over an energy
shell is therefore the average of ¢,° over a spherical shell, and thus ob-
viously independent of A.

2 C, Erginsoy, Phys. Rev., 79, p. 1013, 1950.
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Arrenpix C
EXPLICIT CALCULATION OF ELASTORESISTANCE CONSTANTS
Let o, be the conductivity tensor of a crystal, defined by the relation
in = 2 0wk, (c1)

between current density j and electric field E. Let u.g be the strain tensor,
defined by the relation

6Ta = ); Uapp (C2)

between displacement 6x and initial position x of any point in the body.
Then the elastoresistance of any erystal is described mathematically by
the fourth-rank tensor da,,/du.s, or more conveniently, for a cubic
crystal, by the dimensionless tensor — 0 90,/ 0Uas , Where o is the scalar
conductivity in the unstrained state (g, = 06,,). The task of this appen-
dix is to obtain this tensor by calculating the strain variation of the cur-
rent, contributions (7), which in terms of components take the form

2
Bl o= ff ,u;n.,f Dr(ae?) Z v, B, (C3)

We shall base the calculation on assumptions (a) through (e) of Section
5. Assumptions (b) and (d), regarding existence of a 7(Ae) and nondegen-
erate statistics, are already contained in (C3). According to assumption
(a), we shall neglect any effect of strain on the relations between v, AP,
and Ae” = | e — e |. Thus we may replace v, in (C3) by its average

L,,..“’ over an energy shell, and treat this average for given Ae'” as unin-
fluenced by strain:
1
— 0 0
my* —‘
1) 1 1.
Yy — 24A¢7 | 0 g 0 | = L," (C4)
1
[o o =

When the crystal is strained, the only things that we assume to change
in (C3) are the population factor f* and the relaxation time r(Ae”).
For some groups of electrons —i.e., values of 7 and ¢— the product
7f will be increased, and for others it will be decreased. If on the aver-
age this product is increased in the valleys whose conductivity tensors
are most favorably oriented to the direction of E, and decreased in the
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others, the total current will be increased by the strain, and vice versa.
When assumption (e) of Section 5 is fulfilled, so that two of the m*’s,
say my* and m.*, are equal, the tensor (C4) takes the form

(i) g (4)
() a )| B K,"K, 1 1 _
L," = 24Ae [% + =# m__( = — X (C5)

as is easily verified by inspection. Moreover, it is easily seen from sym-
metry that the only strain components w h1ch can alter ¢ in first order
are the isotropic dilatation and the shear compounded out of an extension
along K'” and a contraction in both directions at right angles. Mathe-
matically expressed, we must have

de'”

= Eadas + E KK /K (C6)
61&«,&

where =, and =, are constants independent of the valley %, the subseripts
referring to “dilatational” and “uniaxial’’ effects respectively. The elas-
toresistance tensor is, for nondegenerate concentrations,

9
1 60',,,. _ e
daua,g kTe 5 apth.s

(0) (9 (i) (j)
3 6 - 6 ;
T(:) f { € €F | Z f('” T de [Py(a)

kT AMlag e Dtag

where ¢ is the Fermi level, 7'”(e) is the relaxation time in the ith valley,
and L, is given by (C5). The second term in brackets in (C7) repre-
sents the effect of strain on the transition probability for inter-valley
scattering.

We shall now combine and simplify the equations just given. The be-
havior of the Fermi level is simple: by assumption (a) of Section 4 it
does not shift in shear, and for extrinsic concentrations it shifts with the
band edge in compression. Mathematically,

afp _ l aE(J) _ — Eu)
m—m;m* '—'rl'+§6€!ﬂ (CS)

Myyag =

(C7)

where Ny is the number of valleys. By virtue of the fact that r;is a fune-
tion only of Ae and the differences (¢'" — e

ar'”
2 =0 (C9)
1

det

and it is easily seen that when (C6) and (C8) are inserted into (C7) the
=, terms disappear. Since by symmetry ar'”/a¢'” = (i) /o€, (C9)



TRANSPORT PROPERTIES OF A MANY-VALLEY SEMICONDUCTOR 287

implies
(€3}

Ear

3 aein

Using this and (C6) and (C8) in (C7), and processing further by (C5),
we get

(C10)

]

2 (0 - (1) g (1)
e T K. "K ba
Myvag = ~u E : Z [:l: _}'\T ( ? - 6)

kTe T AP(D,s Kt 3

B aTh'] I{aU)KgU) f(O)L (0
T gl KWz u c1)
_2ne'E, [ e (/KK Ko "K'\ bubag
3kTa KT\ KOz Ko -/ 9
/ BT“) ]{“”)Ky(ﬂ Kg(ﬁKﬂU)\ 1 1
RN CC iy A eoL

where the upper sign is for n-type, the lower for p, n is the total carrier
concentration, angular brackets with a subscript 7 or 7, j mean averages
on valleys ¢ or ¢ and j, and angular brackets without subscripts mean
Maxwellian averages as defined in Section 2. Substituting from (14) for
the conductivity ¢ = ney, we get finally

i (D - () g7 (D) i)
: v « 69 a
L =-3=, |:i 1 (,"\I\ll b _IX I{ﬁ \ _ “5 ﬂ)

