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One of the principal sources of inlerchannel inlerference in multichannel
FM and PM systems is the dependence of the attenuation and phase shift
of the transmission path on frequency. Here we study the inierference pro-
duced by a simple kind of such a dependence, namely that due lo a single
echo. Besides being important in themselves, the results are of interest be-
cause they may be used to estimale the interference in other, more complicated
cases.

In this paper expressions are derived for the interchannel interference
produced by echoes of relatively small amplitude. Several important special
cases are studied in delail and curves that stimplify the computation of the
interference power are presented.
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INTRODUCTION

The systems we shall consider are of the FDM-FM and FDM-PM
types; that is, systems in which the composite signal wave (the “base-
band signal””) from a group of carrier telephone channels in frequency
division multiplex (FDM) is transmitted by frequency modulation (FM)
or phase modulation (PM). Such methods are currently being used in
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the Bell System to send large groups of telephone channels by microwave
radio. If the FM signal is accompanied by echoes, which may be due to
reflections in the equipment or in the transmission medium, the wave of
instantaneous frequency versus time is distorted in a nonlinear manner
and interchannel interference occurs. Here we shall be concerned with
this interference.

The distortion has been analyzed in a number of previous publica-
tions™ for the case in which the base-band signal may be represented
by one or more sine waves. However, when the number of telephone
channels is not small, the sine wave representation becomes unwieldy
because a large number of both low and high order modulation products
must be considered. Here we avoid this difficulty, at the cost of some-
what more complex analysis, by using a band of random noise to repre-
sent the multiplex signal.

Tt has been found in practice that such a random noise signal of appro-
priate bandwidth and power adequately simulates a composite speech
signal. For studies involving interchannel interference the energy cor-
responding to some particular telephone channel is removed. When such
a wave is impressed on the frequency modulator and the resulting FM
wave is transmitted, detected, and finally demodulated, the received
output in the originally clear channel represents interchannel interfer-
ence. Measurements of this type have been discussed by Albersheim
and Schafer.®

One of the principal sources of interchannel interference is the vari-
ation of the attenuation and phase shift of the transmission path with
frequency. An echo produces a simple form of such a variation. In fact,
it is often possible to estimate the effect produced by a more complex
type of variation by comparing it with a roughly equivalent echo.

It is the purpose of this paper to develop formulas for the interchannel
interference produced by echoes of relatively small amplitude in FM
and PM systems. General expressions are given in the form of definite
integrals which may be evaluated by numerical integration. Approxima-
tions are obtained in a number of cases of importance and numerical
tables and curves are furnished to facilitate applications to specific prob-
lems.

We wish to express our thanks to Miss Mary Corr and Miss Barbara
Fischer who have performed the rather lengthy computations required
for this investigation.

1. DEVELOPMENT OF GENERAL FORMULAS

Since the tolerable amount of interchannel interference in multiplex
telephony is small, the practically important situations are characterized
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by echoes which are relatively small relative to the main transmitted
wave. It is necessary to consider in detail only the case of one small echo.
Effects of small multiple echoes may then be calculated by superposition
of the effects of single echoes. Our distortion problem then reduces to
the following: An original signal

Ey(t) = E sin [pt + ¢()] (1.1)
is received along with an echo
Et) =rEsinpit — T) + ot — T)] (1.2)

Here r represents the ratio of echo amplitude to the amplitude of the
prineipal received component, p is the unmodulated carrier frequency,
T is the delay difference of the paths and ¢(f) is the phase variation
caused by the multichannel signal.

Calculation of the phase of the original signal plus its echo is equivalent
to caleulating the value of 8 in the representation

sinz + rsin (x +y) = Vsin(x + 6) (1.3)

with 2, v, r, V, and 6 real numbers, V" and 8 are determined as functions
of r and y by the two equations obtained from the sin x and cos x por-
tions of (1.3). When » << 1, V approaches unity, and @ is proportional to
r; direct expansion in powers of 8 shows that to a first order approxima-
tion

6 =rsiny (1.4)
In our case,
= pl + (1) (1.5)
y =t =T) — o(t) — pT (1.6)
Hence the phase error produced by the echo is
8(t) = rsin [v(t) — pT], (1.7)
o(t) = ot — T) — o(0). (1.8)

Our problem is to study the power spectrum of 8(f) when ¢(f) is a random
noise wave.

The treatment will be restricted to the practically important case in
which the noise source is free from de and discrete sinusoidal components.
A sufficient mathematical condition, which we shall adopt to insure this,
is that the power spectrum of the noise have limited total fluctuation.
We shall assume also that the noise wave is a member of a Gaussian
ensemble and hence that all the statistical properties are derivable from
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either its power spectrum or autocorrelation function. Which of the two
quantities we use at any stage of the computations is a matter of relative
expediency. We shall adopt a uniform notation in that an ensemble of
time functions x(t) will be said to have a power spectrum w.(f) and an
autocorrelation function R:(7), ie.,

R.(r) = ave [z(D)z(t 4+ 7)] = [ﬂ w,(f) cos 2rrf df (1.9)

w,(f) = 4 fo‘” R.(7) cos 2xfr dr (1.10)

The power spectrum is proportional to the mean square of the response
of a filter of bandwidth df centered at f when z(¢) is applied as input.

In the echo distortion problem, the power spectrum w,(f) is the quan-
tity given and the power spectrum wy(f) is the one desired. The cor-
responding autocorrelation functions R,(7) and R,(r) are calculable from
the corresponding power spectra and vice versa. The power spectrum is
the more convenient choice as a function to compute when we deal with
the noise response of a linear system with known transfer admittance
Y (if), since the power spectrum of the response is merely | ¥ (#f) [* times
that of the input. For example, differentiation is equivalent to transmis-
sion through a transfer admittance #2xf and hence multiplies the power
spectrum by 4x°f*. The inverse process of integration divides the power
spectrum by 47°f*. When a highly nonlinear operation is performed on the
noise, or when the operation is a linear one more simply described in the
time domain, the autocorrelation function may be simpler to compute.

The first step in the solution of the problem is to evaluate the statis-
tics of the noise wave ensemble,

@) = {et = 1) — e(1)} (1.8)
in terms of the statistics of ¢(f). This can readily be done in terms of
power spectra by calculating the transfer admittance of a two-path trans-
mission system such as the right-hand member of (1.8) defines, or in
terms of autocorrelation functions by averaging the appropriate time
funections. The latter procedure gives:

R,(r) = ave [u(®) v(t + 7)]
ave {[p(t — T) —ele(t — T + 7) —e(t + )]}
ave [p(t — T) ot — T + 7)] + ave [p(?) (t + 7)]
—avefp(t — Tt — T + v+ 1]
— ave [p(t) ot + 7 — T)]
2R, (7) — Ro(r + T) — Ry(r — T)

(1.11)

I



INTERCHANNEL INTERFERENCE IN FM AND PM SYSTEMS 605

In the averaging process we have made use of the facts that the average
of the sum is equal to the sum of the averages and that ¢(Z) is a stationary
ensemble, allowing us to replace { — T by ¢ when averaging. Since the
two-path transmission system is linear and invariable, the #(f) ensemble
remains Gaussian. The corresponding power spectra relations are, from

(1.10),
w,(f) = 4 wy(f) sin® =fT 112

Our next step called for by (1.7) requires the evaluation of the auto-
correlation function of a sine function of a band of noise. The solution
may be obtained* from (3.2 —7) of Reference 5, which gives a general
theorem for a Gaussian noise ensemble expressible in our notation as

ave {exp [iaz(t) + bx(t + 7)]]
ey (113)
2

=exp|[ — R.(0) — abR.(r)]

In this equation @ and b are real constants. Multiplying both sides by
the constant exp (78), B real, and equating real parts gives the more
directly applicable result:

ave {cos [ax(t) + bx(t + ) + B]}
(1.14)

= exp [— e _j; 5 R.(0) — asz(r)] cos 8

Referring now to (1.7) we write

Ro(r) = ave {rsin [v@®) — »T] r sin vt + =) — pT]}

g—zave {cos [v(®) — v(t + D]}

f
2

ave {cos [v(t) + v(t + 7) — 2pT]} (1.15)

= gexp [— R.(0) + R,(+)]

o

— gexp [— R.(0) — Ru(s)] cos 2pT

2
r —R,,(())[pﬁ“,(r) _ R0

3¢ e cos 2pT]

* This application of the characteristiec functions method of attack has been
employed in similar situations by D. Middleton in Reference 6 and M. K. Zinn
in unpublished memoranda.
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Note that since the operation of taking the sine is nonlinear, the 6(t)
ensemble is not Gaussian and neither the power spectrum nor the auto-
correlation is sufficient to give a complete statistical description. Either
will be sufficient for our purposes however.

