Relaxation Phenomena in Ferrites

By A. M. CLOGSTON
(Manuscript received March 2, 1955)

J. K. Galt has recently suggested a mechanism for the losses observed in
ferromagnetic resonance and domain wall motion in single crystals of nickel
ferrite containing small amounts of divalent iron substituted for divalent
nickel. Iach such substitution provides one electron able to move between the
various octahedral sites in the crystal. Galt’s suggestion s that the losses
arise from a relavation associated with the motion of these electrons.

This paper develops a theory of this mechanism based on a thermodynamic
model. Expressions are found for the velocity of domain wall motion, for
the line width in ferromagnetic resonance and for the displacement of the
field for resonance.

INTRODUCTION

In a recent paper, Galt" * and Wijn and van der Heide® have suggested
a mechanism for the losses observed during ferromagnetic resonance and
domain wall motion in single crystals of nickel ferrite having a small
amount of divalent iron substituted for divalent nickel in the octahedral
sites. It is supposed that each substitution of a divalent iron atom for
a divalent nickel atom provides one 3d electron able to move from one to
another of the various iron atoms on the octahedral sites. For conven-
ience, we shall term such electrons the “free electrons”. With the crystal
magnetized in a particular direction, these free 3d electrons will always
so arrange themselves as to minimize the free energy of the crystal. The
free energy, therefore, is going to depend upon the direction of magneti-
zation because of this mechanism, in addition to its usual dependence
upon the erystalline and shape anisotropy. It is clear that there will be
an additional torque acting on the magnetization.

Inwhat follows, we shall assume that the free electrons cannot instantly
assume the equilibrium arrangements specified by the motion of the

! Galt, Yager and Merritt, Phys. Rev. 93, No. 5, p. 1119, 1954.
2 J. K. Galt, B.S.T.J., 33, No. 5, p. 1023, 1954.
3H. P.J. Wijn and H. van der Heide. Rev. Mod. Phys. 80, p. 744, 1950.
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magnetization but tend toward equilibrium with a relaxation time r. We
shall show that this assumption results in energy being extracted from
the motion of the magnetization and appearing as heat in the crystal.

The above mechanism has been analyzed by Galt in reference 2 in
connection with the velocity of domain wall motion in nickel-iron ferrite.
A similar question has been analyzed by L. Néel in discussing the motion
of domain walls in iron. In Néel’s case the relaxation is associated with
the migration of carbon atoms between various sites in the crystal.
The theory used here is essentially similar to that applied by Néel.
We shall try, however, to emphasize more than does Néel the connec-
tions with thermodynamies, and shall apply the theory not only to do-
main wall motion but also to ferromagnetic resonance. The theory is not
in accord with that proposed by Galt and the points of disagreement
will be mentioned below.

1. Kinetic Model

We shall consider the assembly of N free electrons per unit volume to
constitute a thermodynamic system in heat contact with the crystal
lattice. We suppose that there are m possible sites per unit volume of
crystal for the free electrons to oceupy; m is, of course, just the number
of iron atoms per unit volume lying in octahedral sites. We shall let
(M) be the energy levels available to the electrons on the octahedral
sites where M is the magnetization vector. We shall suppose that there
are d; levels per unit volume of energy ¢€; and have therefore > di = m.
We shall let N; be the average number of electrons per unit volume in
the level ;. If the magnetization is held steady in some direction, N;
will approach an equilibrium value that will be denoted by N w(M). We
shall assume a universal relaxation time = such that N; approaches
equilibrium according to the equation

dN; N, — N; (1-1)

dt T

and this equation is to hold whether or not N, is a function of time.
We observe that Y, N; = N and that therefore 3 dN./dt = 0 as must
be the case.
N, is obtained in the usual way by minimizing the free energy at
constant temperature, and is given by
di

Niw = cereiir (1-2)

1+ 1,. Néel, Théorie du Trainage Magnétique de Diffusion, Journal de Physique
et Radium, 18, p. 249, 1952.
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In what follows, we shall assume that the percentage of substituted iron
is small enough so that d; 3> N for each level. We have for the total
number of electrons per unit volume

d;
N =2 wamr (1-3)

