Tapered Velocity Couplers

By J. S. COOK
(Manuscript received March 15, 1955)

The advent of very broad band miciowave amplifiers and oscillalors neces-
sitales microwave circuilry of comparable frequency range. A scheme 1is
presented which makes il possible to build microwave couplers of various
kinds having bandwidths of well over two octaves. A preliminary investiga-
tion of mechanical and mathematical analogs is described; and some particu-
lar devices using the new principle are mentioned.

INTRODUCTION

In waveguide and transmission line networks, it is often desired to
transfer power from one line to another. To this end, various hybrid
junctions and ordinary directional couplers were developed some years
ago.

More recently, S. E. Miller' has made use of the fact that when two
transmission lines with equal phas> velocities are continuously coupled
over some length, a signal introduced into one line will be completely
transferred periodically back and forth between the lines. (Fig. 1.) This
principle is employed in power-‘‘splitting” devices where power is, for
instance, equally divided between two lines. Half of the signal power is
permitted to transfer from one line to the other and at this point the
coupling is discontinued. (Fig. 2(a).) Another obvious application of this
coupling principle is a means to effect complete transfer of a signal from
one line to another. (Fig. 2(b).)

Now the trend is toward systems which are capable of handling even
greater bandwidths. Miller’s approach to the problem of coupled waves
has led to waveguide couplers which are useful over bandwidths of 25
per cent and better. However, with the advent of traveling-wave tube
amplifiers and similar devices, useful bandwidths of two-to-one and more
have become desirable. The bandwidth of the Miller scheme is limited
because the strength of coupling and the electrical length of the coupling

13, E. Miller, Coupled Wave Theory and Waveguide Applications, B.S.T.J.,
33, pp. 677-692, May, 1954,

807



808 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1955

section vary with frequency. This directly affects the power division
between the lines. In the following two paragraphs are the background
and thought which led to the new broadband coupling scheme.

Miller* has shown that if two coupled lines have a fixed difference in
phase velocities the signal power transfer also is periodic. In this case,
however, only a part of the power is transferred, the amount dependmg
on the ratio of velocity difference to coupling factor. (Fig. 3.)

Assume, now, that two coupled lines have slightly different phase ve-
locities and a signal is introduced into one line. Let the velocity difference
increase slightly at the point where maximum energy has been transferred
to the adjoining line. Repeat this process until the amount of power ex-
change becomes vanishingly small. It is conceivable that if the velocity
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Fig. 1 — (a) Coupled waveguide transmission lines. (b) Wave power distribu-
tion along the lines.



TAPERED VELOCITY COUPLERS 809

steps are small the signal will finally be equally divided between the lines.
(Fig. 4.) If this is so, it follows that the same effect must result from a
continuous gradual change in the relative phase velocities of the two
lines. Furthermore, if the coupling section is made long enough, this de-
vice should be frequency independent.

MECHANICAL ANALOG

It has long been recognized that coupled pendulums are analogous to
coupled transmission lines. This analogy is demonstrated in the Appen-
dix. To test the above conclusions about lines with changing phase ve-
locities two pendulums were coupled together in such a way that their
relative lengths could be adjusted while in motion. (Fig. 5.) It was ob-
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Fig. 2 — (a) Power distribution through a half-power coupler. (b) Power dis-
tribution through a complete-power coupler,
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Fig. 3 — Incomplete power transfer resulting from coupling two lines having
different phase velocities

served that when

the pendulum lengths were fixed and equal, and one

pendulum was set swinging, it would swing less and less until it stopped
altogether, while the other pendulum would swing higher and higher un-
til it reached a maximum. Then the process reversed until the first
pendulum reached a maximum and the second pendulum came to rest
once more. This cycle repeated until friction finally brought both pen-
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Fig. 4 — Power distribution in the driving line where the difference in phase

velocity between tw

o coupled lines is increased each half beat wavelength.
g = phase constant of line 1

B2 = phase constant of line 2
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dulums to rest. This is a classical experiment performed in most early
physics courses.

Now one pendulum was made quite long and the other relatively short.
The longer pendulum was set swinging. It was then gradually shortened
and the other gradually lengthened until they were finally of equal length.
At that point they were swinging nearly together and with aboutthe same
amplitude. It was found, also, that if the short pendulum instead of the
long was set swinging, and then the pendulum lengths were gradually
equalized, the pendulums ended up swinging opposite to each other and
again, of course, with about equal amplitudes. The initial and final con-
ditions of the pendulums in these two experiments are indicated in Fig. 6.
Although these experiments are the inverse of the original proposition
reciprocity must hold, and the proposition, is thus valid.

