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Until recently, voice frequency repealers of the two-way type have been
applied almost exclusively to electrically long transmission lines. Now, nega-
tive impedance repeaters are used in quantity in the exchange telephone plant,
and applicalions lo clectrically short lines arise more frequently. Because
lower over-all transmission losses can be obtained by utilizing the lower phase
shift in short lines, a different engineering approach lo the application of
Ii-type negative impedance repeaters s desirable.

This paper oullines a general method whereby transmission performance
and stability can be related to the characteristics of a symmetrical repeater
located in the center of a short transmission line. The theory is particularly
applicable to negative impedance repeaters. A landem arrangement of short
sections of transmission line, where cach section has a centrally located re-
peater, can be classed as a line loaded with negative impedance.

1. INTRODUCTION

For a period of about 40 years voice frequency repeaters have been
engineered to provide amplification for both directions of conversation in
two-wire telephone lines. Some of these repeaters have been operated in
lines over 50 miles long; others have been operated in lines shorter than
10 miles. Yet practically all, including negative impedance repeaters of
the E-type', have been associated with transmission lines which can be
classed as electrically long in that they have exceeded one half wave-
length at the highest frequency in the pass-band.

Within the past few years the need for two-way amplification in elec-
trically short lines in the exchange area plant has become increasingly
evident. A short section of line has limited phase shift at voice frequen-
cies, and advantage can be taken of this fact in the repeater design, to
reduce the over-all attenuation below that obtainable with design
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methods applicable to electrically long lines. Furthermore, the use
of negative impedance devices such as E-type repeaters has made it
possible to consider engineering the repeater as an integral part of an
electrically short line. This method of design is a logical one because in
addition to the reduction in over-all attenuation, the image impedances
seen looking into the line terminals are modified by the addition of the
repeater. In effect, the philosophy of the hybrid coil and the 22-type
repeater is discarded along with the idea that the image impedance of
the repeater must match the characteristic impedance of the line. Where
the repeater is located a distance less than one quarter wavelength (at a
frequency of 4,000 cps) from either line terminal, better transmission
performance generally can be obtained by a mismatch between the
image impedance of the repeater and the characteristic impedance of
the line.

Once a change in philosophy in matching the repeater to the line im-
pedance is made, it becomes easier to forget the repeater as a separate
device and to treat it as an integral part of the line in the way a loading
coil would be treated. Hence, interest is centered upon the propagation
constant and image impedances of the repeatered or loaded line and the
transmission characteristics of the device itself are subordinated to this
end.

When a two-wire repeater, or its equivalent in the form of a network
of active elements, is inserted in a transmission line, stability (freedom
from oscillation) becomes a prime consideration. In electrically short
lines, the image impedance as well as the loss of the over-all line is a
function of the degree of stability desired, which in turn will depend upon
the requirements of the system in which the repeatered line must op-
erate.

Tt is the purpose of this paper to relate transmission characteristics
with stability, for a repeater in the form of a symmetrical active network
located in the center of an electrically short transmission line. The equa-

_tions shown and the method of solution are particularly applicable to
the fundamental design of E-type negative impedance repeaters in trans-
mission lines wherein the repeater is located less than a quarter wave-
length from the line terminals. The frequency at which this wavelength
is determined is the highest desired in the pass-band.

The problem is attacked by taking the general case of the symmetrical
two-wire repeater located in the center of a transmission line as shown
in Fig. 1(a) and substituting for the repeater the equivalent lattice shown
in Fig. 1(b). This lattice consists of series arms, Z,/2, and shunt arms,
97 s . The method deseribed herein is general and can be applied to any
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type of impedance in either the series or the shunt arm. However, be
cause the specific application considered here is for the E-type repeater,
Z 4 is specified as an open circuit stable negative impedance and Z; is
specified as a short circuit stable negative impedance. This is designated
on Fig. 1(b) where these impedances are defined as the ratio of two
polynominals which are functions of the complex frequency variable p.
It iz understood that these impedances will have negative resistance
components at some real frequencies because the term negative im-
pedance is used herein to describe an impedance whose resistive com-
ponent is negative within some band of frequencies.

Three conditions are considered:

(a) An E1 or E2 repeater of negative impedance Z, in series with the
line (special case where Zj is infinite).

(b) An E3 repeater of negative impedance Z5 shunted across the line
(special case where Z, is zero).

(¢) The E23 repeater in the line (case of Fig. 1(b), which is the lattice
equivalent of the bridged T arrangement of the E23 repeater).
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Fig. 1 — Symmetrical two-wire repeater in transmission line. (a) Schematic.
(b) Equivalent circuit.
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2, GENERAL STABILITY CRITERIA

Before the specific objective is considered, stability criteria will be
reviewed briefly and a stability theorem applicable to symmetrical
linear four-pole networks will be described.

2.1. Basic Stability Equation

The stability of the network of Fig. 1(a) can be determined from an
examination of the roots in the complex frequency plane of the equation:

_ ZH_Z,,-ZH—ZIS —2.P£__
! [zn+z,.] [za+za]e =0 W

where:
Zy = Image impedance of the over-all line
P{ = Propagation constant of the over-all line
Z, = Impedance of one line termination
Z, = Impedance of the other termination

The quantity on the left hand side of the equation is the reciprocal of
the interaction factor’ and its use as a measure of stability has been
discussed by F. B. Llewellyn.’