It is clear that ¢** %/'*" must be much greater than unity for all 7. Con-

sequently, we may write
dﬂ—Eibe

Ni, =N S de (1-4)

We now define the internal energy, the entropy, and the free energy
per unit volume as

U= E N (1-5)
S=kNIN -3 N:InNJ] (1-6)
F=U-T8 (1-7)
The equilibrium value of these quantities are obviously given by
Uy = Z Niwti (1-8)
Se=FkNInN — 3 Nioln N (1-9)
Fo = Uac - TSan (1—10)
If we take a time derivative of equation (1-5) we obtain
dU de; dN;
E—ZN;E-F‘ZE.T (1-11)

and in accordance with the first law, identify the rate of doing work on
the system as

dw dE;,

o= =N (1-12)

Tt

while the rate at which heat flows into the system is

daQ _dN;
dat 2 ¢

4 d (1-13)

2. Domain Wall Motion

We shall first apply the kinetic model to a discussion of the velocity
of a 180° domain wall moving perpendicularly to the (110) plane. In this
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case the magnetization vector remains essentially in the (110) plane
and its direction can be specified by the angle 6 as in Fig. 1. We shall
take the y-direction into the plane of the paper. Let us suppose that the
wall is moving in the positive y direction, and that the magnetization
turns through 180° from 6, to 6. as the wall sweeps by a given point.

(oo1)

6
(111

(110)

62

Fig. 1 — Angles used in describing motion of domain wall in (110) plane.

If we follow the procedure outlined by Kittel,’ it is easy to show that
the shape of a domain wall in the (110) plane for a crystal whose easy
direction of magnetization is (111), is given by

2
A (%Y = 40 - o0 (1)
where
g(8) = K[Y4 sin'0 + sin’@ cos’t] (2-2)

K is the first order anisotropy constant (a negative number) and A is
the usual exchange constant. We have sin 6; = -\/%, cos 0 = \/% 80
that g(6) = 14K and g(6) — g(6:) = (—K/12)(2 — 3 sin’6)". Equation
(2-1) determines the wall except for its position along y. We have ig-
nored in (2-2) a term depending on the magnetostriction which removes
an ambiguity in the shape of the wall at the easy direction intermediate
between 6, and 6, . This term is unimportant in what follows.

s . Kittel, Physical Theory of Ferromagnetic Domains, Rev. Mod. Physics
21, p. 556, Oct., 1949. '
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We shall now assume that the wall moves along y with a constant
velocity v and maintains the static shape given by (2-1). At each point
in the wall we can then write,

—_— = —y— (2-3)

The domain wall is, of course, moving as the magnetization turns to
line up with an applied external field H, . The rate at which this field
does work on the wall per unit area is given by 2H,Mv. This quantity
must be set equal to the net rate at which work is done on our thermo-
dynamic system, or, what is the same thing, the net rate at which heat
flows into the crystal lattice. We may write therefore,

OH My = % dy (2-4)

In order to compute dW/dt from (1-12) we suppose that the domain
wall is moving slowly and that N, is therefore a slowly changing func-
tion of time. Consequently we obtain from (1-1) an approximate ex-
pression for N;

dN; 2 d’N

Ni=Ni, — 7 a + 7 ’°+ (2-5)

We obtain immediately from (1-12) to first order in 7,

aw dN", dS.'
dat ZN‘“ a "; di dt (2-6)

The first term in this expression can be written as dF../dt, and contributes
to the integral over y a term

2 qF

(7]
8, dﬂd

—v
We assume that F,, has cubic symmetry, and there is therefore no net
contribution from this term.

