Signal-Detection Studies, with
Applications

By E. L. KAPLAN
(Manuseript received October 10, 1954)

Curves are given relating the probability 8 of detection of a signal in noise
to the signal-to-noise power-ratio S/ N, to the proportion a of false detections
that can be tolerated, and to the time available (more specifically, to the
number m of independent squared samples of the envelope of the filter output
that are averaged in making a single attempt at detection). For the curves,
three types of sinusoidal signals are assumed, according as the amplitude is
constant, varies al random very slowly (fading), or varies as rapidly as the
Jiltered noise itself. T'he second case is of course very unfavorable for reliable
detection, and the third is also if one is limiled to one or two sample points.
The curves are applied to problems of optimizing radar parameters such as
pulse energy, scan rate, averaging lime, etc.

The Appendix gives the mathematical background for the foregoing and
then proceeds to consider additional types of signal (dc and arbitrary
Gaussian) and methods of detection (failure to rectify or take the envelope,
counting of samples above a threshold, and averaging by continuousintegra-
tion).

1. INTRODUCTION

The word detection suggests a decision between just two alternatives:
either a signal was transmitted, or it was not. Typically, however, such
decisions are made repeatedly at short intervals of time, with the effect
that a multiplicity of possibilities are involved, namely the time intervals
in which signals are received, and perhaps also the carrier frequencies at
which they are transmitted. In radar and sonar systems, rotating direc-
tional receivers map one, two, or three dimensions of space upon the
time axis, so that the observation of time is translatable into an observa-
tion of position. In these applications, of course, the received signal is a
reflection of one transmitted by the observer, and the aircraft or other
object to be detected is not attempting to communicate with the ob-

403



404 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1955

server. Telegraphy and PCM are applications in which the signals do
represent attempts to communicate. In all cases, random noise is present,
and will hide signals whose intensity is sufficiently low.

If the bandwidth of the noise accompanying the signal is considerably
larger than that of the signal, the best practical procedure is well known
to be to pass the signal-plus-noise through a bandpass filter whose band-
width approximates the larger of the following: (a) The bandwidth of
the signal. (b) The reciprocal of the time available for detecting the
signal.!l If the frequency of the signal is not known in advance, one of
course moves the pass-band of the filter up and down the frequency scale
and thus searches for the signal in frequency as well as in time; the pres-
ent discussion applies equally well to this case.

In this way much of the noise may be eliminated, but that is not the
end of the problem. Some noise still gets through. HHowever, the presence
of a signal may be expected to produce an increase in the magnitude of
the rectified output. The purpose of this discussion is to indicate how
great this increase should be required to be before one decides a signal is
present, to draw conclusions therefrom regarding optimum procedures,
and to illustrate the great importance of the nature of the signal and the
method of detection. For simplicity, square-law rectification is assumed;
it is known that linear rectification does not give very different results.?
The noise, and in some cases the signal also, is assumed to be Gaussian.

We assume the following detection procedure, which may apply liter-
ally or else be approximately equivalent to that used in a physical system
(e.g., averaging by continuous integration, as in Section 15; or by a
human observer, or a phosphor). The rectified output is sampled at m
different instants of time,® which are far enough apart so that the values
of the noise are effectively independent (uncorrelated). If the average
output at these m instants exceeds the average noise level N by an
amount kN or more, we decide that a signal is present; if not, we decide
no signal is present. For simplicity, the value of N is assumed to be
known as the result of past observation; since this is only approximately
true in practice, the results will somewhat exaggerate the effectiveness
of the detection procedure, especially for large values of m and low signal
strengths. Another assumption made in calculating the curves is that if

1 Alternative (b) is superfluous if, in determining the bandwidth, the signal is

defined to be zero outside the time interval within whieh it is available for analy-

sis.
2 M. Schwartz in his Harvard (1951) dissertation, ‘“A Statistical Approach to
the Automatic Search Problem,” finds agreement to within 0.2 db.

3 This assumes a narrow-band output whose envelope is sampled; if no en-
velope is obtained, the number of samples is denoted by 2m. The point will be dis-

cussed below.
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a signal is present at all, it is present at each of the m instants sampled;
the methods for removing this assumption are discussed later.

It is well known (and shown in Section 5) that the averaging after rec-
tification deseribed above does not fully compensate for a filter whose
passband is too wide; but when the filter has been made as selective as it
can or should be, the post-rectification averaging, when it is possible,
gives a further increase in sensitivity.

In practice many of these averages must be formed, and many deci-
sions made, corresponding to the search for the signal in time and
possibly also in frequency and in geometrical position (e.g., radar detec-
tion of an airplane). The probability (for any one average or any one
decision) of deciding that a signal is present is denoted by 8 or « accord-
ing as the signal is actually present or not. Thus « is the proportion of
false alarms among the total number of averages containing no signal,
while g is the proportion of valid detections among all those averages
that do contain the signal. A detection is considered valid only if it is
associated with the average, or one of the averages, in which the signal
actually occurs. The average time between decisions divided by « gives
the average time between false alarms (in case the signal is usually
absent).

The problem could now be formulated thus: to calculate the values of
k and B corresponding to given values of m, a, and the signal-to-noise
power-ratio S/N. Actually it has been convenient to regard m and S/N
as the principal variables, and so to plot their relationship for a few
different, values of 8 and «. The number k depends only on m and «, and
is numerically ecual to the S/N values (not measured in db) given by the
curves for § = 0.50 in Fig. 1. (These curves should be rigorously correct
for k, whereas their use for S/N involves an approximation as discussed
below.)

9. THE THREE TYPES OF SIGNAL AND EXPLANATION OF THE GRAPHS

Three kinds of signal are considered: (1) Steady sinusoid. (2) Fading
sinusoid. (3) Noise-like signal. All of these are in a sense special cases,
but other signals will generally be of some type intermediate to these.

Cases 1 and 2 are alike in that for both it is assumed that the m signal
amplitudes oceurring in an average are identical, whereas in Case 3 these
m amplitudes are assumed to be independent random variables, just as
the corresponding noise values are.

Cases 1 and 2 differ in that in Case 1 the signal-to-noise ratio S/N
refers to the instantaneous signal power received, while in Case 2, S/N
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Fig. 1 — Signal-to-noise ratio required for detection of steady sinusoidal sig-
nal.

refers to a long-term average of the signal power, which may be either
greater or less than the instantaneous power. Thus the signal amplitude
in Case 2 is a random variable, but one that does not change much during
the period of time that is averaged over. The Rayleigh or circular Gaus-
sian distribution has been assumed for the signal amplitude, correspond-
ing to a Gaussian signal. For the signal power, this becomes the exponen-
tial distribution.

The pulses of carrier used in communication, and possibly the radar
return from a fixed object, can be considered as steady sinusoids (Case 1).
The radar return from an airplane belongs to Cases 2 or 3 or intermediate
cases, since the phase relations of the returns from different parts of the
airplane change by different amounts as the aspeet of the airplane
changes. Case 2 may arise in at least three ways:

(a) The signal as generated may be Gaussian and have a very narrow
but non-zero bandwidth; i.e., its Nyquist interval may be as large as, or
larger than, the averaging time employed.

(b) The signal may consist of several sinusoids of slightly different
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frequencies beating against one another. If there are reflecting surfaces
involved and the source of the signal, the observer, and the reflecting
surfaces have any relative motion, the same phenomenon of beats occurs
even with a single sinusoid, whenever multiple paths for its transmission
exist. Interference between radar reflections from an airplane and from
its image in the sea surface is a familiar example.

(¢) Even if the signal in each instance is a steady sinusoid, one may
still have to regard the collection of amplitudes encountered on different
occasions as values of a random variable. Thus, since various airplanes
have different speeds and radar cross-sections and are detected at differ-
ent ranges, the strengths of their radar returns will differ accordingly.
Another example is provided by the interference between direct and
reflected signals in the absence of any relative motion among the signal
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Fig. 2 — Signal-to-noise ratio required for detection of a fading sinusoidal sig-
nal (amplitude steady during each detection, but variable from one detection to
another).
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source, the observer, and the reflecting surface. Then the signal strength
may be constant with time, but it will still be a random variable depend-
ing on the positions that the source and the observer happen to occupy.

