Analysis of the Single Tapered
Mode Coupler

By W. H. LOUISELL
(Manuscript received February 17, 1955)

Broadband directional couplers in which the phase constants and coupling
coefficients vary with distance along two coupled transmission lines as sug-
gested in the two preceding papers are analyzed. A crilerion is given for the
allowed variations in the line parameters for a given bandwidth. Param-
eters which describe the performance of such couplers are given. It is
found thal such couplers give much greater bandwidth than conventional
couplers of the distributed coupling type but they must be longer than con-
ventional couplers.

I. INTRODUCTION

Conventional directional couplers' of the distributed coupling type
may be thought of as two coupled uniform ideal lossless transmission
lines. Such a system can in general support two forward normal modes
of propagation. In order to effect power transfer between two lines of
such a system, both forward normal modes must be present. Since the
two normal modes in general travel with a different phase velocity, they
can interfere with one another to set up a standing or “beat” wave pat-
tern. Power transfer is thus effected by the interference of these two
normal modes and for this reason such couplers are called mode inter-
ference directional couplers. If for example a 100 per cent coupler is
desired, that is, complete power transfer from one line to the other, the
coupler is ended after half a “beat” wave length. Similarly, if a three db
coupler is desired, that is, a 50-50 power division between the two lines,
the coupler is ended after one-guarter of a beat wave length. Sinee such
couplers depend on interference of normal modes to effect power trans-
fer they are innately narrow band.

J. 8. Cook® and A. G. Fox® in the two preceding articles have proposed
a new principle for broad-banding directional couplers in which the
phase constant difference between the two lines and the coupling coef-
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ficient vary with distance along the lines. Strictly speaking, the concept
of normal modes is not applicable to non-uniform coupled lines, but if
the phase constant difference and the coupling coefficient vary slowly
enough with distance, it is useful to introduce the idea of “quasi-normal
modes.” A quasi-normal mode is a field configuration at a given point
in the lines when the line parameters vary slowly compared with the
local beat wave length. It differs only slightly from the field configura-
tion of a normal mode that would have existed at the same point if the
line parameters were constant at their local values. Since the line param-
eters vary, the quasi-normal modes are actually tapered, so that the
same quasi-normal mode may correspond to all the power in line 1 at
the beginning of the coupler and practically all the power in line 2 at
the end. The quasi-normal modes in non-uniform lines are coupled, but
the coupling is small if the variation of line parameters is gradual. Hence
directional couplers may be made in which essentially all the power re-
mains in one of the quasi-normal modes while passing from one line to
the other. Such couplers will be called single tapered mode couplers.

A study will be made of the restrictions that must be placed on the
phase constant difference and the coupling coefficient variation in order
that power transfer may be effected between two lines in a single tapered
mode coupler. It is found that the phase constant difference and the
coupling coefficient must vary slowly compared with the local beat wave
length. In general, the coupler must be several beat wave lengths long
to effect complete power transfer, in contrast to the mode interference
coupler which must be only a half beat wave length long. Also it is found
that the greater the length of the single tapered mode coupler, the greater
the bandwidth.

Several classes of couplers with different assumed variations of phase
constants and coupling coefficient will be studied. The bandwidths of a
few couplers having the same length, maximum phase constant differ-
ence, and maximum coupling coefficient will be compared.

II. NORMAL MODES OF UNIFORM COUPLED TRANSMISSION LINES

T two ideal uniform lossless transmission lines are coupled together,
it is to be expected that the system can support four normal modes — two
in the forward and two in the backward direction. In the present work,
the two backward normal modes will be disregarded.* We proceed to
find the two forward normal modes for such a system. S. E. Miller' has

* The labor of including the backward modes in our calculation is not expected
to be compatible with the additional obtainable physical insight.
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shown that the wave amplitudes for the two coupled lines may be written
in the form

dE . .
-Ez} = —J(ﬁl + ¢)E, + JjeE;
1
dE, _ . . W
o5 = JeBr = j(B + o) B
in which

E12(z) = wave amplitudes in lines 1 and 2, respectively

P12 = uncoupled phase constants of lines 1 and 2, respectiifely

c = mutual and self-coupling coefficient between the lines

Thus the backward waves are disregarded. Further, it is assumed that
the lines are lossless, and that the mutual and self-coupling coefficients
are identical. Energy conservation requires that ¢ be real. Also it is
assumed that the characteristic impedances are normalized so that the
power in either line is equal to the square of the wave amplitude.

