Wave Coupling by Warped Normal Modes

By A. G. FOX
(Manuscript received February 23, 1955)

It has been shown by J. S. Cook that wave power may be transferred from
one to another of two coupled waveguides through a variation of their phase
constants. It is now clear that this is but one example of a new principle of
coupling which is here called “normal mode warping.” Wave power in-
serted at one end of a coupled waveguide system may be made to appear at
the other end with any desired power distribution by gradual warping of the
normal mode field patterns along the coupler. In general, variation of both
the coupling coefficient and phase constants are required. Mwuch wider bands
are theoretically possible than with any other distributed type of coupler.
This principle may be applied to dielectric waveguides, birefringent media,
and waveguides containing ferrite, to obtain both reciprocal and non-
rectprocal couplers.

INTRODUCTION

It is now well known that complete transfer of power can be effected
from one to another of two waveguides provided there is distributed
coupling between the waveguides and provided the phase velocities are
equal.’ * A good illustrative analog is a pair of coupled pendulums having
the same period. The periods correspond to the wavelengths in the wave-
guides; passage of time for the pendulums corresponds to distance along
the waveguides; the energies in the pendulums at a particular time cor-
respond to the wave powers in the two waveguides at a particularly
point along the waveguides. As energy is interchanged between pendu-
lums with increasing time, power is interchanged between waveguides
with distance.

To obtain a complete interchange of power for the waveguides requires
a particular length which is determined by the coupling. As long as the

1 8. E. Miller, Coupled Wave Theory and Waveguide Applications, B.S.T.J.,
33, p. 661, May, 1954. See this paper for additional bibliography on wave coupling.

2 B. M. Oliver, Directional Electromagnetic Couplers, Proc. L.R.E., 42, p.
1686, Nov., 1954,
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Fig. 1 — Transfer of energy from one to another of two coupled pendulums
whose periods are varying with time.

coupling is constant, the power transfer should be independent of fre-
quency. However, in practice, the coupling does vary with frequency,
and hence the power division is a slowly varying function of frequency.

Recently a new and rather surprising method of transferring power
has been described by J. 8. Cook. He pointed out that if the phase con-
stants of two waveguides are grossly unequal at one end, but are con-
tinuously varied so that they become equal in the middle of the coupling
region and again grossly unegual in the opposite sense at the other end,
complete power transfer should take place. Moreover this transfer is
independent of the size of the coupling coefficient so that a coupler built
in this way should be very broadband indeed. The conclusion is an un-
expected one since we know that a uniform coupler having unequal
phase constants can never give complete power transfer.

Nevertheless, the principle may be demonstrated using a pair of
coupled pendulums whose lengths are continuously varied so that the
one which is initially shorter finally becomes the longer of the two. In
Fig. 1 is shown a typical result when the longer pendulum is initially
excited. Fig. 1(a) shows how the periods (r) and the coupling (k) vary
with time. There is a fluctuation of energy which is quite small at first,
but which increases until at the time the periods become equal, the energy
is equally divided and the pendulums are in phase. (When the shorter
pendulum is initially excited, they are 180 degrees out of phase.) With
increasing time the energy is finally transferred to the other pendulum
with small residual fluctuations which gradually diminish. It appears
then that while the transfer of energy is almost complete, it will not be
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complete unless the difference between the periods approaches infinity
at the beginning and end of the process.

In looking for applications for Cook’s coupling scheme, the writer dis-
covered that by varying both the coupling coefficient and the phase con-
stants of the waveguides simultaneously, the residual power fluctuations
may be substantially eliminated. The design of such a coupler may ap-
pear to be complicated, but it turns out that the requirements are very
simply expressed by a new principle of broad-band coupling which is here
called “normal mode warping”. Using this principle it should be possible
to build wave couplers providing any desired degree of power division
over very large bandwidths, limited only by the bandwidth capacity of
the waveguides themselves. It may be applied equally well to non-
reciprocal and reciprocal structures, and in a wide variety of ways. In
this paper the principle of normal mode warping will be developed in
terms of physical concepts and with the aid of some rather straight-
forward analysis.

NORMAL MODES VERSUS COUPLED MODES

Before attempting a discussion of normal mode warping it will be
necessary to clarify somewhat the meaning of “normal modes.” In a uni-
form metal waveguide, the usual understanding is quite adequate.
Normal modes are characterized by unique distributions of transverse
electric and magnetic field components, which distributions are inde-
pendent of frequency or position along the waveguide. Also for a given
frequency, the normal modes have unique phase velocities (except for
certain pairs which are said to be degenerate because they have the same
phase velocity). This description automatically requires that the normal
modes be orthogonal, which means that the flow of energy in one mode
does not contribute to energy flow in any other mode. If this were not so,
the excitation of one normal mode would result in a transverse field
pattern which would change with distance along the waveguide. These
statements are equally true whether we are talking about modes in one
waveguide or in a system of several waveguides.

When two identical dominant mode waveguides are uniformly coupled
throughout a certain portion of their length, a field excitation correspond-
ing to a dominant wave in one of the waveguides is no longer a normal
mode. Such modes are now coupled, and power will cycle back and forth
between them as stated earlier. However, there will be a new pair of
normal modes which are orthogonal to each other, and for which the
power is equally divided between the waveguides. One of these may be
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called the even mode because the electric field will have the same direc-
tion in both waveguides. The other may be called the odd mode because
the field will be oppositely directed in the two waveguides. While the two
coupled modes will have the same phase velocities, the normal modes
will have different phase velocities. The behavior of such a coupler can
be explained either in terms of coupled modes, or in terms of normal
modes, and these two concepts are completely equivalent.® According
to the normal mode explanation, if all of the power is initially introduced
into one of the waveguides, the subsequent transfer of power to the
other waveguide is due to the excitation of both normal modes and to
the interference between them which is a result of their unequal phase
velocities. On the other hand, if all of the power were introduced into
both waveguides with the proper phase and amplitude to correspond
with one of the normal modes, it would travel through the coupler with
the phase velocity of that mode and would emerge at the far end in that
mode.