As pointed out by Llewellyn Eq. (1) bears a striking similarity to the
famous Nyquist equation for stability of feedback amplifiers, usually
written

(1 —wp) =0

In both cases the fundamental requirement for stability is that the equa-
tions should have no roots in the right half complex frequency plane.

In specific cases, the Nyquist criterion for stability can be applied by
plotting on the complex plane as a function of real frequency the factors
in (1) which correspond to uB, and seeing whether the plot encircles the
point (1, 50).

In general, however, the fact that the point (1, j0) is outside such a
plot is not in itself proof of stability. This ambiguity in the interpreta-
tion of the diagram can be resolved if the factors involved in (1) are
evaluated at complex frequencies.

It should be noted that a separate plot at real frequencies would be
required for each combination of terminating impedance Z, and Z; . The
assumption of partieular values for Z, and Z, would naturally lead to
specialized stability criteria and it was to avoid this that Llewellyn
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made the alternative assumption that the system should be stable with
any combination of passive terminating impedances. Since in a practical
telephone system the network of Fig. 1(a) has to be stable when Z, and
Zy are arbitrary passive impedances, Llewellyn’s results are applicable
to the cases considered herein. However, since his criterion is stated in
terms of the image impedances and loss of the network, it is not in a
form which can be readily applied in a design problem involving negative
impedance loading.

For design purposes, what is required is a relationship between sta-
bility, the properties of the physical line and the negative impedance
repeaters. This relationship can be found directly by means of the bi-
section theorem given in the following section.

2.2. A Stability Theorem For Active Four Poles

The symmetrical network of Fig. 1(a) is a particular case of the
somewhat more general type of symmetrical structure shown on Fig.
2(a), to which the theorem to be discussed in this section applies.

Referring to Fig. 2(a), N is a symmetrical network in the sense that
its external characteristics are such as to make the terminal pairs (1, 1')
and (2, 2') electrically indistinguishable. For example, N may be a sym-
metrical T network with fairly obvious symmetry or it may be a two-way
repeater with somewhat less apparent structural symmetry.

For simplicity, the theorem will be stated in terms of the network in
Fig. 2(b) which has complete structural symmetry in the sense that the
networks N, and N, are the mirror images of each other in the plane of
symmetry AB. In this case, the open and short circuit impedances of
the bisected network are the impedances looking into the terminals
(1, 1) or (2, 2') with the terminals in the plane of symmetry AB respec-
tively open and short circuited.

To apply the theorem in the more general case of Fig. 2(a), the open
and short circuit impedances of the bisected network should be in-
terpreted as the impedances of the series and shunt arms of the lattice
network which is electrically equivalent to N. Methods of determining
these impedances by external measurements on the network are dis-
cussed by Bode."

In a particular application of the theorem in this paper, the sym-
metrical network consists of a transmission line of length ¢ with an active
network at its center in the form of a lattice structure. This situation is
shown in Fig. 1(b) and it is a slightly more complicated form of sym-
metry than the simple mirror image symmetry of Fig. 2(b). The situation
at the middle of this network is indicated in Fig. 2(c) and it can be shown
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that the arm impedances of the over-all equivalent lattice are given in
the manner indicated in the figure. From what has been said above, these
impedances will also be the Zshors and Zopen of the theorem.

With regard to the terminating impedances Z, and Z, of Fig. 2, the
theorem is based on the assumption that the network must be stable
when these impedances assume any arbitrary passive values. This is
also the requirement in the transmission line problem considered in this
paper.

Statement Of The Theorem

A necessary and sufficient condition for a structurally symmetrical
linear four-pole to be stable with any combination of passive terminating
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Fig. 2 — Symmetrical linear four-pole with passive terminations. (a) General
symmetrical network. (b) Simple bisection. (¢) Lattice bisection.
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impedances is that the open and short circuit impedances of the bisected
network shall be positive real impedance functions. These open and short
cireuit impedances are the input impedances of either half of the network
when the terminals in the plane of bisection are respectively open and
short cireunited. The term passive impedance as used herein denotes a
positive real impedance function.

The theorem is proved in Appendix A and therein also are found the
recuirements for an impedance function to be positive real.

3. SERIES NEGATIVE IMPEDANCE LOADING

This is the case of Fig. 1(b) where Zz is infinite and where Z , is a nega-
tive impedance of the open circuit stable type. It also represents the
installation of an E1 or E2 repeater in the center of an electrically short
transmission line.

3.1. Stability

Consider Fig. 3(a) where a negative impedance of the open circuit
stable type (Z,) is shown in the center of a physical transmission line.
The problem is to determine the equations which relate transmission
characteristics with stability for all passive terminating impedances.