The exponential distribution of signal power assumed in the present
treatment of Case 2 is theoretically exact for situation (a) above, and
possibly as good as one can do for situation (b). In situation (e) the proper
distribution may be quite different, though its effect should be qualita-
tively similar,

In all cases the S/N value is defined as if the signal were continuously
present; i.e., it does not depend on the duration of the signal. In Case 1,
S is the peak signal power, while in Case 2 it is the average of the various
possible peak signal powers. In Case 3, S might be described as the peak
value of the statistical expectation of the power.

Curves of S/N versus m are given for the three cases in Figs. 1 to 3
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Fig. 3 — Signal-to-noise ratio required for detection of a noise-like signal.
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Tig. 4 — Comparison of the signal-to-noise ratios required for detecting various
kinds of signals.

respectively, for @ = 107 (dotted lines) and 107° (solid lines) and three
values of 8. In Fig. 4 one curve from each of the other figures is repro-
duced for comparison, and also one new curve (the broken line) to be
discussed in Section 6. Curves for 8 = 90 per cent may be interpolated
in Figure 1 (and in Fig. 3 when m = 10) at about 0.58 of the distance
from the curve for 8 = 50 per cent toward the curve for § = 99 per cent.
This may be done by eye, or numerically with S/N expressed in decibels.
The curves for 8 = 1 per cent on Figure 1 are probably of low accuracy.

These same three cases are also considered (for somewhat different
values of the parameters) by M. Schwartz in his dissertation cited previ-
ously, and by J. I. Marcum and P. Swerling in their work at the Rand
Corporation,

The curve in the lower left corner of Fig. 1 shows the relation

S/N =2"" -1
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that would exist between S/N and m if the maximum information-carry-
ing capacity of the system were utilized. The maximum capacity is
(1/2m) bit per Nyquist interval (1/2WW; see next Section), achieved by
having the signal present with an independent probability of 1/2 in each
average of m samples. According to C. E. Shannon’s theorem,* the maxi-
mum capacity in terms of S/N is loga(1 + S/N)"* bits per Nyquist inter-
val. When m is large (or equivalently, S/N small), the relation is S/N
= (log.2)/m.

3. DETAILS: DC SIGNALS, ENVELOPES, ETC.

This section discusses various other cases of less importance than the
three defined in the preceding section; namely, dc signals, low-pass and
broadband filters, the relations between instantaneous values and the
envelope, and the distinction between narrow-band noise and a noise-
modulated carrier. The first three topics are intimately connected; just
as sinusoidal (ac) signals, narrow-band filters, and envelopes naturally
go together (Sections 1 and 2), so are dc signals, low-pass filters, and
instantaneous samples usually associated.

The optimum detection of a de¢ signal, given independent samples, is
trivially easy. No filter is needed, and rectification is undesirable, as
shown by the two lowest curves on Fig. 4. The lowest curve, labelled
‘“steady de,” is obtained by the optimum procedure of taking the simple
average of the unrectified sample values, some of which may be negative.
If the squared values are averaged, the curve will coincide with the next
higher curve, labelled ‘““steady sinusoid,” as shown later in connection
with equations (13b) and (13c). The “fading de¢’’ signal is one which is
constant during each detection but has a Gaussian distribution of mean
zero from detection to detection. Although it is the worst curve on the
fisure, quadratic averaging would make it still poorer. [On the other
hand, (12¢) shows that rectification is as indispensable for the detection
of a lowpass noise-like signal as for any other rapidly oscillating signal.]
Both of the de¢ curves are straight lines of 45° inclination, and for them
the number of samples is not m but 2m. This adjustment keeps the total
time the same, and in the case of quadratic averaging produces complete
equivalence between the de and the sinusoidal signal, as shown in Section
13. The simple formulas applying to the averaging of unrectified de
signals are given later as equations (12a) to (12¢).

If a filter is used in detecting a dc signal, it must be of the low-pass

+B.8S.T.J., 27, pp. 379-423, 623-656, 1948. Proc. Inst. Radio Eng. 37, pp. 10-

21, 1949. Mathematical Theory of Communication (with Warren Weaver).
Univ. Illinois Press, 1949.
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type,” and its effect is not essentially different from that of the assumed
averaging of m sample values. In detecting an ac signal, a narrow-band
filter is decidedly preferable to a low pass because it eliminates more
noise; but it also has the effect of permitting the (squared) envelope of
the filter output to be obtained, provided the frequencies contained in
this output are confined to a range of less than 3 to 1. In this case the
output of the square-law rectifier will contain two separate bands of
frequencies of equal widths which (given a reasonable separation between
them) can be separated by another filtration. The lower frequency-band
is usually the only one that is wanted, and it gives half the square of the
envelope of the output of the first filter. If the frequency range of the
first filter output is 3 to 1 or more, the envelope is still susceptible of a
theoretical definition but it cannot be isolated so easily and is then a
gsomewhat artificial concept.

The general effect of a second filtration after rectification of an ac sig-
nal, whether or not the envelope is actually obtained, is to increase the
reliability of a single sample, without necessarily having a marked effect
on an average over a long (fixed) period of time. The elimination of the
sinusoidal component resulting from the signal, and having double its
original frequency, is perhaps the main object. If this is not done, it will
he necessary to do considerable averaging to eliminate the possibility of
missing the signal because of sampling it at its troughs. In this respect
instantaneous sampling of a sinusoidal signal is qualitatively similar to
the various cases of the sampling of the noise-like signal.

The properties of the envelope will now be considered. Let ny(t) and
ns(t) be Gaussian noises containing no radian frequency above w/2.
Then the spectrum of

n(t) = m(l) cos QU + no(t) sin (3a)

is limited to the interval @ — w/2, @ + «/2. Conversely, consideration
of the Fourier transform of n({) shows® that any (stationary) noise whose
spectrum is limited to @ £ «/2 can be expressed in the form (3a). It is
found furthermore that

En(Omw) = Ens(Ona(u) = fo “PO) cos (\ — )t — wdn (3b)

En(Dns(u) = —Em()n(t) = ‘/: P\ sin (A — (t — w) d\

5 This may not be true in a rigorous sense. If indefinitely prolonged dec signals
are not encountered, a cut-off at a sufficiently low frequency is permissible.
s For example, see 8. O. Rice, B.S.T.J., 24, pp. 46-156, 1945, Section 3.7.
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where P()\) is the power per radian/sec. for frequencies in n(t) whose
absolute values are in the neighborhood of A radians/sec. Let ¥o(t — w)
and ¢,(t — u) represent the two distinct covariances of (3b), the sub-
seripts 0 and 1 reflecting the even and the odd characters of the two func-
tions. Then

En(tn(u) = ot — u) cos Qf — u) — ¢t — ) sin Q(f — ) (3c)
Replacing @ in (3a) by @ + O gives
n(t) = [m(t) cos &t + n2(t) sin i) cos Qot
+ [—m(t) sin 2t + no(t) cos Q] sin Lt

so that the same envelope
Vni(t) + ni(?)

is obtained regardless of the value adopted for the ““carrier’”’ frequency.
However, the highest frequency occurring in n,(t) and n(t) will be mini-
mized by taking @ in the center of band; and (3b) shows that if the power
spectrum of n(f) has a center of symmetry which is taken as €, then
Eni(tna(w) = 0.

The noise-like signal used in this study, like the filtered noise itself,
has the form (3a). The curves do not apply quantitatively to a single
term m;({) cos Qf obtained by modulating the carrier cos Q with a low-
frequency Gaussian noise-like signal n,(f), though the necessary tools
are given in equations (13g) and (13h) and the remarks following there-
after.

