A Method for
Synthesizing Sequential Circuits

By GEORGE H. MEALY
(Manusecript received May 6, 1955)

The theoretical basis of sequential circuit synthesis is developed, with

particular reference to the work of D. A. Huffman and E. F. Moore. A new
method of synthesis is developed which emphasizes formal procedures rather
than the more familiar intuitive ones. Familiarity is assumed with the use
of swilching algebra in the synthesis of combinational circuils.
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. INTRODUCTION

Foreword

The designer of a sequential switching eircuit — a circuit with storage

or “memory” — faces a far more difficult problem than is faced by the
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designer of, say, a simple translating circuit. In the latter case, compara-
tively simple and straightforward methods of synthesis are known.'
In the former case, the designer frequently does not even know how to
begin to solve the problem. Only recently did D. A. Huffman develop
a method which, at an early point in the design, gives rather explicit
procedures for carrying the design through to completion.” The method
relies for its success on a tabular method of presenting the circuit re-
quirements. This table, called a flow chart, may be subjected to simple
manipulations which remove redundancies in the verbal statement of
the circuit requirements. When supplemented by somewhat more com-
plicated procedures, ‘the flow chart is reduced to a form which leads
directly to a circuit having a minimal number of storage elements. This
process will be called reduction in this paper, and direct manipulation
of the flow chart will be called merging.

Independently, E. F. Moore investigated the abstract properties of
sequential circuits.® In particular, Moore asked what can be said about
a circuit when one knows nothing about it except what may be inferred
by performing experiments involving only the input and output ter-
minals of the circuit. A by-product of Moore’s theory was a general
method for reducing (if necessary) a circuit whose description is com-
pletely known.* This method is essentially the same as Huffman’s
methods, sans flow chart manipulation.

The situation, then, is the following: Once a flow chart, or some
equivalent statement of cireuit requirements, has been obtained, one
may use Moore’s procedure for reducing the circuit. Once the circuit

" has been completely reduced, the remainder of the synthesis procedure
is fairly uncomplicated. On the other hand, one may use the merging
process of Huffman on the flow table. Very often this will result in com-
plete reduction; less often it will be necessary to use additional procedures
equivalent to the Moore process. Merging, when it is possible, is easier
to use than is the Moore procedure, hence one would like to find a method
which is as simple as merging and at the same time results in complete
reduction more often than does merging.

Huffman’s method was originally developed in connection with relay
circuits, although it is applicable in other instances. It does not, how-
ever, always work in its unmodified form when applied to switching
circuitry of the type that is commonly used in the design of digital
computers." * One then asks, how can Huffman’s method be extended
to cover such instances?

* We shall use the word ‘‘circuit’’ to refer both to physical circuits and to
abstract representations of circuit requirements (such as flow charts). The latter
of course, may correspond to many physical circuits.
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This paper offers one possible solution to both questions. After de-
scribing an abstract model for sequential circuits, we develop Moore’s
method for reduction, as it applies to our model. We then develop a new
method applicable to synchronous circuitry, which is commonly used
in computer design. Finally, the method is extended to relay circuitry
as an example of asynchronous circuitry. The relationship between our
method and Huffman’s method, as they are applied to this class of
circuits, is then explained.

1.2 Introductory Remarks

It is very tempting at the outset to make the flat statement: There
is no such thing as a synchronous circuit. This would be strictly true
if we defined a synchronous circuit as one with the properties:

(S1) Any lead or device within the circuit may assume, al any instant
of time, only one of two conditions, such as high or low voltage, pulse or no
pulse.

(S2). The behavior of the circuit may be completely described by the
consideration of conditions in the circuit at equally-spaced inslants in time.*
Because it is quite clear that no physical circuit satisfies (S1) and (S2),
such a blanket statement would be a quibble, for the engineer does recog-
nize a certain class of circuits which he calls synchronous. The unfor-
tunate fact is that the distinction between a synchronous and an asyn-
chronous cireuit is very hazy in many cases of actual engineering interest.
Roughly, we may say that the more nearly a circuit satisfies (S1) and
(S2), the more likely will an engineer be to identify it as a synchronous
circuit.

As intuitive guides to the usual properties of a synchronous circuit,
these characteristics are offered:

(1). There is a so-called clock which supplies timing pulses to the cir-
cuit.

(2). Inputs and outputs are in the form of voltage or current pulses
which oceur synchronously with pulses from the clock.

(3). The repetition rate of the clock pulses may be varied, within
limits, without affecting the correct operation of the circuit, so long as
input pulses remain synchronized with the clock.

Another assumption that is commonly made, although it does not
bear on the distinction between synchronous and asynchronous circuits,
should nevertheless be mentioned. If this assumption is made, then we
may distinguish between combinational and sequential circuits.

* Actually, these need not be equally-spaced. However, the instants con-

sidered must not depend on any property of any sequence of inputs presented to
the circuit, such as the duration of a pulse.
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(D). Certain circuits contain no time delay — their input combinations
in every case completely delermine their outpul combinations.

We will be concerned mainly with a technology in which these as-
sumptions are nearly satisfied — that of the type employed in Leiner
et al.* ® In this technology, one uses AND gates (with or without in-
hibiting inputs), OR gates, delay lines, and amplifiers. For our purposes,
we may ignore the need for amplifiers. The other basic circuits are as
shown in Fig. 1. The properties of these circuit blocks are defined by the
algebraic expressions in the illustration.*

The familiar switching (or Boolean) algebra is used, where 0 stands
for no pulse, 1 for pulse, 4+ for OR, - for AND and ( )’ for NOT. It is
assumed that the reader is familiar with switching algebra and its use in
practical design problems. We recall from switching algebra:

(1) A switching function is any (finite) expression in switching algebra.