When the two coupled waveguides have different phase velocities, we
will again have a pair of normal modes which are orthogonal to one
another, but they will no longer have equal amounts of energy in the two
waveguides. Instead, one will have more of its energy in one waveguide,
and the other will have more of its energy in the other waveguide, the
unbalance depending upon the difference in the phase velocities of the
coupled modes and upon the magnitude of the coupling coefficient.

Finally, if the coupled waveguides are not uniform, but are “warped”
so that their phase constants and coupling coefficient vary along the
coupling region, the normal mode concept clearly requires re-examina-
tion. It is no longer possible to define a normal mode in terms of ‘a
characteristic and invariant field distribution in any cross sectional
plane. The field distribution will change along the coupler. However,
we will show that if the warping is sufficiently gradual, the normal modes
will have transverse field patterns at any cross section which are approxi-
mately the same as the normal mode patterns for a uniform coupler
having the same cross sectional properties. We will call the normal modes
for the equivalent uniform coupler the “local normal modes” to distin-
guish them from the true normal modes for the warped coupler.

TWISTED WAVEGUIDE AS PROTOTYPE BROADBAND COUPLER
Perhaps the most easily understood example of normal mode warping
is a twisted birefringent waveguide. Fig. 2 shows in cross-section a long

3 A. G., Fox, Miller, 8. E., Weiss, M. T. Behavior and Applicﬁtions of Ferrites
in the Microwave Range, B.3.T.J., 34, p. 16, Jan., 1955.
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dielectric strip which is twisting in a clockwise direction with propagation
into the paper. We may think of this as being either an unshielded di-
electric waveguide, or as a dielectric fin inside of a circular waveguide
sheath, In either case we know from experiment that if we launch a
linearly polarized wave with its electric polarization either parallel or
perpendicular to the dielectric fin, it will propagate along the twist with
its polarization remaining, to a first approximation, either parallel or
perpendicular to the fin at all points. Thus, the polarization will rotate
with rotation of the fin. We know experimentally that if the twist is
performed too rapidly, some depolarization will result. On the other
hand, if the twist is long and gradual, the polarization will remain quite
linear at all points.

Now if the twist in the waveguide is just 90°, as suggested in Fig. 2,
a vertically polarized wave introduced at one end will emerge as a hori-
zontally polarized wave at the other end. Thus, we find that the twist
section, by some coupling mechanism not yet defined, can transfer 100
per cent of the power in a vertically polarized wave to a horizontally
polarized wave. Moreover, we know that this transfer is not frequency
sensitive. We suspect, therefore, that the twist represents a preferred
way of effecting a 100 per cent power transfer between the two modes.
Let us arbitrarily identify the vertically and horizontally polarized modes
as the modes between which coupling takes place, and ask how the cou-
pling coefficient and phase constants for these modes vary along the
twist.

We will define the phase constants and coupling coefficient at any
point along the twist as being the same as those of a uniform (non-
twisted) dielectric strip having the same cross sectional geometry. Let
us now determine these parameters for the uniform birefringent wave-
guide indicated schematically in Fig. 3. If a vertically polarized wave
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Fig. 2 — End view of a twisted dielectric waveguide.
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with amplitude e, is launched on this waveguide, there will be a partial
transfer of power from the vertical to the horizontal polarization and
back again, just as though these two polarizations were coupled wave-
guides with unequal phase velocities. We can analyze the situation by
breaking the input polarization into components along the cross sec-
tional axes (A and B) of the waveguide, allowing for the difference in
the phase constants 8, and 8, , and determining the vertically and hori-
zontally polarized components which result at some other cross section.
The result is:

e, = eo £ 7% [(cos® 6) €7 + (sin” 6) €77 (1)
e, = —Jéo £ [sin 20 sin Az] (2)
where
) @
— .Ga — B
A==g— (4)

(1) and (2) must now be compared with the equations for a pair of
coupled waveguides.
The basic equations governing the amplitudes of waves in coupled

waveguides are:

3—? = —jBier + kues (5)
/4
ey /

Fig. 3 — A uniform birefringent medium producing coupling between vertical
and horizontal polarizations.
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j_:z = —jBee2 + klz_ex (6)
This has already been treated by S. E. Miller' using slightly different
notation. For simplicity we are assuming that there is no attenuation.
er and e; are the amplitudes of the forward travelling coupled waves.
These waves have phase constants 8, and 8, and field distributions which
are perturbed by the presence of the coupling. Hence they are truly the
coupled modes and not the modes which would exist in the absence of
coupling. There must also be a pair of backward traveling waves in the
two waveguides since power leaking through the coupling aperture will
set up both forward and backward traveling components. However, if
the coupling per unit length is small so that the coupler would have to
be many wavelengths long to produce a complete power transfer, then
the backward traveling components will interfere with one another, so
that the backward waves may be safely neglected. This greatly simplifies
the analysis and the weak coupling assumption will be made here and
throughout the rest of this paper. Characteristic impedances are normal-
ized so that the power in either mode is equal to the square of the ampli-
tude (e). Propagation takes place in the 4 z direction. Power conserva-
tion requires that

lkie | =k = | ka| (7
kpks = —kz (8)
The solution of (5) and (6) then gives,
o = £ | AIE—:'(\/EiTHJz + Bls+a‘t~/mn] )
e = &7 [y VI | p i) (10)
where
po=m LB (11)
2
_B— B
6= 3 (12)

and the coefficients A and B have the following relation:
J— 2 2
D p 4 R (13)
A, ka1
Bg . k]_-z
P Y-y (14)
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The amplitudes of these two waves will oscillate with distance along
the structure, and a beat wavelength may be defined as
—_—

