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This paper discusses the optimum design of discrele, directive antenna
arrays of arbitrary geometrical configuration in space, when the excitations
and spatial positions of the elements vary in a random fashion about their
nominal values. Under certain assumptions the expected power pattern of an
array turns oul to be the power pattern of the nominal array, plus a ‘“‘back-
ground”’ power level which has the same dependence on direction as the pat-
tern of a single element. A set of excitations which mazximizes the theoretical
directivity of an array may correspond to a superdirective design, 1n which
the background power level will completely swamp the desired patlern unless
the excitations and positions of the elements are controlled with exlraordi-
nary precision. A method is given for maximizing the gain of the array while
holding the expected background power level constant, when the precision
with which the excitations and positions can be controlled is known. The
method s 1llustrated with numerical examples.

1. INTRODUCTION

The effects of random variations on antenna patterns have recently
been discussed in a number of papers which treat more or less special
cases. Several authors™ * * are concerned with linear Chebyshev-designed
broadside arrays, and in particular with the effects of manufacturing
variations on the patterns of slotted waveguide arrays. Ruze' has de-
rived the expected pattern of a plane, rectangular array in which the
positions of the radiators are rigidly fixed, while only their amplitudes
and phases are variable. Less attention seems to have been given to the
possibility that the positions of the elements may also vary in a random
fashion, even though this latter situation can arise in any electromag-
netic or acoustic array whose elements are not rigidly supported.

" 1L L. Bailin and M. J. Ehrlich, LR.E. Trans., PGAP-1, pp. 85-106, Feb., 1952.

2 D. Ashmead, I.R.IE. Trans., PGAP-4, pp. 81-92, Deec., 1952.

3 H. F. O’Neill and L. L. Bailin, I.R.IZ. Trans., PGAP-4, pp. 93-102, Dec., 1952.
¢ J. Ruze, Nuovo Cimento, 9, Supp. 3, pp. 364-380, 1952.
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This paper derives a relatively simple statistical expression for the
expected power pattern of an array when the excitations and positions
of its elements are subject to independent random variations. The re-
sult is not restricted to linear or even to plane arrays, but is valid for
arrays of arbitrary geometrical configuration in space. In the special
case when the excitations are variable and the positions of the elements
are either fixed or subject to random displacements with a spherically
symmetric distribution, the expected power pattern is the pattern of the
nominal array, plus a “background” power level which has the same
dependence on direction as the pattern of a single element. T he expected
background power level is proportional, for small errors, to the sum of
the mean-square errors in excitation and position.

We consider in particular the application of our results to the prob-
lem of designing superdirective arrays. A superdirective array is one
having a beamwidth in radians much less than the reciprocal of the
largest dimension of the array in wavelengths. It is well known that such
narrow beams can be designed on paper, but only by employing heavy
cancellation between adjacent elements. If the excitations and positions
of the elements of a superdirective array are not controlled with great
accuracy, the background power level due to random errors will com-
pletely swamp the desired pattern. This corresponds to the familiar fact
that a really superdirective array has to be constructed with extraordin-
arily high precision in order to give anything like its calculated perform-
ance.

A method is given for computing the excitations which maximize the
gain of an array of any specified geometrical configuration, while hold-
ing the expected background power level due to random variations
constant. It is assumed that the excitation coefficients can all be con-
trolled to the same per cent accuracy, and that the element displace-
ments, if any, are distributed with spherical symmetry. If the random
variations are taken to be zero, or if no restrictions are placed on the
background power level, the present procedure becomes equivalent to
the methods which have been deseribed in recent papers” ° on the max-
imum gain of an arbitrary array.

An interesting result of the analysis relates to arrays in which the
elements are all excited with equal amplitudes, and with phases such
that their fields add in phase in a specified direction in space. This ar-
rangement may justifiably be called the normal excitation, since it is

5 A. I. Uzkov, Dokl. Akad. Nauk SSSR, 63, pg. 35-38, 1946.
s A. Bloch, R. G. Medhurst, and 8. D. Pool, Proc. Inst. Elect. Engrs., 100, Pt.
I11, pp. 303-314, 1953.
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often adopted in practice as a means of obtaining a beam in the desired
direction. It is proved that, of all possible excitations of the array which
produce a main lobe in the given direction, the normal excitation leads
to a pattern which is most insensitive to the effects of random errors.
TFurthermore, if all the elements have the same ohmic resistance, the
normal excitation produces the highest power flow in the direction of
the main heam for a given rate of heating the elements.

It is not invariably true that maximum gain is incompatible with
minimum sensitivity of the pattern to random errors. The normal ex-
citation maximizes the gain of any array of isotropic elements in which
the distance from every element to every other element is an integral
number of half wavelengths. However, for most arrays the gain can be
increased above that obtainable with the normal excitation, at the ex-
pense of a (possibly enormous) increase in the sensitivity of the pattern
to random errors; and some sort of compromise will have to be struck.

Several types of symmetry are commonly found in antenna arrays,
and some of these symmetries force very simple relationships to hold
among certain of the optimum excitation coefficients. We discuss the use
of symmetry to reduce the amount of computation necessary in design-
ing an optimum array. As an example, these considerations are applied
to the design of an array of four elements located at the corners of a
tetrahedron, and also to a four-element end-fire array. Curves are ob-
tained which illustrate the relationship of gain to pattern sensitivity for
several such arrays of different dimensions in wavelengths.

It is shown that if an arbitrary array of isotropic elements is excited
successively to have maximum directivity in different directions, the
average value of the maximum directivity over all directions in space is
equal to the number of elements in the array. The excitation required
to produce maximum directivity will naturally depend on direction, and
considerations of pattern sensitivity are ignored. The significance of
this result is that if an array configuration permits an abnormally high
gain in a certain direction, as is theoretically possible, for example, with
a very short end-fire array, then there exist other directions in which
the maximum gain of the same array is abnormally low.