(2) A minimal polynomial of n variables is any product of the form:

_1;1“ lxgag ‘e _fr"u"
where
Zi’ a; = 0
't =
T a; =1
(3) We define
P; =z o0 x)™

* The unit of delay is the interval between the start of two successive clock
pulses. The notation ““A’*, used in Fig. 1, will be explained in Section 2.1.
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where j is the decimal form of ayas - - - @, , considered as a binary number,
TFor example, if n = 3, Py = x/a'zs’, P1 = x/x.'x; , ete.
(4) Every switching function of n variables may be brought into a

unique canonical form:
n—1

.f(xla J:rn) = ;0 flP:
where
fJ' =f(a1:aﬂs ,a,,)

(5) Corresponding to each function is a truth-fable which displays
the value of the function for each set of arguments. For n = 2, the truth-
table corresponding to the canonical form is found in Table I. The
correspondence between the truth-table and canonical form is one-to-one.

For further information about switching algebra see, for instance,
Reference 9.

As an example, consider the function

 J@y) =2 4y
Its truth-table is Table II, and, therefore, fy = fi = fo = 1 and f; = 0.
The canonical form is

S, ) =2y + 2"y + ay
2, A MODEL FOR SEQUENTIAL CIRCUITS
2.1 The Model

We begin by giving an abstract definition of a switching circuit:
A switching circuit is a circust with a finite number of inputs, outputs.

TaBLE I
T Ia \ f(zl ) zﬂ)
0 0 ’ fo
0 1 N
1 0 ‘ T2
1 1 fa
TasLe 11
x y f(x:r y)
0 0 1
0 1 1
1 0 1
1 1 | 0
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and (internal) states. Its present output combination and next slate are
determined uniquely by the present input combinalion and the present state.
If the circuit has one internal state, we call it a combinational circuit;
otherwise, we call 1t a sequential circuit.

We have now to explain what we mean by this definition when we
apply it to the technology introduced in Section 1. First, we assume a
circuit has n binary-valued input variables, x,, %2, -+ , Tn ; m binary-
valued output variables, y1, Y=, -+, ym ; s binary-valued excitation
variables, §, , g2, --- , @ ; and s binary-valued state variables, ¢, g2,

-, ¢s, corresponding one-to-one with the excitation variables. In
order to facilitate discussion, we note that a set of minimal polynomials
may be associated with each set of variables. Specifically, corresponding
to the input variables, we have the input combinations, X; ; associated
with the output variables are the output combinations, Y, ; correspond-
ing to the excitation variables are the mexi slales, @ ; and with the
state variables, we associate the present states, Q;. For example, if
n =m = s = 3, we have:

X, = mxo'y
Y, = ylf’yz?js’
Q= 0'G'%s
Q1 = 01g20s

We will use this notation and terminology for convenience. Rather
than stating that, at some time, x; = 1, 22 = 0, and 23 = 0, we will say
that input combination X; (or its equivalent — input combination 100)
is present. That is, X; = 1 and thus the inputs are, respectively, 1, 0,
and 0.

Now, according to the definition given above, to each circuit we must
be able to assign some set of equations relating the ; and y; to the x;
and g; . These equations will have the general form:

Q: = QQ:, X))
Y. = Y(Q:, X))

That is, k and £ must be uniquely determined by ¢ and j. Each circuit
is associated with a truth-table with its columns headed (in order):

Il

iy, """y s, Try, * 7y T qla"':q'!: W,y Ym.

The number of circuits having n input, m output, and s internal vari-
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ables is equal to

2(m+.)2(n+a3

since the truth table has 2t rows and m + s columns which must be
filled in with 0’s and 1’s.

The interpretation of this model is now fairly straightforward. We
have assumed (S1), (82), and (D) and know that, physically, the delay
unit provides storage. We assign the g, the excitation variables, to the
inputs of delay lines, and we assign the g;, the state variables, to delay
line outputs. The present state of the circuit is the combination of con-
ditions on the delay line outputs. The next state is the combination of
conditions on the delay line inputs, since one time unit later this com-
bination will be present on the outputs.

To make the discussion concrete, consider Fig. 2. The circuit equations
are:

= q'e + 7'
T = @g + 21
y = a'e

From these equations, we write Table III.

2.2  State Diagrams

It is usually not clear from an examination of the circuit diagram
or circuit equations just what a sequential circuit does. The truth-table

-q,
Xem= . .

LjD_\_a 4, {Q,
7/ -

J

Fig. 2
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TasLe IIT
01 gz z 3 gz y
0 0 0 1 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 0

is more helpful and tells the whole story if we put it in a different form,
called a state diagram. In this diagram, circles will represent states. Each
line of the truth-table will be represented by an arrow going from the
present to the next state. A label on the arrow will give the correspond-
ing input and output combination. The state diagram for the circuit
discussed in Section 2.1 is given in Fig. 3.

The arrows in the state diagram correspond to changes of state of the
associated circuit, and both the arrows and the changes of state are
called transitions. A transition begins at a present state and ends at the
next state. The transition is labeled X/¥. X is aninput combination and
Y is the corresponding output combination. '

As an example, consider Table IV, which gives the sequences of states
and outputs which correspond to each initial state of the circuit and the
input sequence 100. Depending upon what state the circuit is started in,
the input sequence 100 produces three different output sequences. It is
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TasLe IV
T 001 1 00 1 00 1 00
o 001 100 100 011
g 100 110 010 00 1
q1 011 001 0 01 110
s 001 100 100 010
Y 010 001 0 01 1 00

difficult and probably of little value to put into words exactly what this
particular circuit does. However, given any initial state and any sequence
of inputs, we can immediately tell what happens from the state diagram.
(The truth table may be used for the same purpose, but less easily. It is
far more difficult to determine cireuit behavior by chasing signals around
the circuit diagram.) The problem of circuit analysis is now completely
solved. Given any circuit, we may immediately write its circuit equa-
tions. A truth-table is easily obtained from the equations. Given the
truth-table or given the associated state diagram, we may determine
exactly how the circuit behaves for any initial state and input sequence.