The power spectrum of the distortion ensemble (/) is now determin-
able from the Fourier cosine transform of 4 Ry(7) as indicated by (1.10).
The remaining steps are simplified, however, if we perform two pre-
liminary operations on Ry(r) before the final Fourier transform is calcu-
lated.

We first observe that if R,(7) contains a component €' which does not
vary with r, the ensemble 8(¢) contains a de component 8 = +/C. The
presence of ¢ complicates the integration and hence we subtract out such
a term before taking the Fourier transform. The value of ' is given by

C = lim Ry(r)

T+

= ;—_e”"“(") lim [®*™ — ¢ ** cos 2pT) (1.16)

2
= ;—e_"'(m(l — cos 2pT)
In calculating the limit we have made use of the fact that, for our as-

sumed noise wave, R,(r) must approach zero as = becomes infinite. Our
autocorrelation function of interest is thereby reduced to

Ry_i(r) = gc‘"v‘"’ (eF™ — 1 — [¢ ™7 — 1] cos 2pT} (1.17)

which is the autocorrelation function of the ensemble 6(f) — 8.

Our second preliminary operation on Re(7) is suggested by our ulti-
mate goal, namely the calculation of the interchannel interference spec-
trum w.(f) (i.e., w.(f) df is the average power received in an idle channel
of width df when the other channels are carrying signals). We note that
the spreading of the original spectrum into initially vacant frequency
ranges occurs solely because of the nonlinear dependence of Rs_3(r) on
R.(7). The disturbance received in an idle channel is therefore produced
by this nonlinearity. The part of R, s(r) which varies linearly with
R.() may be expected to represent the linear transmission, and the
difference between R,_3(7) and its linear portion to represent the non-
linear transmission. In other words, subtracting the linear portion from
Rs_i(7) is equivalent to removing the linear transmission from any
channel without disturbing the nonlinear contributions from the re-



INTERCHANNEL INTERFERENCE IN FM AND PM SYSTEMS 607

maining channels. These considerations lead us to set the autocorrela-
tion function R.(7) corresponding to w.(f) equal to Ry_z(7) minus its
linear portion. The work of Appendix I shows that this equality is
rigorously true.

In order to perform the subtraction it is convenient to write (1.17) in
the form

Ro_a(r) = F[R.(7)] (1.18)

where in our case for a general variable z,

2
;—e"”“"[e‘ — 1 — (7 = 1) cos 2pT] (1.19)
The portion of Ry 5(r) which varies linearly with R.(7) is F’(0) R.(r)
where

F(z) =

F'(2) = %—c_”"“” (e" + e ° cos 2pT) (1.20)

7(0) = ;_"e‘"v“"u + cos 2pT) (1.21)

According to the foregoing discussion and Appendix I, the autocorrela-
tion function and the power spectrum of the interchannel interference
are given by

Ro(r) = Re_i(r) — F'(0)R.(+)

2

= ge‘”v‘“){e"v‘*’ — 1 — Ru(r) (1.22)
— [ — 1 4+ R,(r)] cos 2pT)}
we(f) = 4 j‘m R.(r) cos 2xfr dr (1.23)
0

The power spectrum of 6(t) — 8 may be simply expressed in terms of
w.(f) without further integration. We find by applying the Fourier trans-
form relationship of (1.9) and (1.10) to (1.22):

we—s(f) 4 fn"‘ [R.(7) + F'(O)R,(7)] cos 2xfr dr

we(f) + F'(0w,(f) (1.24)
w(f) + 4F (0)w,(f) sin® =fT
w(f) + 2 V(1 + cos 2pTw,(f) sin® xfT

I
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where we have used (1.12) and (1.21). The power spectrum wy(f) of 6 is
obtained by adding to (1.24) a spire at f = 0 to represent the power in
8, the dc portion of 8.

The results obtained up to this point may be summarized as follows:
Let o(t) be the phase variation produced by the impressed multichannel
signal. The echo (1.2) produces a phase error 6(t) (1.7) in the received
signal. 0(¢) has a de component 8 given by the square root of (1.16).
8(t) — B is a function of time which fluctuates about zero and has the
power spectrum wy_;(f) given by (1.24). Now consider the problem of com-
puting the interchannel interference. One procedure would be to consider
the case in which all but one of the channels are loaded. Then the power
spectrum w,(f) of ¢(t) would have a narrow slot in it corresponding to the
zero power in the unloaded channel. The values of wy_p(f) computed from
this w,(f) for values of f within the slot would give the channel inter-
ference spectrum (for phase modulation). However, it turns out that as
the slot width approaches zero, these values of ws_s(f) approach those of
w,(f) where w,(f) is computed from (1.23) on the assumption that all
channels are loaded. In other words the w,(f) used in the calculation of
(1.23) has no slot. (Actually the same value of w,(f) is obtained whether
w,(f) has a slot or not. Of course, the slot must be vanishingly narrow).

Almost all of the preceding work pertains to the power spectrum of the
phase error 8(1). For the sake of completeness we shall give the power
spectrum of the complete phase angle, Q(f) = ¢(f) + 0(t), of the output.
In order to obtain all of the 0(+°) term it is necessary to add another
term to the approximation (1.7):

0(0) = r sin o(0) — pT] — I sin [20(0) — 20T + 0G)  (1.25)
The autocorrelation function for Q(f) may be shown to be
Ro(r) = Ry(r) + Re(7) + ave [p(1) 8(t + 1) + ot + 7) 0(1)]
Ro(r) + Ro(r) — rRo(7) ¢ """ cos pT (1.26)
+ r"Ro(r) ¢ @ cos 2pT + 0(r")
The average has been evaluated by using
ave {o(t & 7) sin fp(t — T) — () — pT1}
= [RT £ 1) — Ry()] cos pT exp [R,(T) — R,(0)]

and the corresponding result for 2¢ and 2pT (Rap(r) = 4R (7). Equa-
tion (1.27) may be obtained from the result similar to (1.13) which con-

(1.27)
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tains the three variables ¢(t), ¢(t &= 7), ¢(t — T) instead of x(f) and
z(t + 7).

The power spectrum wg(f) of @(f) may be obtained from (1.26) by
replacing the autocorrelation functions in the coefficients by the cor-
responding power spectra. By using (1.24) we may obtain the following
expression for the power spectrum of the fluctuating portion Q(f) —@ of
Q(t), @ = 8 being the de portion of Q(t):

we_a(f) = wo(f) + w(f) + we(f)[—7r ¢ ™" cos pT
+ ¢ cos” pT + #* ¢ cos 2p T (1.28)

The expression (1.12) for w,(f) shows that it is proportional to w,(f).
Hence, assuming w,(f) to have a narrow slot corresponding to an idle
channel, it is seen that (1.28) is in agreement with the fact that only w.(f)
contributes to the interchannel interference spectrum.

We remark that for echoes produced by reflections in wave guides the
angle 2pT in (1.22) and (1.24) usually contains many multiples of 2.
In most cases it would in fact be reasonable to average the effect of the
term cos 2pT' by assuming the angle to be uniformly distributed through-
out 2r radians. This gives the result zero for the term since plus and
minus values are symmetrically distributed. We shall, however, carry
the term along in our formulas since it is of importance when the delays
are small, as in multipath radio propagation, and when our results are
used to estimate interchannel interference in general.