Although it is easy to solve (1) directly, we shall begin by making a
transformation which will be useful in what follows. Taking out a com-
mon phase factor and introducing the normal coordinates w:(z) and
wa(z), we let

Ey(z) = ¢ [cos 14 £ wi(z) — sin Y4 £ w(2)]
Es(z) = ¢ 7%"[sin 14 £ wi(z) + cos 14 £ wa(z)]

where we define*

@)

B = 15(B1 + B2)
e = LB — B1) (3)
Ve + &

_ I/I‘+¢
2r

F—e 4)

COs
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(ST L W]

3

cot£=:-:

* For convenience to the reader, it may be noted that £ in the present paper is
equal to 2¢ in the preceding paper.
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Substituting (2) in (1), we find that the normal coordinates satisfy the
uncoupled equations:

@ - JI"U.& =0
dz
J (5)
di; 4 jTw, = 0
The normal mode solutions may be written down immediately as
wi(z) = wi(0)e’™
(6)

we(z) = w(0)e "

where w,(0) and w,(0) are arbitrary constants. wi(z) is called the fast
normal mode and ws(z) is called the slow normal mode. The voltages in
the two lines are given by substituting equations (6) into equations (2).
|wy(0)|* represents the amount of power excited in the fast normal mode
and |wy(0)|* represents the amount of power excited in the slow normal
mode. The voltages are normalized so that |wi(0)[* + |ws(0)* = 1. The
voltage amplitudes in the two lines for the fast normal mode are

E{(z) = cos 3§ £ e O+

' (@)
Ez'(z) = sin % £ e—J(6+c—r‘)g
while the voltage amplitudes for the slow normal mode are
EY"(z) = —sin 34 £ Btz
(8)

E}Q”(Z) = cos % E eui(ﬂ+c+r)3

(The fast normal mode has the same phase in each line and is called the
in-phase normal mode, while the slow mode is called the out-of-phase
normal mode.*)

III. MODE INTERFERENCE DIRECTIONAL COUPLERS

The two coupled uniform transmission linest treated above can be
—_used as a directional coupler.! From equations (2) and (6) it is seen that
the power in line 1 is given by
Pi(2) = |Ei(2)]*
= | wi(0) "cos’ 34¢ + | ws(0) [’sin’ }5¢
— sin Re(w; (0)ws*(0)e™™)  (9)

"% There may be cases in which the slow mode is the in-phase mode.
hel The present work is assumed to be applicable to coupled wave guides, coupled
elices, etc.
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and the power in line 2 is given by
Py(z) = | Ea(2) [*
= | wy(0) |’sin® 24¢ + | ws(0) [*cos” 14¢
+ sin gRe(w1(0)we*(0)e™"™) (10)
where T is defined in (3).

From (9) and (10) it is seen that if only one of the normal modes is
present at z = 0, then there is no power transfer between the two lines. In
order for the two coupled lines to act as a directional coupler, both
normal modes must be excited at z = 0. Power transfer between the
lines is effected by interference of the two normal modes. Since direc-
tional couplers' using distributed coupling utilize the interference of
two normal modes, they will be called mode inferference directional
couplers. Both normal modes must be excited to effect power transfer
between the two elements of the coupler.

The beat wave length of the coupler is defined as the minimum dis-
tance between two points along the lines at which the power in a given
line has its maximum value. For example, if 8, = 8., wi(0) = —w.(0)
= 1/4/2, the beat wave length is given by Ay, = =/c in the example
treated.*

The transfer loss r may be defined as the ratio of the power in line 2
at z = {, where { is the length of the coupler, to the amount of power
excited in line 1 at z = 0, assuming no excitation of line 2 at z = 0.
Thus,

0
"7 Pi0)

If, for example, P;(0) = 1 (all the power initially in line 1) and 7 = 1
then all the power is transferred from line 1 to line 2. This will be called
a 100 per cent or zero-db coupler. If P1(0).= 1 and 7 = 14, half the
power is transferred from line 1 to line 2. This will be called a 50 per
cent, or 3 db coupler. = can thus have any value from 0 to 1 and serves
as a parameter to describe “‘conventional” mode interference couplers.