Conversely, once a state diagram or truth-table is found for a proposed
circuit, the above steps may be traced backwards in order to arrive at a
circuit diagram. The only problem here is designing combinational cir-
cuits economically. The really significant problem in sequential circuit
synthesis is finding a suitable state diagram or truth-table. This problem,
in turn, may be subdivided into two problems:

(1) finding any state diagram or its equivalent which fulfills the cir-
cuit requirements and

(2) reducing this to the state diagram which is to be used for the final
part of the design process.

The next section of this paper develops Moore’s method of reduction
and is basic in justifying the methods developed in the succeeding sec-
tions.

3. CIRCUIT EQUIVALENCE
3.1 Moore’s Theory

The key to the synthesis of sequential circuits is the concept of circuit
equivalence which was discovered independently by Huffman® and
Moore.> We are concerned mainly with the portions of Moore’s theory
which have direct application to synthesis; certain differences in treat-
ment are necessary since Moore’s model for sequential machines is differ-
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ent from ours. All of Moore’s arguments carry over with only slight
changes.

Roughly speaking, we call two circuits equivalent if we cannot tell
them apart by performing experiments involving only their inputs and
outputs. Once we have solved the first problem of synthesis by finding
any state diagram which fulfills the circuit requirements it will usually
be found that the state diagram has more states than are necessary to
perform the assigned task. In such a case, we usually wish to simplify
the circuit by removing redundant states in such a way that the final
circuit is equivalent to the original one,

We must now make the concept of equivalence more precise. We
define:

(1) Two states, Q; in circuit S and Q; in circuit T, are called equivalent
if, given S initially in state Q; and T initially in staie Q;, there is no
sequence of input combinations which, when presented to both S and T,
will cause S and T lo produce different sequences of oulput combinations.

(2) Two circuits, S and T, are called equivalent if, corresponding lo
each state Q; of S, there is at least one state Q; of T such that Q; 7s equivalent
to Q; ; and corresponding to each state Q; of T there is at least one state Qy
of 8 such that Q; is equivalent to Q .

In (1), it should be noted that T' may be a copy of S. Hence (1) is also
a definition for equivalence between states in the same machine. Moore
has shown that even if no two states in a given machine are equivalent,
it is not always possible to find out what state the machine started in by
some experiment. That is, there is not always a sequence of input com-
binations which will result in a different sequence of output combina-
tions for each possible initial state of the circuit. The state diagram of
Fig. 3 is the example used by Moore to prove this; state 11 may not be
distinguished from state 10 by any experiment which begins with a 1, and
state 01 may not be distinguished from state 11 by any experiment which
begins with a 0.

If there are two states in a circuit which are equivalent, it should be
possible to eliminate one of them. This will result in a circuit equivalent
to the original circuit. This is indeed possible, and the process of reduc-
tion may be carried out in an essentially unique manner, as is stated by

Theorem 1 (Moore). Corresponding to each cireuit, S, is a circuit T
which has the properties: (1) T is equivalent to S, (2) T has a minimal
number of states, (3) no two states in T are equivalent, and (4) T is unique,
except for circuits that resull from T by relabeling its states. T is called the
reduced form of S.

We shall state the procedure to be followed in deriving T from &,
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referring the reader to Reference 3 for a complete proof of Theorem 1.
First, divide the states of S into sets such that (1) all states in a given set
are equivalent, (2) if a state is in a given set then all states equivalent to
that state are also in the same set, and (3) no state is in two different
sets. These sets are called equivalence sets or classes. Now, assign a
state of T to each equivalence set of states. If there is a transition,
bearing the symbol X/V, from a state in one equivalence set of S to a
state in a different equivalence set of S, insert a transition bearing the
same symbol X/Y between the corresponding states in 7'. If there is a
transition between two states in the same equivalence set of S, insert a
transition in T which begins and ends at the corresponding state of T
Do this for all transitions in S.

We have not given as yet an effective procedure for determining the
equivalence sets. This procedure will be provided by the method of proof
of the next theorem. Before stating the theorem, we state a precise defi-
nition of what we mean by “experiment.” By an experiment of length k,
we mean the process of presenting a circuit which is in some specified
initial state with a sequence of k successive input combinations. By the
result of an experiment, we mean the sequence of output combinations
produced by the experiment. We say that two states are indistinguish-
able by any experiment of length k if for all experiments of length k the
result does not depend on which was the initial state. We may now state

Theorem 2 (Moore). Given a circuit S whose reduced form has a total
of p states, then for any two states, Q; and Q;, in S, Q; vs equiralent to Q;1if
and only if Q; is not distinguishable from Q; by any experiment of length
(p — 1).*

Proof: Consider all experiments of length k. All states may be divided
into equivalence sets by the rule: put two states in the same equivalence
set if and only if they are indistinguishable by any experiment of length
k. For each k, there is now defined a set of equivalence sets which we will
call Pk .

Consider two states, a and b, that are not equivalent but are indis-
tinguishable by any experiment of length k. Since a and b are not equiva-
lent, there is an experiment of some minimum length, say n, that will
distinguish a from b. Consider the two states, @ and b, that a and b are
taken into by the first (n — k — 1) input combinations of the experi-
ment. @ and b are then distinguishable by an experiment of length
(k + 1) but by no shorter experiment.