The second term may be treated as follows. Proceeding from (1-4) we
find by differentiation

dN,'m _ 1 ) d£{ _1_' . 1 ) df,‘
= T Neg T Ney X Nag @D
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Then we have

dN., de; _ :
2 dt dt szN‘”( )+NkT(EN'“ dt)

N N., [de; Ni dei |
“ﬁ??[ﬁ Z.-:T}E]

dN:, de; N ,[de. _ ,de (T (dOY

st N - oD (@) (2-9)
where the angular brackets indicate a mean value over the equilibrium
system. Upon substitution of (2-9) in (2-6) we find,

W_dbe g N[l dn]H (&) e

By using the first law, we can write for the heat flow into the system®

iQ _dU _dF, N ,[de _ ,dec T (d8Y
@@ dt "H“([E ‘Tﬁ’]’(d—z) 1)
It is clear that, in any process that takes the system between two iden-

tical thermodynamic states, the terms dU/dt and dF./dt will integrate
to zero. We must therefore regard the positive definite expression

N ,| de; de.
T W ( [ 6 ( ] )
as an irreversible heat loss from the system, and it is just this heat loss
that makes dW/dt greater than dF./dt.

Before proceeding we wish here to make certain comparisons with
the theory used by Galt in discussing domain wall motion in Reference 2.

i 8 It is possible to formulate this problem in terms of a temperature T« such
that

N'. - Ng—eifk!';/z e—silkT:
One then obtains

4 _ 9‘1 -
= (Tx = 1)

where

Oy = % [fe) — (e

kT?
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From (15) to (24) in Galt’s paper one finds, to first order in 7,

daw _ dgi., (de)”

dt T T de \dt
which is to be compared with (2-10). This formulation seems somehow
to neglect the equilibrium free energy of the free electrons, but since
this term is indistinguishable from the ordinary crystalline anisotropy
energy the omission is unimportant. The expression above, however
must be interpreted as the irreversible heat loss and should therefore
be a positive definite quantity as in (2-10). The quantity (d’gi./d6"),
however, is not positive definite, and this would seem to be a serious
objection to Galt’s formulation of the theory. In Reference 2, g;. is set
proportional to g(#) defined in (2-2) so that (d’g../d6%) in that case
specifically has regions of positive and negative value, which should not
be the case.

Using equation (2-10) we find

i“ ka (5 - ] (@) a
o [ - T (2 ao

where (d8/dy) is taken as positive by convention. This integral is the

net rate at which work is done on the wall and is positive definite. The
corresponding expression developed by Galt (30) is

82 42
) d g, (d
T o dﬂz (@) da

We can only regard a positive value for this integral as accidental and
to depend upon the shape of the domain wall.

Combining (2-4), (2-12) and (2-1), we find for the velocity of domain
wall motion

(2-12)

_ 2HM
o {%,)1/% l([d—""-’—(d‘s‘]nz—hm olap 13

This expression exhibits the characteristic dependence of v on 1/7 dis-
cussed by Galt in reference 2 and shown there to account for the very
marked dependence of v on temperature found in his experiments. It
also contains the obvious result that v depends inversely on the number
of free electrons.
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It would be very desirable now to proceed to calculate the coefficient of
1/7. This can only be done by introducing some physical ideas to arrive
at an explicit dependence of &; on 6. This may be done according to two
simple schemes that we shall consider later. First, however, we shall
discuss the phenomenon of ferromagnetic resonance. One point that will
soon become clear is that the present theory allows no direct comparison
between domain wall motion experiments and ferromagnetic resonance
experiments unless a particular model is adopted.

3. Ferromagnetic Resonance

We shall now apply the kinetic model to a calculation of the line
width for ferromagnetic resonance and the corresponding displacement
of the field for resonance. We suppose that the applied field and equi-
librium direction of magnetization lie in the (110) plane at angles n and
8, as shown in Fig. 2. The direction z lies along Mo . The direction z lies
in the 110 plane perpendicular to z, while the y direction is perpendicular
to the (110) plane in such a sense that z, y and z form a right-handed

system.
We begin by writing down an expression for the total free energy of

the system.
Fr = —MH cos (8 — n) cos® + G(8, D)
+ X Nei — kI(NIn N — 22 N;InN))  (3-1)

where @ and ® are the instantaneous directions of the magnetization.