2. APPLICATIONS TO FLAT NOISE SIGNAL

In general w,(f) depends on the type of preemphasis used in the chan-
nel multiplex signal. T'wo representative conditions will be studied: (1)
phase modulation (PM) in which channels at equal level are impressed
on a phase modulator, or the more usual equivalent situation of equal
level channels which are differentiated before being impressed on a fre-
quency modulator, and (2) frequency modulation (FM) in which chan-
nels at equal level are impressed on a frequency modulator. The appro-
priate power spectra are:

PM: w,(f) = Py, Cfa<f<h (2.1)
FM: w,(f) = Po/4r'f', fo <[ <fo (2.2)

-

The latter form results because the phase is the time integral of the in-
stantaneous frequency, which has a flat spectrum. In PM, P, is expressed
in (radians)’/cps, but in FM, P, is expressed in (radians/sec.)’/cps. In
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the case of most common practical interest, the band of frequencies be-
tween 0 and f, is relatively narrow compared to the range f, — fo . We
have accordingly assumed that f, approaches zero. In the FM case we
cannot set f, = 0 immediately because the power spectrum would then
become unbounded at the origin. It is found, however, that finite limits
are approached for the actual quantities of interest which we compute.

When the spectrum w,(f) of the signal has the form (2.1) or (2.2),
expression (1.23) for the interchannel interference spectrum may be
written as

wo(f) = r@rfy) (G — H cos 2pT) (2.3)
where w.(f) df is measured in (radians)” and
G = 24 O f [ — R,(r) — 1] cos au du (2.4)
0
H = 2¢O f [ 4+ R,(r) — 1] cos au du (2.5)
0
u = 21!‘be U = 27rbe a = f/fb (26)
For PM:
_ 2sinu _ sin (w+ U) _sin (w — U):|
Bir) = P"fbl: u u—+ U u—U 27)
where Pof; is the mean square value, in (radians)®, of the PM signal
e(t)-
For FM:

Ro(r) = A[—2(1 — cos U)cos u — 2uSi(u)
+ (u + U)Si(u + U) + (u — U)Se(u — U)] (2.8)
A = (Pofs)/@nfs)*

In (2.8) Pyf, is the mean square value (measured in (radians per second)’)
of the FM signal ¢'(t). Consequently, A = (o/, f,)" where ¢ is the rms
frequency deviation, in cycles per second, of the signal. Equations (2.7)
and (2.8) follow from (2.1), (2.2) and (1.11).

When R.(0) is small compared to unity, the same is true of R,(7), and
(2.4) and (2.5) lead to the approximations
G~ H~ f R (7) cos au du O (29)
0

The interchannel interference calculated from (2.9) is that produced by
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the “second order modulation products” and is studied, together with
other approximations, in Sections 3 and 4.

The quantity of interest in practice is the ratio of average interference
power in the idle channel to average signal power in an adjacent channel.
For PM the average interference and signal powers (in a narrow channel
centered on frequency f) are the channel bandwidth times w.(f) and
wy(f), respectively. When the number of channels is large, the power
spectrum does not change appreciably in going from one channel to the
next and we may write

?'2
= = ——" = —— (G — H cos 2pT 2.10
Py~ wy(f)  3aPufy | PT) (210)
as the desired interference-to-signal power ratio.

For FM the average interference and signal powers in a narrow channel
are (2mf)* X (channel bandwidth) times w.(f) and w,(f), respectively.
These powers are measured in (radians per second)’. When we take the
ratio P;/Ps , the (2xf)? X (channel bandwidth) eancels out and we have
from (2.2) and (2.3)

P, r'a’

3. APPROXIMATIONS FOR G AND H — PHASE MODULATION

Table 3.1 contains various approximate expressions for the quantities
(' and H which enter expression (2.3) for the channel interference spec-
trum w,.(f). The notation is explained in Section 2, and the results apply
to the case in which w.(f) has the flat power spectrum (2.1).

Case 1 gives the exact expressions developed in Section 2. Case 2 is
the “second order modulation approximation”, valid when R,(0) < 1.
Evaluation of the integral (2.9) for G with the help of

[Tomsin e~ ) 0
xU™" cos ﬂj sin U—Ci]), 0=a=2
= 2 2
| 0 2=<a

L )

leads to the following expression for the quantity J appearing in Table
3.1:
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TaBLE 3.1 — PaAasE MODULATION

Case |Restrictions on P ters. .

No. i gl:;m Po;;uml: G and H Notcls

1 | No restrictions,
w,(f) defined by
(2.1)

@ defined by (2.4)
H defined by (2.5)
R .(r) defined by (2.7)

Pofy = ave [¢*(1)]
P; _ e
P,. 21|'Pofb

(G — H cos 2pT),
U = 21rbe,
a = f/fp

sin U)
U

<1

2 [2Pofi (1 -

3 PofiU?3 « 1,
Ul

4 2Pfy « 1
U1

G = H = 2x(Pf,)2], J defined
by (3.1)

“2nd Order Modu-
lation” a 1prox.,
J tabulate
Table 3.2 10 ]Dglu
J plottecf in Fig.
5.1

G = = 2m(Pofy)* 240

-[12 — 30a + 20a* — a®]

Special case of Case
2

G =~ H =~ 2 (Pofs)?

(75 ()

Special case of Case

G is a rapidly oseil-
lating function of
a

5 Pofbw/'! > 1,
« 1

V

H,
1 TF/IUIIJ rg)lfz
exp (—10a2/4P,f,U?)

When U « 1
Case 3 applies when
Pofy is small
Case 5 applies when
Pofy is large

(‘ = e[l (hy , @)

+ 2[(by, a) cos al/],

H = e bl (=bo, a)
+ 2I(—b:, a) cos al],
be = 2Pofs , b = —Pyfs

I(b, a) studied in Appendix ITI

When Pof, « 1,
Case 6 reduces to
Case 4. WhenP,f,
»>1,G» H. Asa
increases, (7 oseil-
lates between GV
and G~ given in
Table 3.3. See
Table 5.1

cos al

sin (2U — al)

)+

4U

%cos (%g) sin (U —

(3.1)

%)
2

Values of J are tabulated in Table 3.2 for various values of a and k

where U

= kr/4 (or T =

k/(8f,)). J is zero when a exceeds 2.

Cases 3 and 4 in Table 3.1 follow directly from Case 2. In order to
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TaBLE 3.2 — VALUES oF J

k =0 0.25 0.50 0.75 1.00 1.25
0 0 0 0 0 0 0
1 0.018 0.009 0.003 0.001 0.002 0.004
2 0.227 0.115 0.041 0.011 0.023 0.057
3 0.794 0.434 0.161 0.049 0.098 0.231
4 1.500 0.903 0.352 0.123 0.250 0.524
5 1.924 1.284 0.527 0.224 0.458 0.816
6 1.924 1.385 0.585 0.332 0.659 0.936
7 1.712 1.231 0.505 0.427 0.773 0.800
8 1.500 0.994 0.375 0.506 0.750 0.494
9 1.335 0.800 0.325 0.579 0.602 0.228
10 1.245 0.658 0.425 0.657 0.405 0.180
11 1.307 0.544 0.643 0.725 0.262 0.358
12 1.500 0.472 0.883 0.752 0.250 0.601

obtain Case 5 we note that when U <« 1, expression (2.7) gives

2 .
d” sin u
du?