If g1 = B2, P1(0) = 1, wy(0) = 1/4/2 = —w,(0), then from (9) and
(10), it is seen that

= Transfer Loss (11)

Pi(z) = cos’cz

* Reasons could be given for calling Ay, = 2x/¢, but in this paper one half of
this value has been chosen as representing the beat wave length in order to con-
form with the preceding papers.
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and
Py(z) = sin’cz
so that Ay, = m/c. The transfer loss is given by

L gml
T = 8In
Moy

To get a 3 db coupler in this case, the coupler is made }4 of a beat wave
length long while a 100 per cent coupler is made 14 of a beat wave length
long.

In general, when Bi5p; if both modes are equally excited, so that
wy(0) = —ws(0) = 1/4/2, then from (9) and (10), it is seen that the
power in the two lines becomes

1
2P,(z) = 1 + -—‘P— cos 2T'z

and (12)
1

2Ps(z) = 1 — T cos 2Tz
V(%) +

Miller" has plotted the transfer loss for several values of ¢/2c. However,
it can be seen from (12) that if (¢/2c) >> 1, there is practically no power
transfer, while if (¢/2¢) < 1, there is practically complete periodic power
transfer between the lines.

Since ‘“‘conventional” couplers depend on the interference of two
normal modes, it is to be expected that they will be frequency sensitive.
This can be seen from the fact that in general, the beat wave length will
depend on frequency, and since for a desired transfer loss the coupler
must be made some definite fraction of a beat wave length long, such
couplers are innately frequency-sensitive. By adding more coupling
elements and by means of an ingenious variation of the strength of the
coupling, Mumford' and Miller' have shown that the bandwidth may
be increased, although there is a fundamental limit to the bandwidth
obtained by such schemes. The proposals of Cook® and Fox’ will now be
shown to yield couplers which are at least an order of magnitude more
broadband than mode interference couplers.
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IV. QUASI-NORMAL MODES IN TAPERED COUPLED LINES

The problem we should now like to consider is this: Can a coupler in
which, as before, power is injected into one transmission line only, but
in which only one of the quasi-normal modes is excited throughout, and
in which the propagation “constants’ of the two lines g, and 3. , as well
as the coupling coefficient ¢, vary with distance along the lines? It will
be shown in the following that the answer to this question is in the
affirmative, approximately, provided that the variations of the line
parameters are sufficiently gradual.

In order to see what restrictions must be placed on the variations of
B1, Bz and ¢, consider the following. For symmetry, assume the variation
of 81 and B: with z can be expressed by -

=8 — ¢2)
B2 =B + o(z) (13)
c = c¢(z)

where 8 = constant and ¢(0) = 0. The equations for the wave ampli-
tudes in the two lines are given by (1) with 81, 8: and ¢ given by (13).
In analogy with the transformation used to reduce (1) to normal form
for the uniform coupled lines, we shall now introduce local normal co-
ordinates w,(z) and ws(z). The local normal coordinates are related to

Ex(z) and Ex(z) by
Ey(z) = exp (—J' [.Gz + fn "e©) dr]) {cos 18E(2)wn(2)

— sin }4£(2)we(2) }
1) = exp (= [ + [ et a5 ]) tsim 3500

+ cos 14£(2)we(z) )

where all symbols are defined by (3) and (4) but where it is to be under-
stood that T, ¢, ¢ and £ are now functions of z. Then, substituting (14)
into equations (1) where ¢, 8, and 8. have the form of (13), we find after
simple manipulation that w;, and w. must satisfy

(14)

dw, _ _ d§
T T(z)w, = = 7 v

(15)
d!L’Q

T T = —3 Ew,
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Equations (15) are coupled in general through the terms proportional
to d&/dz. They reduce to the uncoupled (5) when df/dz = 0, i.e., when
¢ is constant, or equivalently when cot § = ¢/c is constant. Such will be
the case with uniform lines in which ¢(z) is everywhere proportional to
¢(z). However, the condition ¢/c = constant leads only to mode inter-
ference couplers which are of no interest in the present discussion.