(o01) %

(o10) )

(100)

Fig. 2 — Coordinate systems used in discussing ferromagnetic resonance in the
(110) plane.
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It will be observed that 6 and ® are not the usual polar codrdinates but
are angles especially suitable to describing events occurring in the (110)
plane. The first term in this expression is the energy of the magnetization
in the external field. The second term includes the erystalline anisotropy
energy, the shape anisotropy of the specimen and any energy due to
magnetostriction. The third term is the free energy of the free electrons.
We now wish to obtain the x and ¥ components of the torque acting on
the magnetization. These torques will be given by

r,— _F g _0F

a0 z a_tﬁ (3'2)

where the derivatives are taken with N; held constant. This procedure
is consistent with (1-12) for dW/dt.
We obtain for T, , setting® = 0

T, = —MH sin (e - - == N (3-3)

Returning to (1-1), we can write generally for N;, ignoring a transient
term,

tr AN

t
N, = N,'m - E_”Tf d'w d!. (3-4)
If we insert (3-4) into (3-3) we obtain,
T, = —MH sin (8 — 7) —‘E- ZN., =

a o foNNds . D
8. —!n'r tir T
+ Z f e (—aa )t?t di

Let us expand this expression around the equilibrium angle 6, to obtain

T, = —MH sin (6 — 7) — (GG) - TN (ag.)

a6 a

(MHcos (90-n)+(6 G) +§_‘,[ ( . a“;‘)J )Aﬂ (3-6)
(.0,
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which can be expressed in terms of the equilibrium free energy as

T, = —MH sin (6 — 7) — (gg) (a;; )
2
(MH cos (B — ) + ( ;) + ("’—a%)a )AB (3-7)

ae\ (N —ur [t de)
+ (%), (D)o [ (§)

We choose 8 so that MH sin(6y — ) + (8G/30)s, + (9Fo/38)s, = 0
and suppose that H is large enough so that 8, is substantially equal to
7. We shall now drop subscripts and suppose that the field and equi-
librium magnetization are in the direction . We further recognize that
A8 = M./M. The expression for T, then becomes,

G M.
Ty (MH+862+ aaz)—M
3e:\ [N Cwram, &Y
&g Too —tfT tlr A z
+Z( )(ae )e f"' M ~di
An exactly similar expression is obtained for T’
’°G M,
(MH Tam T 6@2)71?
(3-9)

B 3\ (0N, \ ~ue [ e 1 dMy
E( )(aq:)e @

The torques T- and T, may now be substituted into the equation of
motion of the magnetization
d_dig = —T — yM Xk (3-10)
where v = ge/2mc and f is the driving field. It will be observed that
M. and M, will vary sinusoidally with frequency w of the driving field
for small amplitude motion. In that case, we can write

—ifr ! tit er. T % (w’r)z
G f U= @t 1+ @)

and similarly for M, . It now becomes an elementary matter to compute
the resonance line width and the field shift brought about by the re-
laxation process.

M, (3-11)
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The total line width is given by,

A= =37 Z ((ao) (a];:;,,) + (’?9%) (a?;-,)) Tt @y &1

while the field required for resonance is increased by,

1 [&F, , &F,
3H_—2M( +aq>2)

1 68,‘ aN.-n 6.*:,- aN,'m (NT)2
+ar 2 ((5) (B) + (52) () e

The expression

2 () (o) + () ()

is very similar to an expression that arose in discussing domain wall
motion. We can treat this term exactly as was done in arriving at (2-9).
We shall find that

()« (9)(%)

_ _%<[%_(%)T+[%—-<g$>]z>

Let us first notice that AH and §H depend upon the quantity

dE,' dn‘.’.‘ :
([ - e
which does not appear at all in (2-13) for domain wall velocity. Without
making more explicit assumptions about ¢;, therefore, we cannot make
any connection between the two experiments. The essential point here of
course is that M is not constrained in the resonance experiment to move

in the (110) plane as it is in the domain wall experiment.
Let us now make the reasonable assumption that the quantity

([dor— oy [+ [0 e

varies in the (110) plane with cubic symmetry. We write therefore that

([%_(%)] [@_(ds‘ ]) (3-15)