It is known that a fixed system of two coupled pendulums will support
two independent or “normal” modes of oscillation. These two normal
modes are characterized by the pendulums swinging exactly “in phase”
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Fig. 5 — A system of two coupled pendulums whose lengths may be altered
while in motion,
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Fig. 6 — Initial and final states of oscillation of a system of two coupled pendu-
lums where, (a), only the longer one is initially excited, and (b), only the shorter
one is initially excited. In each case the lengths have been slowly equalized to
produce the end results.

or exactly “out of phase” with each other. The end results of the two
excitations in the experiment, then, were the two normal modes.

MATHEMATICAL ANALOG COMPUTER

As is shown in the Appendix, the pendulum analogy could not provide
true quantitative solutions in terms of the transmission line constants.
For this reason, and because of the mathematical complexity encountered
in trying to solve the transmission line equations directly, we resorted
to an analog computer. The coupled transmission line equations as pro-
posed by Miller and given in the Appendix were appropriately ration-
alized and adapted to permit the phase constants of the lines to vary
linearly with distance. Symbolically:

Br=B+ pz, Po=B—m (1)
where B: = phase constant of line 1
B: = phase constant of line 2
8 = initial phase constant of both lines
z = distance along coupled system
and u = constant which determines rate of phase change.

In the process of rationalizing it was found convenient to measure z
in terms of coupling wavelengths; Aw . The latter quantity is defined as
the hypothetical distance required to transfer all the power from one
line to the other and back again where 8, = B, = 8 = constant. If we
let

¢ = 272/ w0
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we can write (1) as

ﬁ1=s(1+ﬁ)’ Bz=3( - 55) @)

where n = number of coupling wavelengths the problem is allowed to
run, ie., until g2 = 0, 0r 0 = ¢ < 2 mn.

The quantity E,’ was plotted as a function of { where E; was the wave
amplitude in line 1 and E;(0) = 1, E.(0) = 0.

These plots are shown in Fig. 7 forn = 2 and n = 6. The dotted lines
roughly indicate the centers of oscillation of these curves.

Inspection of the curves shows that:

1. The accuracy with which the power was ultimately divided be-
tween the two guides seemed to be determined within the first two or
three exchange cycles.

2. The ultimate phase constant difference here chosen was not great
enough since there was too much power still being exchanged at the
end of the plot.

3. The exchange amplitude was much too constant after the first
few cycles. This indicates that a linear phase constant change is in-
efficient if minimum coupler length is to be realized.

4. Although, initially, a slow rate of change of phase velocity is neces-
sary, subsequently, a progressively faster rate should reduce the final
exchange amplitude.

From the dotted lines indicating the centers of oscillation of the curves
it may be seen that the initial rate of phase change for n = 2 is too great
while that for n = 6 is slow enough to keep the oscillation fairly well
centered.

It can be shown from Miller’s equations for coupled lines of different
fixed phase velocities' that the peak-to-peak amplitude of the power ex-
change between the lines, P, , when the distance-averaged powers in the
lines are equal is given by the following equation.

P

PF_@: (3)

where P = total power in the coupled system,
AB = B — B

and ¢ = coefficient of coupling between the lines.
In spite of the fact that this calculation assumes a constant velocity
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Fig. 7 — Power distribution in the driving line where the difference in phase
constant between the two lines is increased linearly. Curve (a) shows the result of
increasing too rapidly, (b) the result of an acceptable rate of increase. These
curves are reproductions of those recorded by a mathematical analogue computer.
Curve (b) discloses that there was a small amount of computer “drift.”
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Fig.8 — A reproduction of the curve of Fig. 7(b) showing the proposed envelope
which might result from a more efficient coupler.

difference it can be shown from Fig. 7(b) that it provides a good ap-
proximation for the power exchange at any point along a coupled sys-
tem where the phase velocities are varying slowly. Equation (3) indi-
cates that the final power exchange amplitude may be reduced either
by increasing the final velocity difference or by decreasing the coupling.

The next question is how to choose a variation of phase velocities in
such a way that the power will be well divided in the shortest possible
distance. Assume for the present that the velocity difference between
the lines is constant throughout each power exchange shown in Fig.
7(b). An envelope of oscillation amplitude was arbitrarily superimposed
on the n = 6 curve as shown in Fig. 8. It was proposed to find a law of
velocity change which would produce such an envelope. From the equa-
tions for fixed velocity difference the value of AB/2¢ was calculated
which would produce the power amplitude predicted by this envelope
after each power exchange. The value thus calculated was considered
as the value half way through the exchange distance, this distance also
being determined by the particular value of AB/2c. These points were
then plotted as a function of { as shown in Fig. 9. The solid line repre-
sents the linear variation actually used for the computed curve. Note
that the first three points lie very close to this line proving the validity
of the approximation.