2. STATISTICAL FORMULATION

Consider an antenna array of n elements. We shall call the elements
radiators, though they may equally well be thought of as receivers. We
assume that each element has the same directivity pattern s(u) with
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respect to a fixed set of axes,* where u is a unit vector representing a di-
rection in space, and s(u) is a complex-valued vector function giving the
amplitude, phase, and polarization of the radiation field over a large
sphere centered at the element. For acoustic fields, s(u) is a scalar
function. The average density of power flow in the direction u is propor-
tional to

s'(u) = s(u)-s*(u) (1)

where an asterisk denotes the complex conjugate quantity.

Let the excitation of the kth element be A . The complex numbers
Ay, Ay, --+, A, will be called the excitation coefficients of the array.
Let the position vector of the kth element relative to an arbitrary origin
be R, . The field strength produced by the array at the point at the end
of the vector Ru from the origin will, for large R, be proportional to

s)f(u)/R (2)

and the average density of power flow at the same point will be propor-
tional to

®(u)/R* (3)
where the power directivity pattern ®(u) is
o(u) = s'(u) | f(w) [’ (4)
and the array factor f(u) is
flu) = ’; Ay exp (iBRi-u) (5)

As usual, 8 denotes 27 divided by the wavelength A.

Let us assume now that the excitation coefficients and the positions
of the elements actually have some random scatter about their mean or
expected values. We shall calculate the expected values of the field and
power patterns. These expected values may be regarded as averages
taken over a large number of different arrays, or they may be thought of
as long-term time averages for a single array whose parameters vary
with time in a random fashion. We can adopt the latter point of view
when dealing with an array whose elements are not rigidly intercon-

* No difficulties would result in the statistical analysis from assuming a differ-
ent pattern for each element, but the added generality would complicate some of
the following work, and it is unnecessary for the great majority of practical arrays.
We also ignore the possibility that the orientations of the elements might be
subject to random variations.
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nected, but are subject to displacements relative to one another in the
course of time.

To make matters precise, assume that the excitation coefficients are
given by

A = ar + e (6)

where a; is the expected value of A, and the a;’s are independent random
complex variables with mean zero. Also let

Ri =1+ o (7)

where r; is the expected value of the position vector R and the p’s
are independent random vectors with mean (0, 0, 0), all having the same
statistical distribution.

We can now write down the expected values of the field and power
patterns. Denoting expected values by angular brackets, we find for the
field strength,

(s(u)f(u))

S@) 3 (As) (exp (iBRe-w))

= ) 3 a exp (igre-v) xp (opew))

= (exp (ife-u)) s(u)fo(u)

where ¢ is a random vector having the same distribution as the p;’s,
and fo(u) is the nominal array factor

folu) = kZ:‘{ a. exp (ifr-u) (9)

which results when the excitation coefficients and positions all have
their expected values.
The norm of the general array factor may be written

| f(u) [* = ’; Ay exp (iR 1) ; Aj* exp (— 1R, u)

= i E (ar + ai) (a;* + a;*) exp [1B(ri — 1;) -u] exp [B(ex — 0;) -u] (10)

k=1 j=1
+ :.Z; (ar + ao)(@* + o*)

where the primed summation sign indicates that the term for which
J = & is to be omitted. Taking expected values and recalling that the
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random variables are independent, we obtain

(| @) [

=, Z' aca;* exp [iB(r — r;) -u] {exp (iBer-u) ) (exp (—1iBo;-u))

X lal+ X dwl)
— | (exp (iB-w)) P L) P+ 2 (e )

+ 10— | (exp (8w [ 2 [

where the last step follows by adding and subtracting the terms with
j = k which were omitted from the double sum.

Multiplying through by the power pattern s'(u) of a single element
gives the expression for the expected power pattern of the array, namely

@) = | (exp o) [ou(e) + @) 2 (')

n (12)
+ 11— | (exp (iBo-w)) [118°(w) 2o | o [
where the power pattern of the nominal array is
®(u) = 5'(w) [ fo(w) [ (13)

3. SPECIAL CASES

If the positions of the elements of the array are supposed to be exactly
known and rigidly fixed, then the displacement vectors g, are identically
zero, and the general result derived above reduces to

@) = B + 5@ X (al) (14)

Equation (14) has a simple physical interpretation. It asserts that
the expected power pattern is the power pattern of the nominal array,
plus a “background” power level which has the same dependence on
direction as the pattern of an individual radiator, and is proportional to
the sum of the mean-square errors of the excitation coefficients. Of course
for any particular array the background power will not have exactly the
directional dependence s*(u), but will exhibit fluctuations depending on
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the particular set of errors in the excitations.” However, in order to have
the over-all pattern be a good approximation to the nominal pattern
®)(u), it is necessary to hold the expected value of the background
power well below the maximum value of ®(u). We shall discuss the im-
plications of this requirement presently.

If the displacements of the elements are not identically zero, then
we denote the cartesian components of the vector ¢ by £, , ¢, and their
joint probability distribution by P(&, #, ¢). P(§, », ) dt dn di represents
the probability that the end of the vector g, drawn from the origin, will
lie in the volume element df dn df centered at (£, n, {). Then the ex-
pected value of exp (i8p-u) is given by

(exp (iBe-u))
- f_w [ [ exp [i8(&uz + muy + Cu.)] P n, §) dE dn df

where u, , u, , w. are the components of the unit vector u.