62 _I_ kﬂ
in which interval there will occur one complete power transfer cycle. If
all of the power is initially in mode 1, then

1 8

1 ] .
5= (3~ sere)® o
By comparing (1) and (2), which give the amplitudes of vertically and
horizontally polarized modes on the birefringent waveguide, with (9)
and (10) for a pair of coupled modes, we can see that they are of the
same form. They may be made identical if we make the following sub-
stitutions:

Ao =

BL = Ba cos’ 0 + B, sin® @ 17)
By = Basin® § + By cos” (18)
k= 'B—“—;—'Gb sin 20 (19)
It follows also that
B4+ B _ o, _ Bat B
= =B = (20)
&= Be ; Be cos 260 (21)

Thus, the behavior of the uniform birefringent medium can be described
in terms of (9) and (10) for coupled transmission modes. Conversely, any
pair of coupled waveguides can be described in terms of parameters for an
equivalent birefringent medium.

We shall find it convenient to make use of this analogy since warped
mode structures can be easily visualized in terms of an equivalent bire-
fringent twist.

We are now in position to interpret the birefringent twist of Fig. 2
in terms of coupling between vertical and horizontal polarizations. Al-
though 6 is now variable, we use it to define at each point along the twist
section a set of equivalent coupled line parameters corresponding to a
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Fig. 4 — Coupling coefficient and phase constants for vertical and horizontal
polarizations in a twisted birefringent medium.

non-twisted section having the angle 6. Fig. 4 shows how the local cou-
pling coefficients and phase constants [(17), (18), (19)] vary with dis-
tance along a uniform birefringent twist section (8 is directly proportional
to z). We conclude that if we should build a pair of coupled waveguides
[1 and 2| where the phase constants and coupling coefficient vary with
z as shown in Fig. 4, the power division between the two waveguides will
be as shown in Fig. 5, since this is the way the twist prototype behaves.
6 is now simply a parameter relating k, 8; and B2 as a function of length,
but it is still convenient to think of it as the angle of the equivalent twist
section. Fig. 5 shows that if the coupler is made of length 6§ = #/2, a
complete power transfer will take place, and this will occur smoothly
and without the fluctuations of Fig. 1(b). A 3-db coupler will be pro-

100%

POWER =

/2 m
8=p2 —>

Fig. 5 — Power transfer between vertical and horizontal polarizations in a
twisted birefringent medium.
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vided by length 8 = m/4; and in fact any desired division is obtainable
by using the proper length. All of these should be broadband because
we know that the twist prototype is broadband.

It might appear that since the desired power transfer is obtained for
only a particular length, it would therefore be as frequency sensitive as
matched velocity couplers. Actually, the electrical length is not impor-
tant. It is simpler to think in terms of the twist prototype where we see
that the only requirement for the desired transfer is that the total twist
angle 0 be chosen correctly.

At this point we have shown that we can think about coupled wave-
guides in terms of a twist medium, and when we do so, we discover that
this medium holds the secret of how to make a broad-band power trans-
fer from one waveguide to another. Specifically, we conclude that both
the coupling coefficient and the phase constants should be varied.

One way in which these design requirements may be met is suggested
in Fig. 6 for a pair of coupled rectangular waveguides providing com-
plete power transfer (8 = m/2). The top wall has been removed to show a
divided aperture so tapered as to give a coupling coefficient which varies
as the sine of the distance from one end. At the same time the dividing
partition is warped so as to produce the cosinusoidal cross-over of phase

Fig. 6 — A broadband 100 per cent power transfer coupler using mode warping.
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constants. The phase constants could also be adjusted by the insertion
of a variable amount of dielectric loading. The vertical vectors represent
the square of the electric field present in the two waveguides at various
cross sections along the structure when all of the power is initially
inserted at a. A complete transfer takes place with all of the field appear-
ing at d and none at b.

The phase relations between the field vectors on the two sides of the
coupling aperture are of interest. We know that in the case of a coupler
employing uniform waveguides, the induced wave in one waveguide is
always 90 degrees out of phase with the driving wave in the other wave-

guide (ki = ka = —jk). This is also true for the two coupled modes
(e, and e;) in a uniform birefringent medium [see (1) and (2)] and hence
kon = kne = —jk. However, we know that if we launch a linearly polar-

ized wave on the twist medium with polarization paralled to one of the
principal cross sectional axes, then the wave will remain linearly polar-
ized. Consequently for this medium the vertically and horizontally
polarized modes (e, and ¢;) will have a zero or 180-degree phase rela-
tion at all points along the medium. It follows that the coupler of Fig.
6 which was derived from the twist medium must also have a zero or
180-degree phase relation between the field components on opposite
sides of the coupling partition at every cross section. This situation is
illustrated in Fig. 7 where the transverse electric field is plotted for a
series of cross sections of the coupler. The input end is shown at the top,
and the output end at the bottom. The left hand column represents the
field configurations when the wave is initially launched in the smaller
of the two waveguides. The right hand column is for a wave launched
in the larger of the two waveguides.