The most obvious difference between the two signals resides in their
envelopes, which are

Vni(t) + ni(t)

(with a Rayleigh distribution) and |n.(f) | (the absolute value of a
Gaussian variable) respectively, but other differences may be discovered.
The former can be, and is assumed to be, stationary, Gaussian, and
ergodic. The latter is stationary only if the phase ¢ of the carrier cos
(2 + @) is taken to be random, but the relative phases of the sinusoidal
components of n;(¢) cos (2 + ¢) are still not completely random, and
the signal is neither Gaussian nor ergodic. [The Gaussian variable n,(f)
is multipled by cos (@ + ¢), which has the distribution dz/7v/1 — 22
Where detection is concerned, the two cases are qualitatively similar,
but the single term () cos Q¢ has a greater amount of fluctuation for
the same amount of power, and is therefore a little harder to detect than
the sum of the two terms.
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The results of this study have been phrased in terms of the narrow-
band two-term form n,(f) cos Qf + n.(t) sin @ for the noise and the noise-
like signal. However, the curves apply also to the less important case of
the detection of a de signal by rectification (which is not the optimal
procedure, as shown above). The word “sinusoid” is to be replaced by
“de signal,” and two independent samples of the rectifier output are to
be taken for every one that is prescribed in the narrow-band case. From
a noise or signal that (at the input to the square-law rectifier) has a flat
spectrum of width W ¢ps, independent samples are obtainable at inter-
val 1/W seconds in the narrow-band case, and at interval 1/2W¥ in the
lowpass (de) case,” so that for large m the averaging time is m/W seconds
in both cases. The amplitude of the “fading” signal of Case 2 with its
Rayleigh distribution is equivalent in the lowpass case to the RMS
value formed from two independent samples of a Gaussian noise-like
signal. The case of only one sample could be calculated but would give
even less satisfactory detection.

4. NUMERICAL EXAMPLES (RADAR)

The following hypothetical example illustrates the concepts involved.
Suppose one has a radar that searches in range and azimuth with a beam
3° wide, a pulse rate of 5,000 per second, a pulse length of 1 microsecond,
and a sean rate of 10 per minute. On the average one false detection in
15 minutes can be tolerated. Pulses returned by a target during a single
scan are averaged (after rectification). What signal-to-noise ratio is
required to give a probability of 90 per cent of detection in one scan?

This is the narrow-band case. The pulse length is usually about equal
to the reciprocal of the bandwidth and so ean be taken as the sampling
interval. 200 samples of the radar return could then be taken in the 0.0002
sec. elapsing between consecutive transmitted pulses. Suppose that 150
of these are relevant, giving 150 values of range that can be distinguished.
Similarly the azimuth scan of 360° is covered by 120 beam-widths (this
does not assume that the azimuth accuracy is no better than 3°). If a
factor of 2 is allowed for overlap (in range or azimuth or both) among the
averages, the number of decisions per scan is 2 X 120 X 150 = 36,000,
or 5,400,000 in a period of 15 minutes. Soa = 1/5, 400,000 = 2 X 1077,
In each scan the beam is on a target for 0.05 sec., the time required to
turn 3°. In this time 250 pulses are transmitted; this is the value of m,
"7 The latter interval is well-known; the former is twice as long because the
smoothing accompanying rectification in the narrow-band case makes the sam-

pling equivalent to the sampling of n, (1) and n.(t), and their bandwidth is not W
but only W/2.
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since returns from different ranges and/or azimuths are averaged
separately (e.g., by a PPI scope). The 250 samples in an average are
thus not consecutive in time in this case.

The values of S/N can be read just above the curves for @ = 107°
(which are the solid curves). For a non-fading return, Fig. 3 then gives
S/N equal to —4.2 db for 3 = 50 per cent and —2.2 db for 8§ = 99 per
cent; by interpolation, S/N is about —3 db for 8 = 90 per cent. It should
be remembered that S is the peak (not the average) signal power. For a
fading return, Fig. 2 gives S/N equal to 5.5 db. Use of the latter figure
would imply that the returned pulses had virtually the same amplitude
during the time of 0.05 sec. during each scan when the beam was on the
target (but still had a random amplitude when viewed for a sufficiently
longer period). On the other hand, use of S/N equal to —3 db would
imply that the values of the signal at interval 0.0002 sec. were virtually
independent samples. These conditions may also be expressed in terms
of the width of the lines or narrow bands, if any, in the spectrum of the
signal (the spacing between the lines is the pulse repetition rate of 5000
cps, which is irrelevant here). If the width is 5000 cps or more (i.e., the
spectrum continuous), one has S/N equal to —3 db; if the width is 20
eps or less, one has S/N equal to 5.5 db. The intermediate region is
rather extensive, corresponding to a factor of m = 250. It might be
explored in an approximate manner by the formulas (13g) and (13k).

If the line-width is not much more than 20 cps, but not less than say
1 eps, then conclusion (A) of Section 8 shows that the probability of
detecting the airplane within 6 seconds (=1 scan, as first stated) is
increased by increasing the scan rate to as much as 1 per second, so that
a number of scans are completed within the 6 seconds.

Suppose now that one has a radar receiver with an antenna pattern 3°
wide scanning in azimuth at 10 rps as before, whose object is to detect a
distant radar C-W transmitter whose frequency is only known to lie
within a band 150-mec wide. The detection is accomplished by passing
the signal through a filtering device that passes 150 different frequency
bands of 1 me each in succession (one at a time). The problem is then
numerically the same as before, the search in frequency having replaced
the search in range. There is the difference that here the samples in any
average are presumably all consecutive in time, while previously they
were taken at intervals of 0.0002 sec., the time between transmitted
pulses. The search in frequency also occurs in the determination of the
velocity of an airplane by its Doppler frequency, but the bandwidth of
the frequency-analyzer is then much less than 1 megacycle, and not
nearly so many independent samples can be obtained.
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If the signal is applied simultaneously to a bank of filters (e.g., vibrat-
ing reeds), the number of decisions is the same as before, but the saving
of time would permit a corresponding increase in the number m of sam-
ples in an average.

B. McMillan has pointed out that with long-range search radars whose
resolution is much better in range than in the other coordinates, some of
the range resolution might profitably be sacrificed in order to increase
the pulse length. Although the longer pulse length could be used to in-
crease the value of m, it would be preferable to decrease the receiver
bandwidth instead, and thus decrease the noise power N in the same
ratio.

CONCLUSIONS
5. THREE MAJOR EFFECTS

The curves show that the steady sinusoid is the easiest signal to
detect, as one would expect, while the fading sinusoid is the most difficult
to detect reliably. It is therefore very desirable to avoid the latter situa-
tion if reliable detection is wanted, either by reducing the severity of
the fading and so moving toward Case 1, or by sampling the output over
a period of time long enough to average out some of the fluctuation in the
signal amplitude, and so moving toward Case 3 (noise-like signal). The
latter is of intermediate difficulty of detection, and coincides with Case
2 when m = 1 and approaches coincidence with Case 1 as m — * . The
diffieulty with the fading sinusoid is this: If the average signal power
is equal to that which gives good detection in Case 1, little reliability is
left to be gained in those detections where additional signal power hap-
pens to be available, but much may be lost when the signal power hap-
pens to be lower than the average.

A second major conclusion results from the steepness of the left-hand
portion of the curves for 8 = 99 per cent in Fig. 3: If reliable detection
of a noise-like signal is required, it is highly desirable that at least 4 or 5
independent samples of the signal be available and made use of. In fact,
if a 99 per cent chance of detection is desired, 4 samples require only
1£4 of the signal power, or {5 of the energy required by one sample.
The prineciple is well-known in connection with search radars, which are
designed to return about four pulses from a target.

When m is significantly greater than unity, and the samples being
averaged are adjacent to one another in time, one has the option of using
a more selective filter and thus doing the averaging linearly (with preser-
vation of signs) before rectification rather than after. The former is well-
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known to be the more effective in Cases 1 and 2. (Case 3, on the con-
trary, represents the situation that results when the selectivity of the
filter has already been made as great as it can profitably be.) Let the time
available for the detection be fixed. Then m, the number of independent
noise samples available, is proportional to the filter bandwidth; the latter
is inversely proportional to S/N, provided the noise spectrum can be
regarded as flat in the region considered, and the filter does not reject
any of the signal frequencies. Thus m and S/N are inversely proportional,
and one is operating along a 45° line in Figures 1 and 2 (both m and S/N
being plotted logarithmically). Evidently 8 is maximized by keeping m
(and hence the bandwidth) small.