In order to evaluate the integral (15) for any particular array, one
should choose the most plausible joint distribution function P(§, #, {)
that his physical insight permits. In general (exp (i8e-u)) will depend
upon the direction of u; but if the distribution of ¢ is spherically sym-
metric,* the expected value will be independent of direction. In this case
P(g, », ¢) is a function only of the magnitude p of the displacement
vector. To evaluate the integral (15), take the {-axis parallel to u, and
let p(p) dp be the probability that the length of the displacement vector
lies between p and p + dp. Then

{exp (iBp-u)) = -11_1r j;-' j: j: exp (i8p cos 8)p(p) sin 6 dp db dep
(16)

- f " [(sin Bp)/Bol p(p) dp = ((sin Bp)/Bp)

If the cartesian components of ¢ are assumed to be normally and
independently distributed with mean zero and equal variances ¢/3,
so that the root-mean-square value of p is o, one has

p(p) = 3(6/7)"*(p’/s") exp (—3p"/20") (17)
and
(exp (iBg-u)) = exp (—F'¢"/6) (18)

7 The statistical distribution of these fluctuations has been discussed by Ruze
in Reference 4.

* Under some circumstances the displacement vectors may be constrained to
lie in a plane. If their distribution is circularly symmetrie, and if we confine our
attention to directions u lying in the plane of the displacements, the results will
be formally similar to those obtained for the spherically symmetric case.
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For any spherically symmetric distribution of ¢ we may define a
parameter §° by

5 = | {exp (iBe-u)) | — 1 (19)

If o, the root-mean-square value of p, is small compared to the wave-
length, then

8~ B'/3 (20)

for the normal distribution (17), and also for other distributions which
taper off for large p with comparable or greater rapidity.

From equations (12) and (19) we obtain the normalized expected
power pattern for a spherically symmetric distribution of displacements,
namely

(1478 (@)

n n 21

= ®y(u) + '(w) [(1 + )L (lal)+ 8 2 Iz] e
Again the expected pattern turns out to be the nominal pattern plus a
background level with the same distribution as the pattern of a single
element.

In what follows we shall idealize the problem somewhat by assuming
that the excitation coefficients Ay can all be controlled to the same rela-
tive accuracy.® Precisely we suppose there is a small number e such that

(lax [y = € |a, k=12 --,n (22)
Thus (21) becomes
(1 + 69 (@(u)) = Bo(u) + A () ,Z% | a |} (23)
where
A= (1+M)e+=e+ ¢ (24)

and the last approximation is valid if 8 is small compared to unity.

8 Ruze's assumptions in Refercnce 4 amount to taking | Ax | and arg A; as
independent random variables with means Iy , 9 , where the coefficients of the
desired pattern are Iy exp (i9x). All the phases are assumed to be normally dis-
tributed with the same variance, and the variance of the amplitude | Ay | is taken

roportional to | Ii |2. From these assumptions equation (22) follows. Ruze’s result
ooks more complicated than equation (14) mainly because the expected value of
Ay differs from I exp (i9:) by a constant factor.
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4. CRITERIA FOR GOOD PATTERNS

The preceding statistical analysis is equally valid whether the nominal
pattern ®,(u) is to have some specified beam shape for a particular appli-
cation, or merely to provide as narrow a beam as possible. However the
latter case is of greater practical interest, and so we shall consider hence-
forth only the design of highly directive or pencil beam arrays.

We suppose that the number and configuration of the radiators are
fixed in advance, and we have to choose the excitation coefficients to ob-
tain the desired pattern of the nominal array. We shall denote the set
of n complex numbers (a;, a», --- , a,) by the single symbol a. Our
problem is to find a way of exciting the array so as to produce a narrow
beam insome direction u, , i.e., we must choose a in such a way as to make
@®y(1y) small for all directions u not near u, . When we try to formulate
the problem more precisely than this we find a large number of alterna-
tives.

As a mathematically tractable criterion for a good pattern, we shall
stipulate that a is to be chosen so as to minimize the generalized gain
funetion

-

‘bo (un)
%r fs Bo(whw(u) d

G(a) =

(25)

where w(u) is a non-negative weight function which may be chosen at
pleasure, dQ is an element of solid angle, and S is the surface of the unit
sphere. Since &,(u) is proportional to the density of power flow in the
direction u, G(a) represents the ratio of power flow in the direction u,
to a weighted average of power flow in all directions over a sphere. If
one were interested in the radiation pattern only in some plane contain-
ing uy, the weighted average could be taken in all directions around a
circle with only minor changes in the formal analysis.

A few comments may clarify the significance of the function w(u). If
w(u) is taken to be identically unity, then @(a) is just the conventional
gain of an array with the set of excitations a. However, it is well known
that merely maximizing the gain does not always produce a pattern
with low side lobes. If it is important to prevent large fields from being
radiated in specified directions, one may choose w(u) to be unity over
the set of unwanted directions and zero elsewhere; and in principle even
more complicated choices of w(u) could be made to discourage side
lobes. For receiving arrays, w(u) may similarly be chosen to diseriminate
against the reception of spurious signals from particular directions.
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In terms of the excitation coefficients, the function G(a) has a simple
formal expression, namely

> a exp (iBri o)

G(a) = s'(u) =0 —— (26)
2 2 hpaas*
k=1 j=1
where
hj = ;ér- exp [iB(r. — 1;)-uls’(u)w(u) dQ (27
8
and obviously
hkj = h;k* (28)

The coefficients A, depend only on the weight function, the pattern of a
single element, and the positions of the elements (in terms of wave-
length). When the elements are isotropic and the weight function is iden-
tically unity, we have

sin Bk

Brik
where 7, is the distance from radiator j to radiator k. In any case G(a)
is the quotient of two Hermitian forms in the excitation coefficients, and
can therefore be maximized by standard mathematical techniques.

It may be noted that the use of an integrated criterion such as (25)
for keeping the fields small away from the main beam does not absolutely
guarantee the absence of undesirably high side lobes in particular direc-
tions for any given array. To be sure of keeping all side lobes below a
certain level, we should choose a to maximize some such expression as

_ ®o(u)
T(e) = max ®o(u)

hj = (29)

(30)

where the denominator is the maximum value of ®(u) over a chosen set
of directions © not containing u, . For equispaced linear arrays the cri-
terion (30) leads to the Chebyshev design procedure first described by
Dolph. However in general it is a much harder mathematical problem to
maximize 7(a) than to maximize G(a), and for that reason we shall not
employ 7'(a) here.