It may be seen that when the wave is launched in the larger waveguide
terminal, it emerges at the other end of the coupler from the larger wave-
guide terminal. Moreover, at the center cross section where the two wave-
guides have the same phase constant, the energy is equally divided and
we recognize this as the even symmetric normal mode for the local cross
section. In fact, the wave travels throughout the length of the coupler
in the local normal mode which has the higher phase constant.

Conversely, if the wave is launched in one of the smaller waveguide
terminals it appears at the center cross section in the odd symmetric
mode and emerges from the smaller waveguide at the far end. Thus it
travels throughout the coupler in the local normal mode having the
lower phase constant.
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Fig. 7 — Warping of odd and even symmetric modes in the coupler of Fig. 6.

PRINCIPLE OF BROADBAND COUPLING BY NORMAL MODE WARPING

We have discussed a twisted birefringent medium and a rectangular
waveguide coupler, both of which are examples of normal mode warp-
ing. We will now attempt a statement of the principle which is basic to
all such couplers. We assume a waveguide system having two modes of
propagation which are to be coupled so as to effect transfer of power.
There are then two normal modes for this system, which are the dual of
the coupled modes, and which may vary in field pattern from point to
point along the structure depending upon the phase constants and cou-
pling coefficients of the coupled modes. Provided these parameters vary
slowly and smoothly along the structure, then if all of the power is in-
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jected in one of the normal modes at one end, it will remain in one of the
normal modes at successive cross sections and will emerge in one of the
normal modes at the far end. This situation will be independent of fre-
quency.

On the other hand, if both normal modes are excited at one end, power
will be transmitted through the structure in both normal modes and
emerge in both modes. This is what happens in conventional matched
B couplers, and interference between the modes can vary as frequency
changes.

The objective of a broadband design should then be: (1) to adjust
parameters at the ends of the structure so that the normal modes at those
points are identical with the desired input and output field excitations,
and (2) to smoothly vary the parameters along the structure so that the
normal modes are transmuted or ‘“‘warped” from the one to the other set
of field excitations. In this way the power will at all points be in only
one of the normal modes, and interference between modes is avoided.

EXAMPLES OF MODE WARPING

We have already seen how this objective was achieved in the birefrin-
gent twist. Power was injected in one of the normal modes. This mode was
smoothly warped from vertical polarization at one end to horizontal
polarization at the other end by twisting. If we had chosen to excite this
medium with a wave polarized at 45° to the birefringent axes, both of the
normal modes of the medium would have been excited equally. As a
result, equal amounts of power would have propagated down the twist
in the two normal modes and would have arrived at the far end with rela-
tive phases which would depend upon the phase velocities of the two
modes and the total distance travelled along the twist. The output polari-
zation would, in general, be elliptical and would be frequency dependent.

In the case of the coupled waveguides of Figure 6, the normal modes
at the ends corresponded to dominant wave excitation of the separate
waveguide terminals, and they are smoothly warped from one set of
terminals to the other. Excitation of one of the waveguide terminals
would cause power to flow through the system in only one of the normal
modes. If the waveguide structure had been cut at the center, either
half of it would constitutea 3 db coupler. With excitation of one of the end
terminals, the power at the center cross-section will exist entirely in
one of the normal modes, which requires equal voltages in the two wave-
guides. Thus, the three db power division should be very broadband. On
the other hand, if both of the waveguide terminals at one end were ex-
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cited power would flow in both of the normal modes. The relative phases
of these modes arriving at the center would vary with frequency, and
hence the power division would be frequency dependent.

In Fig. 8 is shown another example of mode warping which is interest-
ing because it illustrates some departures from the type of warping used
in the previous examples. This device is a broadband converter from
linear to circular polarization. It comprises a long section of round wave-
guide containing a slender axially magnetized rod of ferrite. Throughout
a certain portion of its length the waveguide is gradually flattened to
produce an elliptical cross-section. The rod of ferrite is also tapered to
pointed ends. Transverse cross-section views are shown below the longi-
tudinal cross section, and at the bottom is shown the way in which the
magnitude of the coupling coefficient and the phase constants for verti-
cally polarized and horizontally polarized waves vary along the length. We
may identify three different parts of the transducer. At either end is a re-
gion in which the normal modes undergo no warping, and which functions
solely as a taper section for matching the normal modes into the central
region. Between these two matching regions is the region where mode
warping occurs. At the left of this central region the elliptical cross sec-
tion produces a linear birefringence where vertically polarized waves
have a larger phase constant than horizontally polarized waves. The ab-
sence of any ferrite at this point means that the coupling coefficient be-
tween the two polarizations is zero. These relations are shown by the 8

H
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Fig. 8 — Broadband linear-to-circular polarization converter.
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and k curves at the bottom of the figure. Proceeding toward the right,
the gradual insertion of ferrite and decrease in ellipticity of the wave-
guide sheath cause the difference between the phase constants to de-
crease and the coupling coefficient to increase. At the right hand end of
the central region, the sheath is round and the linear birefringence is
zero. At the same time the presence of a maximum amount of ferrite
causes the coupling to be a maximum. We see that the programming of
the coupling coefficient and phase constant difference corresponds to 45
degrees of the prototype twist medium, and a linearly polarized wave at
the left should have half its power transferred to horizontal polariza-
tion at the right. Unlike the birefringent twist, however, where the cou-
pling coefficient is imaginary, the coupling coefficient due to the ferrite
is real. As a result there will be a 90-degree phase relation between the
horizontal and vertical polarizations, yielding circular polarization, which
we already know is the normal mode for the longitudinally magnetized
ferrite. Because a vertically polarized wave at the left will have the
higher phase constant, it will be warped into the negative circularly
polarized wave at the right (counterclockwise) since this wave sees the
higher permeability, and hence phase constant, for the usual case where
the applied magnetic field is less than that required for gyromagnetic
resonance.