R.(r) & —U°Pofs (3.2)
The corresponding integrals for ¢ and H could, if required, be investi-
gated by the methods used to study Lewin’s integral in Appendix III.
However here we consider only the case where U°Pyf, is so large that (1)
exp R.(r) is the dominant term in the integral (2.4) for &, and (2) most
of the contribution to the value of the integral comes from the region
around u = 0. The results for Case 5 then follow from (2.4) and the fact
that (3.2) becomes
2 1o
A7) = UP - —
R (T) U Py fo (3 1 O)

When U > 1, expression (2.7) shows that R,(7) is small except when

1 1s near 0 or near U:
Ro(7) & 2 Pyfy ' sin u, u near 0 3.3)
Ro(7) & —Pofs(u — U)"'sin (u — U),  wunear U )

These approximations, expression (2.4) for &, and the definition (A3-1)
of I(b, a) give the results stated in Case 6. Just as in Case 4, ¢ is a
rapidly oscillating function of a when U is large. It oscillates between
G and G~ where

GF = ¢ (b, a) & 2I(by, a)] (3:4)

Values of @7 and G are given in Table 3.3 for various values of a =
1/fy and Pgf [in (radians)].
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TABLE 3.3 — VALUES oF G AND G—. THE UrPER NUMBER OF AN ENTRY
18 G* anDp THE Lowrr NUMBER Is (7.

(mgi“gﬁs), a=0 0.25 0.50 0.75 1.00 1.25
0.25 0.384 0.338 0.292 0.245 0.197 0.148
0.160 0.144 0.126 0.107 0.087 0.066

0.50 1.018 0.906 0.789 0.665 0.537 0.406
0.504 0.464 0.415 0.357 0.291 0.222

0.75 1.55 1.39 1.22 1.04 0.845 0.645
0.89 0.83 0.75 0.65 0.533 0.411

1.00 1.90 1.73 1.53 1.32 1.07 0.830
1.22 1.15 1.05 0.92 0.76 0.596

2.00 2.16 2.04 1.88 1.68 1.43 1.17
1.86 1.80 1.68 1.52 1.31 1.07

4.00 1.59 1.56 1.50 1.40 1.28 1.14
1.57 1.54 1.48 1.40 1.28 1.14

4. APPROXIMATIONS FOR G AND H — FREQUENCY MODULATION

The various cases which we shall consider for FM are roughly similar
to those considered in Section 3 for PM, and are listed in Table 4.1. The
power spectrum w,(f) is assumed to be that given by (2.2). As pointed
out in Section 2, the average FM signal power in a narrow channel of
width Af center ed on frequency f is assumed to be PyAf (radians/ second)®
fo<f<fe and zero if f, < f. The average interchannel interference
power is 2xf)* w.(f)Af (radians/second)’. When f > f, this gives all of
the power present in the frequency interval Af.

Case 1, Table 4.1, gives the exact expressions for G and H, and Case 2
corresponds to the “‘second order modulation” approximation which
holds when R.(0) < 1, R.(0) being computed from (2.8). K is a function
of a = f/fy and U = 2xf,T which may he obtained by writing the in-
tegral (2.9) as

~ wfp f RA7)eE™ dr = —l_lwfbf w(x)w,(f — x) dx (4.1)
where R,(7) and w,(f) are taken to be even functions. From the defini-
tions (1.12) and (2.2) for w.(f) and w,(f) we have
Po(xf) ™" sin® «fT, [7] < fo

(4.2)
0, 71> 1

‘wr(f) =
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TABLE 4.1 — FREQUENCY MODULATION

Case
No.

Restrictions on

(2.2)

H defined by (2.5)
R.(r) defined by (2.8)

Parameters U and A Gand I Notes
No restriction, @ defined by (2.4) = (o/fn)?,
w,,(f deﬁned by ¢ = rms

[de(t)/dt]/2m,
¢ = rms frequency
deviation of
signal meas-
ured in ey-
cles/aec

['f"a’/ (2rd)]
— H cos 2pT]

2A[USI(U) — 1 G = H = 2rA%2 UK “2nd Order Modu-
+ cos U) « 1 K defined by (4.5) and (4.6) lation’’ approx.
K tabulated in
Table 4.2. See
| Fig. 5.2
AU « 1, G =~ H =~ 7AWU*(2 — a)/4, Special case of Case
U« 1. 0=a=2 2
UK = a®U*2 — a)/8
AUr « 1, 27242Ua 2, 0 < a < 1| Special case of Case
Us1 G = H = {n?A*U, a=} 2
s a >

U « 1, Lewin’s case

G = e t[(b, a)
H = e tI(—b, a)
b= AU?

Case 5 agrees with
Case 3 when b
« 1. G > H for
b 1. I(b, a) de-
fined and tabu-
lated in Appen-
(51ix III. See Fig.

4.

44 > 1, = [ry/(A sinh y,)]'/? G>»H
U>1 exp [—24 (cosh y;, — 1)]| Value of G is in-
dependent of U.
t yr defined by See Fig. 5.3.
a _ Y sinh v o
24 b v
B> 1 G = [x/B]'"* exp [—a*/(4B)] G>»H
U =
' B=A[l-U “iginl’]
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where the lower limit f; of the frequency band is taken to be very close
to zero. When f > 2f, the value of (4.1) is zero. When we take 0 < f <
2f, the limits of integration in (4.1) are x = f — f and = f, . Changing
the variable of integration in (4.1) from 2 to ¥ = 2maT converts (4.1)
into

y a — y) sin’ Y sin® (a—'_?-’l> dy (4.3)
v 2 2

where @ = 2xfT = aU. By partial fractions
Yy a—y T =y 2y (@ Y+ 207 (@ — )T (44)

47 A*U? fu

a—

Considerations of symmetry show that the o — % terms on the right
contribute the same amount to (4.3) as do the y terms. When the 3~
term is converted into ' by an integration by parts, (4.3) may be ex-
pressed in terms of Si(x) and Ci(x) functions. In this way it may be
shown that the approximation (4.3) for ¢ and H has the value

2rA’UK /o’ = 2x AU K/d*
where
K= (—U"4+ "1 — cos U)1 — cos )
+ (S U — SiB)(1 + cos @ — 2a” " sin a)
+ (8i2U — Si28)(— cos @ + o sin a) (4.5)
+ (Ci2U — Ci2|B| — Ci U + Ci|B|)(sin @ + a cos a)
+ (2 + cos a)llog. (U/|B]) — Ci U + Ci|B]]

Here « = aU and 8 = a — U = (a — 1)U. When f = 2f,, a has the
value 2 and K is zero, as it should be. When f = f,, i.e., when a = 1
and a = U,

K=(04cosU —2U "sinU) Si U
+ (—cos U + U 'sin U) 82U
+ (Ci2U — Ci U — loge 2)(sin U + U " cos U)
+ U™ (2 + cos U)(log, U + .577.. — Ci U)

(4.6)

Values of K are tabulated in Table 4.2 for various frequencies and de-
lays (@ = f/fy and k = 4U/7x = 8f,T). Cases 3 and 4 in Table 4.1 show
that when U is very small K = a’U*(2 — a)/8 and when U is very large
K =~ =, m/2, or 0 according to whethera < 1,a = 1, ora > 1.

Case 3 in Table 4.1 is a special case of Case 2 which may be obtained
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TaBLe 4.2 — Vavrues or K

k a=0 0.25 0.30 0.75 1.00 1.25

0 0 0.0 0.0 0.0 0.0 0.0

1 0 0.006 0.022 0.041 0.058 0.068
2 0 0.048 0.164 0.305 0.422 0.473
3 0 0.141 0.490 0.890 1.20 1.26
4 0 0.286 0.961 1.74 2.19 1.45
5 0 0.453 1.57 2.64 3.05 2.62
6 0 0.673 2.16 3.36 3.41 2.45
7 0 0.897 2.69 3.68 3.13 1.73

8 0 1.14 3.13 3.65 2.40 0.883
9 0 1.39 3.45 3.34 1.62 0.370
10 0 1.66 3.68 2.95 1.20 0.378
11 0 1.93 3.79 2.64 1.32 0.741
12 0 2.20 3.79 2.51 1.89 1.10

by letting U become very small in (4.3). The value of P;/Ps correspond-
ing to Case 3 has been given by Albersheim and Schafer.” Case 4 may be
obtained by letting [/ become large in (4.5) and (4.6).