5. RESTRICTIONS ON SUPERDIRECTIVE ARRAYS

Even when a set of excitation coefficients maximizing the gain function
((a) has been found, there is no assurance that this set will be a satis-
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factory one on which to base the construction of a physical array. There

is a further restriction on the solution: the array must be excited in such a

way that when it is constructed it is likely to have a pattern ®(u) which

differs from the nominal pattern @,(u) by an acceptably small amount,
From Section 3 the expected power pattern is of the form

®y(u) + A% (u) AZ{ | a |* (31)
where A* includes the effects of both exeitation and position errors. The

background power level relative to the main lobe of the nominal pattern
is then just

A's'(u) ET | ~ A'(u)
cI’g(uu} N SE(U(]_)

(32)

K(a)
where

2wl
K(a) = ——*= . (33)
Z: ay. exp (1fr; - u,)

K(a) is a function measuring the susceptibility of the pattern to random
errors in the excitations and positions of the elements. Since in practice
A’ is never zero, an array with too large a value of K(a) will be unac-
ceptable.

Although the function K (a) has been introduced as a result of statisti-
cal considerations, it can also be interpreted in terms of the efficiency of
the array as an energy radiator. If we imagine the elements to have a
certain ohmie resistance, and the excitation coefficients to correspond
to the element currents, then ¥ | a; |* is a measure of the power which is
lost in the form of heat, and K(a) is proportional to the ratio of dis-
sipated power to power density in the direction u, . Thus a large value
of K(a) corresponds to large circulating currents in the array, and to high
ohmic losses for a given rate of radiation of power in the direction of the
main beam.

As a simple example of arrays which can have arbitrarily high gain at
the expense of large values of K(a), let us consider an end-fire array of
length L pointing in the direction u, (say the direction of the z-axis).
The array will have n + 1 elements situated at z = 0, L/n, 2L/n, - -+ | L.
Let the expected excitation coefficient of the radiator at z = tL/n be

ar = (—)*C, 1 exp (ikBL/n) (34)
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where the C,4's are binomial coefficients. Then from (9) the norm of
the nominal array factor is

| fofw) [ = |1 — exp [i(us-u + 1)BL/n] "
2°" sin®" [(1 + cos 0)BL/2n] (35)
= 2°" sin”" [(BL cos® 140)/n]

Il

where 6 is the angle between the direction u and the direction of the
array. If L is fixed and n is large, then approximately

| folw) [* = (2BL/n)*" cos™ 146. (36)

Taking n large enough, one obtains an arbitrarily sharp beam and an ar-
bitrarily high gain. On the other hand,

Slal =3¢ L Cu)t 2 (37)
a'™ = (n)2 "~ (nr)lP

the last approximation being valid for large n. Hence for L fixed and n
large, we have from (33),

K(a) = (n/BL)"" (nr)™" (38)

If A is a typical figure like 0.01, it is clear that this end-fire array is totally
useless, in spite of its high theoretical gain, if the spacing L/n is much
less than 1/8 = A\/2m.

The array just considered exhibits a characteristic feature of super-
directive arrays. All such arrays depend for their narrow beamwidths on
heavy cancellation between the fields of closely spaced radiators. In prac-
tice the radiators can be adjusted with only finite precision, and the
random errors which contribute to the background power level will not
cancel out, on the average, as do the fields of the nominal elements in all
directions except that of the main beam. Hence the background power
Jevel will completely swamp the main beam unless the array is designed
with extraordinarily high precision.

It turns out that merely maximizing the gain function G/(a) of an array
with interelement spacings of less than about a quarter wavelength is
likely to lead to a superdirective design with an unacceptably large
value of K(a). To get useful results, therefore, we should maximize G:(a)
subject to the auxiliary condition that K(a) is not to exceed a preas-
signed value. A method for doing this is given in the next section.

We note that it would appear possible on paper to design an array in a
limited volume with high G(a) and low K(a) by using a large number
of closely packed elements. For example, suppose we have an array with
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a high value of G(a). Now suppose each element to be divided into m
very nearby elements, each with 1/m times the original execitation. The
nominal field pattern, which determines the theoretical gain, is essentially
unchanged, while K (a) is divided by m. The catch is that a really super-
directive array with a reasonable value of A* would require a colossal
number of elements to reduce K(a) to an acceptable value. Furthermore
our statistical arguments have been based on the assumption that the
excitation coefficients may be regarded as independent random variables
when the antenna is built. If the elements are packed close together it
seems unlikely that the excitations remain independent; then the use of
K(a) to determine the precision which must be maintained is no longer
justified.

In dealing with superdirective arrays it should always be remembered
that a superdirective antenna is a high-Q, small-bandwidth device, inas-
much as the amount of reactive energy in the near field of the antenna
is very large compared to the energy radiated per cycle. The resulting
stringent physical limitations on superdirectivity have been exhibited
by Chu.® We shall not, however, discuss questions of bandwidth here,

6. OPTIMUM DESIGNS TAKING ACCOUNT OF FINITE PRECISION

The procedure for maximizing the gain function G(a) of a definite
array, while requiring K (a) not to exceed a specified value, depends upon
certain theorems which will now be stated. The proofs are given in the
appendix.

Theorem I. Let p = 0 and let a[u] denote the set of excitation coefficients
salisfying the system of linear equations

Z; hujailu] + pailp) = exp (—iBr;-uo) (39)
=
k=1,2, -+ n OFf all possible choices of a satisfying

K(a) = K(alu]) (40)

the maximum value of (i(a) is obtained when a = a[p].