Unlike the couplers described previously, this coupler does not keep
B constant. The phase constant difference and the coupling coefficient
still vary as the cosine and sine of distance respectively from the left
hand end of the central section. But the increase in dielectric loading
due to the ferrite rod causes both 8, and 8y to be larger than they would
be if the dielectric constant of the ferrite were unity. However, examina-
tion of (9) and (10) show that within the bracketed factor which controls
the amplitude of the wave, only & and & appear. Provided these param-
eters vary in the proper way, the power transfer should take place
regardless of By . Change in 8, will cause the velocity of a normal mode
to change from point to point along the structure, but will not change
the field distribution for the normal mode. What this means physically
can be visualized in the case of the birefringent twist by assuming that
the dielectric strip either changes in dielectric constant or in total cross
section from point to point without changing birefringence or rate of
twist. Clearly, the rate at which the polarization of the wave is altered
as a function of distance is not affected.

Another peculiarity of this coupler is that because of the non-recipro-
cal nature of the ferrite, the signs of the coupling coefficients will be
opposite for opposite directions of propagation. Thus, for propagation
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from left to right, ks = + k and kx = —Fk, while for propagation from
right to left, k. = —k and kn, = +Fk. It is simpler to see what this means,
however, by considering that a counterclockwise polarized wave sent in
from the right will have positive polarization relative to the ferrite mag-
netization, and will therefore have a lower phase constant than a clock-
wise polarized wave. As a result, this wave will be warped into the hori-
zontally polarized wave at the left hand end, because this wave has the
lower phase constant in the squashed region. Thus the circular to linear
polarization conversion properties of this section are nonreciprocal and
it is possible to combine it with reciprocally birefringent elements to
obtain a circulator.*

In Fig. 9 is shown another example of mode warping where ferrite is
employed in rectangular waveguide to produce a brcadband circulator.

N
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x
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Fig. 9 — Rectangular waveguide circulator employing mode warping.

* See page 86 of Reference 3.
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Two rectangular waveguides are coupled by a long divided aperture.
At the left hand end, both waveguides are occupied by thin tapered
slabs of ferrite located off center in the waveguide cross section. These
terminate in knife edges at the center where the coupling aperture is
largest. From here on the dividing partition is deflected so as to alter the
phase constants of the two waveguides. We may identify four dis-
tinet regions in this coupler. The regions between a and b, and between
d and e are for the purpose of matching to the waveguide terminals. In
the regions between b and ¢, and between ¢ and d mode warping occurs.
Both of these regions are equivalent to 45-degree twists of the birefring-
ent prototype, and power in either of their input terminals will be equally
divided between the two waveguides at the center cross section ¢. Thus
they operate as broadband hybrids. Section c¢d is like one half of the
structure of Fig. 6, and it operates in the same manner. Section be, on the
other hand, operates like a non-reciprocal hybrid, and by virtue of its
transversely magnetized ferrite slabs, it has non-reciprocal phase con-
stants as shown at the bottom of the illustration. For propagation from
left to right, the ferrite in waveguide 1 exhibits a permeability greater
than one, while the ferrite in waveguide 2 exhibits a permeability less
than one. For propagation from right to left, the situation is reversed. We
may therefore analyze the behavior as follows:

A wave entering at terminal I will) by the time it arrives at cross sec-
tion b, be travelling in the normal mode having the higher phase con-
stant. As it passes through section be the mode will be warped so that
at ¢ the power will be equally divided between the two waveguides in
the even symmetric mode, which has the higher phase constant. Mode
warping will continue through section ¢d, and all of the power will be
transferred to waveguide 2 which has the higher phase constant at sec-
tion d. Thus, power entering at I will be delivered to II.

A wave entering at IT will return to cross section ¢ with power equally
divided in the even symmetric mode. From this point on, however, the
situation is changed because of the non-reciprocal behavior of the ferrite.
Now, waveguide 2 will have a phase constant which is higher than wave-
guide 1, and the wave which is travelling in the higher phase constant
mode will be delivered to terminal ITI. The circulation order of the termi-
nals is therefore as shown by the circulator symbol at the right of the
waveguide,

In this structure, as in the one which preceded it, we note that the
average phase constant is not necessarily constant. Nevertheless, the
coupling coefficient and phase constant difference are varied sinusoidally
as shown in Fig. 4.
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NORMAL MODES ON A RAPID TWIST

S0 far we have shown that a slowly twisting birefringent medium can
be used as a prototype for the design of broadband directional couplers
having any desired power division ratio. We have not yet said anything
about the length such a coupler must have, nor about how the twist
may vary with distance. While a constant rate of twist was assumed,
this is not necessary. The rate of twist can be varied arbitrarily along
the coupler provided only that the total twist angle is such as to give
the desired power division. However, the twist rate must not exceed some
maximum value or the assumption that the polarization of the wave will
twist with the medium will no longer be satisfied. Practically speaking,
it would appear that the rate of twist should be constant and equal to
the maximum permissible value, since to use a smaller rate in some por-
tions of the coupler would only make the coupler longer than necessary.