According to the bisection theorem stated in 2.2 the network of Fig.
3(a) will be stable for all passive impedance terminations provided the
open and short circuit impedances of the bisected network are positive
real. The short circuit impedance of the bisected network is shown in
Fig. 3(b) and is represented by Z; multiplied by Tanh P¢/2. This must
be made positive real. The open circuit impedance of the bisected net-
work is shown in Fig. 3(c) and is expressed as Zy divided by Tanh P£/2.
This open circuit impedance is positive real because it equals the open
circuit impedance of one half of the physical line, Zoc . Thus it has no
direct bearing on stability but does contribute the relationship:

Ly Z,

Tanh P2~ Tanh (/2 2% @
where:
Zy = Image impedance of the line with Z,
P{ = Propagation constant of the line with Z,
Zo = Characteristic impedance of the physical line

v{ = Propagation constant of length ¢ of physical line
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where: . . .
Zy = Image impedance of physical line with Z,
P = Propagation constant per unit length — line with Z,
¢{ = Length of physical line
Zo = Characteristic impedance of physical line
v = Propagation constant per unit length of physical line
Z [2)

9C¢ = Tanh /2
Z_gc = Zo Tanh T{/Z.

Fig. 3 — Application of bisection theorem to series loading. (a) Schematic.
(b) Short eircuit impedance of bisected network. (e) Open circuit impedance of
biseeted network. .

Equation (2) demonstrates an important relationship which has been
known ever since the discovery of coil loading. It is worthwhile repeating
here because the network in Fig. 3(a) is, in fact, a single section of line
loaded with a series impedance Z, . Equation (2) demonstrates that the
midsection impedance and propagation constant of the loaded line bear
the same relationship to each other as the corresponding parameters of
the nonloaded line bear to each other. Thus the general relationship be-
tween propagation constant and midsection impedance of a loaded line
is to this extent independent of the loading element.

With regard to stability, the application of the bisection theorem to
Fig. 3(a) has shown that the basic criterion for stability is that Z,
Tanh P{/2 must be a positive real impedance function. This impedance
can be expressed in terms of physical line parameters and Z 4 as follows:

Zy Tanh P£/2 = Z, Tanh (M + v£/2) 3)
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where
Za
2Z0

Zo = Characteristic impedance of the physical line

M = Tanh™

There are two requirements which must be placed upon Z, Tanh
(M 4 ~(/2) for it to be positive real. One of them is that in the following
equation, I shall be a positive resistance at all frequencies.

Zo Tanh (M + y{/2) = R + jX (4)

The other requirement will be reserved until (4) has been discussed.
The limit of stability will be approached as R approaches zero. If
(4) is taken to the limit of stability then:

Zo Tanh (M + ~{/2) = ;X ()

where as before

-1 44
M = Tanh 57,

If at a single frequency all values of Z,/2 which satisfy (5) are plotted
on the Z-plane, their locus will trace a circle because jX is a straight line
and the relationship is a bilinear transformation.® Formulas for the
centers and radii of these circles are given in Appendix B. If, as is the
case with telephone cable, the characteristic impedance Z, has a negative
angle, this trace will appear as shown in Fig. 4. The region inside this

+

Jx

Fig. 4 — Circle for determining the stability of a loading element in a line.
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cirele corresponds to negative values of R in (4). For stability, the nega-
tive impedance Z,/2 must lie outside this circle. However, this is only
a part of the stability criterion.

The other requirement on Z, Tanh (M + {/2) for it to be positive
real is discussed in Appendix A3. In order to apply this second require-
ment it is necessary to expand Z, Tanh (M + y£/2) in terms of the cir-
cuit parameters as follows:

Z
2L+ Ze

Zo Tanh O + 7/2) = Zoo |_2

©
%1 4 oo

where
Zsc = Zo 'Tanh 76/2

Zo

T = 20
%€ " Tanh v£/2

Then from Appendix A3 it can be seen that stability will be obtained
providing the real part of (Z./2) + Zsc is a positive resistance and pro-
viding (4) is satisfied. Thus, the second requirement for stability is that
the magnitude of the real part of Z,/2 at real frequencies shall not ex-
ceed the real part of Zs , the short circuit impedance of £/2 of physical
line.

This second requirement while sufficient is not necessary as will be
discussed later. However, in many practical applications it is not unduly
restrictive.

The graphical meaning of the stability requirements can be seen from
Fig. 5. Here a family of stability circles has been drawn for a cable cir-
cuit at three different frequencies. As the attenuation increases with
frequency the circles decrease in size. At each frequency, — Zs¢ is shown.
It falls on the circumference of the corresponding circle. As the fre-
quency increases, —Z s¢ will rotate clockwise and at some frequency will
be on the left edge of the circle. The first requirement for stability means
that at any given frequency Z,/2 cannot lie inside the corresponding
circle. The second requirement for stability, means that Z,/2 must lie
to the right of —Zsc on Fig. 5 at all frequencies. It also means that the
trace of Z./2 over the frequency range cannot enclose this family of
cireles. The locus on the Z-plane will be similar to that shown on Fig. 5.
This is difficult to show graphically on a single plane because it may
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J'X

Fig. 5 — Stability circles for Z,/2.

appear that the trace of Z,/2 does go through the family of circles.
However, where it apparently passes through the family of circles it
does so at a lower frequency. At no given frequency does the trace of
Z4/2 lie within its stability circle.