W. H. Louisell has made a thorough mathematical examination of
this sort of coupler.® Tt is interesting to note that Louisell’s analysis

2 B.S.T.J., page 853 of this issue.
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Tig. 9 — The solid line shows the linear variation of A8/2¢ used on the analogue
computer to produce the curve of Fig. 7(b). The broken line is the variation of
AB/2¢ ealeulated to produce the envelope superimposed on that curve in Fig. 8.

indicates that when the coupling is held constant the phase velocity
difference, Ag, should vary as follows for greatest efficiency:

AB ~ cot[cos™" §/2mn]

where n = the length of the coupler measured in coupling wave lengths,
Mo. A suitable multiplier and a value for n were chosen for the above
formula to make it coincide with the empirical curve of Fig. 9 as nearly
as possible. Points found from the resulting equation appear as boxes
on that figure.

WAVEGUIDE COUPLER

Using the function of A8/2¢ thus calculated, an experimental coupler
was made. Two rectangular waveguides (1.145” x 2.290”) were placed
side by side so that they had a common narrow wall. They were electri-
cally coupled through a slot like that shown in Fig. 1. One guide was
loaded with a gradually increasing amount of polystyrene such as to
taper the phase velocity to match the curve of Fig. 9. Since the phase
constant difference A8 could not be made great enough by this method,
the coupling near the end was decreased by tapering the slot width
linearly to zero through the section where A8 was maximum, i.e., where
the loaded guide was completely filled with polystyrene. To reduce
reflections the other end of the slot was also tapered to zero, though
over a much shorter distance. Finally, the polystyrene at the fully
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loaded end was tapered off outside the coupled section slowly enough
to provide a low reflection transition to unloaded guide. The effective
coupling length was about 88”.

When a signal was fed into either guide at one end of the coupler the
signal output at the other end was equally divided between the two
guides within 0.2 db over a frequency range of 2,700 to 3,100 me/s.
Since guide cutoff is about 2,600 me/s this frequency range represented
a large range of Ay . The coupling wavelength, indeed, varied from about
18” at 2,700 me/s to 40” at 3,100 me/s. The coupler accuracy degenerated
rapidly for frequencies above 3,100 mc/s both because the coupling
wavelength got too large compared with the length of the coupler and
because of large reflections due, possibly, to the TE. mode which can
exist above about 3,200 me/s in the fully loaded guide.

APPLICATIONS

One rather serious shortcoming besets this kind of coupler. It is in-
herently many wavelengths long. This presents a physical size problem
for fast-wave structures at frequencies of 5000 me/s and lower, and a
loss problem at all frequencies. Thus, some of the most practical appli-
cations are found in connection with traveling-wave tubes where the
associated helices provide an ideal medium for varying phase and cou-
pling constants on a slow wave structure. If two helices are wound in
opposite sense and mounted coaxially, strong coupling occurs between
them.® If the axial phase constants of the two helices are equal, and an
out-of-phase normal mode is launched on the system, the electric field
in the region between the helices will be oriented transverse to the axis.
It has long been proposed that an axially directed electron beam in such
a transverse field region would provide low noise amplification.! C. F.
Quate has suggested tapering the relative pitch of the two helices (Fig.
10) at the beginning such as to launch the transverse normal mode over
a wide frequency range by introducing the signal to the outer helix only.
By reversing the relative pitches at the input in Fig. 10, an in-phase or
or longitudinal, normal mode could be excited.

Joupling power into and out from a traveling-wave tube over a wide
frequency range has long been a problem. R. Kompfner®' ® has sugested
using a short section of helix after the principle Miller used, i.e., an outer

3J. R. Pierce, Travelling Wave Tubes, pp. 46-47, D. Van Nostrand, 1950.

‘J.R. Plerce Travelling Wave Tubes, p. 156, D. 'Van Nostrand, 1950.
Se]:t,Kolglﬁfner Experlments on Coupled Hellces A ER.E. Report No. G/M98,

¢ R. Kompfner, Coupled Helices, Paper presented at I.R.E. Eleectron Tube
Conference, 1953, Stanford, Cal.
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Fig. 10 — Coupled helices arranged so that essentially pure, (a), transverse or,
(b), longitudinal normal modes may be excited over a wide frequency range by
introducing the signal to the outer helix only.
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Tig. 11 — Helix coupler proposed by R. Kompfner and currently in common
use foreoupling to traveling-wave tubes.
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helix concentric with the traveling-wave tube helix (Fig. 11) and just
long enough for all the power launched on it from a matched coaxial
line to be transferred to the inner helix. Under certain conditions of
coupling and geometry this kind of coupler may have a useful frequency
range of two to one. There are times, however, when even wider band-
widths are desirable. The new coupling scheme again may be applied.
Let the inner helix turns be wound very close at point “A” (Fig. 12) and
then the pitch increased gradually, until it is a very loose or “fast” helix
at point “B”. By constrast let the outer helix be very fast at A and slow
at B. At some point between A and B the helix phase velocities will be
equal, Now if a wave is launched on the outer helix at A it will appear as
the in-phase normal mode at the point where the helix velocities are
equal. As it proceeds along the coupler the wave energy will again be