6. MATCHING THE DURATIONS OF SAMPLE AND SIGNAL

It is fairly obvious intuitively that the chance of detection would be
greatest if some one average coincided exactly with the period during
which the signal was present. (The signal may be intermittent, as with
the first radar of Section 4; if so, the sampling also should be intermittent
in the same pattern.) There is no way to insure this if the duration of the
signal is not known in advance, but if it is known, the desired coincidence
could be approximated to some extent by having the averages overlap;
e.g., run from 0 to 1 time unit, 14 to 114, 1 to 2, 114 to 214, ete. This
increase in n necessitates use of a smaller value of @ and hence requires
an increase in signal strength, but the latter increase is insignificant:
When 8 = 0.50, the curves show that it is 0.3 db or less for a factor of
2 in «. Similarly, the passbands may overlap when one searches in fre-
quency, and the radar antenna patterns may overlap when one searches
in direction.

If the averages include fewer samples (though all the samples in some
average contain the signal), the effect in any of the Figs. 1 to 4 is to move
to the left along a horizontal line. The detection probability 3 is decreased
because there is no increase in the concentration of the signal energy,
while the fluctuation of the noise is averaged out less effectively.

If the averages include too many samples, then some of these samples
will always consist of pure noise, even when a signal is present, and the
concentration of the signal energy is reduced relative to that of the noise.
If a number m’ of samples containing the signal are increased to m by
adding m —m’ samples of pure noise, the effect in Figs. 1 and 2 is to move
down and to the right along a 45° line, since the signal-to-noise ratio is
effectively reduced by the same factor m/m’ by which the number of
samples is increased. Evidently this decreases £.
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For the noise-like signal of Fig. 3, new calculations are required when
m' < m, and the broken line in Fig. 4 shows some results obtained by the
chi-square approximation of equation (13g), with m” = m’. This curve
is plotted against m (assumed for this example to be twice m') and so
shows the effect of halving the duration of the signal. To show the effect
of adding an equal number of pure noise samples (the duration of the
signal being kept fixed), the curve should be plotted against m’, which is
equivalent to moving the curve to the left a distance corresponding to a
factor of 2. The resulting curve still lies above the solid curve (for which
m = m’') for a noise-like signal, but only by about 1 db, which is about
the same loss that one finds in Figs. 1 and 2.

It is natural to ask which one should guard against the more, taking
too many samples or too few? The penalty for the former increasesrather
slowly as we have just seen. The latter is a more serious mistake (espe-
cially for the noise-like signal of Fig. 3) if one remains limited to a single
opportunity to detect the signal. However, if the signal samples missed
by one average are included in another and so give another opportunity
for detection, the loss is reduced but not eliminated, as shown below in
connection with repeated searches.

7. DISTRIBUTION OF A FIXED AMOUNT OF SIGNAL ENERGY

The preceding discussion is closely related to the question of the op-
timum utilization of a fixed amount of signal energy; assuming that
m = m’, is it better to have a big pulse of signal occurring in only one
sample point, or a lower signal power occurring in a proportionately
greater number of samples? Here the product of S/N and m is held con-
stant, and one moves along a 45° line in all cases, including Case 3.
Reference to the curves shows that with a sinusoidal signal one should
take m = 1, or at least concentrate the signal energy enough to make the
power ratio S/N very much above unity. With a noise-like signal, the
same conclusion (m = 1) holds under conditions such that 8 = 50 per
cent, but when better detection is possible a larger value of m may be
preferable. For example, take the solid curves (@ = 107" in Fig. 3 and
suppose that a one-pulse signal makes S/N = 18 db. The corresponding
45° line is tangent to the curve 8 = 99 per cent at about m = 15. Thus
the maximum detection probability is 99 per cent and is attained by
taking S/N = 6.5 db, and so distributing the signal energy among 15
independent. samples. Detection with 99 per cent probability by means
of a single sample would require 20 times as much energy.
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8. REPEATED SEARCHES

Repeated searches have two important characteristics: (a) There is no
carry-over of data from one search to the next. This is not desirable, as
we shall see, and would expect on theoretical grounds; but it may be un-
avoidable. (b) They involve repeated opportunities to detect the signal
(or its source).

Repeated searches arise non-trivially when the signal recurs peri-
odically, or can be made to do so by the detecting agency. This assumes
that it is sufficient to detect the signal at one of its appearances, so that
it is not necessary to regard each appearance as a separate signal. Exam-
ples are a signal of long duration but unknown frequency, and the radar
return to a search radar from an airplane whose position in space is
unknown. Then if one search of frequency or of space does not detect
the signal, it may be possible to repeat the search one or more times
before the source of the signal disappears.

An equivalent of repeated searches arises when the averaging time is
short enough so that two or more averages fall within the duration of the
signal. The results below apply to this case and show that a longer aver-
age (i.e., carry-over of data from one search to the next) is somewhat
preferable. These results do not apply to the case where over-lapping
averages give several opportunities to detect the signal, because such
averages have some data in common; but it has already been shown that
such overlapping is desirable, other things being equal.

Suppose now that the signal power is constant and the time consumed
is proportional to the product of m and the number A of searches. How
can one find the signal most quickly? If the probability 8 of detection in
one search is 1/2, the probability that exactly A searches are required for
detection is 1/2", and this also happens to be the probability that the
signal remains undetected after X searches. Thus one would need to make
nearly 7 searches before one could conclude with 99 per cent assurance
that no signal was present. However, if the signal is in fact present, the
average number of searches required to detect the signal with 99 per
cent assurance is

1/2 + 2/2° + 3/2° + 4/2' + 5/2° + 6/2° + 7/2° = 2
searches if the superfluous part of the successful search is included, or
(1/2)-(1/2) + (3/2)-(1/2") + ---

+ (11/2)(1/27) + (13/2)(1/2°) = 3/2

searches if the search is terminated the moment the signal is detected.
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The latter result is the less favorable for repeated searching, since it is
3 times the result (14) obtained with 99 per cent detection in a single
search (which on the average could perhaps be terminated, due to detec-
tion of the signal, when it was half completed).

The alternative way of increasing 8 from 50 per cent to 99 per cent is
to increase the value of m by a factor lying between 2.3 and 5 for Figs.

1 and 3, while the fading sinusoid of Figure 2 requires a factor of the
ol'der of 1,000. Comparing these with the factors 2 (or 3) and 7 obtained
previously gives the following conclusions, which have been confirmed
by considering some other values of 8:

A. With a fading sinusoidal signal, repeated searching is extremely
advantageous, provided it is true as assumed that independent samples
of the signal are obtainable from search to search but not within a search.

B. Repeated searching may have a small advantage in Cases 1 and 3
(the steady sinusoid and the noise-like signal) provided (1) each search
has 8 = 50 per cent, and (2) the criterion is the average time required to
detect the signal when a signal is present, and one is not concerned with
the (increased) time required to conclude that no signal is present (which
of course is also the time required for the detection of some of the signals).

C. Repeated searching is somewhat disadvantageous in other cases,
as one would expect; e.g., in Cases 1 and 3, if a fixed amount of time is
available, the greatest probability of detection is achieved by using all
of the time for a single search, rather than dividing it among several less
sensitive searches.

MATHEMATICAL APPENDIX

9. PURE NOISE (AND NOISE-LIKE SIGNAL = CASE 3)

Tf narrow-band Gaussian noise is applied to a square-law rectifier, the
value of the output at any instant has a Rayleigh or exponential distribu-
tion, as is well known. The average of m such values, taken far enough
apart to be virtually independent has a chi-square (x*) distribution with
2m degrees of freedom. The standard form of the distribution used in
tables chooses the units so that the mean of the distribution is 2m,
whereas we want the mean to equal the noise power N. The exact value
of I can therefore be found by means of the relation

Pr(Nxam/2m > (k + 1)N) = « (9a)
or

Prixim > 2m(k + 1)) =
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where « is the expected ratio of false detections to total number of deci-
sions, when no signal is actually present.