The second requirement for stability, namely that the real part of
(Z.4/2) + Zsc should be positive, is a sufficient condition but not a
necessary one. A necessary and sufficient condition, when Z,/2 is open
cireuit stable, is derived in Appendix A3. With reference to Fig. 5 this
condition requires that the plot of Z,/2 will not enclose any of the stabil-
ity circles.
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3.2. Applications

Two important classes of problems can be solved by applying the
stability considerations of the previous section:

(a) The determination of the lowest value of attenuation possible
with stability for all passive impedance terminations if the image im-
pedance Zy is restricted by over-all system requirements;

(b) The determination of Z, and the allowable variations in it consist-
ent with stability.

The problem of determining the lowest attenuation in a loading section
like that of Fig. 3(a) consistent with stability for all passive impedance
terminations when the impedance Zj is given can be solved by the fol-
lowing method.

It has been shown in Section 3.1 that the first requirement for sta-
bility is that the real part of the short circuit impedance (shown on
Fig. 3 as Zy Tanh P£/2) shall have a positive real part at all real fre-
quencies. By substituting for Tanh P{/2 its value from (2) this require-
ment may be written as :

Zn - R +jX )

where R is a positive resistance at all frequencies.
As R approaches zero from positive values, the limit of stability will
be approached and in the limit
Za ,
-— = +jX 8
Zon j (8)
Likewise, by substituting values from (2), (8) can be expressed in the
alternate form as

Zoe Tanh® P£/2 = +jX 9)

If the phase as well as the magnitude of Zy is to be specified in the
problem, it should be noted that Zy must be specified as a passive im-
pedance. This is necessary because Zy is the square root of the product
of the open and short cireuit impedances of the bisected network. Since
these separately must be positive real, Zy must also be positive real.
This means that Z4"/Zoc , which equals the short circuit impedance of
the bisected network, will have no roots in the right half, complex
frequency plane. To check for stability in this case all that is required
is to insure that (7) is satisfied for the length of the physical line selected.
Section length enters into (7) because Zoc is the open circuit impedance
of one half this length of line. If the system proved unstable by this check
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the only recourse would be to solve for a section length which would
prove stable.

If the magnitude only of Z, had been fixed then for each section length
there would be a choice of phase angle for Z; within the limits prescribed
by system requirements. For solution in this case (8) could be inter-
preted to mean that for stability

2

the angle of Zu < 90 degrees (10)
ZOC
LEq. (2) ean be rearranged as follows:
ZH
Tanh P{/2 = (11)
ZOC

From (10) and (11) it may be shown that when the magnitude of Zy
is fixed, the closer the loading section is brought to instability by adjust-
ing the angle of Z, , the lower will be the attenuation of the section. Thus
this angle should be adjusted for minimum stability.

When the limit of stability is reached, (8) indicates that 7’ Zoc
will be a pure reactance but the question arises as to whether the angle
of Zy should be adjusted to make the sign of the reactance positive or
negative. The choice here is based on two observations. First, that if the
angle of Zo- is negative, as it generally is for cable circuits, minimum over-
all attenuation will result when the reactance on the right hand side of
(R) is positive. Second, from (6) it may be shown that if the short circuit
impedance of the bisected network is a positive reactance, Z4/2 will
liec on the circumference of the stability circles of Fig. 5 on the arc to
the right of —Zsc . In the case of lines such as are under consideration
here, where the top frequency in the pass band is less than one quarter
wave length, the second stability requirement which is discussed in
Section 3.1 thereby will be satisfied within the pass band of frequencies.

Therefore, when the magnitude alone of Zy has been specified the de-
sign procedure is to select an angle for Z,; such that the angle of Zx*/Zoc
is just less than 490 degrees. In (8), Zu/ Zoc then will be nearly equal to
+jX and the magnitude of X will be given by the ratio of the magni-
tude of Z,* to the magnitude of Zoc . The magnitude and angle of Z, now
is determined for any chosen frequency in the band and the value
of the negative impedance Z /2 required to give the desired value of Zy
can be obtained from the equation:

a

724-ZH-

Z,= 27
! T — Zoc

(12)

where Z, is the characteristic impedance of the nonloaded line.
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The value found for Z, may turn out to be unrealizable as such. It
will have to be synthesized and a compromise made. The practical
value can be checked for stability by the graphical method explained
in Section 3.1. Here any correction for stability can be made which
might be necessary. With the realizable value of Z, , the final values for
attenuation and also for Z; then will have to be found.

The value of Z, can be obtained from the following equation.

VA
5+ Zsc
Ly = ZOU Z— (13)
5+ Zoc
The propagation constant P can be found from
Z
?A + Zsec
Tanh P¢/2 = 7 — (14)
4/ 5+ Zoc

The attenuation per section with Z,/2 included can be determined
from the following equation wherein the logarithmiec rather than the
hyperbolic form has been used.

1+ ZZH

Attenuation (db per section) = 20 logy, —70—@ (15)
1— 2
ZOC

and the angle of [1 + FZ—H / 1 - é] in degrees is the phase shift of
éoc ZOC

the loaded line section.

The class of problem represented by (b) at the head of this section
can be solved by the graphical method for determining the stability of
Z /2 as outlined in Section 3.1.