We have now proved that P is not already the set of equivalence sets

* This theorem is a trivial extension of Moore’s result.
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As a more complete example, including the construction of a reduced
machine, consider Fig. 4(a). Applying Rule I, we get:

-TDI : (0) (1) 2: 3: 4)

Py (0) (2 4) (1, 3)

To construct the reduced circuit, assign state A in the new circuit to (0),
B to (1, 3), and C to (2, 4). The resulting circuit is shown as Fig. 4(b).

In order to develop a physical circuit, it is necessary to assign a binary
code to the states. The assignment is more or less arbitrary for syn-
chronous circuits, but will in general affect the number of circuit ele-
ments used. In this instance, we choose to make the assignment:

A—01
B — 00
C—10

Rewriting the state diagram as a truth-table, we get Table V. Two rows
in the right half of the truth-table are blank, since state 11 does not
appear in the state diagram. It is legitimate to fill these rows in in any
way, and it is preferable to fill them in in a manner that results in sim-
plification of the final circuit. Taking advantage of this fact, we may set:

o= qg'er
e = @1
Yy=q

The final circuit is shown in Fig. 5. Fig. 6 shows the state diagram for
the completed circuit. As it happens, state 11 is not equivalent to any
other state. '
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This concludes the material on cireuit equivalence. In the following
section, we develop the method for synchronous circuits. As will be seen,
an essential feature of the method is the use of truth-tables rather than
state diagrams (which become unmanageable for circuits with more than
a few variables) and a very much simplified form of Rule I which may be
applied directly to truth-tables. Our program will be (1) to deseribe the
kind of argument used in going from verbal circuit requirements to a
truth-table; (2) to restate Rule I in a form (Rule II) which is adapted to
synthesis and applies to truth-tables; (3) to develop Rule III, a gen-
eralized form of Huffman’s merging process; (4) to discuss “don’t care”
situations, familiar to the reader from the study of combinational cir-
cuits; and (5) to give a summary of the method. A complete design ex-
ample will be given in Section 5.5, following application of the method to
asynchronous circuits.

4. DEVELOPMENT OF THE METHOD FOR SYNCHRONOUS CIRCUITS
41 Introductory Remarks

As seen in the last section, the first problem in synthesis is finding some
state diagram that will behave according to the circuit requirements. The
state diagram need not be very efficient in the sense that it may have far
more states than are actually needed, for the procedures developed in
the last section give a straightforward procedure for removing redundant
states. Unfortunately, the initial step in the process relies heavily on
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the designer’s ingenuity. However, we can outline procedures that are of
some assistance in finding an initial state diagram.

The simplest case, and indeed the only wholly straightforward case, is
that in which the eircuit must always return to its initial state after it
has received some fixed number of input combinations. Essentially, this
case is simple because we may consider all possible input sequences. We
assign a new state any time anything happens, up to the last input. The
last input then takes us back to the initial state. For instance, suppose
that we want a circuit which receives sets of three binary digits in serial
form and puts a pulse out on one of eight leads during the third digit to
indicate the number that was received. The state diagram may immedi-
ately be written down, as shown in Fig. 7. Rather than write sets of 8
binary digits for the output symbols, we have designated the lead that
should be energized, if any, and otherwise have written “0”.

It is immediately clear that this is even a reduced machine — no two
states are equivalent. This is an extreme case; usually there will be cer-
tain sequences of inputs which will never oceur and/or certain sequences
of inputs for which (in Huffman’s words) we do not care to specify the
circuit action, More often, however, there will be patterns of successive
input combinations that will produce the same circuit action. For in-
stance, suppose that in a sequence of 4 inputs we wish to have a final
output only if the input sequence is 1010 or 0101. Then we can draw a
state diagram showing all sequences which is shown as Fig. 8(a). How-

/Yy
0/Ye




SYNTHESIZING SEQUENTIAL CIRCUITS 1061

(b)

Fig. 8

ever, with a modest amount of ingenuity, we might have drawn Fig.
8(b) as our first attempt. In fact, it is clear that Fig. 8(b) shows the re-
duced form of the diagram in Fig. 8(a).

On the other hand, if there is no state which is entered cyclically, as
above, no really explicit directions may be given for drawing an initial
state diagram. In practice, one starts to draw a branching diagram such
as the above. To terminate each branch, it is necessary to recognize that
each transition from the state at the end of the branch may terminate in
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TaBLE VI
Input combination. . .. 0 1 0 1
Present State Next State Output Combination

1 2 3 0 0

2 4 5 0 0

3 6 7 0 0

4 8 9 0 0

5 10 11 0 0

6 12 13 0 0

7 14 15 0 0

8 1 1 0 0

9 1 1 0 0

10 1 1 0 1

11 1 1 0 0

12 1 1 0 0

13 1 1 1 0

14 1 1 0 0

15 1 1 0 0

some state which is already in the diagram. To the author’s kno“ ledge,
no more specific directions for this are possible.

In practice, large state diagrams become very messy to draw. Where
this is the case, it is better to revert to the truth-table, recast in a matrix
form with states corresponding to rows and input combinations cor-
responding to columns. One of the most valuable features of this mode of
presentation is that the truth table may be used directly to perform a
large part of the reduction process. To illustrate the truth-table in a
simple case consider Table VI which is the truth-table corresponding to
the state diagram of Fig. 8(a). Of the two portions of the table, the left
hand one represents the next states and the right hand one gives the out-
put combinations.

4.2 Modification of First Reduction Process

At this point, we give an extension of Rule I which applies to truth-
tables. It was noted above that Moore’s theory assumes that each ma-
chine is completely specified, although the specification is not known to
the experimenter. In our restatement of Rule I, we must allow for the
possibility of blank entries in the truth-table. This provision amounts to
calling two circuits equivalent if there is no evidence for believing that
they are not equivalent.*

* This procedure is essentially that stated in Reference 2, pp. 183-185.
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Rule I1: Separate the rows of the truth-table into sets such that two
rows are in the same set if and only if no corresponding entries in the
right-hand portion of the rows are contradictory. (A blank entry is not
considered to contradict any entry.) Call these sets “P,.” Given the set
of sets Py, find if possible two rows in the same set of Py such that for
some input combination the two rows have row designations (next
states) which are not blank and correspond to rows in different sets of
P, . Put one of these rows into a new set in Py, together with all rows
in the original set of P, which go into the same set in P, for the given
row and input combination. Leave the other sets in P fixed in Pis .
If this is not possible, the process terminates. Now apply the truth-table
analog of the process described following Theorem 1.