= p + g[Y4 sin* 6 + sin? 0 cos? ]

(3-13)

(3-14)
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When we come to discuss specific models, we shall give particular ex-
pressions for p and ¢ in terms of one unknown constant. We see that
p > 0and p + ¢/3 > 0 to maintain the right hand side of (3-15) posi-
tive. We observe that it is not possible to claim cubic symmetry for the

terms
de; de; de; de; T
<'|:d9 Ca >:|) and ([gg (7% )])
separately.
Using (3-15), the expressions for line width and line shift become,
1 N wT
AH = 505 [p + ¢(14 sin' 6 + sin® 8 cos 49)]1 o (3-16)
1 [oF, [ OF,
o = —Q_M(aaz + aqnf‘-)
(3-17)
1 N

~ S kT [p + q(4 sin' @ + sin® 0 cos® 8)] ———— i + (W)z

Equation (3-16) for the line width shows a dependence on (wr) that
is characteristic of relaxation processes. If a measurement is made of
AH versus temperature at a given frequency and in a given crystallo-
graphic direction, a peak will be observed in the line width at very nearly
the temperature where 7 = 1/w. The peak will not fall accurately at
r = 1/w because of the temperature dependence of the coefficient of
wr/1 4 (wr)* but comes very close to 1/w because of the exponential
dependence of = on temperature. Observations of this kind have been
made by Galt, Yager and Merritt on nickel-iron ferrite and reported by
them in Reference 1.

If we may now extend the measurements over a range of frequencies,
and observe how the line shape varies as a function of frequency at con-
stant temperature, AH will have its maximum accurately at « = 1/7
In principle, then, 7 can be determined as a function of temperature.

If 7 is known at a particular temperature, a measurement of AH versus
9 at constant temperature and frequency will serve to determine
1/M N/kT p and 1/M N/kT g at the temperature in question.

Let us now consider the field shift 8H given by (3-17). In the first
place, this shift is not the ordinary displacement that accompanies the
introduction of loss into any resonant system since such a field shift
would be proportional to (AH)®. To the contrary, the field shift is of the
same order of magnitude as the line width and we must consider seri-
ously what effect this will have on the measurement of g-value. We have
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assumed previously that F,, has cubic symmetry, and in that case, the
term in (3-17) depending on F., will be indistinguishable from the usual
crystal anisotropy and need not be considered further. The second term
we must consider more closely.

The following expression is an identity.

p + qlY4 sin* 8 + sin® § cos’ 6]
(3-18)
= (P + %) - % (2 — 54 sin® 0 — 15¢ sin’® 26)

Now, the second term on the right has the angular dependence in terms
of which one usually expresses the first order anisotropy constant K, .
We may expect then that the measured anisotropy constant will have

the form
_w _N{(a (wr)*
K= o~ i1 (%) rey A

where K is the static first order anisotropy constant.

We may look, therefore, for a dependence of K; on frequency and tem-
perature like that given in (3-19) and make comparisons with the be-
havior of the line width.

If the total anisotropy field has been thus accounted for, we will be

left with a line shift
_ 1 N q (w'r)2 -
50 T (” + 3) TF (@ (8-20)
which will appear as a change in the g-value. If a measurement of the
field H for resonance is made for a given w, T and @, and if this field is
corrected for the anisotropy field to give an effective field H,, we will

have
w 1 N q (wr)’*
vy 2M kT (p 5) 1 4+ (wr)? (3-21)

We shall measure an effective v, however, given by

H, =

Ho=3 (3-22)
Ye
Equating (3-21) and (3-22), we obtain
S A N
v H.ZM T ('f” +5) T @ (3-23)

or, if yo = g.e/2me and Ag = g. — g,
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Ag 1 N q) (wr)®
A S 1) __ W1/ 24
g SH.M KT (p t5)TF @ (3-24)

We, therefore, see that the g-factor will also have a dispersion in fre-
quency and temperature, and the measurement of g-factor may indeed
be the most sensitive way of observing the relaxation phenomenon.