3.3. Characteristics

This type of loading has several interesting characteristies. First,
zero attenuation over any frequency band, no matter how narrow, when
Z4/2 is adjusted to the limit of stability as defined by (5) and (6) is un-
realizable. This can be seen from (14) together with the fact that Zs¢
and Zos represent passive impedances and that Z,/2 is a negative
impedance of the open circuit stable type. All three impedances when
shown on the impedance plane with increasing frequency will rotate
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in the clockwise direction. For stability, the locus of Z,/2 must not
enclose either —Zg; or —Zso . At the limit of stability, however, Z,/2
must lie on the cireles of stability which are shown on Fig. 5. This means
a changing relationship between these three impedances with frequency
which is incompatible with zero attenuation over any frequency band.
Second, a flat response can be realized over a band of frequencies, in
general, only at the expense of inereasing the loss at the lower frequencies
above that required for stability. Third, as the length of the physieal
line is increased, it becomes more and more difficult to obtain a low over-
all loss and yet avoid the enclosure of the stability circles of Fig. 5 with
a realizable design of Z,/2. The practical limit here appears to be one
quarter wave length of physical line at the highest frequency it is desired
to pass.

4, SHUNT NEGATIVE IMPEDANCE LOADING

This case where Zg is shunted across the line conductors at the mid-
point of a physical line (Fig. 1(b) where Z 4 is zero) can be classed as shunt
type negative impedance loading. The negative impedance Z; is of the
short eircuit stable type such as the impedance produced by the E3 re-
peater. Hence, this case can represent an K3 repeater bridged across the
conductors of an electrically short transmission line,

| 42 ! iy |,
H = ZB H
AR PHYSICAL < PHYSICAL -—
LINE LINE
(a)
OPEN
l.\ Zy
SHORT %225 L/2 Tanh P £/>
1 =
Zn 2Zp+ Zsc
P.L = _ = . — L
Zu TAND PU/2 = Z5c Tanh PE/> ZOC[EZB +Zoc
(b) (c)

Fig. 6 — Application of bisection theorem to shunt loading. (a) Schematic.
(b) Short circuit impedance of bisected network. (¢) Open cireuit impedance of
bisected network.
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4.1. The Stability Equations

The same method described in detail in Section 3.1 is used here to
determine stability. The short and open circuit impedances of the
bisected network are obtained as shown in Fig. 6.

As seen from Fig. 6(b) the short circuit impedance of the bisected
network is positive real being equal to Zsc , the short circuit impedance
of the physical line of length /2 .

Zyx Tanh P{/2 = Zo Tanh v{/2 = Zse (16)

The open circuit impedance of the bisected network [Fig. 6(c)] deter-
mines stability. Thus for stability:
Zy
Tanh Pt/2
A substitution from (16) for Tanh P{/2 above will yield the following
requirement for stability:

must be a positive real impedance function.

2
Zy

8¢

=R +jX (17)

where £ must be a positive resistance and Zy a positive real impedance
function.
The limit of stability is reached as B goes to zero. Therefore, the limit
of stability for all passive impedance terminations can be expressed by:
Zy' :
-;i = 4 jX (18)
ASC
A similar equation can be obtained in terms of Tanh P{/2 rather
than Zj .

Zsc _ .
Tanh? P6/2 =X (19)

4.2, Analysts
From Eq. (18) the sole criterion for stability is that the angle of

Zu g0 (20)

21
provided that Z, is a positive real impedance function.
The value of the propagation constant can be found from (16) to be:

Zse

Zn @0

Tanh P{/2 =
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and from the short circuit and open circuit impedances, Fig. 6(b) and
Fig. 6(c), the following are found

» Z5c(2Zn + Zoc) o
anh P{/2 = 1/— 2
Fanh Pt/ Zoc(2Zs + Zsc) (22)

7 =1/ _Z_i] 23
! %JML%+ZW (23)

In order to translate stability into engineering parameters, the open
circuit impedance, Z,/Tanh P{/2, can be expressed in parameters of the
physical line and Z; .

and

Zy . 2Zp + Zsc )
Tanh P{/2 Zoc [233 + Zoc] (24)

By reasoning similar to that used in Appendix A and in Section 3.1
it can be shown that the requirement for stability will be met if

Re (27;” + Z_t—c) is positive (25)
where Z5 is a negative impedance of the short circuit stable type and pro-
viding

2Zp + Zsc| _ - 5
Zoc |:2Z" T Zoc:] R + jX (26)
where R is a positive resistance at all frequencies.

The limit of stability will be reached as R approaches zero.

If at any given frequency all values of 2Z, , which fulfill (26) when R
is zero, are plotted on the Z-plane they will trace out the same circle as
found before in Section 3.1 where Z, was likewise examined (if the fre-
quency and physieal line parameters are the same in both cases). Thus
275 should not lie inside the stability circle of Fig. 4.

However, in order to meet the restriction imposed by (25) upon Z; ,
the locus of 2Z5 when plotted over the frequency range from zero to
infinity must enclose this family of circles as shown in Fig. 7. This can
be established in much the same way as in Section 3.1 where it was
proved that the locus of Z,/2 must not enclose this family of circles.