When U is very small, expression (2.8) for R.(r) becomes

Ro(r) &~ AU sin u (4.7)

Assuming A U* <« 1 and substituting (4.7) in the “second order modula-
tion” approximation (2.9) for @ and H gives us another derivation of
Case 3 (see (A3-2)). However, if the rms frequency deviation of the signal
is so large that AU * is not small, even though U/ < 1, we have Case 5,
the case investigated by Lewin.” The formulas given in Table 4.1 are ob-
tained when (4.7) is set in the integrals (2.4) and (2.5) for ¢ and H, and
the results compared with the definition (A3-1) of I(b, a).
When U is very large, expression (2.8) for R,(r) becomes

AlxU — 2 cos u — 2uSi(u)], 0<u<U
R,(7) =~ (4.8)
0, U<u

Substituting (4.8) in (2.9) and integrating by parts twice leads to another
derivation of Case 4. The expression for ¢ given in Case 6 is obtained
from (4.8) and (2.4) by the method outlined in Appendix II. A=xU is
assumed to be so large that most of the contribution to the value of the
integral (2.4) for ¢ comes from the region around u = 0. It is also as-
sumed that R,(7) + 1 is negligible in comparison with exp R,(r) in this
region. This leads to the approximation

oo
24 [1—cosu—uSi
(G~ 2[ A tmeosumusiCal o qu du (4.9)
0

which holds when U 3> 1 and A=U > 1.
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The expression for @ in Case 6 is merely the leading term in the asymp-
totic expansion arising from the saddle point at u = 4y, . When further
terms in this expansion are obtained (using, for example, equation
(10.4) of Reference 7) it is found that the expression for Case 6 should be
multiplied by

- 2, —1
4 Ues — 5y + 5 2l (4.10)

1 1845

where ¢ and s denote cosh 3, and sinh y, , respectively. The next term
consists of 1/4° times a function of y;, and so on. When y; becomes
small, as it does when A becomes large or a becomes small, (4.10) becomes

p4 Lo, 103

184 138044: T

However, comparison of Tables 4.3 and 4.4 shows that the formula of
Case 6 gives fairly reliable values of G when A is as small as 0.5 (U must
be large, of course).

When (1 — a) is small and A4 < 1, but U still large enough to make
AxU > 1, (4.9) gives

~ Aa’* l:w + 2 arc tan (1A—1ra)] + 0(A*/d") (4.11)

This may be obtained by letting A become small in
G ~ 4(A/a)" f IS F du (4.12)
0

y =1— cosu — uSi(u)
F = —2 cos auSi(u) + S{[(1 — a)u] + Si(1 4+ a)u]

which may be obtained from (4.9) by integrating by parts twice.

The formula for @ given in Case 7, Table 4.1, is obtained when U is
taken to be of order unity and A is assumed to be so large that only the
exponential term in the integrand of (2.4) is of importance. Most of the
contribution comes from around v = 0 where

RD(T) = RU(O) — 'HEA(I —_ U_l sin U) + .-
When U 3> 1, and A > 1, Cases 6 and 7 both give
G~ (r/A)" exp [—a*/(44)]

which leads to an expression for P,;/Ps similar to one given by Alber-
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TaBLE 4.3 — VALUES oF (¢ AND H OBTAINED BY NUMERICAL

INTEGRATION
a =10 0.25 0.50 0.75 1.00 1.25
Gfor UV =3
A =0.125 0.690 0.651 0.599 0.466 0.326 0.224
0.25 1.53 1.46 1.29 1.06 0.808 0.561
0.50 2.17 2.09 1.97 1.63 1.38 0.993
Hfor/ =3
A =0.125 0.424 0.393 0.335 0.260 0.182 0.111
0.25 0.574 0.528 0.447 0.339 0.233 0.136
0.50 0.283 0.255 0.211 0.156 0.104 0.039
Gforl/ =6
A =10.125 2.62 2.42 1.85 1.18 0.631 0.257
0.25 3.26 3.05 2.50 1.81 1.17 0.695
0.50 2.55 2.46 2.21 1.86 1.47 1.10
HforU =6
A =0.125 0.802 0.705 0.465 0.227 0.067 0.0031
0.25 0.266 0.231 0.148 0.064 0.0126 0.0035
0.50 0.0092 0.0079 0.0048 0.0018 0.00017 0.00019
A = 0.0625 0.1235 0.25 0.50
G fora =1
[7=1.5 0.0126 0.045 0.155 0.446
3 0.111 0.326 0.808 1.38
6 0.245 0.631 1.17 1.47
12 0.300 0.657 1.16 1.47

sheim and Schafer® for long delay. When U <« 1 and AU* > 1, Cases 5
and 7 both give

G~ 6rA™ U exp [—3a* A U /2

Before the approximations listed in Table 4.1 were developed, a number
of values of ¢ and H were obtained from (2.4) and (2.5) by numerical
integration. These values, given in Table 4.3, are the best we have and
may be used to check the various approximations.

As an example of the values given by our approximations we take
the case ' = 6. In Table 4.4, “G — Case 6" has been computed from
the formula given in Case 6, Table 4.1 (which assumes [/ — = ). When
these values are compared with the corresponding ones in Table 4.3, it
is seen that the agreement is not good for A = 0.125. Better agreement
is shown by “G — Improved Case 6 in which the values are computed
from (2.4) and (4.8) by the method of Appendix II. It differs from “Case
6 in that F(u) of (A2-1) isexp [R.(7)] — R.(r) — 1 instead of merely
exp [R.(7)].
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TABLE 4.4 — APPROXIMATE VALUES oF G vor U = 6

a=10 0.25 0.50 0.75 1.00 1.25
G—Case 6

A =0.125 5.01 4.13 2.54 1.32 0.63 0.28
0.25 3.54 3.26 2.58 1.80 1.14 0.66
0.50 2.51 2.42 2.17 1.82 1.43 1.06

G—Improved Case 6 .
A = 0.125 2.62 2.37 1.74 1.06 0.56 0.26
0.25 3.17 2.94 2.39 1.72 1.10 0.66
0.50 2.50 2.41 2.17 1.82 1.42 1.06

5., INTERCHANNEL INTERFERENCE POWER

The values of P;/Ps , the ratio of the interchannel interference power
to the signal power, may be computed from the formulas (2.10) and (2.11)
when G and H are known. One would like to have curves giving P;/Ps
for representative combinations of echo delay, signal power, and channel
position which are likely to oceur in practice. However, the large number
of such combinations coupled with the difficulty of computing G and H
leads us to restriet ourselves mostly to curves for Cases 2 and 6 in Tables
3.1 and 4.1. In all cases the signal power Ps (per cps) is taken to be equal
to the constant value P, (measured in (radians)’/cps for PM and in
(radians/sec)’/cps for FM) over the signal band (0, f,), and is zero out-
side this band.

Case 2 is the “second order modulation” approximation which, roughly
speaking, applies when the echo delay is very short or when the rms devi-
ation of the phase angle (for PM) or of the frequency (for FM) is small.
Case 6 applies when the echo delay is very long.

(a) “Second order modulation” approximation for PM — Table 3.1,
Case 2. Since (¢ =~ H, equation (2.10) may be written as

10 logu) (PI/PE) ~p + D+ Dy + Dy

p = 10 logy »*
Dy = 10 logy (1 — cos 2pT) (5.1)
D. = 10 logy (Pofs)
D; = 10 logy J

where p is the reflection coefficient expressed in decibels, D, is a quantity
which varies rapidly with 7" and whose representative value is zero. J is
the funetion of @ and U defined by equation (3.1). The quantities Py,
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fo, a, U are defined by equation (2.1) and Case 1 of Table 3.1. Pyf, is
the average signal power in (radians)’, @ = f/f, gives the channel posi-
tion and U = 2xf,T measures the echo delay.

The approximation (5.1) holds when 2P.f,(1 — U " sin U) is small in
comparison with unity.

Iig. 5.1 shows Dj plotted as a function of f,T for various values of a.
The values of J which were used were taken from Table 3.2. Values of J
for U << 1 may be obtained from the expression given for @ in Case 3,
Table 3.1. Case 4 gives another special case.