EQUAL PHASE
/r’VELOCITIES

Fig. 12 — A tapered-velocity coupler to a traveling-wave tube helix. Though
the inner helix is here shown tapered, it might, in practice, be made uniform if the
outer helix is sufficiently tapered.

transferred to the faster helix which now is the inner one. At point B,
then, the wave energy will be entirely on the inner helix. In other words,
if the coupling is not too great and the taper sufficiently long this device
is a 100 per cent, or complete, coupler. It turns out that such a coupler
on a 4,000 me/s traveling-wave tube may be less than 2” long and operate
effectively over a bandwidth of three or more octaves.

Since a helix may be matched to a coaxial transmission line over a con-
siderable bandwidth, and since a 3-db coupler may be made with con-
centric helices to cover a similar frequency range, it should be possible
to build a compact hybrid junction with coaxial connectors which will
operate usefully throughout a bandwidth of three octaves.

CONCLUSION

Using distributed coupling between transmission lines with tapered
phase velocities has made possible extremely broad band directional
couplers. This prineciple can be used to give an equal and accurate division
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of power delivered to two conjugate lines (a hybrid coupler) or to give
essentially complete power transfer from one line to the other.

Probably the most useful applications are to traveling-wave tubes. A
very broad band coupling can be made through the envelope to a stand-
ard traveling-wave tube helix. The principle also provides a means to
couple into and out from either normal mode of a double, concentric
traveling-wave tube helix.

Finally, it should be possible to make a broad band (3 or more octaves)
hybrid junction by coupling to tapered helices from coaxial lines.

Fig. 13 — A system of two coupled pendulums with the symbols used in the
appendix.

APPENDIX

Fig. 13 shows the coupled pendulums and the symbols used in the
following analysis. From the energy equations for the system the Lagran-
gian and Hamiltonian equations were found. All third order and greater
terms were dropped and since no second order terms appeared the fol-
lowing linear equations resulted.

milafy + mulib = —mughy (A1)

malolls + Malib = —magh, (A2)

(my + ma)ufe + maliby + malabs = — (m1 + ma)g0i (A3)
Substituting equations (A1) and (A2) in (A3) we find

migh + maghs = (m1 + ma)gbs (A4)
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In our experimental pendulums the masses were equal so
my = Mma

and equations (Al), (A2), and (A4) become

flél + {;ﬁl. = —991
3252 + {'LBL = _992
0 + 6. = 26,

821

(A5)
(A6)
(A7)

Let us choose S, and S; as a measure of pendulum displacement from

rest; and define it as

S1 = 46, + 66, ,
So = Lobs + .6;

Then
Sy = bb + 64,
Sy = baby + b

Substitute (A9) in (A5) and (A6)

él = —gb,

:S'ﬂ —ggz

From (A7) and (A8) find
b, = 681 + 268, — 4GS,
O(0 + &) + 260

_ O.8: + 268, — 648
TG F 6) + 266

Substitute (Al11) in (A10)

68+ 268 — 48]
66 + &) + 206

68 + 268, — 681
6l + &) + 266

;S.]_:

S, =

(A8)

(A9)

(A10)

(A11)

(A12)

Miller has expressed the general wave equations for two coupled
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lines as
5%=—m+mm+ﬁm
i (A13)
-ﬁ=—m+wﬁ+mm

Differentiate (A13) and make the proper substitutions to find

AB _ 00 + 1 + BB — [e(By — B2 +B1EL + (2 + B + B

dz?

%_f; = —¢(2 + By + B)Ex — [c(Ba — B) + BB + ¢(2¢ + b1 + B

where  E; = wave amplitude in line 1
FE, = wave amplitude in line 2
B: = wave phase constant in line 1 before coupling
8. = wave phase constant in line 2 before coupling
¢ = coupling constant

Now equations (A12) and (A14) are of exactly the same form, namely:

S, = —AS, — BS; + AS,
(A15)

Sy = —AS, — BS: + AS:

Thus the solutions for the two sets of equations differ only in their con-
stants. The constants have the following correspondence:

gt
{k(cl + tﬂ) + 26152

2ng
06 + &) + 266
The complexity of the constants seems to defy separating them out.
Suffice it to say that £ roughly corresponds to ¢ and {, to reciprocal
8. . Note, however, that if 8y = B = gand &y = & = {, (A17) becomes

. _ 9

= 4 Al
g ¢+ & (A18)
It may be recognized from the equations for a simple pendulum that
V/g/l + I is, indeed, the phase constant of the uncoupled pendulums,
just as 8 is, by definition, the phase constant for the uncoupled trans-
mission lines.

o2 + B + B (A16)

= ¢(B — B) +8° (A17)