The usual short tables of x° (e.g., that in Fisher and Yates’ Statistical
Tables or that of Hartley and Pearson in Biometrika 37, p. 313) are useful
but not entirely adequate for the needs of the problem. The most ex-
tensive table is that of K. Pearson,® which goes to m = 50. In terms of
the function I tabulated by Pearson,

Prixim > A) = 1 — I(A/24/m, m — 1) (9b)
For m > 50 it is sufficient to use the expansion’
Xom = 2m + 2um'™® 4+ 24 — 1) + W' — Tuym™* — .-+ (9¢)
Here u is the standard normal” deviate. Thus if u, is defined by
a = Priu>u,) = f e du/ /2
one has

k= ua/Nm+ (us — 1)/3m + -+ (9d)

If a noise-like signal is present, this is mathematically the same as an
inerease in the average noise power from N to N 4 S, the critical power
level remaining at (k + 1) N. The probability of exceeding the critical
level is now the probability 8 of a true detection. Thus

8 = Prl(N + S)xin/2m > (k 4+ 1)N]
= Prlxsm > 2m(k + 1)/(1 + S/N)]

Writing xam(B) for the number that is exceeded by the variable Xam With
probability 8, one gets from (9a) and (9e)

1+ S/N = xzm(a)/x2m(8) (9f)

For large m (and only in that case), (9¢) then gives

(9e)

S/N = (ua — uz) [\/lm + Ua — 21!6:' 9g)

3Im

8 I{. Pearson, Tables of the Incomplete Gamma-Function, Biometrika Office,
London, 1934,

9 The author first discovered this formula in T. Lewis, Biometrika 40, p. 424,
1953; but S. O. Rice has pointed out that G. A. Campbell published it as early as
1923 in the B.8.T.J., 2, page 95, in connection with Poisson distribution. Other
references and inversion formulas are given by John Riordan. Ann. Math. Stat.,
20, p. 417, 1049,

10 “Normal’ is a synonym for “Gaussian.” However a new application of the
distribution is involved here, and so there is no disadvantage in making the con-
ventional change in terminology.
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where the standard normal deviate us is defined by g = Pr(u > ug).
It is negative when 8 > 50 per cent.

Wherever it occurs in equations, S/N naturally means the ratio of
S to N, and not the value in db, which is 10 logy, S/N.

10. NOISE PLUS STEADY SINUSOID (CASE 1)

When a pure sinusoidal signal of constant amplitude is added te the
noise, the distribution of the rectifier output has what is called a non-
central chi-square distribution, which has been little tabulated. For-
tunately the normal distribution gives a fair approximation in this case
(with the probable exception of small values of 8, which are of little
interest anyway). More accuracy could be obtained at the cost of addi-
tional labor."

Before rectification, the signal plus noise can be represented, as re-
marked in Section 3, by the expression

V28 cos (2 + @) + m(l) cos (U + ¢) + no(t) sin (U + ¢) (10a)

where the two Gaussian noise variables n(f) and ns(t) are independent
and have zero means and a common variance N. After rectification and
smoothing, half the square of the envelope is obtained, namely

(V28 + m()* + na(8)’]/2

Its mean value is N 4+ S, and its variance is the sum of the variances
of the terms in the expanded form, namely 0 + 2NS + N*/2 4+ N*/2
or 2NS + N®. The average of m such independent variables has the
same mean N + S but the variance N(N + 28)/m.

The eritical value (k + 1)N of the rectifier output is reduced to stand-
ard units by subtracting the mean output N + S and dividing by the
square root of the variance, giving

ug = (k — S/N) "/ﬁ%

After ug is found from

B = Pr(u > us) = f ¢ du/A/ 2w

ug

by using a table of the normal distribution, one can solve the preceding

1 P, B. Patnaik, Biometrika 36, p. 202, 1949.



422 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1955

equation for S/N, giving

S ug* Ug
’ v

S ug* o Lﬂz 1/2
N + m  ~m [l + 2k + m] (10b)
This is then the signal-to-noise ratio giving the probability g8 of detec-
tion.
By using (9d) and taking 1 + w,/+/m as an approximate value of the
radical, one obtains from (10b)

S U« — Ug + ug(ug — ua) + (o — 1)/3
N vVm - m
This result differs most (a little over 1 db) from the curves of Figure 1

when m = 1 and 8 = 0.01, but (10b) itself is not very accurate in that
case.

(10¢)

11. NOISE PLUS FADING SINUSOID (CASE 2)
In this case the signal plus noise has the form
[s + n(t)] cos @ + [s" + n'(t)] sin Q (11a)

where n'(t) is not a derivative, and the components s and s’ of the signal
amplitude are essentially constant during the period that is averaged
over, although like n and »n’ they are Gaussian variables of mean zero.
Detection is accomplished by means of the expression

R= oo [ 64 0+ 36 ] (1)
m 1 1
where the n; and n, are (independent) values of n(t) and n'(t) at succes-

sive sampling points.
Now (11b) ean be written

1 m 2 , 1 " , 2
2R = — Ny — :
(s+m;n)+(s+m;n)
1 ) 1 Pl r (1 ,)2
+ o2 (mEn,)+mZn, 2
as in the analysis of variance in statistics. The sum of two squares in the
first line of (11¢) is then distributed as (S + N/m)xs ; the second line is

distributed as x3,_o-N/m; and these portions are independent of one
another, because they correspond to the mean and the variance respec-

(11¢)
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tively of the sample of n; (or ni), and the sample mean and variance are
known to be independent in the Gaussian case. Here the signal power S
is the variance of each of s and s, and N is the variance of each of the
n; and n; .
Tor detection R must exceed N(1 + k). Hence if S/N is denoted by r,
one has
B = Pri(1 + mr)xi + Xem— > 2m(1 + k)] (11d)

Sinee (1 + mr)x: has the e.d.f. 1 — ¢ """ and x3,._» has the density
funetion

G—!f‘lt‘m—?./zm—lr(?nl _ 1),

8 is obtained by convolution as

6 =1 — ] [1 _ 8-(zﬁf)f2(1+mr)]e—tf2tm—2 dt/2"'—1I‘(m _ 1)
(1]

1—m
= Prlxtas > 2] + 7207 ( mr ) Pr[xi,,,_g (11e)

1+ mr
mrz
< 1+ mr]
where z = 2m(1 + k).

An excellent approximation is obtained by replacing the variable
xgmﬁg by its mean value 2m — 2; this is reasonable, since the ratio of the
variances of xam_e and (1 + mr)xs is (m — 1)/(1 + m S/N)?, which is
very small throughout the interesting area (8 = 50 per cent). (11d) then
gives

B = exp [—(1 + km)/(1 + m S/N)] (LLf)
This result will be generalized in (13k) below. Using (9d) then gives

S oy . Ma (wa2 + 2)/3 — {n (1/8) .
N (n(1/8) = m + - (11g)

to a little lower order of accuracy when m is small, and still with 8 =
50 per cent.

Before the foregoing results were obtained, the curves of Fig. 2 had
already been caleulated” on TBM equipment by the rather tedious proc-
ess of integrating the results for Case 1 with respect to the random signal

12 By Mrs. L. R. Lee, at the request of the author.
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strength. This gives
B = ]: ®[(xS/N — k) vV/m/(1 + 2zS5/N)Ip(x) dw (11h)

for Case 2, where
ple) = ¢
and

B(u) = j;u e di//2x

If the fading is due to interference between two sinusoidal signals of
powers S; and Sy(S8: + S; = 8) and very slightly different frequencies,
it can be shown that the appropriate form for p(z) is 1/74/A4* — (1 — z)?
for1 — A <z < 1+ A, and zero elsewhere, where A = 24/8,8,/
(S; + 8,). Here z can approach zero only in the special case 5; = S..
Since one or both of S; and S, and hence A, is likely to be a random
variable, one apparently cannot say a priori that any particular dis-
tribution p(x) is the appropriate one in this case.

12, COMPARISON OF 12 CASES

The three principal cases defined in Section 2 and analyzed in the last
three sections may be expanded to 12 by considering de signals as well
as ac, and considering also a second method of detection. The original 3
cases will be labeled “ac envelope.” (More precisely, half of its square is
the quantity averaged.) If the envelope is not isolated but instantaneous
squared values are sampled, the situation is “ac instantaneous.” A pre-
cise analysis of these latter cases would apparently be difficult. As indi-
cated, quadratic rectification is assumed for all 6 of the ac cases. On the
other hand, for the 6 dc cases, distinguished as rectified and unrectified,
it is the instantaneous sampling that is assumed throughout.