It is evident at this point that we need to know more about the maxi-
mum twist rate and what happens if it is exceeded in the interest of mak-
ing the coupler short. Our previous assumption of a gradual twist
amounted to the assumption that the normal modes at any cross-section
of the medium were linearly polarized along the principal axes of bi-
refringence for the cross section, i.e., were the same as the local normal
modes. We will now show that if the twist is rapid the normal modes are
perturbed and are no longer linearly polarized.

Figs. 10(a) and 10(b) show symbolically two successive cross sectional
views of a rapid twist having principal axes of birefringence A and B.
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Fig. 10 — Coupling produced between A and B polarizations in a rapidly twist-
ing birefringent medium.
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We assume that the two cross sections are an infinitesimal distance apart,
and hence that the angle d6 is infinitesimal. Between these cross sections
we assume the axes of birefringence are fixed as shown in Fig. 10(a).
Thus, a wave with polarization e; along the A axis at the input will
emerge from the first infinitesimal step with unchanged polarization as
shown by e: . On entering the second step we see that both the A and B
polarizations will be excited. Now if the fin twists at a constant rate
d8/dz = p, then an electric field polarized along A is coupled to an elec-
tric field polarized along B as given by

de, = —e, db; de, = e, db. (22)

As before, we have assumed that there is no scattering or attenuation
and that backward traveling components may be neglected. We can
now write the basic equations for waves of polarization A and B.

de, df

E = _jﬁnea + eba (23)
de . do
== B — e — (24)
These equations when solved simultaneously give
e = & e (e g WA,z + D, £+f(\/;¢\z+,'zl:] (25)
e = 871150: [Cb 8*3('\/3!.'.?)2 + Db E‘l‘i(\/}i'z_*:‘ﬁ)z] (26)

where 8, and A have the meanings given in (3) and (4), and the coeffi-
cients C and D are related by
C A — /Al 2 D,
Y e CET B (1)
Ca P Db
These equations say that in such a twist medium there are two normal
modes of propagation. The mode with the larger phase constant is ob-
tained when D, = 0 and D, = 0. For this mode
—_— 2 2
R =L EXy (28)
If the twist rate is low (p — 0), ¢, is very small relative to e, . Therefore,
this mode is characterized by having most of its energy polarized along
the A axis. It is elliptically polarized because ¢, lags e, by 90°.
If €, and (3 equal zero, we have the other normal mode which is also
elliptically polarized, but has most of its energy polarized along the B
axis and therefore has the lower phase constant.

a
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If we launch all of the wave power into such a twist section in one of
the normal modes, (25) and (26) tell us that the wave will continue in
this mode until the twist is terminated.

These conclusions may now be translated back into our fixed frame
of reference (vertical and horizontal axes) and we can determine how
power will be transferred from one polarization to the other. If p is small
enough, the conclusion will be the same as given in Fig. 5. But if p is
large, a vertically polarized input wave (which is a local normal mode)
no longer corresponds to one of the normal modes for the medium. Con-
sequently, some of both modes will be excited, and since they travel at
different velocities, the output polarization will depend upon the elec-
trical length of the coupler and hence upon the frequency. The power
transfer curves will have ripples as indicated in Fig. 11. This picture is
similar to that of the pendulums shown in Fig. 1, and we can now see
that the reason is much the same, namely, that an initial condition where
all of the energy is in one pendulum does not correspond to a normal
mode of the system.

Equation (27) makes it possible to determine the size of these ripples,
or to determine the twist rate p which will make them smaller than a
specified value. If the medium is excited as shown in Fig. 10(a), the worst
axial ratio (es/e.) will be

v 2 Co| _ 2(_—W) (29)
Ca P
for | C4/C. |* < 1. Solving for p we obtain
p =2 vA (30)
Now A = w/Aa where Ay is the birefringent wavelength equal to
27/ (Ba — Bv). Therefore
U
= 7 1
P=a (31)
For a complete power transfer
—
=3
Finally,
Aa
= D4 32
£ 2v (32)

This gives the length of the coupler in birefringent wavelengths which
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POWER =

Ph

o —>
Fig. 11 — Power transfer in a rapid twist.

will insure that the axial ratio does not exceed v. (A birefringent wave-
length is comparable to a beat wavelength ), defined earlier, and is the
distance for which a 360° difference in phase shift exists for the two
principal polarizations.)

Thus, to take a specific example, suppose we wish to employ a constant
pitch twist which will completely transfer the power from vertical to
horizontal polarization, and we wish to keep the power in the unwanted
output polarization (vertical) more than 20 db down from the wanted
polarization. Then v = .1, and z = 5\a .

Since a birefringent wavelength is equal to several wavelengths in
the medium, it is clear that the bandwidth of such a coupler has been
purchased at the expense of considerable length. As a matter of fact we
may note that a conventional coupler with matched phase constants
must be made one half a beat wavelength long to provide complete
power transfer, Thus, if the twist had the same beat wavelength as the
conventional coupler, it would be ten times as long in order to keep the
crosstalk more than 20 db down over a very broad band.