The parameter u is essentially a Lagrangian undetermined multiplier,
such as is commonly used in the calculus of variations and in the deter-
mination of maxima or minima subject to a constraint. When designing
a directive array we may select a reasonable value of K(a), say K,
with an eye to the precision with which we expect to construct the array.

¢ L. J. Chu, J. App. Phys., 19, pp. 1163-1175, 1948,
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What we should then like to do is choose the value of x for which
K(alp]) = Ky (41)

and solve (39) with this value of . Unfortunately we cannot determine
simply or directly from the condition (41), so we may have to make sev-
eral trials with different values of w. If our first guess does not yield a
value of K sufficiently close to K, , the direction to proceed is indicated
by

Theorem II. Both K(a[u]) and G(a[u]) are monolone monmincreasing
functions of p; that s, dK (a[u])/dp = 0 and dG(alp])/dp = 0.

Fairly simple expressions may be obtained (see equations (A4), (A5),
and (A20) through (A24) of the appendix) for a[u], K(a[x]), and Glalu])
in terms of the eigenvalues and eigenvectors of the Hermitian matrix
(hji), and the parameter . To make a thorough study of any particular
array configuration, one might well start by computing the eigenvalues
and eigenvectors. Then it would be easy to plot K and @ against p over
any desired range.

A restriction on the possible values of K(a) is given by

Theorem II1. For any array with n elements,

K(a) = 1/n (42)
and the coefficients which yield the value 1/n are
a; = exp (—ifriuw), k=1,2,---,n (43)

up to a constant proporlionality factor.

The choice of coefficients (43) means that all elements have equal
amplitudes and the phases are chosen to make their contributions add in
phase in the direction uy . This may be called the normal excitation; it is
often adopted in practice as a means of obtaining a beam in the direction
1, . The patterns so obtained are most insensitive to random errors in
the excitation coefficients, although frequently at the expense of rather
disagreeable side lobes. Since, as pointed out in Section 5, K(a) also
measures the efficiency of the array as an energy radiator, Theorem III
shows that the normal excitation produces the highest power flow in the
direction u, for a given rate of heating the elements.

If no auxiliary condition is imposed on the value of K(a), we have

Theorem 1V. The coefficients which maximize the gain function G(a)
absolulely are obtained by putting u = 0 in equations (39), so that a = alo],
where

z; hkjﬂuj[O] = exp (—?:ﬁrk'lIo) (44)
=

k=1,2 -+, ,n
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Equations (44) are equivalent to those given by Bloch, Medhurst, and
Pool" as a result of a differently phrased argument. They could also be
obtained by following up Uzkov’s remark'' that the problem of max-
imizing the directivity of an arbitrary array amounts to the problem of
choosing an orthogonal basis for a complex linear vector space generated
by the patterns of the individual radiators. In prineciple both these papers
show how to determine the maximum gain in the general case when each
element of the array has a different directivity pattern; but they say
nothing about precision requirements.

It is not invariably true that maximum gain is incompatible with
minimum sensitivity to random errors. For example, the normal excita-
tion of Theorem III, which minimizes K(a), simultaneously maximizes
the conventional gain of any array of isotropic elements in which the
distance from every element to every other element is an integral number
of half wavelengths. Under this condition (29) shows that h;, = 6, ;
and the values of ¢ and K obtained from the solution of (39) are inde-
pendent of p. An example is a linear array with half-wavelength spacing
between adjacent elements; another is the three-dimensional configura-
tion of four elements at the vertices of a tetrahedron of edge A/2. If the
elements of these arrays are not isotropic, then the normal excitation
does not give quite the maximum gain; but the difference will be small if
the beamwidth of the array factor is narrow compared to the beamwidth
of the element pattern. For a general array with interelement spacings
much less than a half wavelength, however, there may be a great deal of
difference between the excitation and pattern for minimum sensitivity
(0 = ) and the excitation and pattern for maximum gain (x = 0).
Illustrative examples are worked out in Section 8.

7. SYMMETRIC ARRAYS

To find optimum excitation coefficients for an n-element array by the
method of the preceding section requires the solution of a system of n
simultaneous linear equations, and this can be laborious if n is large.
Fortunately several types of symmetry are commonly found in antenna
arrays. Some of these symmetries force very simple relationships to hold
among certain of the optimum excitation coefficients, and can therefore
be used to obtain an immediate reduction of the order of the system of
equations (39).

By a symmetry S of an antenna configuration we shall mean any com-
bination of translations, rotations, and reflections which leaves the con-

10 Reference 6, p. 304, equation (6b).
11 Reference 5, p. 37.
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figuration invariant. Let Sk denote the number of the element of the
array into which the kth element is carried by the symmetry S. Some
simple symmetries and the corresponding relationships which can exist
between a; and as; are listed in Table I. These relationships hold for the
solutions a,[u] of equations (39) if the origin of the coordinate system is
symmetrically placed,* i.e., if the origin is invariant under the symmetry
operation S. In the last four entries of the table we assume that the pat-
tern s*(u) of a single element and the weight function w(u) appearing in
the definition of the generalized gain depend only on the angle between
u and uy .

To illustrate the method of proving these relationships consider the
second one. Reflection in a plane normal to u, carries a point r into

Sr =1 — 2(r-up)up (45)
and for any points x and y
U SX = —uo X (46)
Sx-Sy = x-y (47)
From (46) it follows that
§'(— Su)w(— Su) = s*(u)w(u) (48)

since by assumption s*(u) and w(u) depend only on the angle between
u and u, , that is, on cos™'(u-uo). From the last three equations and (27)
we conclude that

hsi.si = 41—1r j; exp [ —B(rsj — rs) - Su]s’(—Su)w(—Su) dQ

= L [exp 1-ig; —n) -l W) do (49)
= hu*
We also have
exp (—ifra-t) = [exp (—ifre-u)]* (50)
The system of equations (39) can be written in the form
i hsisi0s; + page = exp (—iBrsi o) (51)

i=1

* If the origin is not symmetrically placed it may be necessary to multiply
alz] by a suitably chosen complex constant in order to get a set of excitation
coefficients which satisfy the relationships of Table I.
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or, using (49) and (50),
> Ing*as; + uas = lexp (—iprs-u]* (52)
or finally, taking complex conjugates,
ghkiaﬂ* + nas* = exp (—ifr-u) (53)

Comparing (39) and (53) we see that a, and as* are solutions of the same
system of linear equations. The determinant of the system is not zero,
by equation (A7) of the appendix, and hence

. = ag* (54)

Proofs for the other cases in Table I are similar.