(b) Large delay, U >> 1 for PM — Table 3.1, Case 6. When U is very
large, G is a rapidly oscillating function of a. When in addition P,f, is
small, Case 4 shows that J fluctuates between (1 — a/2)/2 and
3(1 — a/2)/2. The corresponding fluctuations in Dy are noticeable in
Fig. 5.1 for the larger values of f,7'. If 2P,f, is large compared to unity
(and the delay is large), equation (5.1) no longer holds. In this case G >>
H and we may write (2.10) as

10 logy (P;/Ps) ~ p + Dy
p = 10 logy »*
Dy = 10 logyw CrPofy) '@ (5.2)
G ¢ "[I(by, a) + 2I(by, a) cos al]

where by and b, are defined in Case 6, Table 3.1. It is seen that as a in-
creases from 0 to 1, Dy oscillates rapidly between limits 4" and Ds~ cor-
responding to G and ¢~ which are defined by equation (3.4) and tabu-
lated in Table 3.3. Table 5.1 gives values of D,™ and D,~ computed from
Table 3.3.

The entries corresponding to the values 0.25 and 0.50 for Pyf, must
be used with caution in equation (5.2) since they do not satisfy 2Pf, >> 1
and H is not negligible in comparison with G.

(¢) “Second order modulation” approximation for FM — Table 4.1,
Case 2. By making use of the expressions for ¢ and H given in Case 2 we
may write equation (2.11) as

10 logw(P:/Ps) =~ p + Dy + Dy + Dy
Dz’ = 10 logm A (5.3)
Dy = 10 log,y UK

where p and D, are defined by (5.1) and A by (2.8). K is the function of
a and U defined by (4.5). A is proportional to the signal power: A =
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Fig. 5.1 — For “Second Order Modulation” the ratio P;/Ps for PM depends
upon D; as shown by equation (5.1).

TABLE 5.1 — Varugs or Ds5 axp Dy . Tue UrPER NUMBER OF AN
EntrY 18 Ds7 AnD mue Lower ONE 18 Dy

a=0 0.25 0.50 0.75 1.00—
P.f, (radians)?

0.25 —6.12 —6.68 —7.31 —8.07 —9.01
—9.92 —10.37 —10.96 —11.67 —12.56
0.50 —4.89 —5.40 —6.00 —6.75 —7.67
—7.94 —8.31 —8.79 —9.45 —10.34
0.75 —4.83 —5.31 —5.87 —6.57 —7.47
—7.24 —7.56 —8.01 —8.63 —9.46
1.00 —5.20 —5.61 —6.13 —6.78 —7.67
—7.12 —7.38 —7.77 —8.33 —9.17
2.00 —7.65 —7.89 —8.25 —8.74 —9.44
—8.30 —8.44 —8.74 —-9.17 —9.82
4.00 —11.99 —12.08 —12.25 —12.55 —12.94
—12.05 —12.13 —12.31 —12.55 —12.94
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(a/f»)* where ¢ is the rms frequency deviation of the signal in cycles per
second. Dy’ and D, play similar roles in (5.3) and (5.1).

The approximation (5.3) holds when' 2A[USi(U) — 1 + cos U] is
small in comparison with unity.

The values of K given in Table 4.2 lead to the curves for Ds’ shown in
Fig. 5.2. When U7 < 1, Case 3 shows that Dy & 10 logy, [°U*(2 — a)/8],
and Case 4 shows that when U 3> 1 (provided a < 1 and AxU < 1)
D;;’ ~ 10 ]()gm (TI'[') = 12.95 + 10 lOgm be‘.

(d) Large delay, U >> 1 for FM — Table 4.1, Case 6. It has just been
pointed out that when U becomes very large, P;/Ps depends upon the
delay only through the term Dy & 10 log, #U (neglecting the rapidly
varying term D) if AUr < 1. If AUr > 1, P;/Ps becomes independent
of U as U — =, This follows from the fact that the formulas of Case 6
allow us to write (2.11) as

10 logw (P}/P.g) =p + D.j’

’ L (5.4)
Dy & 10 logy [Ga (2rA) 7"

" /_, //
6 =y 75 ,////
, N fs,
:, y 54
° A/// /
///
-16 / // //
foT

Iig. 5.2 — For ““‘Second Order Modulation’ the ratio P;/Pg for FM depends
on ;' as shown by equation (5.3).
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where p is defined by (5.1) and G depends only on a and A through
G = [ry/A sinh yl]”r2 exp [—24 (cosh y1 — 1)]

a f Y1 ginh » (5.5)
— = dv
24 0 v

Fig. 5.3 shows Dy plotted as a function of A for various values of a.
It is assumed that A=U >> 1.

(€) Small delay and large rms frequency deviation for FM — Table
4.1, Cases & and 7. 1t turns out that Case 5 (Lewin’s, case, U <« 1) and
Case 7 (A > 1 and U of order unity) may be combined into a single case
by taking the quantity b in the formulas of Case 5 to be 64(1 — U™
sin U) instead of AU*. When U <« 1, Case 5 is obtained. When 4 >> 1
the asymptotic expansion for I(b, a) leads to Case 7 if U is 0(1).

In order to put this combined case in a form suited to calculation we
write (2.11) as

2 2
% = %(1 —gcos2pT)
~76(1 — U sin U)a'e"'I(b, a) (1 _H ZPT) (5.6)
2wb G
10 logw (P1/Ps) = p + Dy’ + D¢’ + Dy
where p is given by (5.1) and
Dy = 10 logy (1 — (H/G) cos 2pT)
. o
Dy = 101logp (1 — U sin U) &)

Dg = 10 logy 6a’ ¢ I1(b, a)/(2mb)
b = 6A(1 — U ' sin U)

Fig. 5.4 shows values of D¢/, computed from the values of I(b, a) given
in Appendix ITI, plotted as a function of b for various values of a. The
maximum value of 3 db for Dy’ oceurs when AU* < 1 and cos 2pT =
—1. When AU* is large D/’ is approximately zero.

Fig. 5.5 and 5.6 show, in a rough way, the regions in which the various
approximations apply. For PM, the delay and the rms phase deviation
(measured by U = 2xf,T and (Pufy)'"”, respectively) are the parameters
which determine the type of approximation to be used. The regions in
the [(Pyfi),"”* U] plane shown in Fig. 5.5 are marked with the numbers
2a, 3, 4,5, 6b where the integer indicates the case number in Table 3.1 and
the letters a and b refer to Cases (a) and (b) in this section. Fig. 5.6 is
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Fig. 5.3 — For long delayed echoes the ratio P;/Pg for FM depends upon
D4’ as shown by equation (5.4).

the corresponding figure for FM. The coordinates are U7 and A", where
A" (=¢/f,) measures the rms frequency deviation. The region numbers
are 2¢, 3, 4, 5, 6d, 7e where the integers indicate the case number in Table
4.1. Tt will be noted that there are regions where no approximation is
available. However, an answer may always be obtained by numerical
integration of equations (2.4) and (2.5) for G and H.