4. First Model

There are two simple models we may adopt to obtain an explicit de-
pendence of ¢€; on 8 and ®. In the first case, let us suppose that there are
four distinguishable energy levels in the crystal &, &, & and & and
that each is associated with one of the body diagonals of the cubic crystal
according to the relation

£ = wcos’ 6 (4-1)
where 6; is the angle between the direction of magnetization and the
i* body diagonal and w is some constant depending on temperature.

This model is particularly tempting because there are four non-
equivalent octahedral sites in the ferrite crystal, each associated with a
given body diagonal. Expressed in terms of the direction cosines of the
magnetization (aiasas), we find

& = ;—D 1+ 2(0!10!2 + aas + 013‘11)]

w
& =gz [1 + 2(anes — ooz — agon)]

(4-2)

£ = ;—0[1 + 2(—anas + ass — con)]

w
& = § [1 + 2(—aer — anas + ﬂfaal)]

while expressed in terms of the angles 6 and ®, the energies become,

& = 319{1 + [sin’® 6 cos’ ® — sin’ ® + 24/2 sin 0 cos # cos’ 4’]}

£ = 131’{1 + [sin® 0 cos® ® — sin® ® — 24/2 sin 6 cos @ cos’ d)]}

(4-3)
£y = g{l + [—sin®0 cos®® + sin® ® 4 24/2 cos f sin & cos fﬂ}
& = g—’{l + [—sin® 8 cos’ @ + sin’ ® — 21/2 cos fsin @ cos ‘I’]}
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Let us consider now how we shall calculate the various mean values
that will be required. If we consider a set of values g; we have

Z gi d{e—tifkr

Zg‘ d'e“(a;ﬂ(!"))lkT
E d_e—(ei—(ei))fkT

(g:) =
(4-4)

We shall suppose that T is large enough so that (e; — (&;)) < kT, and
assume that d; is the same for each level. In that case, approximately

1 k
(o) =1 ; Gn (4-5)

if there are k levels. We shall show shortly that this assumption is con-
sistent with the experimental data.
Using (4-5) we can calculate for our first model the following mean

values,
de; de; _fw 2
(I:@_(&F):I)_(g) [1 4+ 3 cos” 26] (4-7)
df;’ _ dE; =
(I:CH’ ( )] ) ( ) 4 cos’ 0 (4-8)
de; _ dei T [des _  de
-]+ 5 - G ]
\ (4-9)
- (:'3_0) [1 4 3 cos® 20 + 4 cos’ 6]
= 8gw'[l — 2(14 sin' 8 + sin’ 6 cos’ 6)] (4-10)
Referring back to (2-13), the velocity of domain wall motion becomes
2H.M
V= 2
N K _
T(ﬁ) 1/1211 5 (3) [1 + 3 cos®20] |2 — 3sin’0|de

2H M (4-11)

) 11/%(3)10(102)
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Comparing with (3-15) we find p = 8¢ w' and ¢ = — 164 w’. The line
width for resonance becomes
AH

_18(N wT (4-12)
_I_I/fﬁ(ﬁ) [1—2(43111 9 + sin’ 0 cos’ G)JWE

The anisotropy constant is given by

= 4 (NY o (r)
B=X+tg (kT) YT (wr)? (4-13)
and the shift in g-factor by

Ag _ 1 4 (NY . (er)

g HM 15 (kT) ¥ 1 T (or)” (4-14)

We thus have four different measurements which we may try to fit with
the same value of N/kT w’. It should be noted that (4-12) predicts a
maximum line width in the (100) direction and a minimum in the (111)
direction.