Here, in the case of shunt loading, as in the case of series loading, zero
attenuation is inconsistent with stability for all passive impedance ter-
minations. Likewise, with shunt loading designed for minimum stability
over the pass band the attenuation will vary with frequency.
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Tig. 7 — Stability circles for 2Z5 .

5. LATTICE LOADING

The general case of Fig. 1(b) is where the combination of an E2 and
an E3 repeater is located in the center of an electrically short line. Al-
though the actual E23 repeater is connected as a bridged T arrangement!
the equivalent lattice form is used herein for simplicity in explanation.
What is said as applied to the lattice structure applies also to the bridged
T.

Fig. 8(a) shows a lattice network of negative impedances connected
at the midpoint of a line of length (. Negative impedance Z, is open cir-
cuit stable; Z5 is short circuit stable.
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The short circuit impedance Zy Tanh P{/2 is shown in Fig. 8(b). It
is the same as that shown in Fig. 3(b) for the case where Z, is used alone.
Thus a requirement for stability in the limit is that

Z
5 + Zso
Zoc £ — | = ;X (27)
5 + Zoc
where Re [(Z./2) + Zasc)] is positive.
Stability can be determined exactly as explained in Section 3.1.
The open circuit impedance Z,/Tanh P£/2 is shown in Fig, 8(c). It
is the same as the case where Z, is used alone. Thus the limiting require-
ment for stability is that

QZn + Z_gc:’ .
Zo | 228 T fsc ) 45X 28
0 [223 + ZOC J ( )
where
Re( ! + ! )is positive
223 ZOC ) .
ZA/E
S < AN Y "
%/FZ EZB EZB 0[—‘2
PHYSICAL PHYSICAL
LINE LINE
—— — A-’ [ "
ZA/Z
@)
SHORT  OPEN |
l L —n
Zy TAND PE/ /2 Za/25 2Zp L/2 Tanh P4/>
2A/2+25C Zy _ 2Zp+2sc
Zy TANh PEA =24 [m aNh PEZ ~ 20C| 375 Zoc
(b) (c)

Fig. 8 — Application of bisection theorem to lattice loading. (a) Schematic,
(b) Short circuit impedance of bisected network. (¢) Open circuit impedance of
bisected network.
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Stability can be determined as explained in Section 4.2 for (26).

Thus stability with Z, is determined independently of Z; and the
converse is true also. In regard to stability each negative impedance can
be designed without considering the other. The image impedance, Zy ,
and propagation constant, P¢, of the resulting line [Fig. 8(a)] will de-
pend upon both Z, and Zs , however.

Equations for the image impedance Z, and the propagation constant
of the repeatered line can be expressed as follows:

/ 7 7
/ [7 + Zso | (220 + Zsel

ZH = Zoc‘ = (29)
4/ |:é + Zoc | [2Zs + Zoc)

and

/ [Z? + zsc] (2Z5 + Zoc)

P(/2 = Tanh™" 1/ ] (30)

[% + zon:I [2Z5 + Zsc]

From what has been said in the preceding sections it should be evident
that when both Z, and Z, are designed to the limit of stability in a
telephone cable section the image impedance and propagation constant
will be as follows:

Zn = V(+jX1)(—jX2) (31)

Tanh PU/2 = 4/ Jgj})% (32)

+iX: = Zo Tanh (M + y(/2)

and

where

M = Tanh™ Z,/2Z, at limit of stability
—jXs = Zo Tanh (N + v(/2)
N = Tanh' 2Z,/Z, at limit, of stability

From these last two equations it is apparent that at the limit of sta-
bility Zy is a resistance in the pass band and the attenuation of the re-
peatered section can be zero and the system be stable for all passive
impedance terminations. Furthermore, zero db attenuation can be
realized theoretically over the pass band.
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6. SUMMARY

The stability and transmission characteristics have been outlined
for a single section considering three separate systems of negative im-
pedance loading and a summary is shown in Fig. 9. A general practical
restriction on the use of these systems is that the negative impedance or
impedances shall be located in the center of the section and shall be less
than one quarter wave length from the line terminals at the highest
frequency it is desired to pass. The condition for stability has been
taken that each section must be stable for all passive impedance ter-
minations.

The important features can be outlined as follows.

6.1. Series Negative Impedance Loading

With a series loading element, 7, , stability is determined solely by the
short cireuit impedance of the bisected section. The attenuation of the
section must be finite for stability. Where the loading section is designed
to the limit of stability, the transmission-frequency response will vary
with frequency in the pass band; and the magnitude of the image im-
pedance | Zy | will tend to increase with frequency within this band. A
flat transmission-frequency response is possible only at the expense of
greater loss at the lower frequencies than is required for stability.

6.2. Shunt Negative Impedance Loading

With a shunt loading element, Z, , stability is determined solely by
the open circuit impedance of the bisected section. The attenuation of
the section must be finite for stability. Where the loading element is
designed to the limit of stability, the attenuation will vary with frequency
in the pass band and increase at frequencies outside the band. The mag-
nitude of the image impedance | Z | will tend to decrease in the pass
band as the frequency increases.

A flat transmission-frequency response with shunt loading is possible
only at the expense of greater loss at the higher frequencies than is
required for stability.