Except for the stipulations concerning blank entries, Rule II is merely
a reworded form of Rule I

43  Second Reduction Process

Rule II, given above, seems rather complicated. Although this com-
plication is more apparent than real, one still wishes to find a reduction
rule that has both the effect and the appearance of simplicity. Presum-
ably, one must pay for this in one way or another — the surprising thing
is that one is not required to pay too heavily. In point of fact the re-
duction rule given below, when applied to asynchronous circuits, is
somewhat more powerful than Huffman’s rule for merging.

We ask, then, what are the simplest circumstances in which a state
may be eliminated by using Rule II? Is it possible to consider only pairs
of states instead of considering larger sets of states? To answer these
questions, consider any pair of rows that are in the same set of P, . That
is, no corresponding entries in the right-hand portion of the rows may be
contradictory. Now if in addition no corresponding entries in the left-
hand portion of the rows are contradictory, then the two states have the
same output combination for a given input combination and the next
state is the same, or may be made to be the same by filling in a “don’t
care’” entry, for any given input combination.* Therefore, the two states
are equivalent. This means that we may eliminate one and keep the
other. If we eliminate state A in favor of state B, then any appearance
in the table of “A” must be changed to read “B".

We restate the above more formally as Rule ITII. This process is called
merging, after Huffman, since we will see that it is a general form of his
merging process.

* Or the present state is also the next state in both cases.
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TasLe VII
Input combination. . .. 0 1 0 1
Present State Next State Output Combination
1 2 3 0 0
2 7 5 0 0
3 6 7 0 0
5 10 15 0 0
6 15 13 0 0
7 15 15 0 0
10 1 1 0 1
13 1 1 1 0
15 1 1 0 0
TasLe VIII
Input combination. . .. 0 1 0 1
Present State Next State QOutput Combination
1 1 2 0 0
2 3 1 0 1
3 2 4 0 1
! 4 3 0 0

Rule ITI: To merge state A with stage B, change all appearances of
“A” in the table to read “B” and copy the entries of row A into row B.
Eliminate row A.

Rule IIT may be used whenever, after the “A’s” have been changed
to “B’s”, to each entry in row A corresponds either the same entry in
row B or a blank in row B.

As an example, consider Table VI. We see that states 8, 9, 11, 12, and
14 may be merged with state 15. Then state 4 may be merged with state
7. The resulting table, Table VII, now corresponds to the state diagram
of Fig. 8(b).*

Note that Rule IIT may not always give complete reduction. An
example is Table VIII, to which Rule ITT may not be applied. However,
Rule IT leads to the conclusion that states 2 and 3 are equivalent, as are
states 1 and 4.

* The reader is urged to write out the intermediate truth-tables derived by
carrying out the mergers step by step.
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44 Blank Eniries; Uniqueness of Reduction

The provision for blank entries in Rules IT and III corresponds to
“don’t care” situations, which usually result from restrictions on the
input sequences. The result of merging rows in different orders is not
always unique. The reason for this is simple — when truth-tables have
blanks, they may usually be filled in in different ways so as to result in
cireuits which are not equivalent. Since merging usually results in filling
in blanks, different orders of merging may result in blanks being filled
in differently. This situation is not in contradiction with Moore’s theory;
there it is assumed that the state diagram is completely specified at the
outset.

As an example, consider Table IX (a). Here, there are four output leads.
The designation of which lead is to be energized is given in the right
portion of the table — a dash indicates that no lead is to be energized.
Clearly, we may merge 8 and 9 with 7; 4 and 5 with 3; and 6 with 1. The
result is shown in Table IX(b). A final merging of 7 with 3 and 2 with 1
leaves the table of Table IX(c). On the other hand, if we merge 2 with 1;
4 with 3; 6 with 5; and 8 and 9 with 7 we get Table IX(d) instead, and
Rule IT tells us that this is a completely reduced circuit.

We have, incidentally, demonstrated that reduction is not necessarily
unique even if only Rule 11 is used, since Rule I1I is a restricted form of
Rule 1I. Therefore, Theorem 1 is not necessarily valid unless the initial
truth-table has no blank entries. Again, this does not mean that the
theorem as originally stated is false — it means only that we are applying
it under conditions which are somewhat more general than those ob-
taining in Moore’s theory. Actually, we are really considering sets of
cireuits in synthesis. Each circuit is deseribed only partly by the initial
truth table and the truth table is, in a mathematical sense, a kind of
domain of definition for the circuits in the set considered. Within this
domain all circuits in the set are identical while outside this domain the
circuits are specified only by “don’t cares” and therefore may differ.
Moore’s theory applies to each individual circuit. We, on the other hand,
are applying it to sets of circuits and must therefore be prepared to find
some differences in detail.