Even though the field will in general be elliptically polarized, there
will be points along the coupler where the two normal modes are in phase
and the polarization will be linear. Thus, by making the coupler the
right length, the power transfer can be made correct even though
| C4/Ca |, and hence v, is quite appreciable. This makes it possible to
make the coupler shorter and still couple power as desired; but the price
paid is increased frequency dependence. In other words, by making the
coupler shorter for the same total twist angle, the ripples of Fig. 11 will
become more pronounced; but by choosing exactly the right length
relative to the ripple position, all of the power can still be transferred
to the desired polarization. It can be shown that the shortest twist sec-
tion which can be made in this way is4/3 times as long as a non-twisted
birefringent medium having the same birefringence (8, — 8). It will be
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where A is the average wavelength in the medium corresponding to o .
Thus, the whole coupler will be twenty wavelengths long. From (39)
we can determine that

Pmax = 0.025 .8(]

and this means that the phase constant difference between modes I and
II which we assumed was constant actually varies by less than one per
cent. At the ends of the coupler, the fact that p = 0 means that modes
I and 11 are linearly polarized along the axes of birefringence. However,
the normal modes require some of both I and II, and from (36) we find
that for the almost I mode

€rr

= 0.0025 (43)

er

This ratio is a measure of the excitation of the undesired II mode which
will be produced if the input polarization is the local normal mode polar-
ized along the A axis. Since a similar mismatch occurs at the opposite
end and also in the middle where the rate of twist begins to decrease,
the total crosstalk between the output polarizations may be four times
the above figure. Thus, at the output end

€a

€b

= 0.01 (44)

max

and the worst crosstalk into the undesired polarization is thus 40 db
down from the desired output.

Let us compare this with a uniform twist which produces the same
crosstalk. From (32) we obtain,

z = 250 Ao

Therefore, the uniform twist would have to be 12.5 times as long as the
non-uniform twist to do the same job. While this analysis for the variable
twist is only approximate, it indicates a marked superiority for the
variable twist coupler.

This conclusion is also borne out by a study of the possibility of pro-
ducing wave coupling by a series of step twists in a birefringent medium,
where each step is one half a birefringent wavelength in length. This
analysis is given in the appendix. It is shown there that if there are a
large enough number of steps so that the total angle between steps is
small, then the angles between steps starting at one end and passing
through to the other end of the coupler should have a binomial distri-
bution. This will result in the slowest departure from the desired power
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division as frequency changes. If we regard such a long multi-step twist
as an approximation to a smooth twist of the same length, we again con-
clude that the smooth twist should start off and finish with a zero twist
rate, and should have the maximum twist rate at the center.

CONCLUSION

It has been shown that Cook’s scheme for producing broadband di-
rectional couplers by variation of the phase constants, may be generalized
by simultaneously varying the coupling coefficient. For the simplest
case, the difference between the phase constants should vary cosinu-
soidally and the coupling coefficient should vary sinusoidally with dis-
tance along the coupler. Such a programming of the coupling parameters
corresponds directly to a twisted birefringent medium (such as a metal
waveguide having a flattened cross section) where the rate of twist is
constant. Since this medium is easy to analyze and to visualize physi-
cally, it has been used as a prototype for the design of a number of dif-
ferent types of coupler, all of which are based on the same principle.
This principle, which in retrospect sounds rather obvious, is simply that
in order to avoid interference effects between two modes of propagation
in a multimode waveguide system we should avoid exciting more than
one of the normal modes. Also by gently warping the waveguide struc-
ture, it is possible to warp the field configuration of the desired normal
mode so that it will produce the required power division at the terminals
of the system without appreciably scattering power into other unwanted
modes.

By avoiding wave interference, such couplers should in principle be
independent of frequency. However, the requirement that warping be
smooth and gradual also dictates that these couplers must be many
wavelengths long. It may turn out that they will be most useful in the
millimeter wavelength range where such electrical lengths are physically
short. Expressions have been given for the uniform twist which allow
one to compute how long the coupler must be in order to meet specified
requirements on power division at the terminals. These may of course
be applied equally well to any of the other types of coupler by making
use of the equivalence equations (17), (18), and (19).

The importance of varying coupling coefficient as well as the phase
constant difference for a pair of coupled waves is particularly evident at
the ends of a complete power transfer coupler. If we let k = 0in (13) and
(14), we see that the local normal modes correspond to all of the power
in one or the other of the two waveguide terminals. If k is not. zero, it is
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necessary that the phase constant difference be infinite to achieve the
same objective, and this is not possible practically.

Finally, it has been noted that a constant rate of twist for the twist
prototype coupler is not necessarily the best. In fact a coupler may be
made shorter for specified performance, or will give better performance
for a specified length if the twist rate is maximum in the middle and
approaches zero at the ends.

APPENDIX
Multi-Step Mode Transformation

We will show the way in which power can be transferred from one to
another of two coupled modes by means of a series of step-mode trans-
formations. The analysis will be made for the special case of a bire-
fringent medium and the results can then be translated for any other
type of medium.

Specifically, we assume that the modes to be coupled are vertically
and horixontally polarized dominant waves in a round waveguide. Initial
excitation e, is vertically polarized. This is launched into a first A 180°
section* set at an angle 6,/2 from the vertical. As a result, the output of
this section is a rotated polarization at angle 6, from the vertical. This
is introduced into a second A 180° section set at an angle 6, + 8,/2
from the vertical. The output of this section is then at angle 6, + 6.,
and so forth. The polarizations between sections will then appear as

/4—”" > AXES OF

I BIREFRINGENT
/ STEPS
3

Fig. 12 — Step-twist birefringent medium,

* A section of linearly birefringent medium for which the difference in phase
shift for the two principal polarization is 180°.
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shown in Fig. 12 by e1, es, --+, and the dashed lines represent the
orientations of the principal axes of the A 180° sections. If the A 180°
sections work perfectly, the output power has pure linear polarization
at some arbitrary angle 6, + 6. + - - - + 6, which gives the desired final
distribution of power between vertical and horizontal polarizations.