5. Second Model

For the second model, we shall assume that there are three distinguish-
able energy levels & & and &; each associated with one of the cube edges
of the crystal according to the relation

£; = wcos’ 6; (5-1)

where 6, is the angle between the direction of ma.gnetlzatlon and the ith
cube edge. Expressed in terms of the direction cosines of M we have

& = W ﬂq
2

& = W as (5-2)
2

€ = W Qg

while expressed in terms of the angles 6 and ® the energies become,

£ = — (sin 0 cos ® — sin ®)"

RS

(5-3)

£ = = (sin @ cos ® + sin ®)*

) 8

g3 = w (cos 0 cos P)*
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This model we now consider is the same as the one used by Néel in
Reference 3 to discuss the relaxation of interstitial atoms in iron. Pro-
ceeding as before we find,

(%) = (‘3—”) (5-4)
( [% —{ % ):I ) = 2w’ sin® 6 cos’ 0 (5-5)

w® sin” 0 (5-6)

-] -

([ (e ]>+<[f‘fi— ]

[VEI

=

(6-7)

= g w (i sin* § + sin® 0 cos’ B)

In this case we obtain,
2HM
v = — &
N —K - 2 . 2 2 .2

T(W) ,‘/m . 2w sin"fcos 0|2 — 3sin 8| do

(5-8)

2HM

B :1/% (g,) w* (583)

and by comparison with (3-15) p = 0 and ¢ = 84 w". The line width for
resonance is

_ 1 8(NY 21 .4 - 2 wr
AH_HE(W)w (Z sin” @ + sin” 0 cos g)m (5-9)

The anisotropy constant is

_ . _ 2/(NY\ . (wr)?
K, = K, E (ﬁ) w m (5-10)

The effective field at resonance is

w4 NW* (wr)®
He=3"1 (MkT) T+ (0r)? (511

and the g-factor shift is

Ag 1 4 N s (wr)’ -
i m( ) (H) Y ) (5-12)
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320

280

AH IN OERSTEDS
o
o
N

o] 40 8o 120 160 200 240
TEMPERATURE IN DEGREES KELVIN

Fig. 3 — Corrected line width in the (111) direction versus temperature for
Nip.ssFes, 204 after Yager, Galt and Merritt.

In this case the line width due to relaxation is zero in the (100) direction
and a maximum in the (111) direction.

6. Comparison with Experiment

We wish now to make some comparisons between the theory developed
in the preceding sections and measurements upon nickel-iron fer—
rite of composition NizsFe: 204 made by Yager, Galt and Merritt.”
The data we shall consider were made upon a 009" sphere and are pre-
sented in Fig. 4 and Table II of Reference 7. These data include a
measurement of line width versus temperature for the (111) direction
and (100) direction in the crystal; a measurement of the first order
anisotropy constant (as K;/M) versus temperature; and a measurement
of the effective field at resonance, H., , versus temperature. It is observed
from these data that the line width is maximum in the (111) direction
and we shall therefore try to fit the data with the second model as dis-
cussed in Section 5. This model requires the line width to be zero in the
(100) direction. In fitting the data, we shall assume that the line width
in the (100) direction represents non-angle-dependent contributions from
other mechanisms and shall subtract this width at each temperature
from the width in the (111) direction. The resulting curve is shown in

7 Yager, Galt and Merritt, Phys. Rev., to be published.
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Fig. 3. The data for K,/M and H, are presented in Table I. The effective
fields H, have been corrected in each case to a common frequency 24,388
me/sec.

The equations we need are contained in Section 5 and are repeated
here for convenience,

_ 8 Nw' wr )
Al =g (MkT) 1+ (wr)? (6-1)
_w 4 Nw' (wr)? R
#. = y 15 (MkT) 1+ (wr)? 6-2)
-Ki _ [—Ko 2 [ Nw'* (wr)*
g/l (T) i (MkT) T (@) 6-3)

To proceed, we must make some assumptions about how w depends
upon temperature, and shall therefore suppose that (Nw'/MET) is a
constant independent of temperature. If we assumed instead, for in-
stance, that w was a constant, the curves to be calculated would differ
considerably at low temperatures but not enough to affect the conclu-
sions to be drawn.