4.5 Summary of Method

In general we start synthesis by writing either (1) a state diagram or
(2) a truth-table, as outlined in Section 4.1. Following this step, we use
Rule I supplemented by stipulations concerning “‘don’t cares” or Rule
III followed by Rule II to achieve reduction. In case (1), the state dia-



TasrLe IX(a)

Input
Combination. . .. 00 01 11 10 00 01 11 10
Present State Next State ; Output Combination
1 1 6 2 — AA AB
2 3 2 — AB
3 4 3 5 DB — DA
4 1 4 — DB
5 1 5 - DA
6 6 7 AA —
7 9 7 8 DB — DA
8 1 8 — DA
9 1 9 o DB
TasLe IX(b)
Input
Combination. ... 00 01 11 10 00 01 11 10
Present State Next State Output Combination
1 1 1 7 2 — AA — AB
2 3 2 — AB
3 1 3 3 3 - DB — DA
7 1 7 7 7 — DB - DA
TasLe IX(c)
Input
Combination. ... 00 01 11 10 6 o 11 10
Present State Next State | Output Combination
1 1 1 3 1 — AA — AB
3 1 3 3 3 — DB — DA
TasLe IX(d)
Input
Combination. . .. 00 01 1 10 00 01 11 10
Present State Next State QOutput Combination
1 1 5 3 1 — AA — AB
3 1 3 3 5 — DB — DA
5 1 5 7 5 — AA - DA
7 1 7 7 7 — DB — DA
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gram must now be translated into a truth-table. At this point in the
process binary coding must be assigned to the states in order to complete
synthesis with two-valued storage elements. Two remarks are in order
here:

(1) The simplicity of the final circuit will be affected by the exact
coding assigned as well as by the truth-table finally chosen, if reduction
is not unique.

(2) Using a minimum number of storage elements is not always wise.
In practical situations, the choice of components dictates one’s criterion
for minimality, and this criterion must ultimately be based on considera-
tions of economy and reliability. For instance, the present writer has
seen an example in which it was much more economical to use seven,
rather than three, storage elements in order to achieve eight states. In
fact one has doubts that complete reduction, itself, is always desirable.

5. THE METHOD APPLIED TO ASYNCHRONOUS CIRCUITS

51 Introductory Remarks

In this section we carry out the transition from synchronous to asyn-
chronous circuitry. A more exhaustive treatment of the subject of asyn-
chronous circuitry is contained in Huffman.

We agree (1) that no clock will be used and (2) that “1”” in switching
algebra will correspond to a high voltage or current, an energized relay
coil, or operated relay contacts. We must now pay careful attention to
circuit conditions at every instant of time. One very real difficulty arises
since time delays inherent in the ‘“‘combinational’ circuit elements may
frequently be of the same order of magnitude as the time required to
change the state of a storage element. This may mean that spurious in-
puts to flip-flops may be produced by changes of input combination
solely because of nonuniform delays in portions of the “‘combinational”
cireuitry. These difficulties will not be considered further since little can
be said about them over and above noting their existence. Another prob-
lem — that of race conditions (a definition of this term will be given
below) — can be resolved by logical methods; we shall treat this problem
in moderate detail.

5.2 Interpretation of the Model

For the purpose of illustrating the pertinent facts and methods which
relate to asynchronous circuits, we use relay circuitry as being typical of
asynchronous circuitry. Fig. 9 illustrates our conventions and notations,
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—_— 1 SHORT CIRCUIT
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Fig. 9

Our interpretation of the abstract model for sequential circuits given
in Section 2 must be changed somewhat. To be concrete, consider the
circuit of Fig. 10. We think of this circuit as having two types of relays
— to primary relays correspond input variables and to secondary relays
correspond exeitation and state variables. The general situation is shown
in Fig. 11, The primary relays are controlled directly by the inputs; we
shall use “x;"” to denote both the 7t input and the contacts on relay
(z:) . The secondary relays are controlled by contacts on any or all
relays; they furnish the storage in the circuit. Considering relay (g:), we
shall say that g; = 1 whenever the coil of (g;) is energized and that ¢; = 1

(x)
X b X q, Y
- 'llﬁ _(ay)
= qz b
i
x =
a 9 i (qz2)

Fig. 10
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whenever (g;) is fully operated. Note carefully the distinction between
these two statements!

5.3 Race Conditions; Coding of Stales

The meaning of “present state” is clear enough — it is determined by
which secondary relays are operated. We shall say that the ‘“next” state
is determined by which secondary relays are energized. However, the
“next” state may never be realized as a present state! We shall now
reconsider the circuit of Fig. 10. On the basis of our previous agreement,
we may draw a truth-table and state diagram. The truth-table is that
given by Table X, and the state diagram is shown in Fig. 12.

In order to study the action of asynchronous circuits, it is often con-
venient to make use of sequence diagrams." These are essentially pic-
tures of what happens in a circuit as a function of time;* a line opposite
a relay or lead designation represents an operated relay or a grounded
lead. For instance, assume that both relays in Tig. 10 are released, a
ground is applied and then released later on, and moreover that (q1) is
faster in operating than (g2). The corresponding sequence diagram is
shown in Fig. 13(a). Clearly, in this case, the circuit does almost what
one would expect from consideration of the state diagram, except that
the cireuit goes from state 00 to state 11 by way of state 10! The situa-
tion is quite different if (g») is faster in operating than (¢:), as shown by
Fig. 13(b). In this case, although state 11 is the “next state,” it is never
reached, since (g2) in operating breaks the operating path of (gi). A situ-
ation such as this is called a race condition. Whether it is harmful or not
depends on the circuit requirements.

* The time scale is usually distorted, sequence of events being more important
than their duration.
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TasLE X
8 s T 71 ds Y
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 1 1 1

We say that a race condition exists in a circuit for input combination
X, and present state @; if the next state @) is such that the binary forms
of 7 and k disagree by more than one binary digit. For, if they do, more
than one relay is attempting to change its state of operation, and differ-
ences in operate and/or release times may lead to differences in circuit
behavior.

In order to avoid races, it is necessary and sufficient that any distinet
states directly connected by a transition disagree in exactly one binary
digit. We can always avoid races if we add enough extra states. On the
other hand, if a race condition is not harmful, removing the race condi-
tion generally decreases circuit operating speed.