The reduction of the rectified dc cases to the standard ac envelope
cases has been indicated at the end of Section 3, and will be demonstrated
at the beginning of the following section. The unrectified de cases, which
represent the better way to detect a steady or fading de signal, involve
nothing but the simple Gaussian distributions specified in Table I. If the
number of samples averaged is denoted by 2m, one easily finds the the-
oretically exact relations

S/N = (ua. — ug)*/2m (12a)
S/N = (uap/ujn — 1)/2m (12b)
S/N = uap/ugp — 1 (12¢)
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TABLE I — VARIABLES TO BE AVERAGED

DC Unrectified DC Rectified
Steady. . .............. e VS +n S+ 2n V'S + n?
g%(ilégﬁiko} .................. s+ n 52 + 2ns + n?

AC Envelope

St.on:dy ...................... S+ n V28 + (02 + n'0)/2
TI‘\,‘};i‘;'e‘ﬁike} .................. (s + m)? + (s + n')2)/2

AC Instantaneous

Steady. . ... [(v/28 + n) cos ¢ + n' sin ¢]?
TFading............. . [(s + n) cos ¢ + (8’ + n’) sin ¢]?

Noise-like. .................. Ditto or s? + 2ns + n*

for the steady, fading, and noise-like unrectified de (or low-pass) signals.
As usual, u, is defined by

f ¢l 2w = p

Up

In (12a) it is assumed that the steady de signal of magnitude /S is
of known sign. Otherwise it would be necessary, as with fading and
noise-like signals, to be prepared to detect both positive and negative
de signals, and quantities like wq enter in place of u, via the relation

o —Ugf2
f + f = a.
Ugl2 0

As 8 approaches unity, us» approaches zero and S/N rapidly approaches
infinity for the fading and the noise-like signal. In the latter case (12¢),
averaging has no effect (m does not appear), because the unrectified signal
averages to zero as fast as the noise does. In fact, with instantaneous
sampling of a noise-like signal, there is no essential difference between
the lowpass (“’de¢””) and narrow-band (ac) cases.

If n, n', s, s are independent Gaussian variables with zero means and
variances N, N, S, S respectively, and ¢ is uniformly distributed between
0 and 2, the variables that are averaged in the detection process have
the forms given in Table I in the various cases, when a signal is present
(if not, put s, s’, and S equal to zero).

Table 1T gives the variances of the variables of Table I for the cases
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TaBLE IT— VARIANCES

DC Unrectified DC Rectified
Steady. . .......... ... N 2N? 4+ 4NS
Noise-like. . ................. N+ S 2N? + 4NS + 28?

AC Envelope AC Instantaneous
Steady. . ........ ... ... ... N2 4 2NS 2N2 4+ 4NS + 1582
Noise-like . ............... . N2 4 2NS + 82 2N? 4+ 4NS + 282

of a steady or a noise-like signal. The means are /S and zero, respec-
tively, for the dec unrectified variables, while all the others have the
power N + S as their mean.

Table III gives the data for the fading signal. The reducible variance
and the mean are calculated under the condition that s and s are fixed;
the irreducible variance is then the variance of the resulting mean when
s and s' do vary. The distinetion between the two variances is that by
averaging, the first is reduced in the usual way (divided by the number
of samples), while the second retains its full value. The variance already
given for the steady signal can be derived from the reducible variances
above by replacing s? and 5’2 hy S. The variances already given for the
noise-like signal are equal to the irreducible variance plus the expected
value of the reducible variance.

The steady ac instantaneous case will serve to illustrate the calculation
of the variance. If the rectifier output is written in the form

S + nv28 + (#* + n)/2 + (0’28 + nn') sin 2¢
+ 8 + 728 + (n* — n'*)/2] cos 2¢

it may be verified that the various terms are uncorrelated with one
another, so that their individual variances may be added. Also E sin
% = Ecos2p = 0, E sin’ 20 = E cos® 20 = 15, En' = En'' = 3N*,

TaBLE III — FapING SIGNALS

! Reducible Variance Mean Irreducible

Variance
DC unrectified......| N s S
DC rectified. .......| 2N2 4 4Vs? N + s? 282
AC envelope. . .. ...| N2 4 N(s* + s'2) N + (s* + §'7)/2 S2
AC instantaneous...| 2N2 4+ 2N (s? + s'2) + N + (s 4 s'2)/2 St

(s* + 8)%/8
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var n® = var n’> = 2N®. These last relations are not obvious, but are a
special case (¢ = u) of the relation cited below just prior to (15e). The
variance is now obtained as

0 + 2NS + 4N*/4 + 15E@28n” + n'n")
+ BE[S + 280" + (n* — 2n°n”* + ') /4]
= 2N* + 4NS 4 §°/2

The variances tabulated indicate the relative merit of the various cases.
If m is significantly greater than unity, the anomalous case of an unrecti-
fied noise-like signal represented by (12c) gives the poorest detection;
next come the fading signals with their irreducible variances. The steady
de unrectified signal with S/N proportional to m ' (by 12a) is the easiest
to detect. The steady signals are in all cases more easily detected than
the noise-like at the higher signal strengths. However, instantaneous
sampling of a steady ac signal loses some of this advantage; a term
S%/2 appears, in addition to the expected doubling of the variance of a
single sample.

13. DETECTION OF AN ARBITRARY GAUSSIAN SIGNAL

General formulas will now be derived which include Cases 1, 2, and 3
and also give approximations to intermediate cases. It will be more con-
venient to deal with the Gaussian sample values s; + n; of the signal
plus noise in the de or lowpass case, and 2m of them will be taken so that
the results obtained will have the same form as those already given for
the ac or narrow-band case. Detection is then accomplished by means of
the variable

2m

R =2 (si+ n)?/2m = Z (s + 2sm: + n)/2m (13a)
1 1

It is assumed that the n, are independent of one another and of the s;,
while the s; may be constant or mutually correlated. Also En; = 0 and
Eni = N, a constant.

An orthogonal transformation (rotation in 2m-dimensional space) can
be used to show that (13a) has the same distribution as

2m

3 (h+ n)/2m (13b)

1
or

[Z (h 2+ n")* + Z 715”2]/2'"1 (13¢)
1

m+1



428 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1955

where * = 31" s/2m, and the n/ or n,” are new noise variables with
exactly the same properties as the original n; . Evidently A* is so defined
as to leave unchanged the terms independent of the noise variables, while
the orthogonal transformation by definition makes > n? = > n/* =
Z n;”%. Thus it is only necessary to choose the transformation so that
the original linear terms D_:" sm;/m go into h 21" n//m or \/2h 2_1
n”/m. This is always possible since all three expressions have the same
norm (square root of sum of squares of coefficients), namely h 4/2/m.

The forms (13b) and (13¢) are appropriate to the instantaneous sam-
pling of the square of a de signal plus noise, and the sampling of the
square of the envelope of an ac signal plus narrow-band noise, respec-
tively, the latter being the standard case. Thus the equivalence «f the
two cases is established. It is only necessary to observe that the number
of samples taken is 2m in (13b) but only m in (13e). The noise powers

are In;’ and
Enicos ¢ + npyisin @)’ = En® 4+ nay)/2 = Eni.

The signal powers are h* and E-2k* cos’e = h°. Another consequence of
(13b) or (13¢) is that when the distribution of A has a known form, the
distribution of R could be obtained from the results for Case 1 by inte-
grating over h, as stated at the end of Section 11.