Fig. 5.7 shows values of P;/Pg for the top channel (¢ = 1) where the
interference is often at a maximum in an I'M system. The coordinates
(Av2) £,T) are essentially the same as those of Fig. 5.6. In order to
simplify the plotting, the phase angle 2pT is assumed to be such that
cos 2pT is zero so that the contours are given by

_ Pr\ _ G
Constant = 10 logo (T2 Ps) = 10 logo (%—A)

The contours have been obtained in part from the various approxima-
tions where applicable and in part from values obtained by numerical
computation from the exact expression. While there are, of necessity,
some areas of uncerfainty in Fig. 5.7, it should be adequate for most
engineering purposes. No corresponding curves have been computed for
the case of phase modulation.
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Fig. 5.5 — Regions of validity for the various approximations for PM. The
integers refer to case numbers in Table 3.1 and the letters to cases discussed in
Section 5. This figure and Fig. 5.6 are intended to give only an idea of the relative
positions of the regions.
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Fig. 5.6 — Regions of validity for the various approximations for FM. The
integers refer to case numbers in Table 4.1 and the letters to cases discussed in
Section 5.
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Fig. 5.7 — Contours of constant interference in the top channel of a multi-
channel FM system.
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It should be noticed that Fig. 5.7 is plotted for the case a = f/fy = 1.
If Fig. 5.7 were plotted for values of a slightly less than unity there would
not be much change except in the upper left hand corner (A small and
1T large), where the interference would tend to be 3 db stronger. This
discontinuous behavior as a passes through unity is shown by Case 4,
Table 4.1 where U >> 1 and AxU < 1. When U >> 1 and AxU > 1, as
oceurs when f,7 — = (with A held fixed), equation (4.11) gives

Py 1,1 1—a
10 logio ap, 10 loguw |:§ + - arc tan ( i ):|

when A <« 1. This shows that at ;7 = e, the discontinuity arises for
values of A near (1 — a)/w=. When 4 >> 1 and U > 1, we have
P, 2r'" 4344’

<7 ~ —15logw A — 10 logw & " 1A

10 logio

which changes only slowly as a — 1.

6. USE OF EQUIVALENT ECHO TO ESTIMATE INTERCHANNEL INTERFER-
ENCE

When a steady sinusoid exp (Zwt) is applied to a transmission medium
of the sort we have under consideration, the output is exp (iwt — a —
i) where a and @ are the attenuation and phase shift, respectively.
Distortionless transmission oceurs when « is constant and 8 has a con-
stant slope over the essential range of frequencies. Departures from these
ideal eénditions cause interchannel interference in multichannel FM and
PM systems. Our evaluation of the interference caused by a small echo
may equally well be regarded as an evaluation of interference for a par-
ticular kind of amplitude and phase distortion, namely that given by

a ~ —r cos T, B~ rsin oT. (6.1)

These expressions are obtained by writing exp (1wt) + r exp [iw(t — T)]
in the form exp (fwf — o — 28) when | r | K L.

The analysis given by E. D. Sunde in Section 1 of Reference 8 shows
that a minimum phase system in which 8§ = r sin T also has a =
—7 cos wT' as in (6.1). This suggests a procedure for calculating inter-
channel interference from phase data alone when (1) the distortion is
known to be of the minimum phase type and (2) the variation of phase
with frequency can be approximated by a sine function. In such cases
we can apply our echo analysis directly by identifying r as the amplitude
of the phase oscillation and 7' as the reciprocal of the period.
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In carrier multiplex systems the sinusoidal approximation need hold
only in the region around the carrier frequency f, where 2xf; = p and p
is the radian frequency appearing in equation (1.1). For FM we shall,
in this section, arbitrarily take the region to extend from f, — 4¢ to fy +
4o where ¢ is the rms frequency deviation of the signal. For PM and the
signal power spectrum given by equation (2.1) we may take the region
to be fy &= 4f,(Pofy/3)"".

A special case occurs when the nonlinear portion of 8 may be repre-
sented as ao(f — f)2/2 in the region of interest. We can think of r sin w7
as going through several oscillations between f = 0 and f = fo, and
that a maximum, if a; < 0, (or & minimum, if a; > 0) of r sin w7 occurs
at f = fo, i.e. at w = p. The band of interest is taken to be narrow
enough to lie in the immediate vicinity of the maximum. This sort of
curve fitting is permissible since equation (2.3) shows that the inter-
channel interference depends on the carrier frequency only through the
term cos 2p71'. Furthermore, constant terms and terms linear in frequency
in the expression for 8 do not affect the amount of interchannel inter-
ference.

At the maximum mentioned in the preceding paragraph « = p,
sin pT = 1 and cos 2pT = —1. Near this maximum r sin w7 is
rcos 2r(f — fo) T == r — rdn'(f — fo)*1%/2 (6.2)

In order that this approximation may hold over the region fy & 4o (for
FM), we require

2r(40)T =1
We take T to be as large as possible, namely
T = 1/8r¢ (6.3)

in order to make r as small as possible, since our work assumes r << 1,
Comparison of ax(f — fy)*/2 with (6.2) gives

r= —a(2rT) = —16ax0” (6.4)

which must be small compared to unity if our results are to be used. This
result holds for a» < 0. When a, > 0 expression (6.3) still holds for 7T
but now » = 16a.s”. Similar expressions hold for PM. These values of r
and 7' may now be inserted in our formulas to determine the interchannel
interference.

From the definitions of A and U it may be shown that (6.3) is equiva-
lent to AU* = 1{g. Therefore the “second order modulation” approxima-
tion given by Case 2 in Table 4.1 may be used. Also G — H cos 2pT is
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approximately equal to 2G' because cos 2pT = —1. It turns out that the
second order modulation approximation may also be used in the PM case.

When a. is sufficiently small, considerations such as those above show
that the ratio of the interference power for 8 = a.(f — fo)?/2 (radians)
to the received signal power at the frequency f is

P;/Ps = (a0f/2)" @’(2 — a) for FM ,
P,/Ps = (a2 f2/2)*(Pofs)(12 — 30a + 20a° — a®)/30 for PM (6.5)

Here a = f/f, where (0, f,) is the frequency band of the signal. The rms
frequency deviation of the signal for FM is ¢ cps, and the rms phase
deviation of the signal for PM is (Pf;)"? radians. The first equation in
(6.5) comes from a special case of Case 2, namely, Case 3 of Table 4.1,
and requires the additional assumption f,/4¢ < 1 (corresponding to
[/ < 1). The second equation requires a similar additional assumption.

ArpENDIX |

DERIVATION OF A GENERAL THEOREM ON THE INTERCHANNEL INTERFER-
ENCE SPECTRUM

Let w,(f) be a finite power spectrum having limited total fluctuation
for 0 £ f £ =. Let the total power be finite so that the mtegl al of w.(f)
from f = 0 tof = = converges absolutely. We define two auxiliary spec-
tra

wa(f), I f—fol <e
e( ) =
b f 0, lf_fol > €
wy = wa(f) — we(f) (A1-1)

and note that the autocorrelations corresponding to these spectra must
satisfy

Ry(r) = Ra(7) — Re(7) (A1-2)
We consider the problem of transmitting the ensemble having the spec-

trum w,(f) through a system in which the input and output autocorrela-
tion functions, ¥,(r) and Ws(7), respectively, are related by

Wo(7) = F[¥(r)]

Here F(z) and its derivatives F'(z) and F”(z) are assumed to be finite
continuous functions which exist over the range of z of interest.

Let the output spectrum corresponding to the input spectrum ws(f)
be wx(f). We shall show that as e— 0 the value of ws(f) in the range
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| f— fo| < eapproaches
4[ [F[Ra(7)] — F’(O)Ra(’r)} cos 2xfr dr (A1-3)
0

When we multiply this expression by 2e and set f = f;, we obtain the
power appearing at the output of the system in an unloaded channel of
width 2e centered on f, . Here we are not interested in values of wg(f)
outside the range |f — fo| < e

First we note several properties of autocorrelation functions. From

R(r) = f:w(f) cos 2xfr df

it follows that | R() | = R(0). Also, if w(f) has limited total fluctuation
in the interval (0, =), the Riemann-Lesbesgue lemmas* and the absolute
convergence of the integral for £(0) show that R(r) = 0(1/7) as r — =.
Thus we may find positive numbers A, B, C such that for 0 < 7 and
any e less than some fixed value

|Ru('r) | < A/r
Sote
| R(7) | < R.0) = f, " w(f) df < Be (A1-4)

|R7) | < C/r
By the extended theorem of the mean the autocorrelation function
corresponding to wg(f) is
Ru(7) = FIRy(7)] = F[Ra(7) — Re(7)]
= F[R.(7)] — F'[Ra(7)]R(7) + 7 (A1-5)
1| = 27'R(r) | F"[Ra(r) — 6R.(7)]| < RXr)D

where 0 £ 6 £ 1and D is a positive number such that | F”(z) | < D.
Then

'wa(f) = ']:j:u RH(T) Cos 21rf7‘{i‘r = Il — Ig‘l‘ I;{

I

4 fm F[R.(7)] cos 2xfr dr
’ (A1-6)