One further remark must be made: it is often very helpful to assume
that only one input variable may change its value at any given in-
stant and to arrange connecting circuits in a system so that this condi-
tion is satisfied. To appreciate why this might be the case, consider a
system containing two interconnecting circuits. These circuits may be
viewed together as a single, larger circuit. If the above condition on the
interconnecting leads is not fulfilled, then race conditions may be present
in the over-all circuit even though they are not present in either circuit
considered by itself.

1/0

o/0

1/1

Fig. 12



SYNTHESIZING SEQUENTIAL CIRCUITS 1071

X X
Qi a4
a, a,
Qs as
a2 qa

Y : y |

(@) (b)
Fig. 13

The usual state of affairs in an asynchronous circuit is this: upon a
change of input combination, if the “next” state of the circuit is different
from its present state, the states of the individual storage elements will
change until a final state of the circuit is reached in which no further
change of state is possible. Two remarks are in order here. First, we have
already seen that in the presence of race conditions the final state, if
any, may depend on operate and release times as well as on the truth-
table for the circuit. Second, there may be no final state — this is the
case for certain pulse-generating circuits.* Usually however, if the new
input combination is maintained for a sufficiently long interval, a final
state will be reached. Since in most cases of practical interest the time
required to reach the final state is much less than the interval during
which any given input combination is held, design effort is fixed on the
final states, rather than any possible intermediate states.

For the above reasons, the formal part of synthesis — that part of
synthesis which ends with writing out circuit equations —is both
different and more difficult in the case of asynchronous circuitry. Al-
though it is true that we need not consider the possibility of race condi-
tions until that point in synthesis in which we assign binary coding to
the states, it is not true that the same truth table may always be used
for both a synchronous and an asynchronous realization of a given
circuit. (That this is possible for the circuit of Table IX is only ac-
cidental). The reason for this is tied in very closely with the fact that
we speak of presence or absence of pulses in synchronous circuits but of

* See Reference 6, Chapter 18, for examples.
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quasi-steady-state conditions on leads in asynchronous circuits. A pulse
on lead z, for instance, might be represented by X, in a synchronous
cireuit but as X, followed by X; followed by X, in an asynchronous cir-
cuit.

5.4 Huffman’s Method

The purpose of this section is not to outline Huffman’s method of
synthesis? but, rather, to support our claim made above that Rule ITI
represents a slight generalization of Huffman’s merging process. We
shall assume familiarity with the contents of Reference 2.

The justification for this claim is immediate, if not already self-evident
to the reader. Namely, suppose that an initial flow table is written down.
By going immediately to the associated truth table, Huffman’s rule for
merging becomes the same as Rule III, except that Rule III allows
‘somewhat more latitude for merging in that it is permissible to change
the symbols corresponding to certain next states. In Huffman’s method,
it would be necessary to resort to equivalence arguments in such in-
stances. We are considering here that the use of equivalence arguments
is separate from the purely mechanical merging process, although there
is evidence in Reference 2 that Huffman considers the use of such argu-
ments to be a part of merging. Our point is that such arguments may be
avoided in many cases if we work directly with the truth table and

Rule III.

55 Summary of Method

We have now disposed of the basic principles of eur method as ap-
plied to asynchronous circuits. The synthesis steps are:

(1) Write a truth-table which satisfies the circuit requirements.

(2) Use Rules IT and III in reverse order, as applicable, to obtain a
reduced truth-table.

(3) Code the states in a binary code. If possible, assign the code so
that no harmful race conditions are present. Otherwise, add states in
such a way as to make eliminate harmful races.”

(4) Write the circuit equations.

(5) Synthesize the combinational networks.

As our final example, we consider the following problem, taken from
Reference 6 (Problem 8-9):

A rotating shaft carries a single grounded brush which makes contact
with three stationary commutator segments arranged symmetrically
around the shaft. A relay circuit is required which will indicate the direc-
tion of shaft rotation by lighting a lamp when the shaft is rotating in the
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clockwise direction. The shaft may reverse its direction at any time.
Assume that the shaft is driven so that a brush contact closure is 0.25
second and that the open time between the brush leaving one segment
and reaching another is 0.25 second. When the shaft changes direction,
the output indication must change as quickly as possible, at most within
2 seconds.

Let the brush be grounded and the three segments be labelled “x,,”
‘s’ and “a;” respectively. For the output indication, let ¥ = 1 when
the shaft is rotating in the clockwise sense. Now, in order to write the
initial truth-table, we may first consider what the circuit must do to
keep track of the brush while it is rotating in only one direction. This
situation is clearly taken care of by Table XI(a). All that remains is to
enlarge the table to enable (say) the circuit to go from states 1-6 to
states 7-12 when the direction is changed from clockwise to counterclock-
wise. A usable strategy is this: as one segment, say x, , is passed the cir-
cuit expects x» to come up next. If x; comes up before x; , we can cause
the circuit to go to the counterclockwise state in which x; has occurred
and x, is expected next. This has been done in Table XI(b).

With regard to the output note that it is sufficient to assign y = 0
to states 7 — 12 and y = 1 to states 1 — 6, regardless of input com-
bination.

The possibilities for merging, (using Rule III), are obvious: merge 2
with 3, 4 with 5, 6 with 1, 8 with 9, 10 with 11, and 12 with 7. The
result is Table XI(c). Now use Rule IT to determine whether reduction
is complete. Actually, literal use of Rule II is a waste of time, for we may
use this argument:

P.:(1,3,5) (7,9, 11)

By examining input combination 100, we split off both 5 and 9 from the
sets above, arriving at:

P.:(1,3) (5) (7,11) (9)

By examining input combination 010, we see that 1 and 3 (7 and 11)
are distinguishable. Hence, the circuit is completely reduced.

