Motion of Individual Domain Walls
In a Nickel-Iron Ferrite

Erratum

By I. K. GALT
(Manuseript revised January 20, 1955)

In footnote (20) to a paper! of the above title it was asserted that the
theory of magnetic after-effect* given by L. Néel? leads to zero loss for
large motions of a 180° domain wall. It has since become clear that this
assertion is based on a misinterpretation of Section 10 of Néel's paper,
and is therefore not correct. In fact, Professor Néel has pointed out in a
private communication that if the general analysis in his paper is used
to caleulate the viscous drag on a 180° domain wall, a result substantially
the same as that given by equation (38) in Reference 1 is obtained.
Néel’s theory therefore does not lead to a result inconsistent with the
domain wall data given in Reference 1; it appears to be possible to
account for this set of data with either his theory or the analysis pre-
sented in Reference 1.

The following is a derivation, which is due to Néel, of the result which
is to be compared with equation (38) in Reference 1. We start from
equation (26) of Reference 2, and use Néel’s notation:

p= —Wufutf(U}g(t — D dr (1)

Here P is the pressure due to magnetic drag, Wy is a constant which
determines the magnitude of the energy to be gained by rearranging
carbon atoms (valence electrons in the case of the ferrite) and g(¢ — 1)
is a weighting factor which takes the form
1 (r — 1)
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if only one relaxation time, 6, is involved. U is the distance between the

* Trainage.
tJ. K. Galt, B.8.T.J., 83, p. 1023, Sept., 1954.
2 1,, Néel, J. Phys. et Radium, 13, p. 249, 1952.
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positions of the wall at time r and at time ¢; f(U) is defined thus:

_aF(U)
1) = =55 @
where
FO) = -5 [ : Bu(r) du (3)

The function F(U) is an integral, over a cylinder of unit cross-section
normal to the wall, of the angular dependence of the energy F, to be
gained by rearranging carbon atoms (valence electrons in the case of the
ferrite). Further details will be found in Reference 2.

In the case of a domain wall moving with constant velocity v,

U — vr — o,

and we assume that only one relaxation time is important in the loss
mechanism. In this case Equation (1) becomes
0
p=—" [ sneay (1)
vl Ly
If we note that f(U) is an odd function (Section 8 in Reference 2) and
rearrange the limits of integration, this becomes:
P = %’ [ raneav. (5)
0

Now because of the factor ¢ ', we only get contributions to the

integral in Equation (5) from the region where U is comparable to or
less than v8. If d is the thickness of the domain wall, and if the velocity
of the domain wall is slow enough so that d >> v6, U << d in the region of
importance. We may therefore use the first term of the series for f(U)
discussed in Section 8 of Reference 2. From this we find

- _ 4];‘VCI ‘[W — 7 vl
= m . Ue dU

_ 4Wu’t)9

=35 - (6)
If we set this pressure, due to viscous drag, equal to the pressure from
the applied steady field on the domain wall, 2 M.H, , we find
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This relation is to be compared with Equation 38 in Reference 1. They
are of the same form, and in particular they both lead to the same de-
pendence of » on applied field and temperature (note that the relaxation
time 6 depends exponentially on the temperature). They both can there-
fore be used to fit the experimental data in Reference 1, and compari-
sons with other data will be necessary to distinguish between the two
approaches.