T\ g g /T g o
_ N /‘(AfaT_(i,/aé(j)? I\,p“)KV(” I{H(J)KB(J)\ j| (mlir _ ma*)
YN QAen Ko o KO [ | (my* 4 2my*)

As in (C7), the first term in square brackets in (C12) represents the
effect of the strain on the relative populations of the different valleys,
and the second term represents the effect on the inter-valley scattering
probabilities. We may note the following features:

(1) The trace 2 .Muaa vanishes identically, by virtue of (C9) ete.
This means that an isotropic dilatation produces no elastoresistance
under the assumptions we are using.

(2) The elastoresistance is proportional to the anisotropy of the effec-
tive mass within a valley.

(3) mue = my vanishes for valleys of the (100) type, while mun =
muae (my = mys) for valleys of the (111) type.

(4) The elastoresistance is proportional to 1/7T at temperatures low
enough for inter-valley scattering to be frozen out. Moreover, when kT
> the inter-valley hw(ij) of Section 3, the variation of d7,/de; with energy
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Ae relative to the band edge is easily shown to be one of proportionality
to 7/Ae, if impurity scattering is negligible. Under these conditions
(probably never achieved by Si and Ge in the extrinsic range) the elas-
toresistance is again proportional to 1/T, but with a larger factor of
proportionality than at low T.

NOTATIONS

A dimensionless average involving relaxation
time, Equation (68)

B dimensionless function of mass anisotropy,
Equation (39)

C(K, K factor in matrix element for a scattering pro-
cess K — K’, Equation (A6)

c velocity of light; magnetoresistance constant,
Equation (74)

D;; : factor in matrix element for scattering from
valley 7 to valley j, Equation (16)

E electric field .

e electronic charge

Fuvap factor determining the anisotropy of the mag-
netoconductance tensor Equations (70),

| (1)

Fovag' contribution of the ¢th valley to above, Equa-

tion (69)
distribution function for charge carriers.

o same in absence of perturbing fields, Equation
(1)

£ ete. change of f in perturbing fields, Equations (4),
(31), (60)

G dimensionless average involving relaxation
time, Equation (57)

H magnetic field

) Planck’s constant/2r

j density of electric current

K wave number vector for a charge carrier

K value of K for the 7th band edge point (center
of the 7th valley)

k Boltzmann’s constant

L.? average of v, over an energy shell in the 7th

valley
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ME, K'), M;;

m

my*

)
m

Myyap

N,N.

Ny
n
P

Qe

q
R

S(K, K')

8

T

t

Uap 5 Ur
\'

Walif, o)

W.(ij, &)

wy , W2

T, Y,
e (when not subseript)

Y

matrix element for lattice scattering, Equa-
tion (A6) or (16)

normal electron mass

effective mass in Ath principal direction of a
valley

inertial average of the m*, defined by Equa-
tion (15)

elastoresistance tensor — o '90,,/0Uaqs

number of quanta (phonons) in a given lattice
mode

number of valleys or band edge points

number of free charge carriers per unit volume

crystal momentum AK

electronic part of thermoelectric power

wave number vector for a lattice mode

Hall constant

transition probability K to unit dK’ at K’,
Equation (Al)

spin quantum number of a charge carrier

absolute temperature

time

strain tensor components

group velocity of a charge carrier

transition probability from valley 7 to valley
4 with absorption of a phonon of branch e

same but with emission

constants of dimension (time)™, measuring
coupling of carriers to intra- and intervalley
modes, respectively, Equations (21)-(23)

rectangular coordinates

index labeling branches of vibrational spec-
trum

differential operator describing rotation of
distribution by magnetic field, Equation
(62)

energy of a carrier relative to the band edge
(Ae = 0)

departure of crystal momentum or wave vec-
tor from valley center

Kronecker delta
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(1)
Tuvap

€ 8 34

antisymmetric coefficient = =41 or 0, Equa-
tion (33)

changes induced by strain

energy of an electron

band edge energy

energy of the center of the 7th valley (nor-
mally = &)

Debye temperature

dielectric constant

drift mobility

Hall mobility

deformation potentials, Equation (C6)

transformed coordinate, equation (A15)

resistivity

conductivity

conductivity in the absence of magnetic fields
or other perturbations

coefficients in the expansion of conductivity in
powers of H, Equation (65)

contribution of 7th valley to magnetoconduc-
tivity

relaxation time of charge carriers

ditto for carriers in valley ¢

transformed wave vector, Equation (B1)

angular frequency of a lattice mode or an rf
field