It is clear, then, that there will be some coupling between the quasi-
normal modes in a tapered mode coupler. Such coupling between quasi-
normal modes will be called “hypercoupling” to distinguish it from
ordinary electromagnetic coupling between two transmission lines (as
represented by the parameter ¢). A “hypercoupling coefficient”” n(z) may
be defined by

@) =+ d&_1dt
" or(z)dz 2dp
which gives a measure of the strength of the coupling between the

quasi-normal modes.
Now if ¢(z) and e(z) vary slowly compared to the local beat wave-

length Ay(z), where

(16)

™
I'(z)
then n(z) < 1 for all z, and the quasi-normal modes have very little
hypercoupling. We can then write down approximate solutions of (15)
which proceed essentially in powers of the hypercoupling coefficient.
Thus the In-Phase Quasi-Normal Mode is given approximately by

Mo(z) =

in(z 1 Zd et ,
wi(z) 2 * (fwl(O) + sz(O) : % ¢ P gy

"1 d ¥ d (1)
— K3 —2%')[ GE zieen g7 g ')
4fw1(0) fo i L dz" dz
and the Out-of-Phase Quasi-Normal Mode by
wﬂ(z) o e—j.ﬂ(z) (wz(O) . lwl(o)f d_E’ esz(zr) dz'
2 0 2
(18)

_1 fzd_f iy [ AE zioen g ’)
zwz(O) L L dz" dz

where

p(2) = f: I(¢) di (19)
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If dt/dz = 0, it is seen that these become the ordinary normal modes of
(6).
V. SINGLE TAPERED MODE DIRECTIONAL COUPLERS

The power in the two tapered lines [by (14)] is
a@=|&@ﬁ=m§WHw@F+mﬁmﬁw@|

— sin ¢(z) Re(wi(2)w.*(2))
(20)

Pi@) = | ) P = sin® 52 Junte) [+ cos® B2 wte) P

+ sin £(z) Re(wi(2)we*(2))

If only one quasi-normal mode is excited by putting power in only one
line provided ¢(z) and ¢(z) are chosen so that 5(z) << 1 for all z, £(0) = 0,
and w,(0) = 1, wy(0) = 0, then it is seen that the power in the two lines
is approximate [by (17)—(20)]

Pi(z) = cos’ 3£(2) {1 + »(2)} + sin® 3£(2)u(z) + sin £(2)8(2)

(21)
Pa(z) = sin® 2£(2) {1 + v(2)} + cos® 3E(2)u(z) — sin £(2)8(2)
where
_ PdE apen o [
’J(Z) = i o d? e dz l
_ fdE _apen [TdE 20N g, )
v(z) = %Re( =X fo T dz"dz (22)

8(z) = 14Re (e”""’ fdE 2" dzf)
0 dz

Since power must be conserved, we must have u(z) + v(z) = 0. This re-
quirement may easily be verified in the specific examples treated. If,
furthermore, ¢(z) and c¢(z) are chosen so that £(£{) = = (a 100 per cent
coupler), it is seen from (21) that power can be transferred almost com-
pletely from line 1 in the in-phase quasi-normal mode to line 2 in the
same quasi-normal mode by exciting power in one line only. In fact, by
(17)-(22) we have for a 100 per cent coupler

Pi(6) = |wa(€) |* = u(f)
Po(t) = |w(0) " = 1 + »(¢)

(23)
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where u and » are given in equation (22). Thus, u(£) gives a measure of
the error involved in making a complete power transfer coupler of length
¢ in which only the wi-mode is excited if ¢(z) and c(z) are selected so
that: (1) (z) < 1, all 2, and (2) £(0) = 0 and £({) = =. Since u(¢) =
| wa(€) |*, w(£) also gives a measure of the power in the initially non-
excited mode that is present at the end of the coupler. It is therefore
appropriate to call it the “mode crosstalk.”

For other power divisions, although p(£) (with appropriate boundary
condition on £(£)) gives the power in the non-excited mode present at
the end of the coupler, it does not necessarily give the error in making
the desired power of division. For example, for a 3 db coupler (¢(¢) =
w/2), we find

Pult) & 14(1 + #(0) + Yu(®) + —\—1/—2 5(0)
(24)

Pa(t) = (1 + »(0) + Yu(0) — % 5(0)

Since u(f) 4+ »(f) = O (energy conservation, §(£) would be the more
appropriate parameter for describing the performance of a 3 db coupler,
although u(f) is the mode crosstalk. §(¢) might be called the “inter-
ference error power” in this case. Although no actual examples will be
worked out for 3 db couplers, by comparing u(£) and 3(£) in equations
(22), it is seen that the extension from the 100 per cent coupler cases
considered is very easy.