We now have to code the states. To assist in this process, we draw the
state diagram shown in Fig. 14(a). Since there are two triangles in the
diagram, we cannot assign codes to avoid races, and therefore extra
states must be added. One way to do this is to insert new states between
5 and 1 and between 11 and 7 in such a way that the circuit will treat the
new states as transient states. This has been done and coding has been
assigned in Fig. 14(b). The corresponding truth-table is shown as Table
XTI



TasLe XI(a)

Input
Combination. ... 000 100 010 001 (AlD)
Present State Next State ();or?lg?gzt?i ot
1 1 2 1
2 3 2 1
3 3 4 1
4 5 4 1
5 5 6 1
6 1 6 1
7 7 8 0
8 9 8 0
9 9 . 10 0
10 11 10 0
11 11 12 0
12 7 12 0
TasLe XI(b)
Input
Combination. . .. 000 100 010 001 (All)
Present State Next State Comput
1 1 2 10 1
2 3 2 1
3 3 4 8 1
4 5 4 1
5 5 12 6 1
6 1 6 1
7 7 4 8 0
8 9 8 0
9 9 2 10 0
10 11 10 0
11 11 12 6 0
12 7 12 0
TasLe XI(c)
Input
Combination. ... 000 100 010 001 (AlD)
- Output
Present State Next State Combination
1 1 3 11 1 1
3 3 3 5 9 1
5 5 7 5 1 1
7 7 7 5 9 0
9 9 3 11 9 0
11 11 7 11 1 0

1074
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Fig. 14(a)
000/1 000/1 000/1
001/1 100/1 010/1
F NN won BN oo BN oo /\001/5
000 001 on 010
0o01/0 010/1 100/0 001/1 oto/0| |100/1
100/ [ (11 010/0 (9) ootyo [ M 100/0 m

100 101 i 110
000/0 000/0 000/0
010/0 ooi/0 100/0

Fig. 14(b)
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The circuit equations may be written as:

7 = (v + e+ @'exs + @) (@' + @'+ Ggrs)’

B = (/g2 + Q@21 + q2) - (@'%5 + @1'2s)’

B = (g'e'v + gee + @) (¢'ees + g’z
In this particular case, if shunt-down operation® is not objectionable, it
is even possible to dispense with primary relays.* A circuit that satisfies

the stated conditions is given in Fig. 15. (The author does not guarantee
that the cireuit is minimal!)

6. DISCUSSION

Like any ‘“systematic” method for synthesizing certain classes of
switching circuits, our method leaves much to be desired. First, the
problem of synthesizing really large circuits has not been touched — one
wonders whether it is really possible to do this with any method that

TasLe XII
Input
Combination. . .. 000 100 010 001 (All)
Qutput
Present State Next State Combination

000 000 001 100 000 1
001 001 001 011 101 1
011 011 111 011 010 1
010 d d d 000 1
100 100 110 100 000 0
101 101 001 100 101 0
111 111 111 011 101 0
110 d 111 d d 0

relies on the use of a truth-table without making use of automatic design
aids inasmuch as large truth-tables become unmanageable. Second, the
first step of the process, as described in Section 4, has in no sense been
eliminated — this is probably the step that asks the most of the de-
signer’s ingenuity and skill. Third, the process of coding the states may
have a great effect on the final cost of the circuit — despite this, there
are at present no rules for carrying out the coding in an optimal manner.

To compare our method with that of Huffman,? several pertinent com-
ments may be made. First, our method applies equally well to synchron-

* This was pointed out to the writer by A. H. Budlong.
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ous and asynchronous circuit synthesis whereas Huffman’s method was
formulated specifically for asynchronous circuit synthesis. We hasten to
add, however, that the basic concepts of Huffman’s paper are valid in
both cases. Such changes in detail as are required to adapt his method
to synchronous circuit synthesis would almost certainly result in a
method identical with the method of this paper. Second, for asynchron-
ous circuits, the initial truth table we write down is different only in
appearance from the initial flow table that we might have written —
neither method offers any advantage in this respect. Third, the ease of
using Huffman’s merging rule as opposed to the use of Rule III must be
weighed against the necessity of translating the final flow table into a
truth table in order to develop circuit equations. Finally, the present
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method is more often successful (in principle, at least) in achieving
complete reduction without the use of auxiliary equivalence arguments.
Nevertheless, it is always advisable to use Rule II in order to test for
complete reduction.

Finally, it should be pointed out that there are many cases where
other, more intuitive, methods are more useful. Such methods for asyn-
chronous circuit design are given in Reference 6.

In fact, the place of formal methods, such as that outlined in this
paper, in the every day practice of synthesis is much smaller than might
appear at first glance. It is probably fair to say that the theory furnishes,
at present at least, only generalized methods of attack on synthesis to-
gether with a small handful of particularized tools for design. It is the
author’s belief that these methods are genuinely useful insofar as they
aid in understanding the nature of sequential circuits and furnish a uni-
fied way of thinking about circuits during their design. It would be a
mistake, however, to believe that they provide detailed design methods
in the same sense in which such methods are available for electrical
network synthesis. The engineer must make a judicious selection of his
design tools and, most likely, must invent methods and diagrammatic
devices which fit the particular problem at hand.

A few words should be said about the comparative originality of the
author’s treatment of this subject. The model proposed in Section 2 was
suggested to the writer by the content of E. F. Moore, Reference 7, and,
in the case of synchronous circuits, is almost identical with the discrete
transducer of information theory.® Independently, S. H. Washburn
proposed essentially the same model in an unpublished memorandum.

Our interpretation of the model for asynchronous circuits and conse-
quences of that interpretation with relation to race conditions were inde-
pendently treated by Huffman.” Our use of Rule IIT in the method owes
much to Huffman’s work.
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