In cases 3 and 5 of Table I the relationship as, = a; reduces the system
of equations (39) to a system of order equal to the number of different
classes of symmetric points in the array. In cases 1, 2, and 4 the relation-
ship as. = a,* is more difficult to exploit. If h; is a real matrix, which
will be true whenever

s'(—ww(—u) = s'(Ww(w) (55)

the system (39) may be rewritten as the following pair of real systems:

> hyRea; + pRea = cos (Bri-uo)

N (56)
> hyIma;+ plma = —sin (Bre-uy)
je=1
Now using
Re as; = Re a;, Im as; = —Im a; (57)

the order of these systems reduces to about n/2 each.

TaBLE I — RELaTIONSHIPS AMONG OPTIMUM EXCITATION
COEFFICIENTS IN SYMMETRIC ANTENNA ARRAYS.

Case Symmetry § Relationship
1 Reflection in a point asy = a*
2 | Reflection in a plane normal to u, asry = ap*
3 Reflection in a plane parallel to u, asy = Qi
4 180° rotation about an axis perpendicular to u, asy = ap*
5 Rotation about an axis parallel to u, gk = O
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It may be noted that the relationships listed in Table I still apply if
instead of G(a) the function to be maximized is the main-beam to side-
lobe ratio mentioned at the end of Section 4, namely

Po(uo)
T a) = ————

(a) max F(1) (58)
subject to the auxiliary condition on K(a). In this case we assume that
the set @ of directions in which radiation is to be kept small has rota-
tional symmetry about the direction uo, that is, if u, is in £ any other
u for which u-uy = u;-uy is also in Q.

8. NUMERICAL EXAMPLES

We shall apply the preceding theory to two array configurations which
illustrate some points of interest without requiring unnecessarily heavy
computation. For simplicity throughout this section we consider only
isotropic elements and adopt the conventional definition of gain, so that
the matrix elements i are of the form given by equation (29), namely
(sin Brj)/Br i -

The first example consists of four elements situated at the vertices of a
tetrahedron of edge length I (Fig. 1). The unit vector u, is taken to be
along the altitude of the tetrahedron which passes through the element
as and is perpendicular to the plane containing a, , a, , and a; . This array
is invariant under rotations of 120° about an axis containing u, , and so
by Case 5 of Table I we have

a = a: = as (59)

It is easily shown that the system of equations (39) for the optimum
coefficients reduces to the two equations:

2 sin 8l sin gl
[1+#+*——3l :Iﬂl+ ﬁl

as = 1

. (60)
3 sin 8l

Bl

After solving (60), the functions G(a) and K(a) may be computed from
their definitions (26) and (33).

The optimum gain G is plotted against the sensitivity function K in
Fig. 1 for I = /2, \/4, A/8, and A\/16. As a matter of interest a few
values of the parameter u are shown on the curves. The curve for I = A/2
consists of the single point K = 14, G = 4. This is an array with half-

@+ (1 4+ was = exp [—i(24)"8l]
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Fig. 1 — Gain @ versus sensitivity K for optimum tetrahedral arrays of various
edge lengths I. Some values of the pmnmetex p are shown on the curves.

wavelength interelement spacing, for which, as noted at the end of Sec-
tion 6, minimum sensitivity and maximum gain are obtained simul-
taneously. The lower ends of the curves (¢ = =) all represent normal
excitation and minimum sensitivity; in accord with Theorem IIT the
limiting value of K is 14, The corresponding gain decreases as the size of
the array decreases. As the condition on K is relaxed by decreasing the
parameter u, the gain increases to a value very near 4 in all cases, and
the sensitivity increases to larger and larger values for the smaller arrays.
The maximum values of &, which occur for ¢ = 0, and the corresponding
values of K are listed in Table IT.

As a second example we consider a four-element equispaced linear
end-fire array with interelement spacing ! (Fig. 2). This array is sym-
metric with respect to its center point, and so by Case 1 of Table T,

ay = ﬂl*

(61)

a; = az*

Equations (39) break up into two pairs of real equations of the form
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Tasre II — Maxmmum Gaiy G AND CorRRESPONDING SENsITIVITY K
ror Four-ELEMENT TETRAHEDRAL AND LINEAR ARRAYS WITH
INTERELEMENT SPACINGS [/A WAVELENGTHS.

Tetrahedral Linear

I

G K G K
14 4.000 0.2500 4.000 0.2500
4 3.960 0.5405 12.77 2.065
18 3.990 1.901 15.21 1.07 X 102
146 3.997 7.371 15.80 6.6 X 103
14s — — 15.95 4,2 X 105
0 4.000 0 16.00 =)

(56), namely:

sin 341 sin gl | sin 2Bl] _
[1+#+_§ﬁ_l—} R-Bﬂh*{‘l:—IBT“i‘ 2Bl Reﬂrz— (‘,053,(%/2

(62)
sin gl , sin 281 sin Sl _
[Bl + 251 Rea1+[1+;¢+—m——]Rea~2—cosBl/2
and
_ sin 381 |:sin Bl sin 2,Sl:| .
[1 + 38 Im a, + 8 581 Ima, = —sin341/2 -

Bl 261 Bl

Plots of @ against K, as computed from the above equations, are
shown in Fig. 2 for arrays with I = /4, \/8, \/16, and A/32. Note that
the scale of Fig. 2 is different from the scale of Fig. 1. The point for
I = A/2, which again falls at K = 14, ¢ = 4, is not shown because it
happens to coincide with the lower end of the curve for I = A/4. For
spacings less than /2 the curves rise to values of gain greater than 4,
the limiting value of gain for infinitesimal spacing being 16. However,
for spacings less than /4 the sensitivity becomes very large for the
higher gains, so that the upper ends of the curves are far off the hori-
zontal scale in Fig. 2. The theoretical maximum gains and corresponding
sensitivities are listed in Table II.