The mean and the variance of the general form (13a) will now be cal-
culated. It is assumed that Es; = 0 and Es;” = S for the first 2m’ values
of i(m’ £ m), while s; = 0 for the other 2(m — m') values of 7. Then one
has ER = N + m’S/m. If ¢ and j are any two distinct integers, the five
variables s;°, sini, s;n;, n:, n;° are all uncorrelated (though not all inde-
pendent), and so one has

4m’ var R = var (O s/) + 42 var (sm;) + 2m var n;’
Since var (sm;) = NS or 0 and var 2, = 2N°, this gives
var B = var b’ + 2m'NS/m* + N*/m (13d)
with h* = 2.1 s7/2m. In Cases 1, 2, and 3, var &* = 0, (m’S/m)*, and
m’S*/m* respectively. (In Case 2, m’ of the s; have one identical value

and m’ have another identical value, independent of the first.) In general

2m'—1

varh* = Q. (@m' — |[i|W(H)/2m’ (13e)

—2m'+1
where ¥(2) = Es;s;; for all j for which s;s;,; ¢ 0. This is the discrete
analogue of the integral appearing in (15k) below. It is convenient to
define a number m” (which need not be an integer) such that var h* =
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(m’S/m)*/m”. Then putting S’ = m’S/m gives
ER = N + &, var R = 8”/m” + (2NS§' + N*)/m. (13f)

The mean and variance of R are identical with those of [S”/m” +
(2NS’ 4+ N*)/m]/2(N + S§’) times a chi-square variable with

o2m = 2(N + S8)Y/[8%/m" + 2NS' + N*)/m]

degrees of freedom. So one has approximately
g = Pr(R> (k+ 1)N)

= Prixha > 20k + DN(N + 8)/[8"/m” 4+ (2N 8’ + N*)/m]} (13g)

= Priu > (kN — 8)/A/8%/m” + 2NS" + N?)/m]|
The last line ean be used to verify that for fixed m, the optimum value
of m' is m, and for fixed m’, the optimum value of m is m’. Defining ug
by Pr(u > ug) = B and solving for S/N = mS'/m’'N gives
S/N

mk + us® — us AV 2k + Dm + k'mi/m” — ug(m/m” — 1) (13h)
m'(1 — wug®/m”)

The approximation breaks down if ug® = m”.

It can be shown that by replacing the symbols m’, m”, and § in the
above formulas by m’/2, m”/2, and 28, one obtains the results for the
narrow-band ease in which the signal is a noise-modulated carrier s(t)
cos Qf, while the noise as usual has the form n(t) cos @t + n’(t) sin Qt.

In Cases 1, 2, and 3, m"” = ®, 1, and m' respectively; also, m' has
been assumed equal to m. In the de or lowpass case, m” could be as small
as 14. One has m = m' always, and m’ = m” when the signal is Gaussian
(i.e., contains no steady sinusoidal or steady de component).

When m” is very small, (13g) and (13h) are of low accuracy, and it is
much better to use (11e) or (11f), or the following generalization of
them. The derivation proceeds as if m’/m” were an integer, although this
is probably not a necessary condition for the usefulness of the results.
The averaged rectifier output is represented by

2m'" m’/m' 2m—2m !

R = ), 2, (si+ny)+ 2 nd (13i)
i=1 =1 1

where the n;; are 2m’ independent Gaussian noise variables accompany-

ing the signal variables s; (which have only 2m” independent values),

and the n; are 2m — 2m’ additional noise variables that are not accom-
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panied by a signal. Of course, the signal variables would not in reality
fall into independent sets of identieal values, so that an approximation
enters here even if m’/m” is an integer.

(137) may be written as

2m'’ m'lm*

2mR = (m'/m") Z (s: + )" + Z E (nij — 7))’

i=1 i=1 = .
(13j)

2m—2m’

+ X al =N+ m'S/m")xtm + Nxom—sn:

1

where
m'im'’
Niy = (m”/m'} Z; Nij
=
S = var s;

N = var n;; = var n;
and the two x” variables are independent. If the ratio m”(m — m”)/
(m” 4+ m’S/N)* of the variances of the latter (including their multipliers)
is small, one may replace xi,._sn.. by its mean value 2m — 2m” and ob-
tain

PrlR > (1 4+ E)N]
Prixin: > 2(m” + mk)/(1 + m'S/m"N))

=)
I

(13k)

14. COUNTING SAMPLES ABOVE A THRESHOLD

It is sometimes suggested that instead of averaging the m samples, the
number of such samples exceeding some threshold might be counted and
used as the detection criterion. This is equivalent to replacing the
average of the m samples by one of their order statistics, such as the
median.

It is of interest to ask which order statistic is best to use, and how it
compares in efficiency with the average. M. Schwartz (in the dissertation
cited previously) made numerical calculations for the case of a steady
sinusoid and m = 49, and concluded that the method of coincidences, as
he called it, required S/N to be about 1.4 db above that which sufficed
for equal performance using averages. For the larger values of m there
appeared to be a small advantage in requiring less than half the samples
to exceed the (suitably chosen) threshold. These results are confirmed
by the following asymptotic analysis.

In the absence of a signal, a single sample of half the square of the
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envelope has an exponential distribution ¢ ™" dx/N. The same (with
increased power N) is true in the presence of a noise-like signal, and ap-
proximately so for a sinusoidal signal of low intensity. Since m is assumed
to be fairly large, low-intensity signals are the interesting ones. In both
of these cases detection can be based on an estimate of N, denoted by N.

In the present method N is detérmined from p = ¢~ ¥/¥ where  is
the proportion of samples observed to exceed the threshold K. The
standard deviation e, of p is well-known to be +/p(1 — p)/m, where
p = ¢ ¥ = the“true” or expected value of . For large m the sampling
fluctuations are small and the standard deviation oy of N is approxi-
mately equal to o, times dN/dp or o, + ¢ *'¥-K/N* or

o = N(1 — p)""*/(mp)"" tn (1/p) (14a)
for counting samples as compared with

ox = N/v/m

when the average is used. So the efficiency of the counting procedure (ex-
pressed in terms of the (inverse) number of samples required for equiva-
lent reliability) is

ox'/ax = (fn 1/p)’p/(1 — p) (14b)

. . . . — (11—
This expression has its maximum value of 64.7% when p = ¢ "7

= (0.203. The median (p = 13) has an efficiency of only 48.0 %. For large
m, the required S/N varies as m"'* and so the minimum loss due to
counting is 10 logy 0.647 " = 1.0 db.

In the case of the steady unrectified de signal, the detection problem is
equivalent to estimating the mean p of a Gaussian distribution

ol(a—p)/a] dv = e " dx/o/ 2.

The estimate i of g is determined from

ﬁ =1 - (1& - #) = f e__(,_‘;]z;g,z dl/o‘\/‘j;
K

a

and the same relation holds between the true values p and p. Then
dp/dp = ¢[(K — u)/ol/c and

o = aVeE)[l — ®)]/e(®)V2m (14¢)

where £ = (K — u)/e and 2m is the number of samples. The variance
o, of the mean is o/+/2m, so the efficiency of the countng procedure is

ah/a = @' (E)/B(E)1 — B(8)] (14d)
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The following are some values of this expression:

& 0 0.5 1 2
Efficiency 63.7 % 58.0 % 43.9% 13.1%

Thus the highest efficiency of 63.7 % is attained when ¢ = 0 or the
threshold K equals the mean u. This corresponds to using the median
as the statistic on which detection is based. This maximum efficiency is
very nearly the same as that obtained in the preceding case. However,
in the present case S/N varies as m™" by (12a), so that the equivalent
loss in signal strength is not 1.0 but 10 logy 1/0.637 = 2.0 db.

15. AVERAGING BY CONTINUOUS INTEGRATION

In practice, in place of the discrete sums of squares such as (11b) and
(13a) one may have integrals such as

Ry = fo "Z0) ayT  and (15a)

Rz = f Z)e!'" dt/T (15b)

where Z(¢t) is the variable to be averaged (usually a rectifier output),
and the subscripts U/ and F refer to uniform and exponential weighting
respectively. The purpose of this section is to calculate the mean x and
variance o> of each of these expressions for various cases. It will then
be shown that for a flat spectrum and 7' — o, p and o are the same as
those already given for the discrete averages of samples. The results
are closely related to those given by Rice.”

It will suffice to consider steady signals. If the signal is absent, put
S = 0. If the signal is fading, S is a random variable. If the signal is
noise-like (with the same spectrum as the noise), put S = 0 and replace
N by N + 8. The four combinations of ac and de signals with two
methods of detection (see Section 12) will be considered separately.