6.3. Loading with a Lattice or Equivalent Bridged T Network

Loading with a lattice network having series arms of Z,/2 and shunt
arms of 2Z; both of which are negative impedances, the former open
circuit stable, the latter short circuit stable, will have the following
characteristics.
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The short circuit impedance of the bisected section will determine
the stability of the negative impedances in the series arms. The open eir-
cuit impedance of the bisected section will determine the stability of the
negative impedances in the shunt arms,

Zero attenuation is theoretically possible as a limit in the pass band of
frequencies consistent with stability for all passive impedance ter-
minations.

The image impedance for zero attenuation will be a positive resistance
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APPENDIX A

"To prove that: A necessary and sufficient condition for a structurally
symmetrical linear four-pole to be stable with any combination of
passive terminating impedances is that the open and short eireuit
impedances of the bisected network shall be positive real. These open
and short circuit impedances are the input impedances of either half of
the network when the terminals in the plane of bisection are respectively
open and short eircuited.

A.1. Proof of Necessity

Consider the network of Fig. 2(b), in the text, representing a linear
four-pole which is structurally symmetrical in the sense that the right
half of the network is the mirror image of the left half in the plane of
symmetry AB.

Assuming the network is stable, the necessity of the condition in the
theorem will be established if the open and short circuit impedances of
the bisected network are shown to be positive real. Stability is used here
in the sense that the response to an impressed signal will die out upon re-
moval of the excitation,

For an impedance function Z(p) of the complex frequency variable
p = a + 1w to be positive real it is sufficient to show that the following
four conditions are satisfied.”

1. Z(p) has no zeros in the right half p-plane.
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2. Zeros of Z(p) on the boundary of the right half p-plane are simple
and at them dZ/dp = a positive real constant.

3. The real part of Z(iw) = 0 for all values of w.

4. The imaginary part of Z(p) = 0 whenever the imaginary part of
p = 0. ‘

The fourth condition is always satisfied by physical networks and will
be assumed true without proof.

To show that condition three is satisfied, consider the determinant A
of the entire network in Fig. 2(b) in terms of its open circuit impedance
parameters and the arbitrary passive terminations Z, and Z,

Zu+ Z, i
A= - (A1)
Z Zu+ Zy

Since the network is stable by hypothesis, A as a function of the com-
plex variable p can have no zeros in the right half of the p-plane. Since
the definition of stability requires that a response will die out on the
removal of the excitation, zeros of A on the boundary of the right half p-
plane are excluded.

If Z, = Z, = Z, in Eq. (A1), A may be expanded into the product of
two factors as follows

A= (Zu+ 24— Zy)(Zn + Z + Zs) (A2)

From what has been said above, neither of the factors in (A2) can have
zeros on the imaginary p axis or in other words at real frequencies.

If Zy = Ru + jXu orin general if Z,, = R. + jX,., equation (A2)
may be rewritten in the following form.

A= [Hn-— Ry + R +J'(Xn — Xp + X)J
[Ru+ R+ R + J(Xn + X+ X)) (A3)

Remembering that Z is an arbitrary passive terminating impedance,
X can always be chosen to nullify either of the imaginary parts in the
above two factors. Moreover, since neither factor has a root at real
frequencies and since R can be given any positive value, it is obviously
necessary that their real parts shall be positive, thus:

Ry— Re+R>0 Bn+ Rae+ R>0 (Ad)

Since R, the real part of the terminating impedance, is not negative,
the limiting situation in the above conditions will occur when B = 0
and it follows that both Ry — Ry and Ry + R must be positive. It
can also be concluded from this that Ry is positive, though this is ob-
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vious from the faect Ry is the resistive component of the open circuit
input impedance of a stable network.

The result just established which may be expressed by stating that
Ry > | Rz, is identical to the Gewertz condition for symmetrical
linear networks mentioned by F. B. Llewellyn.”

From standard network theory, the open and short circuit input
impedances of the bisected network of Fig. 2(b) are given by the follow-
ing equations

Zopen = Zn + Zy2 Zshore = 2y — Zys (A5)
where
Zopen = Open cireuit input impedance of the bisected network
Zghore = Short circuit input impedance of the bisected network

By applying the Gewertz condition to (A5) it is clear that the open
and short circuit impedances must have positive real parts which
establishes requirement 3 for a positive real function. To show that
Zopen and Zgyore satisfy conditions 1 and 2 for a positive real function,
set Z equal to zero in equation (A2). This reduces A to the product of
Zopen ANd Zgior . Since A has no roots inside or on the boundary of the
right half p-plane this must also be true of Zgpen and Zguors . Hence, they
each meet all the requirements for positive real functions which com-
pletes the proof of necessity.

A2, Proof of Sufficiency

In the proof of sufficiency, Zopen and Zghor, are assumed to be positive
real and 1t must be shown that the network of Fig. 2(b) is stable when
terminated in arbitrary passive impedances.

The proof depends on Bartlett’s Bisection Theorem.! According to this
theorem, a lattice network with arm impedances Zgpen and Zgpore will
have exactly the same external characteristics as the symmetrical net-
work of Fig. 2(b). Since Zopen and Zgjort are assumed to be positive real,
the lattice arms can be realized with passive impedances. This means
that the lattice network will be stable with any combination of passive
terminating impedances and it follows that this must likewise be true
of the equivalent circuit of Fig. 2(b).