A considerable difference is evident in the behavior of small tetrahedral
and small linear arrays, where by “small” we mean interelement spacings
appreciably less than a half wavelength.* Sensitivity considerations

|:sin Bl _ sin 2,5'1:| Im a; + l:l +op— sin BZ:I Im gy = —sin Bz/z

* Tt is probably not meaningful tomake a direct comparisonbetween tetrahedral
and linear arrays of the same spacing [, on account of their very different propor-
tions. For example, the tetrahedral array will fit into a sphere of diameter 1.225,
while the linear array requires a sphere of diameter 31.
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Fig. 2 — Gu.igl G versus sensitivity K for optimum four-element linear end-fire
arrays with various interelement spacings 1. SBome values of the parameter u are
shown on the curves.

being ignored for the moment, the small linear array can have much
higher gains in the end-fire direction than the tetrahedral array can have
in any direction. On the other hand, by a suitable choice of excitation the
tetrahedral array can exhibit very nearly the same gain in an arbitrary
direction, while in directions different from end-fire the small linear array
cannot produce nearly so high a gain. These observations serve to intro-
duce a more general result, as follows:

Let T'(u) be the maximum (conventional) gain which can be achieved
in the direction u with an array of n isotropic elements, located at ar-
bitrary preassigned positions in space. The value of T'(u) and the excita-
tion necessary to obtain it will of course depend upon u. The following
theorem is proved in the appendix:

Theorem V. The average value over all directions in space of the maxi-
mum gain T'(u) of an array of isotropic elements is equal to the number of
elements in the array, that is,

4% f T(u) d2 = (64)
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From this theorem it is obvious that the tetrahedral array, which
comes as close to spherical symmetry as is possible with four elements,
will have a maximum gain of approximately 4 in every direction, while
the small linear array, which has a maximum gain of nearly 16 in the
end-fire direction, must have a maximum gain much smaller than 4 in
most other directions. In the limiting case of an infinitesimally short
linear array of n elements, it may be shown by a simple extension of
Uzkov’s derivation” that the maximum gain which can be obtained in
the direction u is

n—1

T'(u) = ’Z‘:} (2k + 1)P,* (cos 6) (65)

where P.(cos ) is a Legendre polynomial and 6 is the angle between u
and the direction of the array. I'(u) is equal to n® when 8 = 0, but its
value decreases rapidly as @ varies away from zero. It is easy to verify
Theorem V in this special case, since we have

-‘.LL-.-rf.s I'(u) dQ =

3 ’f 2k 4 1) f P, (cos 6) sin 8 df
1 (66)
= 1T @+ DI/ + 1) =

An infinitesimal array is not in itself of practical importance, since for
gains greater than unity the excitation coefficients and the sensitivity
are infinite; but the above example does illustrate that if an array can
have an abnormally high gain in certain directions, there must be other
directions in which its maximum gain is abnormally low. This fact may
have applications to the design of arrays whose physical orientation is
fixed, while the main beam is caused to scan by electrically varying the
excitations of the various elements.

In conclusion we should like to point out that the design procedure
given in this paper applies to any array in which the number of elements
and their configuration are specified in advance. In many practical cases
the array to be used will be so specified, and our method then yields the
optimum design. One could, of course, ask a more general question:
Given n elements and a sphere of fixed diameter, how should the ele-
ments be placed inside the sphere and how should they be excited to
maximize the gain in a specified direction, while holding the function
K(a), which measures the sensitivity of the pattern to random varia-
tions, below a preassigned value? The restriction to a definite number of

12 Reference 5, pp. 37-38.
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elements is essential, since as pointed out in Section V we could produce
on paper an arbitrarily high gain with an arbitrarily small K (a) by pack-
ing colossal numbers of elements into the sphere. It may well be true
(though a proof seems to be lacking) that if there is no restriction on
pattern sensitivity, the maximum gain possible with n elements is oh-
tained by arranging them in an end-fire array of infinitesimal length;
but the excitation coefficients and K(a) are then infinite. It is not self-
evident that the end-fire arrangement will be optimum if K (a) is required
to have a reasonable, finite value. The very interesting problem of deter-
mining optimum array configurations for finite values of K(a) appears,
however, to be considerably more difficult than the problem of determin-
ing optimum excitations for arrays of fixed configuration,

ApPPENDIX
PROOTS OF OPTIMIZATION THEOREMS

Let H denote the Hermitian matrix (h;), @ the n-vector whose com-
ponents are the excitation coeflicients, and e the n-vector whose com-
ponents are

e, = exp (—ifr;-up), k=1,2,---,n (A1)

The product Ha of the matrix H and the vector a is the vector whose
jth component is

(Ha),-=];hjkak, i=12 - n (A2)
and the inner product (z, ¥) of two vectors is defined as
(-’!‘, ?j) = g Y™ (A3)

The functions (7(a) and K(a) defined by (26) and (33) may accordingly
be written

_l@aF

Gla) = L) (A4)
_ (a0

KO = e g o)