The exceptional case of an unrectified de signal may be disposed of
first. Then Z(t) = v/8 + n(t) and Ry and Rg both have Gaussian dis-
tributions with mean +/S. The variance of Ry is

B ( fo ") d‘t/T)z

Writing the square as a double integral and taking the expectation under

138, 0. Rice, B.S.T.J., 24, pp. 46-156, 1945, Eqns. 3.9-8 and 3.9-28. Also J.
Acous. Soc. of Amer., 14, pp. 216-227, 1943.
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the integral sign gives

T AT
var Ry = E f f w(t)n(u) dt du/T?
0 Jo

T AT T (150)
. j; fu Yt — u) dtdu/T* = 2_/; (T — v)y@) dv/T*
where ¢(v) = En(t)n(t + v), and ¢(0) = N. Similarly
var Rg = fﬂ fn ¢ IITY(E — ) di du/T*
(15d)

= Lm e"'Tw() do/T

In the remaining three cases, Ry and Rg always have the power
N -+ S as their mean. Their distributions are not known exactly but they
might be assumed to be distributed approximately like (o°/2u)x%.2,?
where p is the mean N + S and ¢ is the appropriate variance given
below. A probably more convenient procedure is to use the p = N and
o> = o, (see 15k and ¢) for the noise alone to determine an equivalent
value N*/ay* for m, and then use Figs. 1-3.

Consider next the rectified de signal, so that

Z(t) = S + 24/8n(t) + (1)
The variance of Ry is E[Ry — S — N)’ or

2
»

E( f ") — N1dyT + 2/ f ") dt/T)

The cross-product has zero expectation. Expressing the squares as
double integrals gives

B [ [7 @0 = Niw') = N1+ 45n(On() de /7"

We now take the expectation under the integral sign. For
En’(t)n(u) = ¢*(0) + 2¢°(t — )

see M. G. Kendall, The Advanced Theory of Statistics, Volume I, Sec-
tion 3.28, equation

pe = (1 + 2p°)or’ey’
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This gives

var Ry = f f 2% — ) + 48(t — W] dt du/T*

. (15e)
=4 [ (@ = OW0) + 2590 do/ T°
A similar treatment of Ky gives
var Ry = 2 j:a TR 4 28¢()) dv/T. (15f)

The third case is that of a sinusoidal signal with instantaneous sam-
pling, for which

Z(1) = 28 cos® (@ + o) + 24/28n(1) cos (@ + ¢) + (D)

where ¢ is uniformly distributed in (0, 27). The variance of Ry is now
given by

E ( f T = NldyT + 2 fo " /35 cos (@ + o)n(t) dt/T

T 2
+ [ S[2 cos® (U + ¢) — 1] tiE/T)
1]

P f:fur [n*(t) — Nln*(w) — Nldt du/T*

: T T
E-8S f f cos (U + ¢) cos (Qu + o)n(t)n(w) dt du/T*
0 0

T T
+ E-Sﬂf f cos (29t + 2¢) cos (2Qu + 2¢) dt du/T*
0 i}
To find F cos (2 + ¢) cos (Qu + ¢), expand the cosines, note that

E cos'e = E sin®e = 15 and E cos ¢ sing = 0, and combine the re-
sulting terms. This gives

T AT
var Ry = fu fn (203t — u) + 4S¢(t — w) cos Q(t — u)
+ 148" cos 20(t — w)) dt du/T* (15g)

= —Lf (T — v)[¢*(v) + 2S¢(v) eos ] dv/T* 4+ (S*/27°0%) sin® Q7.
0
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A similar treatment of Ry gives

var Rz =

* —/ T 42 y 2 22 (]Sh)
2 fu ¢TVR) + 299(0) cos Q] do/T 4+ SH/2(1 4 4T°G)

of which the last term is the evaluation of
l?—)- j f ¢TI cos 20(8 — w) dt du/T*
& 0 0

It remains to consider the narrow-band case, with filtering after
rectification to give half the square of the envelope. As in Sections 3 and
10, the final output has the form

Z(t) = S + V25n(t) + (1) + no'(1))/2
The variance of Ry is then

E G j; [n(f) + n3(t) — 2N] dt/T + /28 j; na(t) dt/T)

The usual method of evaluation gives

var Ry = 2 fo (T — D) + i) + 28%@)] do/T*  (151)
var Ry = fo ) ¢ ) + i) + 28¢a)] do/T (15§)
where
Yo(v) = Eni(t)ni(t + v) = Eno()ne(t + v)
and

Yi(v) = En(Dna(t + v) = — Eny(t + v)na(?).

Then T — %, the ratio of the variances of Rz and R, approaches
one-half in all cases, so it will suffice to consider the latter. The spec-
trum of the noise will be assumed to be flat, of width w radians per sec-
ond. Then in (15¢) and (15e) one has ¢(v) = N sin wv/wp, and so the
variance of R is asymptotically equal to

2 f“’ N sin wv v
T Jo v

W

and

o0 2 . 2 .
%f [N sin” oo 2NS sin wuj| v
0

(wp)? wv

respectively.
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Putting y(v) = (2N/wv) sin (wv/2) cos Qv in (15g) gives

4 f” |:N’ sin’ wo/2 | 2NS sin wy/2
T Jo (wp/2)? wy/2

:| cos” Qv dv

Putting
(@) = 0, Yo(v) = (2N/wv) sin (wr/2)

in (15i) gives

'i f” [Nz sin’ u,:,/z 4 2NSsin wv/?] v
T Jo (wp/2)? wv/2

The first integral has the value #N/wT and the last three all have the
value (27/wT)(N* 4+ 2NS). Comparing these with the variances of
single samples given for steady signals in Table 1T (Section 12), and writ-
ing w/2r = W cps we see that Ry is asymptotically equivalent to 2WT
independent samples in the two dc cases, and W1T' in the ac envelope
case. The number is something above 2W 7' for instantaneous samples
of ac. These results agree with those arrived at in Section 3 and 13.
With the exception of the unrectified de signal, the differences are seen
to lie in the efficacy of an isolated sample, rather than in the long-term
rate of transport of information.

When the signal is absent, (15e) to (15h) reduce to the results of Rice
cited above:

I

var Ry = 4 j;T (T — o)W @) do/T" (15k)

and

var Rz = 2 j:a e~ w) dv)T (158)

The same is nearly true for (15i) and (15j) also, since by (3¢), vo(v) +
Yi(v) is the square of the envelope of Y(v) in the narrow-band (ac)
case.

16. OPTIMUM PROCEDURES AND THE BASIC ASSUMPTIONS

The rigorous determination of the optimum detection procedure is a
deep problem with more or less complicated answers depending on the
spectra and probably involving both discrete sampling and continuous
integration, or even differentiation.''* However, the solution of the prob-

15 J. Grenander, Stochastic Processes and Statistical Inference, Arkiv fér
Matematik, 1, p. 195, 1950, Sections 4.11 and 5.4.

15 5. Reich and P. Swerling, The Detection of a Sine Wave in Gaussian Noise.
J. Appl. Phys., 24, p. 289, 1953.

16 1), Slepian, Estimation of Signal Parameters in the Presence of Noise. Trans.
L.R.E., Professional Group on Information Theory, p. 68, March, 1954.
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lem is known as soon as one restricts oneself to independent samples
of the signal-plus-noise. Then square-law detection and averaging is
the rigorously optimal procedure for detecting a noise-like signal, and it
is virtually optimal for a steady sinusoid. The rigorous optimum in the
latter case is well-known and depends on the assumed signal power S;
if v is the amplitude of the envelope (output of a linear rectifier), then
a non-linear rectifier or other device is to be used to convert v to
log Io(vA/28/N), and the values of the latter are averaged. Iy(x) is
the Bessel function Jo(x +/—1). This corresponds very nearly to
square-law rectification when S/N is small, and linear rectification
when S/N is large. Since square-law is little different from linear rectifi-
cation, as noted in Section 1, it is also little different from the optimal.
For a steady dec signal, the optimal procedure uses the average of the
algebraic values of the samples (without any rectification); the per-
formance is given by (12a).