A.3. Speeial Applications of the Theorem

In some special applications of the stability theorem it is only neces-
sary to ensure that the open circuit impedance and the short circuit
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impedance of the bisected symmetrical network have positive real
parts. This is more lenient than that these impedances shall be positive
real as stated in the theorem. The other main condition for positive real-
ness which requires that the roots be located in the left half p-plane
(complex frequency-plane) will be guaranteed automatically by placing
special requirements on some of the network elements.

As an example of such a situation consider the circuit of Fig. 3(a) con-
sisting of a transmission line of length £ with a negative impedance Z 4
located at its center.

If Zoe and Z sc are respectively the open and short circuit impedances
of the nonloaded line of length €/2 the open and short circuit impedances
of the same length of line with loading may be written down as follows.

ZOpen = ZOC (Aﬁ)

Z
’__24 + ZSC]
Zshort = ZOC o (A7)

[ %+ 20

In this example, the open circuit impedance of the bisected network
Zopen , is obviously positive real since it equals the open circuit im-
pedance of a length £/2 of nonloaded line, which is passive.

It will now be shown that a sufficient condition for the short circuit
impedance Zsnore of the bisected network to be positive real is that its
resistive component shall be positive at all frequencies, providing that
7. is a negative impedance of the open-circuit-stable type having a re-
sistive component which is always less in magnitude than the real part
Of 2zsc .

To show this, assume the real part of Zsuor is positive and that all the
impedances being considered are rational. To satisfy the rationality
requirement in the case of transmission line impedances, the line may be
considered as the limit of a lumped element network. Since Z, is open
circuit stable by hypotheses, it can have no poles inside or on the bound-
ary of the right half p-plane. Likewise, since Zoc and Zsc are passive
impedances they have neither poles nor zeros in the right half p-plane.
With these facts in mind, consider the expression on the right hand side
of equation (A7). The only zeros which this function can have are those
due to (Z4/2) + Zsc. As the complex variable p traces a path around
the boundary of the right half complex frequency plane, the impedance
function (Z4/2) + Zsc will trace out a closed curve in the Z-plane. Since
it has been assumed that the magnitude of the real part of Z,/2 is always
less than the real part of Zgc the closed curve will lie entirely in the
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right half Z-plane and cannot therefore enclose the origin. It follows
from complex variable theory” and the rational nature of all the im-
pedance functions involved that (Z,/2) 4+ Zg, must have an equal
number of zeros and poles in the right half p-plane. Since it has no poles
in that area it has no zeros either hence, Zgpor: has no zeros in, or on the
houndary of the right half p-plane.

If, in addition, Zguere has a positive real part as assumed, require-
ments 1, 2 and 3 for a positive real function are met. Taking requirement,
4 as being true without proof, it follows that Zgne. is a positive real fune-
tion.

Thus, if Zgien has a positive real part and Z, has the properties at-
tributed to it above, the network of Fig. 3(a) will be stable with arbitrary
passive terminations.

As mentioned at the beginning of this section, the situation just con-
sidered relates to a sufficient condition for stability when the impedance
Z 4 is open circuit stable,

A necessary condition for stability when Z, is open circuit stable,
may be obtained from an examination of (A7). As pointed out in consider-
ing the sufficient condition for stability, the only roots which Z short
can have in the right half p-plane are due to the factor (Z,/2) + Zs. .
Since this factor has no poles in the right half p-plane it follows from com-
plex variable theory’ that if Z,/2 + Zg. is plotted on the Z plane as a
function of real frequency, the number of times the plot encircles the ori-
gin gives the number of zeros which the function has in the right half
p-plane. Since Zgnort , for stability, can have no zeros in this area, it
follows that the plot of Z,/2 - Zsc must not encircle the origin. This
last statement is equivalent to saying that Z,/2 must not encircle —Z . .

If the necessary condition just established, is combined with the
stability requirement that Z,/2 cannot enter the stability circles dis-
cussed in connection with Fig. 5, it will be seen readily that a necessary
and sufficient condition for stability may be laid down as follows.

If in the circuit of Fig. 3(a), Z, is open circut stable then a necessary
and sufficient condition for the transmission line with series loading to be
stable is that the plot of Z,/2 as a function of real frequency shall not
encircle any of the stability circles associated with the line of length ¢/2.
These stability circles are shown in Fig. 5.

Arrenxpix B
EQUATIONS FOR THE STABILITY CIRCLE

At any given frequency the equation for the stability circle can be ex-
pressed in the following formulas in terms of the rectangular coordinates
(R, X) of the center and the radius (r).
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(R — X)) + (Roc® + Xoc)

= — )
R 3 Roo (B1)
X:R;
X=—— B2
Rou (B2)
r = /‘/;{2 + Xz _ |:R12 _ X12 + ?J\OCA@J (Bg)
ROC‘
where:
R, = The resistance component of the characteristic impedance, Z, ,

of the physical line

X, = The reactance component of the characteristic impedance, Zo ,

of the physical line

Roc = The resistance component of the open circuit impedance of (/2

of physical line

Xope = The reactance component of the open cireuit impedance of /2
of physical line
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