Proceeding on this assumption, we conclude from Fig. 3 that wr = 1
at 7' = 145° and calculate that (Nw’/MkET) = 690. We may now use Fig.
3 and (6-1) to calculate wr at each temperature. With this we may cal-
culate H, at each temperature, and the resulting curve is shown in Fig.
4. Since we have no independent value for v, the curve has been fitted
to the data at 160°K. It is seen that the predicted changes in H. are
in the correct direction and are of approximately the right magnitude.
The experimental points are not fitted in detail, however. The fit above
85°K could be somewhat improved by assuming a different dependence
of w on T. The theory as presently developed cannot explain the in-

TaBLE I — Anisorrory FieLp —K;/M axp Errective FIELD
H, ror VARIOUS VALUES OF ABSOLUTE TEMPERATURE
APTER YAGER, GALT AND MERRITT.

T°K —K1/M (oe) He (0€)
300 152 8195
159 218 8070
135 238

85 259 7953
4.2 421 8047
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Fig. 4 — Measured and ealeulated values of effective field H, as a function of
absolute temperature.
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Fig. 5 — Measured and calculated values of anisotropy field —K,/M as a func-
tion of absolute temperature.
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crease of H, at 4.2°K. Yager, Galt, and Merritt believe that the changes
observed between 85°K and 4.2°K must be ascribed to some other
mechanism,

In arriving at (6-1) to (6-3) we have assumed as in Section 4 that
w/kT <« 1. At a temperature of 150°K, kT equal 2.07 X 107" ergs.
The molecular weight M of nickel ferrite is 234.39 and the density p is
5.37 gms/ce. There are then pL/M = 1.38 X 10* molecules per cubic
em, where L = 6.025 X 10® is Avogadro’s number. In nickel ferrite of
composition NijzsFes 204 one divalent iron is introduced for each four
molecules, and the number of free electrons N is therefore 3.45 X 10"
per ce. The magnetization of this ferrite is about 340 cgs units. We have
determined above that (Nw’/MET) = 690 and can therefore calculate
that w/kT = 0.057 at T = 150°K. We have thus proceeded consistently
in assuming w <« k7. If w is constant, our calculation would not how-
ever be correct below about 50°K or if w’/kT is constant, below about
10°K. It would be entirely possible to make accurate calculations for
the entire temperature range and, by assuming special variations of
w with temperature, perhaps account for some of the rise in H, at
4.2°K.

We must also recognize that the ratio m/N of levels to number of
free electrons in this composition is 5. Since we have assumed the levels

320 - T -
N

300

\
260 \\
240 \

220 \

IN OERSTEDS

200

K
M

180

160 I
3
140 \\

120 1
7800 7900 8000 8100 8200 8300

He IN OERSTEDS

Fig. 6 — The theoretical relation between anisotropy field —K,/M and effec-
tive field H, compared with experimental points.
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divided into three equal groups, d; = 34N so that we are hardly justi-
fied in considering the electrons to be non-degenerate. We should then
really use (1-2) instead of (1-4) in computing our averages. Further-
more, when degeneracy effects are important, the relaxation equation
(1-1) should be replaced by a more sophisticated expression. Since the
general effect of degeneracy is to reduce the number of electrons taking
part in the relaxation process, particularly at low temperatures, a calcu-
lation considering degeneracy has a good chance of accounting for the
rise in H, at liquid helium temperatures.

In a ferrite of composition similar to that considered here, Bozorth,
Cetlin, Galt, Merritt and Yager® report measurements of the static
anisotropy which show K;/M to be nearly constant between 300°K and
196°K. If we make the assumption that the static anisotropy varies
very little down to 85°K, we may use (6-3) to draw the curve in Fig. 5.
It will be observed that the predicted changes in K,/M are again in the
right direction and of approximately the right size although the detailed
fit is poor.

We may make one further comparison with the data. By eliminating
between (6-2) and (6-3) one obtains

(-CBE) e

With the same assumption about Ko, a plot of (—K,/M) versus H,
should be a straight line with slope —14. The data has been plotted in
Fig. 6 and a straight line of the appropriate slope drawn through the
point at 160°K. Although only three experimental points are available,
the fit is very satisfactory.

The author would like to acknowledge many helpful discussions with
J. K. Galt, P. W. Anderson, H. Suhl and L. R. Walker. '

8 Bozorth, Cetlin, Galt, Merritt and Yager, Physical Review, to be published.