‘Another case of interest might be that of sampling only a very small
amount of power. In this case £(£) is very small and

Py(6) =21 + »(f) + E(0)8(0)
Py(8) = pu(f) — £(€)8(4)

In this case, u(£), 5(£), and »(£) are all needed to describe the coupler
performance.

(25)

VvI. FREQUENCY SENSTIVITITY OF SINGLE TAPERED MODE COUPLERS

The “mode crosstalk’ is a parameter which measures the “goodness”
or quality of a 100 per cent coupler. Since, in general ¢ and ¢ depend on
frequency, u(f) will also depend on frequency. Thus if a 100 per cent
coupler is required with a “mode cross-talk” less than or equal to ¢ (say
¢ 22 0.01), the frequency range over which u(f,w) £ ¢ determines the
bandwidth. Since, in general, the frequency dependence of ¢ and ¢ is
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not precisely known, we can also obtain a semi-quantitative estimate
of the performance if we keep w fixed and vary £.

A 100 per cent coupler has strictly zero “mode crosstalk’ only if it is
infinitely long, except at isolated frequencies. Of course such a coupler
would be flat over an infinite bandwidth. As a general principle, we infer
that the longer the coupler the greater the bandwidth. This is obviously
not the case for mode interference couplers where any addition to the
optimum length causes increasingly serious deterioration of performance.
To give a plausibility argument, the “mode crosstalk’ may be integrated
by parts to yield

u(l) = i 2_11 ((ti—ﬁ)pm B (t%)pwa) B (%)2 ((%)ﬂ(ﬂ
~(@)) + |

If the series in (26) converges, then u(f) = 0 if all derivatives, d"¢/dp",
vanish at both ends of the coupler. Since u(¢) is identically zero, such a
coupler would be flat for infinite bandwidth. Thus, to increase the band-
width we make £ vary slowly at the ends. However, the coupler must be
made longer, in general, so that the weak hypercoupling approximation
is not violated.

(26)

VII. COMPARISON OF BANDWIDTHS FOR SEVERAL CLASSES OF TAPERED
MODE COUPLERS

In general, a compromise must be made between bandwidth and length
of tapered mode couplers. Several classes of tapered mode couplers will
be considered to illustrate this. Perhaps other variations of ¢(z) and
e(z) will eventually prove better than those considered here but until
they are discovered we must be content with what we have. The ones
illustrated here are chosen primarily for mathematical simplicity, but
it will be shown that they should be useful for bandwidths of the order
of 3:1, although physical length of no more than about three minimum
local beat wave lengths are required.

Two classes of couplers will be considered which will be called, re-
spectively, uniform single tapered mode couplers and constant loeal
beat wave length couplers.

Class 1. Uniform Single Tapered Mode Couplers

This class is characterized by a constant taper (constant hypercoupling
coefficient); i.e.,
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7(2) = =p 27)

[T
&

where p is a constant. For couplers to satisfy (27), it can be shown that
¢(z) and ¢(z) must be related by

‘a(z) _ 1 - 20‘(2) (28)

@) 2Ve(e) — o)

where
f ' c(¥) dr
o(z) = = (29)
j; e(f) d¢
and
pm (30)
j; c(¢) dt

In order that the weak hypercoupling requirement is satisfied, p < 1.
For a 100 per cent coupler £(¢) = =, p must satisfy (30).

TaBLE I — MopE CroSSTALK FOR Two SPECIAL CASES OF
UnirorM TarErep MobE COUPLERS

e (2) a0 |t |5 j—i || Crostalk Bangs. of
sin? 7 'W—J)
) el — 20) ¢ T z +)\h 2N ¢ > 1
a _ = — - — —¥ | —
2/ ¢ — o? Ay 14 i 4 i : g
2Ny
. xl
N sin? )\-—; ¢ .
T T, . e Lr by
b) - cos £(2) ~ sin £(z) sin? % |7 3¢ 4—_2-—2— ~ = 2
Aty