Theorem I. Consider the system of equations

Ha + pa = e, (AG)
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where  is a scalar parameter. If u = 0, then for any nonzero a whatever,
1
(Ha, a) + pla, @) = o j; | folu) s (w)w(u) d2 + ula, @) > 0 (AT)

so that the Hermitian form (A7) is positive definite and
: det (hi; + wde;) # 0
Then the system of equations (A6) does have a solution au].
From the complex conjugates of (A6) and (A7) we find that
(alu], &) # 0 (A8)

so that afu] is not orthogonal to e. Hence an arbitrary vector ¢ may be
written in the form

a = aalu] + b (A9)
where « is a complex scalar and b is a vector orthogonal to e, so that
(b,e) =0 (A10)
Note that if « were zero, we should have
fo(w) = (b,e) =0 (A11)

corresponding to no radiation in the direction up ; so we may assume
a # 0. Since G(a) and K(a) are quotients of Hermitian forms in the
components of a, their values do not change when @ is multiplied by a
constant. Hence it suffices to consider excitations of the form

a = afu] +b (A12)

where b satisfies (A10). Such excitations leave (a, €) constant, so we need
only study the behavior of (a, a) and (Ha, a) as functions of b.
To satisfy the condition

K(a) = K(alu]) (A13)
it is necessary that
(alul, ) + (b, alu]) + (b, b) =0 (Al4)
Then we have
(Ha, a) = (Halul, alu]) + (Halu], b) + (Hb, alu]) + (Hb, b)
= (Halul, alu]) + (Halu], b) + (b, Halu]) + (Hb, b)
= (Halul, alu)) + (e, b) — w(alu], b)
+ (b, &) — u(d, alu]) + (HD, b)
(Haly), alu]) + p(b, b) + (Hb, b)
(Halu], alu])

(A15)

v v
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where the second step follows because H is Hermitian, the third step on
account of (A6), and the fourth step on account of (A10) and (A14). The
equality signs in the last two steps hold if and only if b = 0. Hence the
only possible solution to the problem of maximizing G(a) under the con-
dition K(a) < K(a[u]) is given by a = aa[u], where « is a complex scalar.
This proves Theorem I.

Theorem I1. Since H is a positive definite Hermitian matrix, it has n
positive real eigenvalues Ay, A2, ---, As, and n linearly independent

eigenvectors v, »® ... ™ which satisfy

H" =2, r=1,2,---,n (Al6)

The eigenvectors may be taken as orthonormal, so that
", 0®) = 5, (A17)
We may expand the right-hand side of equations (A6) in terms of the

vectors v”; thus

e =2, Ex" (A18)
r=1
where
= (6’, v(r‘))’ r= 1: 2: e, M (Alg)
Assuming a similar expansion of the solution of (AG), write
alg] = 2 e™ (A20)

r=1

Substituting (A18) and (A20) into (A6) and using (A16) and (A17), we
find without difficulty,

¢ = E/(\ + p) (A21)

We can now write down expressions for the Hermitian forms occurring
in G(a) and K(a). Using (A18), (A20), and (A21), and the orthogonality
condition (A17), we obtain

(alu], ¢) = g |, [/ O + w) (A22)
(alu), alu]) = ): LE, /O + w)? (A23)

(Haly, alu)) = EME P/ + p)? (A24)
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Note that all three expressions are positive real-valued, and that

d(alu), e)/du = —(alul, alu)) (A25)
From the preceding expressions and the definition (A5) of K(a), we
have
dK (alu]) 1 l: d(alul, alul) 2]
= - | (alu], ) ———— + 2(alul, a A26
(L) — g (ol © TR 2ol alal” | (A20
The first factor on the right is positive, and the terms in square brackets
become ‘

Lo BL S B e BT
21;1(“r+#)az=:1()\a+p)3+2 1-=El()\,-+p,)2 =0 (A27)

by Schwarz’s inequality. Hence K (a[u]) is a nonincreasing function of u.
Now let s > wm and let Ky, K,, Gy, G2 denote K(alw]), K(alu]),
G(a[w]), G(alu]). By Theorem I

G = MaxXg@ <k, G(2) £ Maxgw<x, Gla) = Gy (A28)

since we have just proved K, < K; . This completes the proof of Theorem

1I.
Theorem III. To find the minimum possible value of K(a), let

a=¢—+Db (A29)
where
(b,e) =0 (A30)

The coefficient of ¢ may be taken as unity, since if it were zero, K(a)
would be infinite. When a is given by (A29), (a, ¢) has the constant
value
(a,e) =n (A31)
and making use of (A30),
(a,a) = n 4+ (b,b) = n (A32)

Referring back to (A5), we see that K(a) achieves the minimum value
1/n when a = e; this is Theorem IIIL.

Theorem I'V. To maximize G(a) when there is no restriction on K(a},
set x = 0 in the system of equations (AG). We do not require (A13) or
(A14), but from (A15) we still get

(Ha, a) = (Hal0], a[0]) + (¢, b) + (b, ) + (HD, D)
= (Hal0], a[0]) + (Hb, b) (A33)
= (Hal0], a[0])
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which shows that G/(a) is maximum when a = a[0], and thus proves
Theorem IV,

Theorem V. Setting p = 0 in (A23) and (A24) and using (A19), we
obtain from (A4) an expression for the maximum gain in any direction
u, namely

n n n

z Z E A u?)a(r)*f?t*m(r] (1\34)

r=1 s=1 =1

(u) = 2N E [
r=1

The dependence on u appears in the components of ¢, where

ep = exp (—ifr;-u), k=12 - ,n (A35)

Averaging over all directions in space gives
= [eerag = 2Py, (A36)

47 S ﬂl'xg

the identification with the matrix element h,, being made from equation
(29) on the assumption that the elements of the array are isotropic and
the conventional definition of gain is used. It follows now from (A16)
and (A17) that

1

— | T'(u) d2

4w Jg

1 n n

E Z E A "0 e )*hﬂv o

r=1 s=1 =]

D 3D IPE RN

r=1 s=1

I

(A37)

which proves Theorem V.