Now if the frequency varies from its design value causing a departure
of the differential phase shift from A 180° by a small angle 4, it can be
shown that a portion of the input polarization ¢, will not be rotated to
the angle #, . Thus, at the output of the first section e; will be split into
two components

€1 =eocosalil+jeosinﬁlg

where |6 means, “polarized at angle 6. This splitting recurs at each
successive section. At the end of the second section, we will have

e2 = e cos® 8 |6, + s + jeo sin b cos 5 |6y

+ jeo sin & cos 6 |26, + 6 — e, sin® & p
etce.

If now we take the total field polarized at right angles to the desired
output polarization, we will have:

1 Section:
Jjeo sin & sin 6
2 Section:
— ¢ sin’ 6 sin (8; + 62)
+ jeo sin 6 cos & (sin 6, — sin 6;)
3 Section:
— Jjeo sin’ & sin (8, + 6. + 63)
sin (—6; — 65)
— sin® & cos & sin (—6, + 65)
s'm‘ (6. + 03)
sin (6;)

+ jsin 8 cos’ & | sin (—f)
sin (6s)
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4 Section:
+ eo sin® § sin (6; + 62 + 65 + 0s)
sin (— 60— 6— 63)
sin (— 61— B2+ 04)

sin (— 01+ 63+064)
sin (02 + 93 + 84)

. . 3
—jeo sIn° & cos &

sin (6, +62)
sin (91 —_ 93)
sin (31 + 34)
sin (—Bg - 03)
sin (—0; + 64)
~Ein (93 + 94)

. 2
—ep sin® 8 cos’ &

sin (—6)
sin (6.)
sin (—8;)
sin (6,)

jeo sin & cos’ &

5 Section:
jeo sin® & sin (614 02+ 05+ 05+ 05)

Sil’l (—61 '—62 —03 —94)

[sin (=6 — 0, —0; +65)

e sin’ 8 cos & {sin (—0; — 0y +6; +05)

sin (—6; +0; + 6 +65)
\Sin (92 +6; 464 +3ﬁ)

(sin (6, +6; +65)

sin (6, + 62 — 64)
sin (6 + 62 + 65)
sin (6, — 63 — 64)

. . 3 2 sin (81 — 63 + 35)
—jeo sin” & cos™ & sin (6 + 6, + 6)
sin (—0; — 0; — 64)
sin (— 0 — 63 + 05)
sin (—0: + 64 + 0)
sin (465 + 0 + 05)
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sin (-"91 —62)
sin (—6, + 6,)
sin (—'61 - 64)
sin (—6; + 6s)

sin (4-8; + 65)
sin (+6; — ;)
sin (462 + 6)
sin (—63 — 94)
sin (—60; + 6;)
sin (+6; + 05)

sin (6;)
sin (—6,)
+jeo sin & cos' & {sin (6;)
sin (— 6y)
sin (65)

—eg sin” 8 cos® & ¢

Now upon examining these voltage components representing power in
the undesired polarization, we find that certain of the bracketed sums
will vanish merely by making the structure symmetrical. Thus, in the
5 section case, if 6, = 6, 6, = 6,, the sin* cos and sin’cos’ brackets
vanish. By setting each of the remaining brackets equal to zero, we ob-
tain several simultaneous equations which allow us to solve for the re-
maining @ ratios. In general, this may be an algebraically complicated
procedure. However, the reader can verify by inspection that if all
of the angles are assumed very small so that

sin § — 6,

a binomial distribution will cause all remaining brackets to vanish. The
only unwanted voltage term to remain will be

eosin” §sin (6 + 6 + - - - + 6,).

Since the sum of the #’s is simply the total twist angle which we assume
is held constant, then clearly the voltage departure from linear output
polarization as a function of § (or frequency) varies as sin™ § where n is
the number of sections used. This demonstrates the bandwidth advan-
tage to be gained from using a large number of steps.

We may conclude that if a total twist angle is achieved by a very
large number of very small step twists between A 180° sections, this
may be considered an approximation of a long continuous twist. Since
the optimum design for the step twists calls for a binomial distribution,
it is evident that the continuous twist should also approximate this pro-
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portioning by having a very small d/dz at the ends, and a maximum
df/dz in the center. This conclusion bears out what was said earlier
about starting the continuous twist with d6/dz = 0.

As a special case where four sections are used to obtain a total twist
angle of 90°, an exact solution gives

BI = 10.20
02 = 34.8D
03 = 34.8,:'
64 = 10.20
whereas the binomial solution would have been
g, = 11.25°
8, = 33.75°
33 = 33750
8, = 11.25°

If & step twist design of a certain number of steps is chosen as a model,
the design for some other type of coupler may be determined by using
equations 17, 18, and 19 to solve for the phase constants and coupling
coefficient in each step. The 8, and B, are the phase constants for the
parallel and perpendicular polarizations in the A 180° steps. The values
of 8 for the several steps will be 6:/2, 6, + 8/2, 6:+6:+685/2, ete., since
these are the angles at which the A 180° plates were oriented. Each sec-
tion of the coupler will of course be of the same length as the equivalent
A 180 section in the twist coupler.