* The criterion for establishing the range of validity is somewhat arbitrary,
but it is taken the same for all cases considered.
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Fig. 1 — Mode crosstalk, u(¢/Ay,), for a uniform tapered mode coupler as a
function of coupler wavelength in minimum loeal beat wavelength units (£/As,).
Insert — Phase ‘“‘constant’ variation ¢(z/¢) as a function of distance along cou-
pler (z/¢) in units of coupler length for constant coupling coefficient ¢(z2).
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Fig. 2 — Mode crosstalk, u(¢/Ay,) for three constant local beat wavelength
couplers as a function of the coupler length in minimum loecal beat wavelength
units (£/Ap,). Cot £(z) = ratio of phase ‘““‘constant’’ variation to coupling coefficient
variation. Insert — Phase ‘‘constant’’ variations ¢(z/¢{) and coupling coefficient
variations e(z/¢) as functions of distance along the couplers in units of cou-
pler length,

Curve (8): &(z) = ’r—;
Curve (b): £z) = = sin? T2

2¢

L=
T 27 £

The crosstalk for these three cases is given in Table 2.

Curve (c): &(2)

SRR

= i P
Py(£) 1+y281n 2\/1+y
—_— 2
Pa(!)=cos’g‘\/l+y2+ly 2Biﬂ21—r‘\/1+y2
+y 2

where y = £/As, .
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The mode crosstalk for this class of couplers is seen to be

sin’ [r _,;t e(¥) d;':l

p(l) = —= 5 (31)
[ fu e(t) ds“:l
Two special cases are considered:
a) cz) =c¢ (Treated by Cook) (32)
b) o(z) = % cos £(z) (Treated by Fox)

e(z) = ?T’r— sin £(z) (33)

by

) = 7

The results for these two cases are summarized in Table I. The variations

TasLE II — MobpeE CRoSSTALK FOR THREE SPECIAL CASES
or CoxsTanT Locar Bear WAVELENGTH COUPLERS

116)] Mode Crosstalk Range of Validity*

. .

) w2 sin (h) _54

Y3 WA Mo
Mo

cos?® ( ) ¢ -
£

v
]

Tz

in2 — _—

b) = sin Y, w2 ( ) wEZ1
Apy
2

|:z 1 . rz] sm( ) {
¢) w|=-— —sin?— — =T

{ 2r 2t Ay

(S

* The criterion for establishing the range of validity is somewhat arbitrary,
but it is taken the same for all cases considered.
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of ¢(z), ¢(z) and the mode crosstalk are plotted in Figs. 1 and 2 for these
cases.*
Class 2. Constant Local Beat Wavelength Couplers

This class is characterized by

T'(z) = V¢*z) + ¢X(z) = ©/\s, = constant. (34)
For couplers to have constant local beat wavelengths, the phase con-
stant difference and coupling coefficient must satisfy the following:

m™

o(2) = N €08 &(z)

c(z) = X sin £(z) (35)
Ab, -
m™
I‘(Z) = Abo =T.
The mode crosstalk is seen to be [by (22)]
_ 1 ¢ df  ajre :l

Several examples of this class will be consideredf

a) £z) = 1%2 (37)
It is seen that this is also a member of Class 1 so it will not be dis-
cussed further.

b) £(z) = = sin® ;L; (38)
c) tz) =m I:% - % sin 2 1rl'-;:l (39)

The mode crosstalk and region of validity for these cases are given in
Table II and the variations ¢(z), ¢(z) and the crosstalk are plotted in
Fig. 2.

As can be seen from Table II, for Case a, df/dp # 0 at either end of
the coupler, while for Case b, d¢/dp = 0 at both ends of the coupler and

* It may be noted in case (b) in which I' = #/Ay, and dt/dz = /¢ that (15) may
be solved exactly. There are pure normal modes which are elliptically polarized
in the normal coordinates w,(z) and wa(z). If power is injected in line 1 only, it
is found that the power in the two lines at z = { is

t It may easily be verified directly in these cases that u(¢) + »(¢f) = 0in agree-
ment with energy conservation. See remarks following (22).
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for Case ¢, d&/dp and d°t/dp’ are zero at both ends of the coupler. Com-
parison of the mode crosstalk for these three cases illustrates the general
remarks made concerning (26), viz., as higher order derivatives of the
taper vanish at the ends of the coupler, the mode crosstalk becomes
less. Again by comparing the range of validity in the three cases of
Table II, it is seen the coupler length must be increased to satisfy the
weak hypercoupling requirement, so that the process cannot be carried
infinitely far in this direction. Presumably at very short wavelengths
where physical size is not as important, this principle can be used most
advantageously.
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