I, 4 f‘” F’[Rﬂ(r)]RE(T) cos 2rfr dr

I; = -Lf r cos 2xfr dr
0

i See, for example, Whittaker and Watson, Modern Analysis, 4th edition, p. 172.
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Since F/[R4(7)] = F’(0) + s, where by the mean value theorem
|'s| = | Ra(7) F”[6Ra(7)]| < | Ra(r) | D
0=80=<1

I, may be written as the sum of two integrals, the second of which has an
absolute value not greater than

4 jo | Ri(r)DR.(r) | dr = 4D fu | Ra(")R.(r) | dr
+ 4D f | Ru(DR.r) | dr < 4DR.(0)BeT

+ 4D f " ACT " dr = AD[R.(0)BeT + AC/T)

where T is an arbitrary number and we have used the inequalities
(A1-4). Choosing T = ¢ '* shows that the last expression is 0( 1y
Hence

I

Ii

47 (0) fo " Ru(r) cos 2ufr dr + 0()
wa(f), 1f—Jo| <e
0: If - fbl > €

Therefore in the range |f — fo| < ¢ which comprises the only fre-
quencies of interest in the channel interference spectrum,

Il

0(e2) + F'(0) [

I, = 4F’(0) f R.(7) cos 2xfr dr + O(Em)
0
By use of the inequalities for | r | and | Re(7) | we see that
L] T -]
| Is| < 4 f RX(-)Ddr < 4D f Bédr + 4D f O dr
0 b T

= 4D(B*'T + C*°/T)

If we choose T = 1/e this expression is 0(e).

When we collect our results and let ¢ become vanishingly small, we
see that expression (A1-6) for wy(f) approaches (Al-3) for frequencies
in the range | f — fo| < e Thus in the limit as e — 0 we may use the
autocorrelation function

F[Ro(r)] — F'(0)Ra(7)
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to compute the interchannel interference spectrum. This is the result
used in (1.22).

ApprENnDIX II
APPROXIMATE EVALUATION OF INTEGRALS OF A CERTAIN TYPE

The problem of evaluating the integral G defined by (2.4) is quite a
difficult one. Here we shall outline a method which often may be used to
obtain an idea of the order of the magnitude of such an integral.

Let F(u) be an even analytic function of u such that the major con-
tribution to the value of

I(a) = 2 '[n F(u) cos au du = lw Fu)e™ du (A2-1)

comes from a saddle point on the positive imaginary » axis. Then the
“method of steepest descents” suggests that an approximate value of
I(a) may be obtained by the following procedure.

1. Set f(y) = F(iy) and plot z = d[log f(y)l/dy = f'(y)/f(y) as a func-
tion of ¥.

2. Draw the horizontal line z = a. Suppose its first intersection with
the curve obtained in step 1is at ¥ = 3, , and let the slope of the curve,
determined either graphically or by differentiation, be (dz/dy)y, at y: .

3. Then I(a) & [2n/(dz/dy)s,]"f (y)e ™" (A2-2)

It should be noted that (A2-2) cannot be used indiscriminately. Thus,
it does not work well for F(u) = 1/(1 + u') because there is no saddle
point on the imaginary u-axis. However, when it is applied to integrals
of the type encountered in our study it appears to do fairly well, as
Table 4.4 shows.

AppEnDIX II1

LEWIN’S INTEGRAL

Here we study the integral
I, a) = f ™7 — 1 — bu* sin u] cos au du (A3-1)

which occeurs in several limiting cases in our work and which has been
studied by Lewin®’ fora = O and a = 1.

When the exponential term is expressed as a power series in (b sin u)/u
and the result integrated termwise, we obtain
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I(b,a) = i Ab" /0l (A3-2)

n=2
-] M n
sin
A, = f cos au du
o0 U

_ 211' _\m n _ n—1
_mwg( )"0 (n 2m + a)

An ~ (6r/0)'" exp [—3a"/(2n)]

where C,," = n!/m!(n-m)! and the last term in the summation for 4,
is the last one for which n — 2m + ais positive (assuming a # integer)
and for which m = n. When n = 2, 4, is a continuous function of a.

Tables III A and I1I B were computed from (A3-2).
When b is small, the first term in (A3-2) gives, for 0 = a¢ = 2,

I(b, a) ~ b*r(2 — a)/4 (A3-3)

and when b is a large positive number the contribution of the exponential
term in the region around » = 0 gives
1/2 3@2
I(b,a) =~ (6x/b) " exp | b — b (A3-4)

Lewin has given more careful approximations for the a = 0 and a = 1
cases.

When b is large and negative most of the contribution comes from
around ¥ = =£37/2 where exp [(b sin w)/u] attains its largest values.

It is found that

I(—8, a) = 10.76 F7* cos (4.49a)® "™ L R (A3-5)

where 8 = —D is a large positive number and R is a remainder term. The
numbers in (A3-5) are related to the value uy = 4.493 . . . where (sin u) /u
has a minimum.

Computation shows that the value 8 = 8 is not large enough to make
the leading term in (A3-5) a good approximation for I(—8, a). In order
to obtain a better approximation we write

Y
I(—B,a) ~2 f exp [— Bu ' sin u) cos au du
(1]
Y
+ 2 f [— 1+ Bu " sin ] cos au du (A3-6)
o

-]
+ f (Bu " sin u)* cos au du
v
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TasLe III A — ¢ "I(b, a) ForR b > 0

b g a=0 0.25 0.50 0.75 1.00 1.25
0 1 0.0 0.0 0.0 0.0 0.0 0.0
0.5 1.649 0.272 0.241 0.209 0.176 0.142 0.107
1.0 2.718 0.761 0.685 0.602 0.511 0.414 0.314
2.0 7.389 1.560 1.440 1.291 1.117 0.919 0.713
3.0 20.08 1.913 1.801 1.645 1.448 1.215 0.968
4.0 54 .60 1.974 1.888 1.751 1.566 1.341 1.098
5.0 148.4 1.905 1.844 1.731 1.571 1.372 1.153
6.0 403 .4 1.794 1.751 1.660 1.525 1.356 1.166
7.0 1097. 1.680 1.649 1.575 1.463 1.320 1.157
8.0 2981, 1.576 1.552 1.492 1.398 1.277 1.138
TasLe III B—1I(b, a) For b < 0
b a=0 25 50 75 1.0 1.25
0 0.0 0.0 0.0 0.0 0.0 0.0
—0.5 0.349 0.300 | 0.254 0.210 0.167 0.125
—-1.0 1.25 1.06 ‘ 0.885 0.723 0.576 0.432
—-2.0 4.16 3.41 | 2.76 2.20 1.76 1.34
—3.0 8.03 6.37 4.97 3.88 3.14 2.46
—4.0 12.6 9.66 ' 7.23 I 5.49 4.55 3.74
—5.0 17.8 13.2 9.40 6.89 5.93 5.19
—6.0 23.6 16.8 11.4 8.00 7.25 6.85
—7.0 30.0 20.7 13.1 8.71 8.48 8.78

—8.0 l 37.2 24.8 ‘ 14.5 . 8.93 9.59 11.0

where y is such that the quantity within the brackets in (A3-1), with
b = —p8, isapproximately (8u "' sin )*/2 when u > y. For rough work we
may take y = 8. The leading term in (A3-5) arises from the contribution
of the region around « = 37/2 to the value of the first integral in (A3-6).
The contributions from the regions around w = 7x/2, 11x/2, ... (if
y is large enough) add to the value of R but they are generally small in
comparison with the leading term in (A3-5).

Thus we are led to approximate R in (A3-5) by the sum of the second
and third integrals (expressed in terms of integral sines and cosines) in
(A3-6) with ¥ = 8. When R is replaced by this sum, expression (A3-5)
gives values for b = —8 which agree fairly well with those in the table.
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